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0. Introduction and Summary

In this paper, we shall investigate the ranks over the Galois field GF(q), i.e.,
g-ranks, of the incidence matrices of balanced incomplete block (BIB) designs and
partially balanced incomplete block (PBIB) designs where g is a prime or a prime
power, say g = p".

These g-ranks, especially the p-ranks of the incidence matrices of BIB designs
derived from finite geometries, have been investigated in relation to majority
decodable codes. The p-rank of the incidence matrix N(p™;t, p) of points and
u-flats in a finite projective geometry PG (¢, p™) has been investigated by several
authors [10, 11, 12, 30, 31, 32] and a general formula for the p-rank of N(p™;t, 1)
has been obtained by the present author [12]. An explicit formula for the p-rank
of the incidence matrix M,(p™; t, u) of points other than the origin and u-flats
not passing through the origin in an affine geometry EG(t, p™) has been obtained
by Smith [31] for the case m=1 and by the present author [12] for general m.
In this paper, another formula for the p-rank of N(p™; t, u) and an explicit formula
for the p-rank of the incidence matrix M*(p™; t, u) of all points and u-flats in EG(t,
p™ will be given. Tables for the p-ranks of N(p™; t, u) and M*(p™; t, p) will
also be given. The above mentioned incidence matrices are those of BIB designs
or PBIB designs. If the transpose of incidence matrix N of a BIB design or a
PBIB design is used as a parity check matrix of a linear code C, the code C has a
merit in that a relatively simple decoding procedure, called majority decoding
[18], is applicable. It is desirable to obtain, in an error correcting code, a linear
code having a relatively large number of information symbols. The number of
information symbols of a g-ary linear code C with length v is equal to v-Rank,(N)
where Rank,(N) denotes the g-rank of N. It is, therefore, necessary to obtain,
in BIB designs and PBIB designs, the value of g and the incidence matrix N
having a relatively small g-rank.

This paper is divided into four parts. In Part I, the value of g and the
incidence matrix N having a relatively small g-rank in BIB designs and PBIB
designs are investigated. It will be shown that the g-rank of the incidence matrix
of a BIB design with parameters v, b, r, k, A is never less than v—1 unless g is a
factor of r— A and that, for g being a factor of r— A, its g-rank depends on the block
structure of the design. A lower bound, from which we can obtain the value of
g such that the g-rank of N is relatively small, for the g-rank of the incidence matrix
N of a PBIB design is given. From this lower bound and the results in [35], we
can obtain lower bounds for g-ranks of the incidence matrices of T,, type PBIB
designs and N,, type PBIB designs. To obtain the incidence matrix of a BIB
design with a relatively small p-rank for a prime p which is a factor of r—A4, we
shall enumerate nonisomorphic solutions for a BIB design with parameters satisfy-
ing either the condition (i) 1<A<3, 3<k=<5 and 6<v=<b=<30or (ii) 113
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and 7<v=b<20 and investigate their p-ranks. As far as we concern with BIB
designs discussed above, the p-rank of the incidence matrix of a BIB design derived
from a finite geometry is minimum among BIB designs with the same parameters.
In Table 6.2, if two BIB designs D; and D, are nonisomorphic, their p-ranks are
different for some prime p except for the designs of Nos. 6, 8, 12 and 13. This
shows that p-rank is useful as a criterion of isomorphism.

In Part II, the p-ranks of the incidence matrices of BIB designs derived from
finite geometries are investigated. Another formula for the p-rank of N(p™;t, 1)
and tables for the p-rank are given. A formula for the p-rank of the incidence
matrix of points and certain sets in PG(¢, p™) is also given. As a special case,
the p-rank of the complement matrix of N(p™; t, u) can be obtained from the for-
mula. In Section 9, an explicit formula for the p-rank of the incidence matrix
M*(p™; t, p) of all points and all u-flats in EG(¢, p™) and tables for the p-rank are
given,

In Part III, the p-ranks of the incidence matrices of PBIB designs derived
from finite geometries are investigated. An explicit formula for the p-rank of
the incidence matrix of points and p-flats with a cycle 6 in PG(¢, p™) is obtained
by using the cyclic structure of u-flats in PG(t, p™) [36]. It is shown that the dual
of any BIB design PG(¢, p™): p is a PBIB design and its p-rank is given.

In Part IV, we shall apply these results and technique to error correcting codes,
especially to geometry codes and polynomial codes. In Section 13, the results
in Parts I, IT and III are applied to BIBD codes and PBIBD codes. In Section
14, the number of information symbols of the Projective Geometry code, the
Affine Geometry code and the Euclidean Geometry code and their generator poly-
nomials are given. In Section 15, a formula for the number of information sym-
bols of a polynomial code is given.

Part I. The p-ranks of the incidence matrices of a BIB design
and a PBIB design

1. The incidence matrices of a BIB design and a PBIB design

A balanced incomplete block (BIB) design [37] with parameters v, b, r, k, A
is an arrangement of v objects (treatments) into b sets (blocks) such that:
(i) Each block contains exactly k distinct treatments.
(ii)) Each treatment occurs in exactly r different blocks.
(iii) Every pair of treatments occur in A blocks.
Among parameters v, b, r, k, A, there are the following relations:

(1.1) vr=bk, AMv—1)=r(k—1) and b=v.
The last inequality is due to Fisher [9].
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A partially balanced incomplete block (PBIB) design [6, 20] with m associate
classes and parameters v, b, r, k, 4;, n;, pi, (i, j, k=0, 1, ..., m) is an arrangement
of v treatments into b blocks such that:

(i) Each block contains exactly k distinct treatments.

(i) Each treatment occurs in exactly r different blocks.

(iii) There exists a relationship of association, called an association scheme
with m associate classes [7], between every pair of the v treatments satisfying the
following three conditions:

(a) Any two treatments are either 1st, 2nd, ..., or mth associates, the relation
of association being symmetrical. Each treatment is the zero-th associate of itself.

(b) Each treatment o has n; ith associates, the number n; being independent
of a.
(c) If any two treatments « and f are ith associates, then the number of
treatments which are jth associates of « and kth associates of f is p¥, and is inde-
pendent of the pair of ith associates o and S.

(iv) Any pair of treatments which are ith associates occur together in exactly
A; blocks.

After numbering v treatments and b blocks in some way, respectively, we
define the incidence matrix of a BIB design or a PBIB design to be the matrix:

N=|n;ll; i=1,2,...,0 and j=1,2,...,b

where n;;=1 or 0 according as the ith treatment occurs in the jth block or not.
In the special case where N is the incidence matrix of a BIB design, the following
relations hold:

b
(1.2) n; = r foreachi=1,2,..,0.
J=1
(1.3) ;1 n; =k foreachj=1,2,..,b.
b
(1.4) ,;1 n,ng;= A  for each pair of « and .

Since each entry of the incidence matrix N is O or 1, the rank of N over
GF(p") is equal to its rank over GF(p) for any prime p and any positive integer n.
We shall deal with only the rank of N over GF(p) or the p-rank of N in Part L.

2. A lower bound for the p-rank of the incidence matrix of a BIB design

To obtain the value of a prime p such that the p-rank of the incidence matrix
N of a BIB design with parameters v, b, r, k, A is relatively small, we prepare the
following theorem:
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Tuaeorem 2.1. (i) If p is a prime which is not a factor of r(r—2), the p-
rank of N is equal to v.

(ii) If p is a prime which is a factor of r but not a factor of r— A, the p-rank
of N is equal to v—1 or v. If p is a common factor of r and k but not a factor
of r—A, the p-rank of N is equal to v—1.

Proor. Let p be any prime and let #,(N) be the vector space over GF(p)
generated by the column vectors of the incidence matrix N of a BIB design with
parameters v, b, r, k, A. Then it follows from (1.2) and (1.4) that there exist
column vectors @ and b; (i=1, 2, ..., v) in £,(N) such that

al=(ry, ry, .., 1) and BT=(Ay, ..., Ay, Ty Agy ooy Ag)

where r; and 1, are non-negative integers less than p such that r,=r and 1;,=41
mod p, and a7 denotes the transpose of the vector x. Since

rbT—2,aT=(0,0, ..., 0, r,(r,— A, 0, ..., 0) mod p

fori=1,2,...,vand r(r—2A)=r,(r,—4,) mod p, we can see that (i) holds. Simi-
larly, we can see from the linear combinations b, —b; (j=2, 3, ..., v) that the p-
rank of N is greater than or equal to v—1. If p is a factor of %, it follows from
(1.3) that the p-rank of N is less than or equal to v—1. We have therefore the
required result.

Theorem 2.1 shows that the p-rank of N is never less than v—1 unless p is a
factor of r—A. For a prime p being a factor of r—A, the p-rank of N may be
less than v—1. In general, it depends on the block structure of the design.

ExampLE 2.1. Consider a BIB design with parameters
v=8, b=14, r=7, k=4, 1=3.

It is known [21, 33] that there are four nonisomorphic designs D; (i=1, 2, 3, 4)
in all as follows:

1248, 2358, 3468, 4578, 5618, 6728, 7138
3567, 4671, 5712, 6123, 7234, 1345, 2456

D. = { 1234, 1256, 1278, 5678, 3478, 3456, 1357 }
2 7 | 2457, 2458, 1358, 1467, 1468, 2367, 2368

1234, 5678, 1256, 1456, 1278, 1478, 1357
3457, 1368, 3468, 2358, 2458, 2367, 2467

D, — 1248, 2358, 3468, 4578, 5618, 6728, 7138
4 7 ) 2357, 6731, 5174, 3412, 7246, 1625, 4563

where each of the numbers 1, 2, ..., 8 represents each of the eight treatments and
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each set of four numbers c,c,c;c, represents a block which contains four treat-
ments ¢y, ¢,, ¢ and ¢4. Let N; be the incidence matrix of the BIB design D;, then
it can be shown easily that Rank,(N,)=4, Rank,(N,)=5, Rank,(N;)=6 and
Rank,(N,)=7(=v—1) where Rank,(N) denotes the rank of N over GF(p).
This shows that for a prime p which is a factor of r— 4, the p-rank of the incidence
matrix of a BIB design with parameters v, b, r, k, A depends on the block structure
of the design. In Section 6 and Part II, the p-rank of N for a prime p being a
factor of r— 4 will be investigated in detail.

3. A lower bound for the p-rank of the incidence matrix of a PBIB design

Let N be the incidence matrix of a PBIB design with m associate classes and
parameters v, b, r, k, A;, n;, pi (i, j, k=0, 1, ..., m) and we define association
matrices 4; (i=0, 1, ..., m) to be the matrices:

A;=|lab;|l; =1,2, ...,v and f=1,2, ..., v
where af,=1 or 0 according as the treatments « and f are ith associates or not.
These association matrices Ay, Ay, ..., A, are symmetric, linearly independent
and satisfy the following relations:

m m
(31) A0=Iv’ i§) Ai=Gu’ AiAj=AfAi= k§0 p,i‘jAka
(3.2) NNT=Jgdo+A A+ 42 A,

where I, is the unit matrix of order v, G, is the vxv matrix whose elements are all
unity and A,=r.

The linear closure of the association matrices 4q, 44, ..., 4,, over the real
field is a linear associative and commutative algebra, which is called the association
algebra [5], [24] of the given association and denoted by %, or [4;; i=0,1, ..., m].
It is completely reducible and its minimum two sided ideals are linear. 'We define
P, (k=0, 1, ..., m) by

2=pill; j=0,1,..,m andi=0,1,..., m

and let z; (j=0,1, ..., m) be the characteristic roots of #,, then it is known that
the principal idempotents 4§, A%, ..., A%of those m+1 ideals and the association
matrices Ay, A, ..., 4, are mutually linked by the linear combinations of the
others, that is,

3.3) A= f} zpA% and A= Zm] z7k4,
iz k=0

where z/¥ =0,z /vn, and «; is the rank of 4% over the real field.
From (3.2) and (3.3), it follows that

(4) NNT=pod§+p, 4+ +pudl
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" ;
where p;= }, A;z; for i=0, 1, ..., m and p;’s are the characteristic roots of
P

NNT with multiplicities «;. If zy’s are all rational, p;’s and all of the
idempotent matrices A% (i=0, 1, ..., m) are rational.

The following theorem which gives a lower bound for the p-rank of the inci-
dence matrix of a PBIB design may be useful in constructing a better PBIBD
code (see Section 13).

