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It is known that, for a ring R, every injective .ft-module has an inde-
composable direct summand if and only if every ideal is an intersection of two
ideals, at least one of which is irreducible QjίJ). In [T], it is pointed out
that the zero ideal of the ring of continuous functions defined on the interval
[0, 1H does not satisfy the above condition and there are no other examples
as far as the author knows.

The aim of this paper is to present such an example as a domain and
investigate the characters of ideals which do not satisfy the condition. Also
we shall settle several conjectures by making use of this example.

The author wishes to express his thanks to Prof. M. Nishi for his valuable
suggestions and encouragement.

Throughout this paper all rings will be commutative with unit and all
modules will be unitary. For an ideal I and an element r of a ring R, I: r
means the ideal {s e R\ sr e I}. For an element x of an .β-module, 0(χ) means
the order ideal of x. We write x e S—T for x e S and x <f T.

§ 1. Co-irreducible modules

Let R be a ring and M an i?-module. We shall say that M is co-irreducible
if MφO and for any non-zero submodules JVi and N2 of Jlί, N1Γ\N2φO. If M
is a co-irreducible i?-module, then non-zero submodules and essential exten-
sions of M are also co-irreducible. Let M be an i?-module and N a submodule
of M. We shall say that N is irreducible in M if M/N is co-irreducible. In
other words, if N=MιΓ\M2 for submodules Mi and M2 of Af, then N=Mχ or
N=M2. For an ideal / of R, we say that I is an irreducible ideal if / is
irreducible in R as an Λ-module. Then prime ideals of R are irreducible.

THEOREM 1.1. The following conditions in a ring R are equivalent,
1) Any non-zero R-module contains a co-irreducible submodule.
2) / / 1 is an ideal of R, different from R, then there exists an element

r of R such that I: r is an irreducible ideal.

PROOF. We assume the condition 1). Let I(^R) be an ideal of R. Then
the non-zero module R/I=Rx contains a co-irreducible submodule Rrx for
some re R. Since Rrx is isomorphic to R/0(rx) and 0(rx)=I: r, /: r is irre-
ducible. Conversely we assume the condition 2). It is sufficient to show the
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condition 1) for a cyclic module RxφO. Now Rx is isomorphic to R/0(x) and
by assumption, there exists an element r of R such that 0(x): r is irreducible.
This implies that Rrx is a co-irreducible submodule of Rx. q.e.d.

We can readily see that the conditions in Theorem 1.1 are originally
equivalent to the condition of remark in [4, p 516]. Therefore by R. B.
Warfields (Q5, p 269]) we have the following:

PROPOSITION 1.2. // the conditions in Theorem 1.1 are fulfilled, then any
injective R-module is the injective hull of a direct sum of indecomposable infec-
tive R-modules.

§ 2. Example

We shall construct an example in which the condition 1) in Theorem 1.1
is not satisfied. To do this we use the technique of construction of a domain
by a lattice-ordered group. Let G be an additive abelian group with partial
order < compatible with the operation in G. G is a lattice-ordered group if α,
b e G implies inf (α, b) e G. A segment of the lattice-ordered group G is a non-
empty subset A of G+ = {x € G; Λ ;>0} such that a e A and ό > α imply b € A,
and a, b e A implies inf (a, b) e A. A is a principal segment if there exists
an element a in G+ such that A = {ge. G+ g >α} ? and we denote it by (α). For
a segment A of G and an element g of G+, A: g means the segment {/eG+;
f+g£ A}. A is an irreducible segment if A is not written as an intersection
of two segments of G which contain A properly. In Q3, p79], P. Jaffard shows
that to each lattice-ordered group G there corresponds an integral domain D.
Let F be an arbitrary field and R be the group ring of G with respect to F.
Then R can be regarded as the set of finite formal sums ΣaiXg\ a{ e F, g{ e G.
For an element Σa,iX8i of R* = R— {0}, we define a map φ of i£* onto G by
φ(Σa,iXgi) = inί{gi}. It is known that the group ring R is a domain (Q3, p. 12]).
Let K be the quotient field of R the map φ may be extended to K* =K— {0}
by φ(r1/r2)=Φ(ri) — φ(r2). The map φ has the following properties:

φ(pq)=φ(p) + φ(q)

φ(p + q)>mί(φ(p\φ(q))