THEOREM 3.1. Suppose that z;;’s are all rational and let ¢, and c, be the
minimum positive integers such that ¢ 04Z;;/von’s and c,yz;’s are all integers
(i.e., entries of c,A¥’s and c,p;’s are all integers). Then the p-rank of N is greater

m -

than or equalto ), &u; provided p is not a factor of c;c,, where ;=0 or 1 accord-
i=0

ing as c,p; is zero mod p or not. In the special case p;==0 for all i=0,1, ...,

m, the p-rank of N is equal to v unless p is a factor of c, ﬂ Capi
i=0

PrROOF. As Rankp(N)> Rank (NNT) for any prime p, it is sufficient to prove
that Rankp(N NT)= Z go; for any prime p which is not a factor of c¢,c,. Let

=c,A¥ and p¥ =c2pl for i=0,1,..., m. p¥’sand entries of A}’s are all integers.
Smce

3 AF=I, AIAT=5,AF (i, j=0,1, ..., m)
i=0
and
Rank,(B) < Rank(B)

for any prime p and for any matrix B whose elements are all integers, where
Rank(B) denotes the rank of B over the real field, we have

Rank(c,,)=Rank _ﬁ A¥)<Rank,[4%: A}:...:4%]

< 3 Rank,(4n)< 3 Rank(4f)= 3 o=
i= i=0 i=0

From the above inequalities, it follows that if p is a prime which is not a factor of
C1s

Rank,[4%: A%:...:A%X]=0 and Rank,(4¥)=q

for i=0, 1,...,m. Leta{®, a®, ..., a) (i=0, 1, ..., m) be linearly independent
column vectors of A¥ and let

P=[a{®, .., al®:....a{™, ..., ai™].
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Then P is a non-singular matrix over GF(p). Since A¥’s are all symmetric and
AFA¥ =c,0;;A¥, using (3.4), we have

Rank,(c,c,NNT)=Rank( i:ﬁo p*A%)=Rank,[ PT( é p*A¥)P]
and
Rank,[¢, P™( ;fi') p¥A¥)P]=Rank,[ .~=Z"; p¥(A* P)T(A*P)] = i;’"o &0
Therefore, we have the required result.

m
Since p;= 2, A;z;; (i=0, 1, ..., m),it is sufficient to obtain only the values of
=0

o’s and z;;’s except for parameters v, n;’s and 1;’s to obtain such a lower bound.

4. Alower bound for the p-rank of the incidence matrix of a T,
type PBIB design

Suppose that there are v=<}‘§1) treatments ¢(a,, o, ..., &,) indexed by the
combinations or subsets of m integers (a,, o, ..., &,) out of the set of s integers
(1, 2, ..., s) where m and s are any integers such that 4<2m<s. Among those
v treatments, an association of triangular type or T,, type with m associate classes
is defined as follows:

DEFINITION 4.1. Two treatments ¢(a,, oy, ..., &,) and ¢(By, By ---s Pm)
are ith associates if their indices (o, o5, ..., ®,,) and (B4, B2, ..., Bm) have m—i
integers in common. Each treatment is the Oth associate of itself.

The association defined above satisfies three conditions of the association
scheme with m associate classes and this scheme is called a triangular type as-
sociation scheme with m associate classes, or briefly, a T,, type association scheme
[23, 35]. In this case, it has been shown by Yamamoto, Fujii and Hamada [35]

that

4.1) n.-=(’?) (S_im)’ °“'=(?>‘<ii 1)’

“4.2) z..=<s;m 2 (_1)i—a<m—a) m—-a)(s—-i+1)
' Y (S';m> b j J\m—i a

or

“4.2) Z;j= a‘i'o (—1)i-a (m;'l> (2:3 (S—m;-i+a>
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for i, j=0, 1, ..., m. The last equation is due to Ogasawara [23]. From The-
orem 3.1 and the above equations, we can obtain a lower bound for the p-rank of
the incidence matrix of a T,, type PBIB design.

In the special case m=2, we have

v =(§>, ne=1, ny=2(s—2), n2=(‘952),

Zoo=1, Zo1=ny, Zgy =N,
zio=1, 2z =5—4, z;,,=-—(s-3),
Z0=1, z3;=-2, z,,=1,
oy =1, oy =s5s—1, a, =s(s—3)/2,
po =rk, py =r+A(s—4d)—21,(s=3), p,=r—2A,+4,,
¢, =s(s—1)(s—2) and c¢,=1
where s is an integer not less than four.

THEOREM 4.1. Let N be the incidence matrix of a T, type PBIB design
with parameters v=<§>, b, r, k, 4, n;, piy (i, j, k=0, 1, 2).

(A) In the case when p,=~0 and p,5~0.
(i) The p-rank of N is equal to v unless p is a factor of rkp,p, s(s—1)
‘(s—2).
(ii) If p is a prime which is a factor of p, but not a factor of p,s(s—1)
‘(s —2), the p-rank of N is greater than or equal to s(s—3)/2.
(iii) If p is a prime which is a factor of p, but not a factor of p,s(s—1)
*(s—2), the p-rank of N is greater than or equal to s—1.

(B) In the case when p;=0 and p,=0, Rank,(N)<s(s—3)/2+1 for any
prime p and the p-rank of N is never less than s(s—3)/2 unless p is a factor of
p2s(s—1) (s—2).

. (C) In the case when p,=0 and p,=0, Rankp(N)gsfor any prime p and
the p-rank of N is never less than s—1 unless p is a factor of p;s(s—1) (s—2).

5. A lower bound for the p-rank of the incidence matrix of
an N, type PBIB design

Suppose that there are v=s,s, ...s,, treatments ¢(oy, a,, ..., &,) indexed by
m-tuples (a4, o5, ..., &) Where a;=1, 2, ..., (s;—1) or s; for i=1, 2, ..., m. A-
mong these treatments, we define a relation of m-fold nested type or N,, type as-
sociation as follows:
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DEerFINITION 5.1. A pair of treatments ¢(a, o, ..., &) and ¢(By, B2, -..s
Bw) are ith associates if a;=p; for all j=1, 2, ..., m—iand &,_;4 17 Pu-i+1-
Each treatment is Oth associate of itself.

The association defined above satisfies three conditions of the association
scheme with m associate classes and it is called an m-fold nested type association
scheme or an N,, type association scheme [35]. For the special case m=2, it is
called a group divisible (GD) type association scheme [7]. After numbering v
treatments in dictionary-wise, we can express the association matrices as follows:

A0=Iw A1 =Is1®"‘®lsm_ 1®(Gsm_1sm)’
(51) Ai=IUm—l®(GSm—(+l. _Ism—i+ 1)®Gsm—(+ z®"'®GSm’
Am=(Gs1 _Is;)®Gs2®"'®Gsm

for i=2, 3, ..., m—1 where v;=s,5,...s; and AQB denotes Kronecker product
of the matrices A= ||a;;|| and B, i.e., AQB= ||a;;B|.

The linear closure of the association matrices 4; (i=0, 1, ..., m) over the real
field is called an m-fold nested type association algebra or an N, type association
algebra and denoted by A(N,,). It is known [35] that the mutually orthogonal
idempotents of A(N,,) are expressed as follows:

1
Ah=Gyy A=, ~1-G,)® - G.,®~ ® LG,
(5.2) At=1,_ ®U,~+G)®- G, ® ®LG,,
i i+1 m

4=1,81,8®L,. &, GC,,)

fori=2,3, ..., m—1. From (5.1) and (5.2), we have
ao =1, a1=sl_1, aj=s152 “'sj—l(sj_l)’

noe =1, n=8,—1, n;=(Sm-j+1= DSm—jt2 Sms

(5.3) 200=210="""=Zmo=1, 201 =211 =" =Zp_11 =Ny,
Zp=—1, 20j=21j= =2y jj=nNj,
Zm—j+1j = " Sm—j+25m—j+3 -+ Sm
Zm—j+2,)=Zm—j+3,j=""" =Zp;=0

for j=2, 3, ..., m. Theorem 3.1 and the above equations give a lower bound
for the p-rank of the incidence matrix of an N,, type PBIB design. As a special
case m=2, we have
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V=5,5,, Bo=1, ny=s,—1, n,=(s; — 1)s,,
Zoo=1, Zo1 =My, Zg2 ="y,
Zy0=1, 3y =Ny, Z;,= =5y,
(54 Zy0=1, 233 =—1, 25, =0,
ap=1, ay=s51—1, 0y =s4(s,— 1),
Po=Tk, py=rk—viy, py=r—14,
c;=s;5, and ¢,=1.
From Theorem 3.1, we have therefore the following theorem:

THEOREM 5.1. Let N be the incidence matrix of an N, (GD) type PBIB
design with parameters v=s,s,, b, r, k, 2;, n;, p%, (i, j, k=0, 1, 2).

(A) In the case p, =0 and p,=~0 (regular GD design).

(i) The p-rank of N is equal to v unless p is a factor of rkp,p,s,s,.
(ii) If p is a prime which is a factor of p, but not a factor of p,s;s,,
the p-rank of N is greater than or equal to s,(s,—1).
(iii) If p is a prime which is a factor of p, but not a factor of p,s,s,, the
p-rank of N is greater than or equal to s, —1.

(B) In the case p;=0 and p,=0 (semi-regular GD design), Rank,(N)
<s,(s,—1)+1 for any prime p and the p-rank of N is never less than s,(s,—1)
unless p is a factor of p,s,5,.

(C) In the case p;+0 and p,=0 (singular GD design), Rank,(N)<s, for
any prime p and the p-rank of N is never less than s;—1 unless p is a factor of
P18153.

In Part III, the p-rank of N for a prime p which is a factor of p,p, will be
investigated. Applying Theorem 3.1 to an F, type PBIB design and an OL, type
PBIB design [35] etc., we can obtain similar results.

6. Enumeration of nonisomorphic solutions of BIB designs
and their p-ranks

In Section 2, it has been shown that the p-rank of the incidence matrix N
of a BIB design with parameters v, b, r, k, A is never less than v—1 unless p is a
factor of r—A and that, for a prime p which is a factor of r— A, the p-rank of N
depends, in general, on the block structure of the design. In this section, to in-
vestigate in detail the p-rank of the incidence matrix of a BIB design, we shall
enumerate all possible nonisomorphic solutions of a certain restricted class of
BIB designs and investigate their p-ranks.
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DEerINITION 6.1. Two BIB designs D, and D, with the same parameters
are isomorphic if there exist two permutation matrices P and Q such that N,
= PN,Q for their incidence matrices N, and N,. Otherwise they are noniso-
morphic.

Let N, and N, be the incidence matrices of two BIB designs D; and D,
with the same parameters, respectively. Then if two designs D; and D, are iso-
morphic, the p-rank of N, is equal to the p-rank of N, for any prime p.

Since it is very difficult, in general, to enumerate all possible nonisomorphic
solutions, taking into account the results in Section 13, we shall confine ourselves
to BIB designs with parameters satisfying either the condition (i) 1<A<3, 3<k<5
and 6<v<b=<30or (i) 1=<1<3 and 7<v=b=<20. All parameter combinations
satisfying the above conditions, the number of nonisomorphic solutions and their
p-ranks are given in Table 6.1. The symbol — in Table 6.1 denotes the case
where the number of nonisomorphic solutions has not yet been obtained. The
symbols PG(t, q): n and EG(t, q): u denote the BIB design derived from finite
projective geometry PG(t, q) and Affine geometry EG(t, q), respectively, by
identifying the points of the geometry with the v treatments and identifying the
u-flats of the geometry with the b blocks (see Sections 7 and 9). The number
a* with asterisk (*) denotes that the p-rank of the design PG(¢, q): uor EG(t, q): u
which is written on the right hand side of a* is equal to a and d=[r/24]. It is
easy to see that BIB designs Nos. 2, 3, 5 and 11 in Table 6.1 are all unique (i.e.,
all designs are isomorphic) and their p-ranks are equal to 4, 3, 6 and 7, respectively
where p=r—A. Hussain [14, 15] showed that the BIB design No. 9 has only
one solution while the design No. 15 has three nonisomorphic solutions and the
design No. 14 does not exist. Nandi [21, 22] showed that BIB designs Nos. 1,
4, 7 and 13 have one, four, three and five nonisomorphic solutions, respectively.
Pasquale [25] showed that the BIB design No. 12 has two nonisomorphic solu-
tions. Since the design No. 10 is the complementary design of No. 9, it follows
from the uniqueness of the design No. 9 that the design No. 10 is also unique.
Thus, the designs which have not yet been solved in Table 6.1 are five designs Nos.
6, 8, 16, 17 and 18.
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TABLE 6.1.
NUMBER OF NONISOMORPHIC SOLUTIONS AND THEIR P-RANKS
No.| o b r k 4 | 6r=2000 5 prank Geggslfg‘;“al
1 6 10 5 3 2 1 3 1 3 5
2 7 3 31 1 2 1 2 4* PG(2, 2):1
3 7 4 4 2 1 2 1 2 3 complement
4 8 14 7 4 3 1 4 4 2 4*,5,6,7 EG(3, 2):2
5 9 12 4 3 1 2 3 1 3 6* EG(2, 3):1
6 9 18 8 4 3 1 5 — 5 —_
7 10 15 6 4 2 1 4 3 2 56,7
8 10 30 9 3 2 2 7 — 7 —
9 11 11 5§ 5 2 1 3 1 3 6
10 11 11 6 6 3 1 3 1 3 5
11 13 13 4 4 1 2 3 1 3 7* PG(2, 3):1
12 13 26 6 3 1 35 2 5 13, 13
13 15 15 7 7 3 1 4 5 2 5%6,8,8,8 PG(3, 2):2
14 15 21 7 5 2 1 5 non-existence
15 16 16 6 6 2 1 4 3 2 6,7, 8
16 16 20 5 4 1 2 4 1 2 9* EG(2, 4):1
17 21 21 § 5 1 2 4 2 2 10%, 12 PG(2, 4):1
18 25 30 6 5 1 35 1 5 15* EG(2, 5):1

(a) Enumeration of nonisomorphic solutions of the design No. 17

THEOREM 6.1.

PROOF..

The BIB design with parameters (21, 21, 5, 5, 1) has two
nonisomorphic solutions and their 2-ranks are equal to 10 and 12.

Let us denote twenty-one treatments by oo, 0,, 0,, 05,04, 1, 1,, ...,
4, 4, and twenty-one blocks by B;(i=0, 1, 2, 3, 4) and B, (j, k=1, 2, 3, 4).
Without loss of generality, we can assume that

BO =(°°3 01’ 02, 039 04)’

B3 =(°°a 31: 32’ 33’ 34);

B12=(01’ 1,, 22, 32: 42),

By =(o0, 14, 1,, 13, 14),
B4 =(°°’ 41’ 42’ 43’ 44)’
B13=(017 13, 23, 33’ 43),

B, =(o0, 24, 2;, 25, 24),
B11=(01’ 11, 21, 31’ 41)’
B14=(0y, 14 24, 34, 44)

and B, contains two treatments 0; and 1, forj=2,3,4and k=1, 2,3,4. Itsuffices
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therefore to consider an arrangement of 12 treatments (I+1);(I=1, 2, 3;i=
1, 2, 3, 4) into 12 blocks By, (j=2, 3, 4; k=1, 2, 3, 4).

Since each treatment (I+1); must be contained in only one block of four
blocks Bj;, Bj,, B;3, B;4 for each j=1, 2, 3, 4, we can define 4 x4 matrices 4,
(I=1, 2, 3) as follows:

l_”a(l)” l=1: 2’ 3’4 and J=15 2’ 3’4

where a{? =k if treatment (I+1); is contained in a block By, of four blocks Bj;,
Bj,, Bj3, Bj,. Then it is easy to see that (i) the above twenty-one blocks constitute
a BIB design with parameters (21, 21, 5, 5, 1) if and only if 4;, A, and A4, are
4 x 4 mutually orthogonal Latin squares and that (ii) two BIB designs D, and D,
are isomorphic if and only if the corresponding 4 x 4 mutually orthogonal Latin
squares {A{V, AL, AV} and {4{P, AP, AP} are isomorphic, that is, the
set {A{?, A», A$»} can be obtained from the set {4{, 45, AP} by permut-
ing the elements 1, 2, 3, 4 in the matrices A’ (I=1, 2, 3) and permuting rows and
columns suitably of the matrices A{!). It is easy to see that there exist only
two nonisomorphic complete sets of 4 x 4 mutually orthogonal Latin squares as
follows:

12347 (13427 (1423
2143 2431 2314
e U 31240 A=324
(4321 | (4213 14132
and
(1234 (1342“ (14237
D 2341 e 2413 A= 2134
1 3412 (° 2 3124 (° 3 3241
4123 | 14231 | | 4312

The blocks corresponding to the above Latin squares are

B(211)=(02’ 14, 25, 33, 44), B(212)=(029 12, 24, 34, 43), B )=(02, 13, 24, 31, 42),
B(29=(02’ 14, 23, 32, 4y), 211)—(0& 14, 23, 34, 4,), =(03’ 13, 24, 33, 44),
B(313)=(03, 13, 24, 32, 44), 3(314>=(03’ 145 25, 34, 43), =(04, 14, 24, 35, 43),
B )=(04, 15, 23, 34, 44), 1)_(04, 13, 25, 34, 4y), 1 =004 14, 24, 33, 42)

and

'_'(029 119 24’ 33’ 42)’ B(222)=(021 12’ 21: 34’ 43)’ B )=(023 139 22’ 31; 44)’
B(2%4-)=(02’ 14’ 23’ 32’ 41)’ (321)_(03’ 11’ 23’ 32’ 44) B(JZZ)=(O3’ 12’ 24’ 33’ 41)’
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B(323)=(03’ 13, 21, 34’ 42), B§?4’=(03, 14, 22, 31, 43), 5;21)=(04, 11a 22, 34, 43),

B322)=(04, 12’ 23’ 31’ 44)’ BS-23)=(04’ 13a 24, 32, 41), Bft24?=(04a 14, 21, 33’ 42)

Let N, and N, be the incidence matrices of the above two designs D, and D,,
respectively. Then it is easy to see that Rank,(N;)=10 and Rank,(N,)=12.
This completes the proof.

In Section 7, it will be shown that the design D, is isomorphic with the BIB
design PG(2, 4): 1.

(b) Enumeration of nonisomorphic solutions of the design No. 16

THEOREM 6.2. The BIB design with parameters (16, 20, 5, 4, 1) is unique
and its 2-rank is equal to 9.

ProoF. Let us denote sixteen treatments by 0, 1, 2, ..., 15 and twenty blocks
by By, Bi, ..., Big. Without loss of generality, we can assume that

BO=(O$ 1’ 25 3)’ B1=(0’ 4’ 5’ 6)’ B2=(0’ 7’ 8, 9)’
B;=(0, 10, 11, 12), B,=(0, 13, 14, 15), Bs=(1,4, 7,10),
Bo=(l, 5, 8,13), B,=(l, 6,11,14), Bs=(l,9, 12, 15)

and B, By, ..., Bjo contain {2, 4}, {2, 5}, {2, 6}, {2}, {3, 4}, {3,5}, {3,6},
{3}, {4}, {5}, {6}, respectively. It suffices therefore to consider an arrangement
of 9 treatments 7, 8, ..., 15 into 11 blocks B;(i=9, 10, ..., 19). Let x; (i=9,
10, ..., 19) be integers such that x;=1 or 0 according as the treatment 7 (or 10)
is contained in the block B; or not. Then, since A=1 and r=35, x;’s must satisfy
the following conditions:

Xo+ X0+ X1 +X, =1
X13+X14+ X5+ X6 =1

(6.1) Xg +Xy3 + X414 =0
X0 + X4 +Xx;8 =1

X11 +X15 +x0=1

Xo+X1o+X11+X12+ X3+ X4+ X5+ X6+ X7+ X1g+X19=3.
From the above equations, we have the following four solutions:

#,=(0,1,0,0;0,0,0,1;0,0,1), 2,=(0,0,0,1;0,1,0,0;0,0, 1),
(6.2)
%,=(0,0,1,0;0,0,0,1;0,1,0), =,=(0,0,0,1;0,0,1,0;0, 1, 0)

where z=(xg, X9, -.., X19). It is easy to see that by renaming sixteen treatments



168 Noboru Hamapa

and twenty blocks, we can obtain the solutions z; and z, from the solutions z
and z,, respectively. It suffices therefore to consider two cases z; and z,.

(i) In the case z,, that is, treatment 7 is contained in blocks B;,, B¢ and
B190

In this case, it follows from (6.1), (6.2) and x,o=x;6=X;o=0 that treatment
10 must be contained in blocks B;,, B;s and B;g. Using a similar method, it is
shown that treatment 8 must be contained in blocks B,,, B;s and B,,;. This
contradicts A=1, since there exist two blocks B;, and B;s which contain two
treatments 8 and 10. Hence, there does not exist such a design.

(ii) In the case z,, that is, treatment 7 is contained in blocks B;, B¢ and
Bls.

In this case, it follows from (6.1), (6.2) and x,; =x,;¢=x;5=0 that treatment
10 must be contained in blocks B,,, B, and B,,.

Let y; (j=9, 10, ..., 19) be integers such that y;=1 or 0 according as the treat-
ment 8 is contained in the block B; or not. Then y;’s must satisfy the following
conditions:

Yo+ YiotVi1+Vi2 =1
Yis+Viat+Yis+Vie =
Yo +JY13 +Y17 =
(6.3) V1o +V1a +Yi1s =0
Y1 +Y1s +yo=1
Y11 +JV1e +Yi1s =0
Y12 +Via +yio=1

Yot Yo+ Vi1t Vit Y13+ ViatVistVietVirtVis+Yio=3.
From the above equations, we have the following unique solution:
o> Y105 -+ Y19)=(0,0,0, 1; 0, 0, 1, 0; 1, 0, 0).

This implies that treatment 8 must be contained in blocks B,,, B;s and Bj,.
Similarly, we can construct the design, step by step, and we have the following
unique solution:

By =(2,4,12,13),  By;o=(2,5, 9,11), B;;=(2,6, 7,15),
B;,=(2,8,10,14), B,3=(3,4, 9,14, B,,=(3,5, 10, 15),
B;s=(3, 6, 8,12), Bi6=(3, 7, 11, 13), B,,=(4, 8, 11, 15),
B3=(5,7,12,14),  B;y=(6, 9, 10, 13).
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Since the design EG(2, 4): 1 is.a BIB design with parameters (16, 20, 5, 4, 1),
it follows from the uniqueness of the design that any BIB design with parameters
(16, 20, 5, 4, 1) is isomorphic with the design EG(2, 4): 1. In Section 9, it is
shown that the 2-rank of the incidence matrix of the design EG(2, 4): 1 is equal to
9. Hence, we have the required result.

Using a similar method, it can be shown that the BIB design No. 18 is also
unique and any BIB design with parameters (25, 30, 6, 5, 1) is isomorphic with
the design EG(2, 5): 1.

(c) Table of nonisomorphic solutions and their p-ranks

Nonisomorphic solutions of BIB designs in Table 6.1 and their p-ranks are
given in Table 6.2. The notations used are coincident with those generally used
for cyclic solutions. For noncyclic solutions, treatments are represented by a, b,
¢, ..., and so on. In Table 6.2 (or Table 6.1), if designs D, and D, are non-
isomorphic, their p-ranks are different except for designs Nos. 6, 8, 12 and 13.
In Sections 7 and 9, it will be shown that the designs D, of Nos. 4, 13 and 17
are isomorphic with EG(3, 2): 2, PG(3, 2): 2 and PG(2, 4): 1, respectively. These
designs have the minimum p-ranks. This suggests that the p-rank of the BIB
design PG(t, q): u or EG(t, q): ¢ might be, in general, minimum in BIB designs
with the same parameters.

In Part II, we shall investigate the p-ranks of the incidence matrices of the
BIB designs PG(t, q): u and EG(t, q): u. '

TABLE 6.2.
NONISOMORPHIC SOLUTIONS AND THEIR P-RANKS

no. of

No.| vr A noniso. P rank nonisomorphic solutions
1 652 1 3 5 (0, 1,4),(0,1,4) mod 5
2 731 1 2 4 0, 1, 3) mod 7
3 742 1 2 3 (2,4,5, 6) mod 7
abdh, bceh, cdfh, degh, efah,
4 873 4 2 4 | D,: fgbh, gach, cefg, dfga, egab,

fabc, gbcd, acde, bdef
abcd, abef, abgh, efgh, cdgh,
5 D,: cdef, aceg, bdeg, bdeh, aceh,
adfg, adfh, befg, befh
abcd, efgh, abef, adef, abgh,
6 | Dj3: adgh, aceg, cdeg, acfh, cdfh,
beeh, bdeh, befg, bdfg
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TABLE 6.2. (continued)

r i

no. of

noniso. P

rank

nonisomorphic solutions

10
11
12

13

10

10
11
11
13
13

15

41
83

6 2

92
52
63
41
61

73

N =t b e

N W W W

N L N

13

13

abdh, bceh, cdfh, degh, efah,

: fgbh, gach, bceg, fgca, eagd,

cdab, gbdf, afbe, defc
(0, 0, 4) PC(4), (0,2, 7) mod 8

abcd, abef, acgh, adij, bcij,

: bdgh, cdef, aegi, afhj, behj,

bfgi, cehi, cfgj, degj, dfhi
abcd, abef, aceg, adhi, bchi,

: bdgj, cdfj, afhj, agij, behj,

bfgi, ceij, cfgh, defi, degh
abcd, abef, aceg, adhi, bcij,

: bdgh, cdfj, afhj, agij, behj,

bfgi, cehi, cfgh, defi, degj
©,1,2,4,7) mod 11
3,5,6,8,9, 10) mod 11
0, 1,5, 11) mod 13

: (0,2, 8), (1,4, 5) mod 13

abc, ade, afg, ahi, ajk, alm, bdf,
beg, bhj, bil, bkm, cdh, cei, cfj,

" cgm, ckl, dgk, dim, djl, ef], ehk,

ejm, fhm, fik, ghl, gij
abcdijk, abefilm, abghino, acegjln,

. acfhjmo, adehklo, adfgkmn, bcehkmn,
" befgklo, bdegjmo, bdfhjln, cdefino,

cdghilm, efghijk, ijklmno

abcdijk, abcelmn, abfgjmo, acfhklo,
adefino, adghilm, aeghjkn, bcghino,

: bdegklo, bdfhkmn, befhijl, cdehjmo,

cdfgjln, cefgikm, ijklmno

abcdijk, abcelmn, abfgjmo, acghilo,
adefklo, adfhimn, aeghjkn, befhkno,

* bdegino, bdghklm, befhijl, cdehjmo,

cdfgjln, cefgikm, ijklmno
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TABLE 6.2. (continued)

no. of

or noniso.