Let D be the set {0}\j{p e K*; φ(p)>0}. In [2], W. Heinzer shows that D
is a bezoutian domain. Moreover, it can be easily seen that there is a one-to-
one inclusion preserving correspondence between proper segments in G and
proper ideals in D. That is, if / is an ideal of D, then φ(I— {0}) is a segment
of G, and conversely, if A is a segment of G, then φ~λ{A)\J{§} is an ideal of
D. And if A is a prime (resp. irreducible) segment, then φ~ι(A)\J{0} is a
prime (resp. irreducible) ideal, and conversely.
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From now on, we take for G the set of Z-valued left continuous step func-
tions on R with at most finitely many points of discontinuity. G is a group
under pointwise addition, and is lattice-ordered by the relation <;, where / < g
if and only if f(χ)<,g(χ) for all x e R. Now we shall study segments of G.
For any x0 e R, let {χn}neN be a monotone decreasing sequence in R which
converges to x0. Define a function /„ by /„(#) = 1 on (x0, χn~] and /,,(#) = 0

elsewhere. Put QXQ = \J (/„). Then QXQ is independent of a choice of the sequ-
n = \

ence {#w}. Moreover, we define three other types of segments as follows:
(?oo ={f e G+; there is r e R such that / is positive on (r, oo)}
(λ_TC = {f e G\ there is r e K such that / is positive on ( — oo, rJ}

PXo = if eG+;f(χo)>O}

We can readily see that these are prime segments.

PROPOSITION 2.1. PXQ, QXQ, Q^ and ^_TO are the only prime segments of G.

PROOF. It is evident that there are no inclusion relations between these
segments. Suppose A is a proper segment such that A<ζPXQ, QXQ, ζL Q-^ for
all ô £ β. Since A^Q^ Q-^ then there exist an element/ in A and xu χ2 6
R, χ\<χ2τ such that/(Λ;) = 0 on ( — oo5 x 1 ] \ J ( Λ ; 2 J oo). Also A<ζPXQ, QXQ implies
that there exist fXQ e A and x\ x" e R, x'<χo<χf/ such that/^0(^) = 0 on IXQ =
[V, x"~\. Then the interval \^xu x2~] is covered by the sets IXQ. Since [_χi, χ<ϊ\
is compact, then it has a finite covering Iy\jly\j.. W/j,Λ. Let hy. be the func-
tion corresponding to j t . Thus, 0 = inf (/, Λ̂ ^ Â 2, , ̂ 3,̂ ) 6 ̂ 4, which implies
that A=G+ this contradicts the assumption on 4̂. Therefore prime segments
Pχo> (?*o> ̂  a n (^ Q-~ a r e maximal. Next we shall show that these are mini-
mal. We shall treat the segment PXQ only and omit the other cases. Let P
be a prime segment PCPXQ; then there exists g£ Psuch that g-( 0̂) = l, for, if
the value k of f0 e P a t χ0 is greater than 1, then there exists # i ( O 0 ) £R
such that/oO) = & on (xu xoj. Define a function g€ G+ 'by g(x) = l on (Λ I,
XO} and g(χ)=fo(χ) elsewhere. Then kg~>f0. Since foePand P is a prime
segment, then λ g e P and ̂ e P . Thus gr(#0) = l. Therefore for any f e PXo,
there exists he Psuch that f(xQ)=h(x0). Put/<, = inf(/, Λ). Clearly f0 e PXQ.
Moreover/o e P, because h = (h—fo) + fo<(h—foy + fo€P, where (A—/0)

+ =
sup(A —/o, 0), Qt—foY ί P and P is prime, thus / 0 ε P. Hence / e P , this
implies P*o = P. q. e. d.

By the proof of Proposition 2.1, we have shown that if A is a segment of
G such that A<ζQXQ, PXQ for all #0 6 ft, then for any x1<x2 in β, there exists a
function fe A such t h a t / O ) = 0 on (xu x2~], and moreover if AtζQ-^ then
there exists #e A such that #O)=0 on ( — 005 x{]. We shall call such a pro-
cess of constructing / C-machine.

Let H be the group of Z-valued functions on R. H is a lattice-ordered
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group by defining the order like that of G. If A is a segment of G, we define
a function F(A) e H+ by F(A)(x)=min f(x\ x e «. For any fe H, let D(f)

be the set of points of left discontinuity of /.