p rank nonisomorphic solutions

abcdijk, abcelmn, abfgjmo, acghkno,
adefklo, adfhimn, aeghijl, befhilo,

8 | D4’ pdegino, bdghkim, befhijkn, cdehjmo,
cdfgjln, cefgikm, ijklmno
abcdijk, abcelmn, abfgimo, acghkno,
3 | p.: adefklo, adfhjmn, aeghijl, bcfhjlo,
5

* bdehino, bdghklm, befgjkn, cdegjmo,
cdfgiln, cefhikm, ijklmno

1572 0 5 — non-existence

abcdef, abghij, acgklm, adhkno,

aeilnp, afjmop, becgnop, bdhimp,

beikmo, bfjkln, cdijkp, cehjlo,

cfhimn, degjmn, dfgilo, efghkp

662 3 2 6 | Dy:

abcdef, abghij, achklm, adilno,
. aejknp, afgmop, begkno, bdikmp,
* bejlmo, bfhinp, cdgjlp, cehiop,
cfijmn, deghmn, dfhjko, efgikl

abcdef, abghij, achklm, adikno,
. aejlop, afgmnp, begkop, bdilmp,
* bejkmn, bfhino, cdgjln, cehinp,
cfijmo, deghmo, dfhjkp, efgikl
16 5 1 1 5 9 (o0, 0, 5, 10) PC(5) ,(0, 4, 12, 13)
mod 15
abcde, afghi, ajklm, anopq, arstu,
bfjnr, bgkos, bhlpt, bimqu, cfkpu,
2151 2 2 10 D, : cgjqt, chmns, cilor, dflgs, dgmpr,
dhjou, diknt, efmot, eglnu, ehkqr,
eijps
abcde, afghi, ajklm, anopq, arstu,
bfjnr, bgkos, bhlpt, bimqu, cfmps,
12 | D,: cgjqt, chknu, cilor, dflou, dgmpr,
dhjgs, diknt, efkqt, eglnu, ehmor,
eijps
(0,0, 6,12, 18) PC(6),

2561 1 5 15 (©, 8, 17, 21, 22) mod 24
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Part II. The p-rank of the incidence matrix of a BIB design
derived from a finite geometry

7. The p-rank of the incidence matrix of points and u-flats in PG(t, q)

With the help of the Galois field GF(q), where g is an integer of the form
p™ (p being a prime), we can define a finite projective geometry PG(t, q) of ¢ dimen-
sions as a set of points satisfying the following conditions:

(i) A point in PG(t, q) is represented by (v) where v is a nonzero element
of GF(gq**1).

(i) Two points (v,) and (v,) represent the same point when and only when
there exists a nonzero element o of GF(g) such that v, =gv,.

(iii)) A p-flat, 0=<u=<t, in PG(t, q) is defined as a set of points

{(agvo+ayv,+---+a,v,)}

where a’s run independently over the elements of GF(q) and are not all simul-
taneously zero and (vo), (vy), ..., (v,) are linearly independent over the coefficient
field GF(q), in other words, they do not lie on a (u—1)-flat. In GF(g**!), there
exists an element o called primitive such that every nonzero element of GF(gq**?1)
can be represented by a* (u=0, 1, ..., g*1 —2). It satisfies an irreducible equa-
tion of degree t+ 1 with coefficients from GF(q):

(7.1) atltatat+ .- +afa+a§=0

and 2" '"1=1. Using (7.1), every nonzero element a* (0 <u =< g'*1—-2) of
GF(q**!) can also be represented uniquely by a polynomial in «, of degree at
most ¢, with coefficients from GF(q). Thus, every nonzero element of GF(g**!)
may be represented either as a power of the primitive element o or as a poly-
nomial in ¢, of a degree at most ¢, with coefficients from GF(g). If

(7.2) at=bat+b,_ot"L+-..+ b+ by,
then the correspondence
(7.3) a4—(b, b,_q, ..., by) and 0-(0,0, ..., 0)

induces a vector space structure on GF(g**!) over GF(q) and the elements a°
(=1, al, a2, ..., of form a basis for GF(g**1).

Every point in PG(t, q) is represented by («°), ('), («?), ..., (x*~!) and a
p-flat may be defined as the set of points

{(aoaeo +aaft 4.+ auaeﬂ)}

where v=(g**!—1)/(g—1) and a®°, ac:, ..., a¢# are u+1 linearly independent
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elements of GF(q'*!) over GF(q) and ay, a,, ..., a, run independently over the
elements of GF(q), not all zero. In the following, we shall call such a set of

points (x¢°), (a°1), ..., (x¢+) the defining points of the p-flat and denote the empty
set by (—1)-flat for convenience’ sake. It is well known [8] that the number,
b, of u-flats in PG(t, q) is equal to ¢(t, pn, ) where

FL-1) (= 1) (g = 1)
74 o, q) =
(7.4 ot 1 @) =T ) (e Do (g=1)
for any integers ¢ and p such that 0<u<t. For convenience’ sake, we make a
promise that ¢(¢, —1, g)=1 for t= —1 and ¢(t, u, 9)=0 for t and u such that
t<porus -2,

After numbering b p-flats in PG(t, q) in some way, we define the incidence
matrix of v points and b u-flats in PG(¢, g) to be the matrix:

N(g; t, w=llni{q; t, Wll; i=0, 1, ..., v—1 and j=1,2, ..., b

where n;;(q; t, p)=1 or 0 according as the ith point (&) is incident with the jth
u-flat or not. In the following, N(q; t, ) may also be denoted by N(p™; t, pn)
where g=p™. It is known [2] that N(q; t, ) is the incidence matrix of a BIB
design, denoted by PG(t, q): u, with parameters:

U=(q‘+1 _1)/(q_1)9 b=¢(t’ H, q)’ r=¢(t—1a ﬂ'—ls q),
k=(g**'—-1/(g—1) and 2=¢(t—2, u—2, g).

In this case, we have

(7.6) r—i=q"¢(t—2, u—1, q) and 6=[r/22]=[(¢' - 1)/2(¢*—1)].

It is therefore necessary to investigate the g-rank and the p*-rank of N(g; t, n)
where p* is a prime which is a factor of ¢p(t—2, u—1, q).

The g-rank of N(gq; t, u) has been investigated by many authors [10], [11],
[30], [31], [32] and the complete solution for this problem has been obtained by
the present author [12]. The result is as follows:

(1.5)

THEOREM 7.1. The q-rank of the incidence matrix N(q; t, p) of v points
and b u-flats in PG(t, q) is equal to

* *
m—1 L(sj+1,8))

my — ittt p—st—ip
an  Rep= I, TR 1)( ' )( Ferp=s] )

where g =p™ and summation is taken over all ordered sets (s¥, s¥, ..., s¥), denoted
by S¥ .(p™), of m+1 integers st (1=0, 1, ..., m) such that

(7.8) Sm=5%, U+1=sT<t+1 and 0<s¥, ,p—s¥<(t+1) (p—1)
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for each j=0, 1, ..., m—1 and L(s%,,, s})=[(s%,p—s¥)/p], that is, L(s%,,, sF)
is the greatest integer not exceeding (s¥.,p—s%)/p.

From Theorem 7.1, we have the following theorem which may be useful in
calculating the value of R,(t, p™).

THEOREM 7.2. The g-rank of N(q; t, u) is also equal to

m—1 L(sj+1,Sj) . . —_ . —7
09 Rer= T TS (P (mETT)
5054005 Sm i=

where q=p™ and summation is taken over all ordered sets (sg, Sy, -.., Sm), denoted
by S, ,(p™), of m+1 integers s, (1=0, 1, ..., m) such that

(7.10) Su=350, 0=s;<t—p and 0=s;,,p—s;<(t+1) (p—1)
for each j=0,1, ..., m—1.

Proor. Lets, and s¥ (1=0, 1, ..., m) be any non-negative integers such that
s;+s¥=t+1. Then we can see that the ordered set (s§, s}, ..., s¥) belongs to
S¥ (p™) if and only if the corresponding ordered set (so, s, ..., S,,) belongs to
S,,.(p™). Since both the coefficients of x* and x(P~1)+1)~# of the (real) expansion

[u/p] . —_7
of (1+x+x2+---4+xP"1)**1 are equal to ZI], (-1 (t-;—l)(t+ut zp> and
i=0

sk p—st=(p—1) t+1)—(sj+,p—s;) for j=0, 1, ..., m—1, it follows that

* *
L(sj4q°s))

2 (—1)i<t4151><t+sy+li,_sf_ip>

i=
Lz i(t+1\(t+5sj 1 p—S;—ip
N igo (_1)l< i )< T )

for each j=0, 1, ..., m—1. Hence, we get the required result from Theorem
7.1.

CoroOLLARY 7.3. For any positive integer n, the rank of N(p™; t, u) over
GF(p) is equal to R (t, p™).

Proor. It is well known that if each entry of a matrix N is an element of
GF(p), the rank of N over GF(p”) is equal to its rank over GF(p) for any positive
integer n. Since each entry of the matrix N(g; ¢, u) is O or 1, it follows that the
p-rank of N(g; t, p) is equal to the g-rank where g=p™. Hence, we have the re-
quired result.

In the special case u=t—1, since S,,_;(p")={0,0,...,0), (1,1, ..., D},
we have the following corollary:

COROLLARY 7.4. The p-rank of the incidence matrix N(p™; t, t—1) of v
points and v hyperplanes ((t—1)-flats) in PG(t, p™) is equal to



On the p-Rank of the Incidence Matrix of a BIBD or a PBIBD 175

(7.11) R,_,(t, pm)=<‘+§"1>m+1.

In the case t=2, this result has been obtained by Graham and MacWilliams
[11] and, for general ¢, was conjectured by Rudolph [30] to be true and has been
independently obtained by Smith [31, 32] and by Goethals and Delsarte [10].

COROLLARY 7.5. In the special case gq=p (i.e., m=1), the p-rank of the
incidence matrix N(p; t, w) of v points and b p-flats in PG(t, p) is equal to
1ok Liss) S+ t+s(p—1)—i
(.12) R D=7 2 (-oi(PF)(FHeer Do)

s=0
where L(s, s) is the greatest integer not exceeding s(p—1)/p.
This result has been obtained by Smith [31].

COROLLARY 7.6. In the special case q=2, the 2-rank of the incidence
—p
matrix N(2; t, p) is equal to R,(t, 2)= tZ“ (t-: 1) .
s=0

Table 7.1 gives all solutions for BIB designs PG(t, p™): u with 7<v <50 and
their p-ranks where v=(p™¢*1 —1)/(pm—1). These solutions are obtained by
using the cyclic structure of p-flats [27, 36] and tables due to Alanen and Knuth
[1].

In the case ¢(t—2, u—1, g)=2, it is also necessary to investigate the p*-rank
of N(p™; t, p) for a prime p* which is a factor of ¢(t—2, u—1, g). In Table 7.1,
there are four designs (Nos. 4, 8, 9, 11) satisfying the above condition and their
p*-ranks are given in Table 7.2 which suggests that the p*-rank of N(p™; ¢, u)
might, in general, be equal to v—1 orv. Their p*-ranks are computed by the usual
method.

Table 7.3 gives the p-ranks of the incidence matrices N(p™; t, u) for all BIB
designs PG(t, p™): u with parameters satisfying the following conditions:

p=2,3,57;1=m<S5, 1su<t and 50<v<10000
where
v=(pm* D —1)/(p"—1) and 6=[r/22]=[(g"'~1)/2(¢*—1)].