PROPOSITION 2.2. If A is a segment of G, then F(A) has the following
properties:

1) F(A) is a bounded function,
2) liϊn F(A)(x)<F(A)(x0) for all x0 e D(F(A)).

#-•#0-0

PROOF. By definition of F(A\ F(A)<f for all f e A. Since / is a bound-
ed function, the first assertion is clear. For all χ0 e D(F(A)\ there exist g e A
and xiϊR, xι<x0, such that g(xo)=F(A)(xo) and ^ ( ^ = ̂ (^0) on (xu XQ}.
Hence, g(x)^>F(A)(x) on (xu χoj. Thus the second assertion holds. q.e.d.

PROPOSITION 2.3. If A is a proper segment of G and F(A) = 0, then there
exists an element h in G+ — A such that A: h is equal to QXQ, Q^ or Q-^.

PROOF. We first note that F(A) = 0 if and only if Aζ PXQ for all x0 e R.
We shall treat four cases separately.

Case I) When A is in Q^ but not in Q_βom a) If every segment of type QXo

does not contain Λ> then A is irreducible. We shall show this. Let / be an
element of A. Then there exists r e R such that f(χ) is constant on (r, 00).
We denote the constant by P(f) and min P(f) by P(A). Now we suppose that

f€A

A is reducible, that is, A = BΓ\C, for some segment A^B, C. Then P(A)>.
P(B\ P(C). If P(A) = P(B), for any be B, there exists a e A such that a<b
by C-machine. Hence be A and this implies A = B. Thus P(A)>P(B\ P(C).
But it is impossible, then A is irreducible. Next we can easily see that by
C-machine, if P(A) = ly then A=QOO, and if P(A)Φ1> then there exists he G+

— A such that A: h—Q^,
b) If A is contained in QXQ for some xQ, A is reducible. In fact, let χ± e R be
xι>x0 and / be in A. Define a function gf (resp. hf) by g/(χ)=f(χ) (resp.
hf(x)=0) on ( — 00? Xl~] and gf(x) = 0 (resp. hf(x)=f(χ)) on (Λ I, 00) Then gf

and hf are not in A. Put B=\J(gf) and C=\J(hf), then 5 and C are segments
containing A properly and A = BΓλC. Thus A is reducible. Next we shall
show that there exists he G+ — A such that A: h=QXQ. If x0 e R is a unique
real number such that ACQXQ, then there is he G+ — A such that ^4: h=Qoo,
because, let / be in A and χ± be Λ;0<Λ;I and define a function Ao by ho(x)=f(x)
on ( — oo? # J and Λ0(Λ;) = 0 otherwise, then the segment A: h is in case I. a).
We suppose that the set of x0 such that ACQXQ has more than one element.
Take #o<*i in the set and let xι be inf {r;f(x) = 0 on (r, x{] for some / e A},
then #o<.#i and ACQz^ Let g be in 4̂; then there exists # 2 (>^i) 6" R such
that #(#) is constant on (xu xϊ]. We denote the constant by EXl(g) and min
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D e f i n e g^G+-Ahy #>(*) = <> on (xu χ2~] and #>(*)=/(*)
elsewhere. Then the proof of the rest is similar to that of case I. a).

Case II) When A is in Q_oo but not in Q^, the proof is similar to that of
case I.

Case III) When A is in QXQ for some x0 but A is in neither Q^ nor Q-^.
a) Iΐx0 is a unique real number such that A is in QXQ9 then A is irreducible
and for some he G+ — A, A: h=QXQ.
b) If the set of x0 such that A is in QXQ has more than one element, we can
readily see that A is reducible. The proof of the rest is similar to case I.

Case IV) When A is in Q^ and Q-^, replacing A by A: h for suitable
h, we can reduce to the case I. q. e. d.

For any element / in H+, A(f) be the set {gtG+; g>f}. Then A(f) φ
φ is equivalent to saying that/ is a bounded function. When that is so, A(f)
is a segment of G. The following proposition follows immediately from
definitions.

PROPOSITION 2.4. Let fbe a bounded function in H+ then F(A(f))^>f.

PROPOSITION 2.5. When f is a bounded function in H+, F(A(f)) coincides

with f if and only if lim f(χ)<f(χ0) for all x0 e D(f).
#-•#0-0

PROOF. First suppose that lim f(χ)<f(χ0) for all xoeD(f). By the

definition of the upper limit, there is a positive number ε such that f(χ)<C
/Oo) on Oo — ε, XQ] Since / is bounded, there is h e G+ such that h(x)=f(x0)
on Oo — ε, ôH and h(x)~>f(x) otherwise. Then h e A(f) and also F(A(f))(x0)
/Oo) for all XQ e D(f). If x1 is not in D(f), f is left continuous at xlu Then
F(A(f)) (χι)=f(χι) and this means that F(A(f))=f. The converse is clear.

q.e.d.

When a bounded function / 6 H+ satisfies the condition in Proposition 2.5,
we shall say that / has the property (E). If / and g has the property (E) and
A(f) = A(g\ then f=g. If A is a segment of G, then F(A) has the property
(JS).

PROPOSITION 2.6. // ̂4 is a segment of G and h 6 G+, then F(A: h)=(F(A)
-hγ

PROOF. ^ : h = {\J(g)}: h=\J{(g): h}=\J(g-h)+. Then the assertion
g€A geA g€A

is obvious. q.e.d.

When / has the property (E), we shall say that / is irreducible if / is not
represented as sup(g, h\ where fψ g, h and g , h have the property (E). If /
is not irreducible, then we shall say that / is reducible; and if (/—h)+ is
reducible for every element h e G+ — A(f), we shall say that / is of type II.
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PROPOSITION 2.7. Let f be in H+. Then f is irreducible if and only if
f=0 or there exists r0 e R such that /(ro)>O and f(x)=0 elsewhere.

PROOF. Assume that / is irreducible and fφO. Then there exists a
unique roe R such that /(ro)>O. In fact, we shall suppose that there exists
another n e JR such that/(ri)>0. Define a function fλ (resp. /2) by / iO) = 0

(resp./2(*) =/(#)) onΓ —co5

 Γ l " I Γ 2 and/i( #)=/(*) (resp./2(» = 0) elsewhere.

Then /i and / 2 have the property (£), / # / i , f2 and /=sup(/i ,/ 2 ) . This is
a contradiction. The converse is clear. q.e.d.

By making use of the similar technique of the proof of Proposition 2.3
and by Proposition 2.7 if A is a segment of G and F(A) is reducible, then A is
reducible. Let A and 5 be irreducible segments of G. We shall say that A
and 5 are equivalent if for some / e G+ — A and ge G+ — B, A: f= B: g . Then
this relation is an equivalence relation. By the above remark, we have the
following:

PROPOSITION 2.8. In G, every irreducible segment is equivalent to one of
the prime segments P*o, QX9 Q^ and Q^^.

THEOREM 2.9. IffφO has the property (E), then the following statements
are equivalent

1) f is of type II.
2) ίϊm" f(χ)=f(Xo) for all x0 6 /)(/).

χ-*χQ-o

PROOF. First we assume the condition 1). If lim f(χ)<f(χo) for some
X-^X0-0

xo in D(f\ then/O)</Oo) on (x0 — ε, xo~} for suitably chosen ε>0. Since/ is
bounded, there exists keR such that f(χ)<,k on R. Define a function heG+

by h(x)=f(χo) — l on O 0 — ε, xoj and f(x) = k otherwise, then (/—h)+(x0) = l
and (/—h)+(x)=0 elsewhere. Therefore by Proposition 2.7, (f—h)+ is irre-
ducible. This is a contradiction. Conversely we assume the condition 2).
Let h be any element in G+ — A(f) and g=(f—h)+. Then gφO and also g
satisfies the condition 2). Therefore it is sufficient to show that / is reducible.
Since fφO, there exists xQe R such that /0&0)>0. If χo is in !>(/), by assump-
tion, for any positive number ε, / O ) > 0 at infinitely many points x on (x0 —
ε, xo~}. On the other hand, if x0 is not in D(f\ f is constant (>0) on (xu #oll
for some xι«x0). Hence by Proposition 2.7, / is reducible. q.e. d.

Let A be a segment of G. We shall say that A is of type II if A: h is
reducible for all h e G+ — A.

COROLLARY 2.10. If f £ H+ has the property (E), then f is of type II if
and only if A(f) is of type II.

PROOF. We suppose that / is of type II. Then by Proposition 2.6 and
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the remark after Proposition 2.7, A(f) is of type II. We shall omit the proof
of the converse. q.e.d.