Comparing the p-ranks of designs Nos. 13 and 17 in Table 6.2 and the p-
ranks of designs Nos. 3 and 5 in Table 7.1, respectively, we can see that the design
D, of No. 13 in Table 6.2 is isomorphic with the design PG(3, 2): 2 and the design
D, of No. 17 in Table 6.2 is isomorphic with the design PG(2, 4): 1.
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TABLE 7.1.
BIB DESIGNS PG(z, p™): 1 AND THEIR P-RANKS
No., v & r k A|prankd pmt pu PG(¢, p™):u
117 7 3 3 1/ 4 1 2 2 1({©,1,5 mod7
2113 13 4 4 1| 7 2 3 2 1((,1,5,11) mod 13
3115 1s 7 7 3|S5 1 2 3 2(@,1,2,7,9, 12,13) mod 5
4(15 35 7 3 1|11 3 2 3 1/(@,1,12),(0,2,9) mod]15
(0, 5, 10) PC(5)
5(21 21 5 1{10 2 1((,1,4, 14, 16) mod 21
6131 31. 6 6 1|16 3 5 2 1/(,1,6,18,22,29) mod 31

31 31 15 15 7, 6 1 2 4 3|(,1,2,3,5,7,11, 14, 15, 16,
22,23, 26, 28, 29) mod 31

31155 35 7 7|16 2 2 4 2|(0,1,2,14,15,22,28),
' O, 1, 3, 5, 14, 26, 29),
O, 1, 4, 6, 10, 14, 25),
©, 4,7, 9, 16, 24, 25),
(0, 8, 11, 13, 19, 23, 30) mod 31

31155 15 3 1[26 7 2 4 1/(0,1,14), (0, 2, 28), (0, 4, 25),
(0, 7, 16), (0, 8, 19) mod 31

1040 40 13 13 4|11 1 3 3 2](0,1,2,8,16,18,23, 25,28,
29, 34, 37, 38) mod 40

11140 130 13 4 1|30 6 3 3 1](0,1,28,37),(0,2, 18, 25),
(0, 5, 11, 19) mod 40
(0, 10, 20, 30) PC(10)

TABLE 7.2.
THE p*-RANK OF BIB DESINGS PG(t, p™):u

No., » b r k A p* p¥rank |No.| v b r k A p* p*rank

4| 15 35 7 3 1 3 14 9] 3115515 3 1 7 31

8| 311553 7 7 7 30 11| 4013013 4 1 2 39
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TABLE 7.3.
THE P-RANK OF BIB DESINGS PG(t, p™):u
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TABLE 7.3. (continued)

No. v prank 6 p" t u |No. v prank & p" t u
74 | 1093 547 14 3 6 3 |106| 4095 299 2 11 8
75 1093 904 45 3 6 2 |107( 4095 7% 8§ 2 11 7
76 | 1093 1065 182 3 6 1 |108| 4095 1586 16 2 11 6
77 | 1365 37 2 4 5 4 |109] 4095 2510 33 2 11 5
78 | 1365 302 8 4 5 3 |110| 4095 3302 68 2 11 4
79 | 1365 882 34 4 5 2 |111| 4095 3797 146 2 11 3
80 | 1365 1289 170 4 5 1 |112] 4095 4017 341 2 11 2
81 | 2047 12 1 2 10 9 |113| 4095 4083 1023 2 11 1
82 | 2047 67 2 2 10 8 |114| 4369 257 816 3 2
83 | 2047 232 4 2 10 7 |115| 4369 2801 13616 3 1
84 | 2047 562 8§ 2 10 6 |116| 4681 126 4 8 4 3
85 | 2047 1024 16 2 10 5 |117| 4681 1576 32 8 4 2
86 | 2047 1486 34 2 10 4 |118| 4681 4091 292 8 4 1
87 | 2047 1816 73 2 10 3 |119| 5461 50 2 4 6 5
88 | 2047 1981 170 2 10 2 |(120| 5461 561 8 4 6 4
89 | 2047 2036 511 2 10 1 |121| 5461 2276 32 4 6 3
90 | 2451 785 2549 2 1 |122| 5461 4397 136 4 6 2
91 | 2801 211 37 4 3 |123| 5461 5342 682 4 6 1
92 | 2801 1401 25 7 4 2 |124| 6643 1297 4181 2 1
93| 2801 2591 200 7 4 1 |125| 7381 226 4 9 4 3
94 | 3280 37 1 3 7 6 |126] 7381 2761 41 9 4 2
95| 3280 303 4 3 7 5 |127| 7381 6616 410 9 4 1
96 | 3280 1087 13 3 7 4 |128| 8191 14 1 2 12 11
97 | 3280 2194 42 3 7 3 |129| 8191 92 2 2 12 10
98 | 3280 2978 136 3 7 2 |130]| 8191 378 4 2 12 9
99 | 3280 3244 546 3 7 1 |131| 8191 1093 8 2 12 8
100 | 3906 127 2 5 5 4 |132] 8191 2380 16 2 12 7
101 | 3906 1078 12 5 5 3 |[133| 8191 4096 32 2 12 6
102 | 3906 2829 65 5 5 2 |134] 8191 5812 66 2 12 5
103 | 3906 3780 390 5 5 1 (135 8191 7099 136 2 12 4
104 | 4095 13 1 2 11 10 |136| 8191 7814 292 2 12 3
105 | 4095 79 2 2 11 9 |137] 8191 8100 682 2 12 2
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TABLE 7.3. (continued)

No. v prank & p" t u No. v prank & p* t u
138) 8191 8178 2047 2 12 1 |142] 9841 4921 41 3 8 4
139, 9841 46 1 3 7 |143] 9841 7828 126 3 8 3
140, 9841 460 4 3 6 |144| 9841 9382 410 3 8 2
141) 9841 2014 13 3 5 (145 9841 9796 1640 3 8 1

8. The p-rank of the incidence matrix of points and certain sets
in PG(t, q)

Let us denote ¢(¢, u, q) u-flats in PG(t, q) by V¢, p) (I=0, 1, ..., ¢, u,
q)—1) and let W, (¢, 4, v) (k=0, 1, ..., n—1) be n=¢(u, v, q) v-flats contained
in the u-flat V,(t, u) where ¢, u and v are any integers such that 0<v<u<t and
q=pm. Let U,..(t, u, v) be the set of points obtained from the p-flat Vi(t, 1)
by deleting all points which are contained in the v-flat W, (t, u, v) and we define
the incidence matrix of v=(g**! —1)/(g—1) points () and b= (¢, 1, ¢)d(u, v, q)
sets U(t, u, v) in PG(t, q) to be the matrix:

N(g; t, u, v)=|n;(q; t, u, v)||; i=0, 1, ..., v—1 and j=0, 1, ..., b—1

where n;/(q; ¢, pr, v)=1 or 0 according as the ith point («f) is contained in the jth
set U(t, p, v) or not, and « is a primitive element of GF(q**!). It is easy to see
that N(q; t, u, v) is the incidence matrix of a BIB design with the following parame-
ters:

v=(q¢""'—=Dl(g—-1),  b=¢(t, u, PP, v, 9),

r=¢(t—1, p—1, O {p(w, v, ) —dpu—1,v-1, 9)},
k=(g"*"*—q"*H)/(q-1),

A=¢(t=2, n=2, q) {dp(n, v, ) —2¢u—1, v=1, 9)+d(u—2, v=2, g)}.

In this case, we have

(8.1)

(8.2) o=[r2A]1=[(¢""' —q)/2(g** ' —g**' —q +1)]
and
(8.3) r=A=q"{g"*1¢(t-2, u—1, Ppu—1, v, q)

+¢(t_2’ H—z’ CI)¢(#“2, V"‘l, q)}

So, it is necessary to investigate the p-rank and the p*-rank of the incidence
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matrix of N(p™; t, u, v) where p* is a prime which is a factor of {g**1¢(t—2,

=1, Qdpp—1, v, P+ (=2, p=2, p(u—2, v—1, q)}.
In the special case u=t, N(q; t, t, v) is the incidence matrix of a BIB design

with parameters:
v=(¢"*'-D/(g—-1), b=¢(t, v, 9),

@4  r=b—¢(t-1,v-1,9), k=v—(¢""'-D/(g-D),
A=b=2¢(t—1,v—-1, Q)+od(t—2,v-2, q)

and it is the complement matrix of N(g; ¢, v).
To obtain the p-rank of N(g; ¢, u, v), we prepare the

LemMA 8.1. Let #,(N) be the vector space over GF(p) which is generated
by column vectors of the matrix N. Then,

® J,€R,(N(q; t, 1),  J,ER(N(q; 8, 1, V)
and
(i) Zy([Jo: N(q; t, s VD) =2Z,(N(q; t, v))

for any integers t, u and v such that 0<v<u=<t where q=p™ and J, is the column
vector of order v whose elements are all unity.

Proor. (i) Since N(g; t, v) is the incidence matrix of a BIB design with
parameter r=¢(—1,v—1, g) and ¢(t—1, v—1, q) is not a multiple of p, it follows

from Z n(q; t, v)=r (i=0, 1, ..., v—1) that J,€ Z,(N(q; t, v)).
Smce N(q; t, u, v) is the incidence matrlx of a BIB design with parameter
k=q"*1(q*v—-1)/(q—-1), it follows from -Z:o miq; t, u, v)=k (j=1, 2, ..., b)

that N(q; t, u, v)TJ,=0 mod p. This impfies that any vector which belongs to
Z,(N(q; t, p, v)) is orthogonal to J,. On the other hand, it follows from v=

(@"*'—=1/(g—1) that
JIJ,=(g"** —=1)/(g—1)%0 mod p.

This implies that J, & Z,(N(q; t, p, v)).
(ii) At first, we shall prove that

(8.5) Zy([J,: N(q; t, u, V)D S 2Z,(N(q; t, V).

Since J,€ 2,(N(q; t, v)), it suffices to show that any column vector of N(q; t, u, v)
belongs to #2,(N(q; t, v)). Let x be any column vector of N(q; ¢, u, v) where
xT=(xg, X1, ..-» X,—1). Then, there exist a unique p-flat ¥ and a unique v-flat
W, contained in the u-flat ¥ such that x;=1 or 0 according as the ith point (af)
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is contained in V— W, or not. Let us denote n=¢(u, v, q) v-flats contained in
the pu-flat Vby W, (j=1, 2, ..., n) and let z; (j=1, 2, ..., 1) be column vectors of
N(q; t, v) such that z;;=1 or 0 according as the ith point («f) is incident with the
v-flat W; or not, where 37=(z,;, z,j, ..., 2,-1;). Then it follows that

n
x=c _Zl z;—z; mod p
=

where ¢, is a positive integer less than p such that
¢ ¢(u—1,v—1, p)=1 mod p.
This implies that (8.5) holds.
Next, we shall prove that
(86) 2LV, N@: 1, 11, VDD Z,(N(g; 1, ).

Let z be any column vector of N(q; ¢, v) where 2T =(z,, z, ..., Z,—1)- Then there
exists a unique v-flat W such that z;=1 or 0 according as the ith point (&!) is
incident with W or not. Let us denote by=¢(t—v—1, u—v—1, q) pu-flats con-
taining the v-flat Wby V; (j=1, 2, ..., by) and let x; (j=1, 2, ..., by) be column
vectors of N(g; t, p, v) such that x;;=1 or 0 according as the ith point (af) is
contained in V;— W or not. Then it follows that

z=J,—c, jgl x; mod p
where c, is a positive integer less than p such that
cp(t—v—2, u—v—2, p)=1 mod p.
This implies that (8.6) holds. This completes the proof.
From Lemma 8.1 and Theorem 7.2, we have the following theorem:

THEOREM 8.2. For any integer pu such that 0<v<u<t, the p-rank of N(q;
t,u, v) is equal to R (t, p™)—1 where g=p™ and R (t, p™) is given by (7.7) or (7.9).

Since each entry of N(q; t, u, v) is 0 or 1, we have the

COROLLARY 8.3. For any positive integer n, the rank of N(p™;t, u, v) over
GF(p") is equal to R (t, p™)—1.
Since N(q; t, t, v) is the complement matrix of N(g; ¢, v), we have the

CoROLLARY 8.4. The p-rank of the complement matrix of the incidence
matrix N(q; t, v) of points and v-flats in PG(t, q) is equal to R (t, p™)—1.

This corollary shows that the p-rank of the complement matrix of N(q; t, v)
is less than the p-rank of N(q; t, v).
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Table 8.1 gives all solutions for BIB designs N(q; t, u, v) with 7<v<50 and
b <1000 and their p-ranks. The symbol C(No. i in Table 7.1) means that this
design is the complement of the design No. i in Table 7.1. The symbol CT(...)
denotes that the rest of the initial blocks are generated by a cyclical transforma-
tion indicated by CT(...) after; for example, symbol (0, 7, 9, 12) mod 15 CT(0, 1,
2,9,7,12, 13) of No. 5 in Table 8.1 denotes that all initial blocks may be generat-
ed cyclically from the initial block (0, 7, 9, 12) by the cyclical transformation
CT(0, 1, 2,9, 7, 12, 13), that is, all initial blocks are

,7,9,12), (1,12,7,13), (2, 13,12,0), (9,0, 13, 1),
(7,1,0, 2), (12, 2,1, 9), (13, 9, 2, 7).

TABLE 8.1.
SOLUTIONS FOR BIB DESIGNS N(p™; t, u, v) AND THEIR P-RANKS
No.| v b r k A|rank é pm ¢t pu v Solution
1|7 7 4 4 2 3 1 2 2 2 1]C(No.1inTable7.1)
2113 13 9 9 6 6 0 3 2 2 1|C(No.2inTable7.1)
315 15 8 8 4 4 1 2 3 3 2 |C(No. 3in Table 7.1)
4115 35 28 12 22| 10 0 2 3 3 1 |C(No.4in Table7.1)
5/15105 28 4 6| 10 2 2 3 2 1/(,7,9,12) mod 15,
cr(0,1,2,9,7, 12, 13)
621 21 16 16 12 9 0 4 2 2 1|C(No.5in Table 7.1)
7131 31 25 25 20| 15 0 5 2 2 1 |C(No.6in Table 7.1)
8(31 31 16 16 8 5 1 2 4 4 3|C(No.7in Table7.1)
9131155120 24 92| 15 0 2 4 4 2 |C(No.8in Table 7.1)
10 | 31 465 120 8 28| 15 2 2 4 3 2/(0,5,7,11, 14, 22, 26, 28)
mod 31, CT(0, 1, 2, 3, 5,
26, 11, 22, 23, 28, 29, 7, 14,
15, 16)
1131 155140 28 126 | 25 0 2 4 4 1 |C(No.9in Table7.1)
12140 40 27 27 15] 10 0 3 3 3 2 |C(No. 10in Table 7.1)
13140 130 117 36 105| 29 0 3 3 3 1 |C(No.11in Table 7.1)
14 140 520 117 9 24| 29 2 3 3 2 1|(0, 8,16, 18,23, 25, 28,
34, 37) mod 40, CT(0, 1, 2,
25, 8, 37, 38, 18, 23, 16, 34,
28, 29)




On the p-Rank of the Incidence Matrix of a BIBD or a PBIBD 183

9. The p-rank of the incidence matrix of all points and all
u-flats in EG(t, q)

(a) The incidence matrix of all points and all u-flats in EG (%, q)

The affine geometry of ¢ dimensions, denoted by EG(t, q), is a set of points
which satisfy the following conditions:
(i) A point is represented by (v) where v is an element of the Galois field
GF(g*) and each element represents a unique point.
(ii)) A p-flat, 0<pu=t, passing through the origin, denoted by (0), is defined
as a set of points:

{(agvy+azvy 4+ +a,v)}

where a’s run independently over the elements of GF(q) and vy, v,, ..., v, are
linearly independent elements of GF(g*) over GF(q).
(iii)) A p-flat not passing through the origin is defined as a set of points:

{(V0+a1V1 + b +a,‘vu)}

where a’s run independently over the elements of GF(q) and v,, vy, ..., v, are
linearly independent elements of GF(g?).

Let a be a primitive element of GF(q*). Then every non-zero element of
GF(q*) can be represented by a°, !, ..., «2°~2 and every point in EG(t, q) can be
expressed by (0), («°), (a!), ..., (@2°~2). It is well known that the number, by,
of u-flats passing through the origin in EG(t, q) is equal to bo=¢(t—1, p—1, q)
and the number, b, of u-flats not passing through the origin is equal to

6.1 b=t 1, —p(t—1, b, P—d(t—1, p—1, q)

where ¢(t, u, q) is given by (7.4). In order to define the incidence matrix of all
points and all p-flats in EG(t, q), we shall denote the origin (0) in EG(t, q) by P,
and the point («¥) by P, (u=0,1, ..., g¢*—2).

After numbering b, p-flats passing through the origin in EG(t, ¢q) and b,
u-flats not passing through the origin in EG(t, q) in some way, respectively, we
define the incidence matrix, M§(q; ¢, p), of all points and b, u-flats passing
through the origin in EG(#, ¢) and the incidence matrix, M* (q; t, u), of all points
and b, p-flats not passing through the origin in EG(t, ¢), to be the matrices:

M¥(q; t, W=|mP(q; t, Wl 5 i=0,1, ..., ¢*—1 and j=1,2, ..., b,

where m{?*(q; t, p)=1 or 0 according as the ith point P; is incident with the jth
u-flat or not. Let

92 M*(q; t, W=[M¥(q; t, p): M¥(q; t, p)].
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Then, M*(q; t, p) is the incidence matrix of all points and all u-flats in EG(¢, q).
It is known [2] that M*(q; ¢, p) is the incidence matrix of a BIB design, denoted
by EG(¢, q): u, with parameters:

v=g', b=¢(t, p, QP—P(t—1, p, q), r=¢@-1, p—1, 9,

9.3)
k=g* and A=¢(t—2, u—2, q).

In this case, we have
94) r—A=g"¢(t—2, u—1, q) and §=[r/2A]=[(g"'—1)/2(¢* - D].

It is therefore necessary to investigate the p-rank and the p*-rank of M*(q; ¢, 1)
where g =p™ and p* is a prime which is a factor of ¢(t—2, u—1, q). But they
have not yet been obtained. So, in this section, we shall investigate the p-rank of

M*(q; t, p).

(b) Main theorems for the p-ranks of M(q; ¢t, 1) and M*(q; t, )
Let M(q; t, w) (I=0, 1) be the matrix which is obtained from M%(q; ¢, p)
by deleting its first row (correspoinding to the origin) and let
(C)) M(q; t, )=[Mo(q; t, : My(q; t, W]
Then we have the following main theorems:

THEOREM 9.1.  The p-rank of the incidence matrix M(q; t, p) of ¢*—1
points other than the origin and all p-flats in EG(t, q) is equal to R, (t, p™)—
R, (t—1, p™) where q=p™ and R,(t, p™) is given by (7.9).

THEOREM 9.2. The p-rank of the incidence matrix M*(q; t, p) of all points
and all p-flats in EG(t, q) is also equal to R,(t, p™)—R,(t—1, p™).

CorOLLARY 9.3. For any positive integer n, the rank of M(p™; t, u) (or
M*(p™; t, n)) over GF(p") is equal to R,(t, p™)—R,(t—1, p™).

CoROLLARY 9.4. In the special case u=t—1, the p-rank of the incidence
matrix M*(p™; t, t—1) of all points and all hyperplane in EG(t, p™) is equal to

(t+p— l)"’
f .

COROLLARY 9.5. In the special case m=1, the p-rank of the incidence
matrix M*(p; t, ) of all points and all p-flats in EG(t, p) is equal to R,(t, p)
—R,(t—1, p) where R,(t, p) is given by (7.12). '

COROLLARY 9.6. In the special case q=2, the 2-rank of the incidence
matrix M*(2; t, p) of 2* points and ¢(t, p, 2)— Pp(t—1, u, 2) p-flats in EG(t, 2)

is equal o 5 ‘)
1S equal to .
1 5=0 \§
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(c) Preliminary result for the proof of main theorems

To obtain an explicit formula for the p-rank of the incidence matrix M(q; t, p),
we shall use the following properties, called the cyclic structure, of u-flats in
EG(t, q).

THEOREM 9.7 (Rao). (i) Let

V(©0)={(0), (@), (@), ..., (@)}  (n=g")
be any u-flat passing through the origin in EG(t, q), then the set
V() ={(0), @*), @*), .., (@n*))
is also some p-flat passing through the origin for any positive integer r.
(ii) Let
VH0)={@), (&%), ...s (@2} (n=g¥)
be any u-flat not passing through the origin in EG(t, q), then the set
V*(r)={(a1*7), (a2*7), ..., (@n*7)}
is also some p-flat not passing through the origin for any positive integer r.
For some positive integer 8, V(6) coincides with V(0). Such an integer 6
is called a cycle of the (initial) flat V(0) and the minimum value of these cycles is

called the minimum cycle (m.c.) of V(0). Since V(q*—1)=V(0) and V*(g*—1)
=V*(0), any u-flat in EG(t, q) has q*—1 as a cycle.

THEOREM 9.8 (Rao). (i) Any u-flat passing through the origin in EG(t, q)
has some factor of (q¢* —1)/(q—1) as the minimum cycle.

(ii) Any p-flat not passing through the origin in EG(t, q) has q*—1 as the
minimum cycle.

From the above two theorems, it follows that (i) all u-flats passing through
the origin may be generated cyclically from a set of initial u-flats, say ¥V ,(0),
Vo1(0), ..., Voro-1(0), passing through the origin by the transformation:

9.6) (0)>(0) and (a*)—(a**1)

for u=0, 1, ..., q*—2, that is, all u-flats passing through the origin are represented

by Vou(r) (k=0, 1, ..., 1,—1; r=0, 1, ..., 6, —1) where 6, is the minimum cycle of

the initial u-flat V,,(0) and =, is an integer such that f 0;=b, and (ii) all u-flats
i=0

not passing through the origin may be generated cyclically from a set of initial
u-flats, say V;4(0), V;1(0), ..., Vi, —1(0), not passing through the origin by the
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transformation (9.6), that is, all u-flats not passing through the origin are represent-
ed by Vi (r) k=0, 1, ..., =, —1; r=0, 1, ..., g*—2) where n, =b,/(q* —1). Since
any multiple of the minimum cycle of a p-flat is also a cycle of the u-flat, any
p-flat in EG(t, q) has v*=¢*—1 as a cycle.

Let Vo (u0,+1ro)=Vou(ry) for all integers k, u and ry such that
O0sk<my, 1=Su<v*/0, and 0<ry,<0,

and we define the incidence matrix of v* points other than the origin and mp*
u-flats V() (k=0, 1, ..., ;—1; r=0, 1, ..., v*—1) to be the matrix:

M=|m®| ; i=0,1, .., np*~1 and j=0,1, ..., v*—1

where #i{ds,, ;=1 or 0 according as the jth point («’) is incident with the p-flat
Vu(r) or not. Let

©.7) M= [1‘:40 }

M,

Since M(q; t, ) can be obtained from M7 by deleting duplicates of rows of M
and by permuting rows suitably, the rank of M(q; ¢, y) is equal to the rank of M.
Hence, it suffices to obtain an explicit formula for the rank of M over GF(q).

(d) The proof of main theorems

In the following, we shall use an extension of the methods used by Smith
[31]. From the definition of M, and M,, we can see that

(9-8) ’ﬁw*+r+1,j+1 = "~1§clu)*+r,j
for any integers I, k, r and j such that
9.9) 01, 0Zk<m, O=r<v* and 0Zj<v*

where the subscripts r+1 and j+1 are taken mod v*. We define the incidence
polynomial of the u-flat V() by

©.10) I () ="3, il 37
Then it follows from (9.8) and (9.10) that

9.11) Gi0(x)=x"6{Py(x) mod x**—1

for any integers I, k and r satisfying the condition (9.9). Let
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o0 (a2)° ()0
9.12) A L
a”*_1 (a2)u"—1 e (OC"*) v*—1

Then the matrix V is a non-singular Vandermonde matrix over GF(q*) of order
v*. From (9.10) and (9.11), we have the following equation:

: 0 :
~ V DOIto—l
(9.13) MV =
|4 Do
0 :
V Dln;—l
where
I )
i@ 0
9.13") Dy, =

for I=0, 1 and k=0, 1, ..., ;;,—1. Since both V and the composite matrix of V’s
on the right hand side of (9.13) are non-singular matrices over GF(g*), the rank of
M over GF(g') is equal to the rank of the second matrix on the right hand side of
(9.13). Hence, the rank of M over GF(gq') is equal to the number of integers h,
1 <h=<v*, such that §{J(a*)=~0 for some integers ! and k. Since the entries of
M are elements of subfield GF(p) of GF(q'), the rank of M over GF(q") is equal
to its rank over GF(p). Thus we have the following theorem:

THEOREM 9.9. The p-rank of the incidence matrix M(q; t, p) of q'—1
points other than the origin and all u-flats in EG(t, q) is equal to the number of
integers h, 1<h=<gq'—1, such that 6{3(a*)=%=0 for some integers | and k.

Let
L={(a,et + a2+ +a,04)}
={(0), (@), @), ..., (@)}  (n=q¥
be any p-flat passing through the origin in EG(t, g) and let
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Z,*={(<xe:’ +a,at 4o +aua":)}

={(°‘C;), (OCC;), ey (@)} (n=g"

be any u-flat not passing through the origin in EG(t, q) where a’s run independently
over the elements of GF(q), a¢t, a¢?, ..., a°« are linearly independent elements of
GF(g") and a®, o, ..., a% are also linearly independent elements of GF(g").
We define the incidence polynomial of the u-flat 3 and the p-flat 33* as the poly-
nomials

9.14) 05(x) =x°24 X3 4 .- 4 xCn (n=g")
and
(9.15) O5u(x)=x1+ x5+ -+ + xh (n=qg"),

respectively. Then it follows that

9.16) 0;(a")=X -+ D(aso®t + @002 + - +a 00
and
(917) 0):'(“"):2"'2(“2:)4'(11(12: + . +auae;)h

where each summation is taken over all elements of GF(q). Expanding each term
of (9.16) and (9.17) and using the following equation:

—1,if j=k(g—1), k>0
9.18) ), al=
acGF () 0, otherwise,

we have
9.19) O:(a")=(—1* X ( h >ae1k1(q-1)+---+eukﬂ(q—1)
) z k kl(q—1)9 (AR ku(q_ 1)
and
h *
hy — ([ — e*lo
(920) 02*(“ )""'( l)u Zl (10’ ll(q__ l), e l"(q— 1)>fl ol *9
I3
(g= 2] etli(g—1))
i=1

where the summation in (9.19) is taken over all choices of positive integers k,,
ky, ..., k, such that é‘l k{g—1)=h and the summation in (9.20) is taken over
all choices of a non-negative integer I/, and positive integers I, I, ..., 1, such
that lo+ ,)—il I(g—1)=h.
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Let V,(0) be a u-flat passing through the origin in EG(t, q) from which the
p-flat 37 can be generated and let V% ,(0) be a u-flat not passing through the origin
in EG(t, q) from which the u-flat }3* can be generated. Then it follows from
(9.11) that (i) 6{(«*)=0 if and only if O;(a*)==0 and (ii) §{4’(«*)~0 if and only
if O5«(a#)5=0. Hence, from Theorem 9.9, we have the following theorem:

THEOREM 9.10. The p-rank of the incidence matrix M(q; t, u) of q*—1
points other than the origin and all p-flats in EG(t, q) is equal to the number of
integers h, 1=h=q'—1, such that 05 ,(a")~=0 for some p-flat 3, (passing
through the origin or not passing through the origin) in EG(t, q).