COROLLARY 2.11. Every principal segment of G is of type II

Now we can convert the result obtained above on the lattice-ordered
group G to language of the bezoutian domain D. We have determined the
type of ideals of D which are irreducible or of type II. Namely Proposition
2.8 means that every irreducible ideal of D is equivalent to some prime ideal,
and Corollary 2.11 means that every non-zero proper principal ideal of D is of
type II. Thus we know that the condition in Theorem 1.1 does not hold in
our bezoutian domain D. Moreover, Proposition 2.9 means that there exist
ideals of type II which are not principal. We shall also use this example in
§3.

§ 3. The type of modules

Let R be a ring. We shall say that an .R-module M is of type I if any
non-zero submodule of M contains a co-irreducible submodule and also say
that M is of type II if no submodules of M contain a co-irreducible submodule.
Then from definitions, non-zero submodules and essential extensions of a
module of type I (resp. type II) are also of type I (resp. type II). Any injec-
tive module of type I is the injective hull of a direct sum of indecomposable
injective modules. Moreover, any torsion free module over a domain is of
type I.

PROPOSITION 3.1. Any direct sum of a family of modules of type I is also
of type I

PROOF. If a direct sum0Af, , Mj being of type I, is not of type I, then we
can find a non-zero submodule N such that no submodules of N are co-irredu-
cible. Let Λ ^ O b e a n element of N; then we can write x = xι + χ2-\ V^n
for l < ; i < X o o , χi£ Mj.. Hence 0(x)=0(x1)Γ\0(χ2)r\--r\0(xn). We may
assume that this intersection is irredundant. If n = l9 then there exists r e R
such that 0(Λ?I): Γ is irreducible. On the other hand, 0(x): r is not irreducible,
and this is a contradiction. If n>l, then there exists an element r in f\0(χi)

but not in 0(xχ). Then 0(x): r = 0(x1): r. Since 0(x): τ is of type II but
0(#i): r is not of type II, this is also a contradiction. q.e.d.

PROPOSITION 3.2. Any direct sum of a family of modules of sype II is
also of type II.

The proof is similar to that of Proposition 3.1.
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Example 3.3. An infinite direct product of modules of type I is not nece-
ssarily of type I.

Let Px(x e R) be prime segments of the lattice-ordered group G in §2 and
be Λ ft; then is the set of all f e G+ such that / ( * ) > 1 on R. Therefore I is

xeR

a principal segment. By Corollary 2.11,1 is of type II. If we use the same
notion for ideals of D corresponding to segments of G, the module D/Px is
co-irreducible (i.e. of type I) and the module D/I is of type II. Consider a
natural isomorphism of D/I into Π D/Px, then the assertion is clear.

xeR

Example 3.4. An infinite direct product of modules of type II is not nece-
ssarily of type II.

For any natural number n, define a function /„ e G+ by fn(χ) = n on ( —1,
(Γ) and fn(χ)=0 elsewhere. Then principal segments (/„) are of type II. Put
I=f\(fn\ then is an empty set. We note that to an empty set of G, there

neN

corresponds zero in D. And the module D/(fn) is of type II and D/0 is
coirreducible, because D is a domain. Consider a natural isomorphism of D
into Π D/(fn), then the assertion is clear.

neN

The following proposition is not essentially new (Ql, p 329]), however we
can give another approach.

PROPOSITION 3.5. Let E be an injective R-module. Then there exists a
maximal submodule of type II; and furthermore it is injective and unique up
to isomorphism.

PROOF. If E has not a submodule of type II, then E is of type I. When
E has a submodule of type II, we can find a maximal submodule N of type II
by Zorn's lemma. Then N is an injective module, because an i?-module of
type II is closed under an essential extension. Then there exists a submodule
M such that E=M®N. We can readily see that M is of type I. Let E=Mr®
Nf be the second decomposition, where M is of type I and Nr is of type II.
Then we shall show that E=M'®N. In fact, clearly MfΓ\N=Q and also Af ©
N is an injective module, if M'φNφE, then there exists a non-zero submodule
L such that M@N®L=E. Thus NφL is isomorphic to JΨ. Since ]ψ is of
type II, L is of type II, and this contradicts maximality of N. Therefore E=
M'®N. From this, N^ N'. q. e. d.
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