In order to obtain the number of integers h satisfying the above condition,
we shall use the following two theorems summarizing the essential results due to
Smith [31].

THEOREM 9.11. Let h be an integer such that 1<h<gq*—1. Then a neces-
sary and sufficient condition for the integer h that there exists a u-flat 3 passing
through the origin in EG(t, q) such that 0;(a*)5=0 is that h is an integer such
that there exists a set of u positive integers k; (i=1, 2, ..., u) satisfying the fol-
lowing conditions:

(9.21) h= é k(g—1) and D,[i]= 3 D,[k{g—1)]

where D,[n] is defined by

9.22) D,[n]=cq+c;+- +ec,

for a non-negative integer n having the p-adic representation:
n=co+cpt--+ept (0=¢<p).

THEOREM 9.12. Let h be an integer such that 1<h=<q*—1. Then a neces-
sary and sufficient condition for the integer h that there exists a u-flat };* not
passing through the origin in EG(t, q) such that 05+(a*)5=0 is that h is an inte-
ger such that h=~=q*—1 and that there exists a set of one non-negative integer l,
and p positive integers 1; (i=1, 2, ..., w) satisfying the following conditions:

(9.23) h=1,+ é I(g—1) and D,[H]=D,[ls]+ ,-‘i D,[l(g—-1)].

If h is an integer which satisfies the condition (9.21), it is an integer which satis-
fies the condition (9.23). In the special case h=gq*—1, it satisfies the conditions
(9.21) and (9.23). Hence, from Theorems 9.10, 9.11 and 9.12, we have the follow-
ing theorem:

THEOREM 9.13. The p-rank of the incidence matrix M(q; t, u) of q¢*'—1
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points other than the origin and all p-flats in EG(t, q) is equal to the number
of integers h, 1 <h<q*—1, such that there exists a set of one non-negative integer
ly and p positive integers I; (i=1, 2, ..., p) satisfying the condition (9.23).

The following theorem due to the present author [12] plays an important role
in enumerating the number of integers & satisfying the above condition.

THEOREM 9.14.  Let h be an integer such that 1<h<q'—1 and let the p-
adic representation of h be

(9.24) h= 5% ¢, pmti
i=0 j=0

where g=p™ and c;;’s are non-negative integers less than p. Then a necessary
and sufficient condition for the integer h that there exists a set of one non-negative
integer 1, and u positive integers I; (i=1, 2, ..., u) satisfying the condition (9.23),
is that there exists a set of m+1 positive integers s, (I=0, 1, ..., m) satisfying the
following conditions:

(9.25) Sm=S0, MH=S;=<t, 0<s;,,p—s;=t(p—1)
and

=1
(9.26) i;) C,’j g Sj+1p—‘Sj

for each j=0, 1, ..., m—1.
Using the above theorems, we now prove Theorems 9.1 and 9.2.

(Proof of Theorem 9.1) In [12], the present author showed that the number
of integers h satisfying the conditions (9.25) and (9.26) was equal to R,(t, p™)
—R,(t—1, p™). Hence, we have the required result from Theorems 9.13 and 9.14.

(Proof of Theorem 9.2) Since M*(q; t, p) is the incidence matrix of a BIB
design with parameters (9.3), it follows from the definition of M*(g; t, 1) that
t—1
m{Q =1, DX m®'=qt—1  forj=1,2, .., by

i=

and
=1
my)' =0, "% m{}" =g for j=1,2, ..., b;.

i=

This implies that the first row of M*(q; t, 1) can be expressed as a linear combina-
tion of the other rows of M*(q; ¢, u) with coefficient from GF(p). Since M(q;t, u)
is the matrix obtained from M*(g; ¢, u) by deleting its first row, the p-rank of
M*(q; t, p) is equal to the p-rank of M(q; t, u). Hence, we have the required
result from Theorem 9.1.
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(e) Tables of the p-ranks of BIB designs EG(z, p™) :u

Table 9.1 gives solutions for BIB designs EG(t, p™): u with 7<v< 50 and their
p-ranks where v=p™. Solutions for designs Nos. 12, 13 and 14 are omitted here,
for values of b are large. Comparing the p-ranks of designs D; (i=1, 2, 3, 4) of
No. 4 in Table 6.2 and the p-rank of the design of No. 1 in Table 9.1, we can
see that the design D, of No. 4 in Table 6.2 is isomorphic with the design EG(3, 2):
2.

Table 9.2 gives the p-ranks of the incidence matrices M*(p™; t, u) of all BIB
designs EG(¢, p™): u with parameters satisfying either the condition:

@ p=2 ; 2=msS5, 1=<u<t and 50<p<10000
or
(i) p=3,517; 1sm<5, 1<up<t and 50<v<10000.

In the special case g=2, we can see from Corollaries 7.6 and 9.6 that the 2-
rank of M*(2; t, ) is equal to the 2-rank of N(2; t—1, u—1). So, these designs
EG(t, 2): p and their 2-ranks are omitted from Table 9.2.

TABLE 9.1.
BIB DESIGNS EG(z, p"): p AND THEIR P-RANKS

No., v b r k A|rankd pm™ t pu EG(z, p™): u
11 8 14 7 4 3{ 4 1 2 3 2| (e,0,1,5),(0,3,4,5)mod?7
2 28 2 1| 7 3 2 3 1] (e0,0),(0,1),(0,3), (0,5 mod?7
3 12 4 3 11 6 2 3 2 1/ (,0,4) PC(4), (0,2,7) mod 8
4116 30 15 8 7| 5 1 2 4 3| (,0,1,2,7,9,12,13),

©,4,5,6,7,9, 11, 12) mod 15
5116140 35 4 7|11 2 2 4 2| (e,0,1,12), (o,0,2,9)mod 15,
(o0, 0, 5, 10) PC(5), (0, 7,9, 12),
, 4, 5, 12), (0, 4, 9, 11),
©,1,2,7),(,1,3,5),

©, 6,11, 12), (0, 1, 9, 13) mod 15
6116120 15 2 1|15 7 2 4 1| (=,0),(0,1),(0,2),(0,3),(0,4),
0, 5) (0, 6), (0, 7) mod 15

7016 20 5 4 1| 9 2 4 2 1] (,0,35,10) PC(5), (0, 8, 12,14)
mod 15

8125 30 6 5 1]15 3 5 2 1] (,0,86,12,18) PC(6), (0, 8, 17,
21, 22) mod 24
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TABLE 9.1. (continued)

No.|] v b r k Ajrankd p™ t pu EG(z, p™): u
9127 39 13 9 4110 1 3 3 2] (,0,1,5,11,13, 14, 18, 24)

PC(13) (0, 7, 10, 16, 17, 18, 21,
22, 24) mod 26

10127 117 13 3 1]23 6 3 3 1| (e0,0,13) PC(13), (0, 18, 24),
0, 1, 5), (0, 3, 15), (0, 7, 16)
mod 26

11132 62 311615 6 1 2 5 4| (e,0,1,2,3,5,7,11, 14, 15, 16,
22, 23, 26, 28, 29), (0, 5, 7, 9, 10,
11, 13, 14, 18, 19, 20, 21, 22, 25,
26, 28) mod 31

12 {32620 155 835({16 2 2 5 3 —

13132 — 155 415(26 5 2 5 2 —

1413249 31 2 13115 2 5 1 —

15(49 56 8 7 1|28 4 7 2 1] (0,0,8, 16, 24, 32, 40) PC(8),
(0, 18, 22, 28, 29, 31, 43)mod 48

TABLE 9. 2.
THE P-RANK OF BIB DESINGS EG(t, p™): u

No. v prank 6 pm t u |No. v prank O p™ t pu

16 64 16 2 4 3 2 |29 256 25 2 4 4 3

17 64 51 10 4 3 1 |30 256 129 8 4 4 2

18 64 27 4 8 2 1 |31 256 235 42 4 4 1

19 81 15 1 3 4 3 |32 256 81 816 2 1

20 81 50 53 4 2 |33 343 84 37 3 2

21 81 76 20 3 4 1 |34 343 287 287 3 1

22 81 36 59 2 1 |35 512 64 4 8 3 2

23 125 35 2 5 3 2 |36 512 373 36 8 3 1

24 125 105 15 5§ 3 1 |37 625 70 25 4 3

25 243 21 1 3 5 4 |38 625 355 13 5 4 2

26 243 96 4 3 5 3 |39 625 590 78 5 4 1

27 243 192 15 3 5 2 |40 625 225 1325 2 1

28 243 237 60 3 S5 1 |41 729 28 1 3 6 5
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TABLE 9.2. (continued)

No. v p-rank 6 p™ t u |No. v prank 6 p™ t pu
42 729 168 4 3 6 4 |66]| 3125 2438 65 5 5 2
43 729 435 14 3 6 3 |67 3125 3069 390 5 5 1
44 729 651 45 3 6 2 | 68| 4096 49 2 4 6 5
45 729 722 182 3 6 1 | 69| 4096 524 8 4 6 4
46 729 100 4 9 3 2 | 70| 409 1974 32 4 6 3
47 729 553 45 9 3 1 | 71| 4096 3515 136 4 6 2
48 729 216 1427 2 1 | 72| 4096 4053 682 4 6 1
49 | 1024 36 2 4 5 4 | 73| 409 125 4 8 4 3
50 | 1024 276 8 4 5 3 |74| 4096 1511 32 8 4 2
51| 1024 736 34 4 5 2 | 75| 4096 3690 292 8 4 1
52| 1024 993 170 4 5 1 |76 | 4096 256 816 3 2
53| 1024 243 1632 2 1 | 77| 4096 2719 13616 3 1
54 | 2187 36 1 3 7 6 | 78| 6561 45 1 3 8 17
55| 2187 274 4 3 7 5 |79 6561 423 4 3 8 6
56 | 2187 897 13 3 7 4 |80 | 6561 1711 13 3 8 5
57| 2187 1647 42 3 7 3 | 81| 6561 3834 41 3 8 4
58 | 2187 2074 136 3 7 2 |82 6561 5634 126 3 8 3
59| 2187 2179 546 3 7 1 83| 6561 6404 410 3 8 2
60 | 2401 210 3 7 4 3 |84 | 6561 6552 1640 3 8 1
61 | 2401 1316 25 7 4 2 |85} 6561 225 4 9 4 3
62| 2401 2275 200 7 4 1 86 | 6561 2660 41 9 4 2
63| 2401 784 2549 2 1 87 | 6561 6026 410 9 4 1
64 | 3125 126 2 5 5 4 |8 6561 1296 4181 2 1
65 | 3125 1007 12 5 5 3

Part III. The p-rank of the incidence matrix of a PBIB design
derived from a finite geometry

10. The p-rank of the incidence matrix of points and u-flats with a cycle
0 in PG(t, q)

In this section, we shall investigate the p-rank of the incidence matrix of points
and p-flats with a cycle 0 less than v in PG(t, g) where v=(g**! —1)/(q —1).
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(a) Preliminary results

Let g be a prime power, say = p™ and consider a u-flat ¥(0) in PG(t, q) with
the defining points («®°), (a¢t), ..., (a€#):

V(0)={(apxe® +a ¢ +--- +a,0+)}
and a p-flat V(r) with the defining points («°0*"), (a¢1+7), ..., (x€s*"):
V(r)={(aae*r +a act*ri+... + g acx*r)}

where r is a positive integer. For some positive integer 6, V(8) coincides with
V(0). Such an integer 0 is called a cycle of the initial flat ¥(0) and the minimum
value of these cycles is called the minimum cycle (m.c.) of the initial flat ¥(0).
Since V(v)=V(0), v is a cycle of any u-flat V(0). To obtain the p-rank of the in-
cidence matrix of points and u-flats with a cycle 6 less than v in PG(t, g), we shall
use the following properties, called the cyclic structure, of u-flats in PG(¢, g).

THEOREM 10.1 (Rao). (i) Let

V(0)={(ac1), (x2), ..., (@)}
be a p-flat in PG(t, q), where k=(gq**1 —1)/(q—1), then the set

V() ={@*), @=*), ..., (@*+*)}

is also some u-flat in PG(t, q) for any positive integer r.
(ii)) Any p-flat in PG(t, q) has some factor of v as the minimum cycle.

This theorem shows that all u-flats in PG(t, q) may be generated cyclically
from a set of initial y-flats, say V,(0), ¥;(0), ..., V,_(0), by the transformation:

(10.1) (a)—> (avt1) u=0,1, ..., v-1),

where (x¥)=(«°), that is, all p-flats in PG(t, g) can be represented by V(r) (i
=0,1, .., n—1;r=0,1, ..., 0;—1) where 6, is the m.c. of the initial u-flat V(0)

n—1
and = is an integer such that )] 6,=¢(t, u, q).
i=0

The following theorems due to Yamamoto, Fukuda and Hamada [36] play
an important role in obtaining the p-rank of the incidence matrix of points and
u-flats with a cycle 6 in PG(t, q).

TaeOREM 10.2. Ifa p-flat V has a cycle less than v, then there exists a posi-
tive integer | such that 1+1 is a common factor of t+1 and u+1, and that 0,
=(q**1—=1)/(¢*** —1) is the m.c. of the u-flat V. In this case, the flat V is com-
posed of (g#*1—1)/(¢*** —1) flats each of which belongs to a set of 0, l-flats
V), V(), ..., V(0,—1) generated from the initial I-flat V(0)={(a,x°+a o’
+-o+aut®)} of the m.c. 0,
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Note that this theorem shows that (i) if a u-flat V has a cycle 8 less than v,
then 6 must be an integer of the form (g**1 —1)/(g**1 —1), where | is some positive
integer such that /+1 is a common factor of t+1 and u+1, and (ii) the p-flat V'
can be also expressed as follows:

V={(b0afo+b1afl 4. +b”laful)}

where y, is an integer such that y;+1=(u+1)/(I+1) and b’s run independently
over the elements of GF(gq'*!), not all zero, and af°, aft, ..., af+, are p+1
linearly independent elements of GF(q**1) over GF(g'*1).

In the following, we shall denote a u-flat having the cycle 8,=(q**! —1)/(¢**!
—1) by a p(l)-flat where I is an integer such that /+1 is a common factor of t+1
and u+1.

TueoreMm 10.3. (i) If t+1 and pu+1 are relatively prime, then all u-flats
in PG(t, q) have the minimum cycle v=(q**' —1)/(q—1) and can be generated
from w=¢(t, u, q)/v initial u-flats where ¢(t, u, q) is given by (1.4). If (t+1,
u+1)=plpy2... pi« (>1, p’s are primes such that p;<p;,,) is the highest com-
mon factor of t+1 and u+1, then the number of different minimum cycles is

i1=£I1 1 +7).
(i) Let
O[x1, ..., x,]=(¢"* ' —1)/(¢"-1),
(10.2) t[xy, .oy x,]=(+1)/h—1,
ulxy, ooy x,1=(u+1)/h—-1,
qlxys .. x,1=4q", h=p%t ... pIn.

Then the numbers of u(p%ip%?... pi+—1)-flats having the cycle 0[x,, ..., x,] and
the m.c. 0[x,, ..., x,] are respectively

n(Xy, ooy X)=P([x1, ..y X, 15 U[X15 -oes X1, g[X15 «es X,1)s
(103) n*('})h seey yu)=n(719 e yu)’

n*(xy, .oy X)=n(xy, ..., X,)— 2 n*(yys coes Vo)
xjSy;jSvi3EJixj<yy

and the number of initial u-flats of the m.c. 0[x,, ..., x,] is
(10.4) (Xyy oo X)=0%(Xq, ..., X,)[0[x4, ..., X,]
from which the totality of p-flats having the m.c. 0[x,, ..., x,] can be generated.

CoROLLARY 10.4. Let I be any integer such that 1+1 is a common factor
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of t+1 and p+1, and let 0,, t, and y, be integers such that
(10.5) O,=(g**1 -1)/(g"*1-1), {,+1=(0+1D/(+1),
w+1=@u+1)/(1+1).
Then the number of u(l)-flats is equal to n=¢(t;, w;, q**1).
Note that since any p-flat has a cycle v, it is also u(0)-flat.

(b) The main theorems for the p-ranks of N(0,) and N(0[x, ..., x,])
After numbering n, u(l)-flats in some way, we define the incidence matrix of
v points and n,; u(l)-flats in PG(¢, ¢) to be the matrix:
N@)=IIn; ;)| ; i=0,1,...,v—1 and j=1,2,..., m

where n;;(6;)=1 or 0 according as the ith point («’) in PG(t, q) is incident with
the jth pu(l)-flat or not. It is known [36] that when 1>0, N(6)) is the incidence
matrix of a PBIB design of N, type (GD) with parameters:

v=00,q9), b=¢, m, ¢, r=¢(t,—1, u—1, ¢'*"),

(10.6) k=9, 0,q), Ai=¢(t,—1, u—1,4"*"), =¢(t—-2, -2, ¢'*"),
n,=/6,—1), n,=(/0) (0,—1), p},=v/6,—2 and p%,=0.

In this case, we have

(10.7) pi=rk—vi,=q@*Vmd(t,—2, y—1, g"**) ("1 -1li(g—1)
and
py=r—2i;=0.

Hence, this design is a singular GD design. Since
Rank, (N(6;)) =Rank(N(6) =0+,

for any prime p,, it follows from ap=1 and o«;=(q**'—1)/(¢***—1)—1 that
Rank, (N(0))=(q**! —1)/(¢"** —1). On the other hand, it follows from Theorem
5.1 that the py-rank of N(6)) is never less than (g**1—1)/(¢’*1—1)—1 unless p,
is a factor of vp,. It is therefore necessary to investigate the p-rank and the p*-
rank of N(6;,) where g=p™ and p* is a prime which is a factor of v¢(t,—2, y,—1,
g+ 1) (g"*1—1)/(g—1). As a solution for this problem, we have the following
main theorem which is a generalization of Theorem 7.2.

TueoreM 10.5. The p-rank of the incidence matrix N (6)) of points and
u-flats having the cycle 0, in PG(t, q) is equal to R,, (t, pm**V)) where q=p™
and R,(t, p™) is given by (7.9).
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Since any p-flat in PG(t, g) is a p(0)-flat, we have the

CoROLLARY 10.6. The p-rank of the incidence matrix of points and u-
Aats in PG(t, q) is equal to R, (t, p™).

More generally, consider n(x,, ..., x,) p-flats having a cycle 0[x,, ..., x,].
After numbering these n(xy, ..., x,) u-flats in some way, we define the incidence
matrix of v points and n(xy, ..., x,) u-flats having the cycle 0[x;, ..., x,] to be the
matrix:

N@O[xy, ..., x,D=In;jO[x1, ..., x,Dll; i=0,1, ..., v—1,j=1,2, ..., 5

where n=n(x,, ..., x,) and n;;(0[x,, ..., x,])=1 or 0 according as the ith point
(o) is incident with the jth u-flat having the cycle 0[x,, ..., x,] or not. It is known
[36] that when O[x,, ..., x,]<v, N(0[x,, ..., x,]) is the incidence matrix of a

PBIB design of N, type with parameters:
v=¢(, 0, q), b=¢[[x1, ... X, 1, ulx1s -5 X, 15 glx1s --v5 XD,
k=¢(u, 0, q), r=A;=24,(x1, ..., X2), Ar=A,(xq, ..., X,),
ny=v/0[xy, ..., x,]—1, n,={0[xq, ..., x,]—1}v/0[x4, ..., x,];
pli=v/0[xy, ..., x,]—2 and p},=0

where
Ai(xgs ooy X)=0([xy, ..oy x,1—1, plxy, ..., x,1—1, q[x4, ..., X,])s
Aa(X gy ooer X)=t[xy5 -5 X,1—2, ulxy4, -oos X, 1—2, q[x45 ... X,])-

From theorems 10.3 and 10.5, we have the following theorem:

THeoreM 10.7. The p-rank of the incidence matrix N(O[x, ..., x,]) of all
points and all u-flats having the cycle 0[x,, ..., x,] in PG(t, q) is equal to
Ru[xl,...,xu](t[xl, veey xu], meTb"pi")

where g=p™ and u[x,, ..., x,], t[xy, ..., x,] and 0[x,, ..., x,] are given by (10.2)
and R, (t, p™) is given by (7.7) or (7.9).

(c) The proof of Theorem 10.5

From Theorems 10.1 and 10.2, it follows that all u(l)-flats in PG(t, q) can
be generated cyclically from a set of initial u(l)-flats, say ¥ 4(0), V,(0), ..., V,,-(0),
by the transformation (10.1), that is, all u(l)-flats in PG(t, g) can be represented
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by Vi(r) (k=0, 1, ..., ;;—1; r=0, 1, ..., ¢,—1) where ¢ is the m.c. of the initial

n—1

u(D-flat V,(0) and =, is an integer such tha kZO c=n;. Let
(10.8) v¥=¢g'*t1-1 and Vi (ric,+ry)=V(ry)

for k=0, 1, ..., ;,—1, r;=1, 2, ..., v*/c,—1 and r,=0, 1, ..., ¢,—1. We define
the incidence matrix of v*mu(l)-flats V(r) (k=0, 1, ..., r;—1; r=0,1, ..., v¥*—1)
and v* points (o)) (j=0, 1, ..., v*—1) in PG(¢, q) to be the matrix:

N(B,)=”ﬁu(9,)|]; i=0, 1, ceey U*nl_l and j=0, 1, ceey U*‘-l

where iy, (0)=1 or 0 according as the jth point («/) in PG(t, q) is incident
with the p(l)-flat V,(r) or not. Since (a/1**/2)=(a/2) and V (ric;,+ry)=V(r2),
the following relations hold:

Ay, jio+ (00 = ﬁi,j;(el)
(10.9)
ﬁkv*+rlck +r2,j(ol)= ﬁkv’+r2,j(91)
for any integers i, j,, j,, J, k, r; and r, such that
O<i<v*m, 0=<j,<q-1, 0=j,<v, 0Zj<v*,
0<k<m, 1=r,<v*/c and 0=r,<c.
From (10.9) and the definition of N(6,), we have
(10-10) gt +r + 1,j+ 1(01)= ﬁku*+r,j(91)

for r, j=0, 1, ..., v*—1 and k=0, 1, ..., ;;—1 where the subscripts r+1 and

j+1 are taken mod v*. Since N(f,) can be obtained from N(,)T by deleting

duplicates of columns and rows of N(6,) and by permuting rows suitably, the rank

of N(@)) is equal to the rank of N(8,). It suffices therefore to obtain the p-rank

of N(8). In the following, we shall use a similar method used in Section 9.
We define the polynomial §,,(x) of the u(l)-flat V (r) by

v*—1 .
(10.11) Ore(x)= 1;:0 Ao +r, (O)X7.
From (10.10) and (10.11), we have

(10.12) xfo(x)=0,(x) mod x""—1

for r=0, 1, ..., v*—1 and k=0, 1, ..., ;;—1. Using (10.11) and (10.12), it can
be shown that the following equation holds.



On the p-Rank of the Incidence Matrix of a BIBD or a PBIBD 199

14 D,
0 D,
(10.13) N@)v = .
0
V)| D,
where
bro(at)
0
(10.14) D,=|  Oro(@®
0 ro(@”)

and V is a Vandermonde matrix of order v*=g**! —1 defined by (9.12). Since
both V and the composite matrix of ¥’s on the right hand side of (10.13) are non-
singular matrices over GF(g'*!), the rank of N(,) over GF(q**!) is equal to the
rank of the second matrix on the right hand side of (10.13). Hence, the rank of
N(9) over GF(q'*1) is equal to the number of integers h, 1<h=<v*, such that
G40(a")#0 for some integer k. Since the rank of N(6,) over GF(q'*1) is equal
to the rank of N(6,) over GF(p) and that the rank of N(0)) is equal to the rank of
N(6,), we have the following theorem:

THEOREM 10.8. The p-rank of the incidence matrix N(0,) of points and
u(D-flats in PG(t, q) is equal to the number of integers h, 1 <h=<v*, such that
Go(a®)+0 for some integer k.

Let
Z={(acao+ajat +--- +a,ucs)}
be any u(l)-flat and we define the polynomial S;(x) of the u(l)-flat 2 by
(10.15) Sx(x)=§} x*

where the summation is taken over all integer u such that
(10.16) a“=a0a90+a1ael+...+a”ae”

for some elements ao, a;, ..., a, of GF(q). Suppose X is a u(l)-flat generated
from an initial u(l)-flat V,(0). Then we have

(10.17) S(x)=x"G,(x) mod x*" —1

for some integer h. This implies that Sy(a*)+#0 if and only if 8,4(a*)+#0, for
any integer h. Hence, we have the
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THEOREM 10.9. The p-rank of N(0)) is equal to the number of integers
h, 1 <h<v* such that Sy(«*)+#0 for some u(l)-flat 3 in PG(¢, q).

From (10.15) and the note of Theorem 10.2, it follows that the polynomial
S;(x) of the u()-flat 3 can be expressed as follows:

(10.18) Si@)= X T (boao+ byl et byl )
bo bu,

where the summations are taken over all elements of GF(g'*t!). Expanding
(10.18) and using (9.18), we can see that (i) if h is not a multiple of g'*!—1,
S;(ah)=0 for every u(l)-flat ¥ and (ii) if h is a multiple of g'*!—1, Sy(a¥) can
be expressed as follows:

h

Sy(ah) =(— Uﬂ[ﬂ;(ko(q“'l =1), ..o, b, (g"1 = l))ag

(9= 5 skita =)

where the summation is taken over all choices of y,+1 positive integers ko, k,

..., k,, such that }:}k(q’+1 —1)=h. Comparing (9.19) and the above equation,

we have the followmg theorem from Theorem 9.11.

THEOREM 10.10. Let h be an integer such that 1<h=<gq'*'—1. Then
a necessary and sufficient condition for the integer h that there exists a u(l)-
flat 3 in PG(t, q) such that Sy(a,)+0 is that h is an integer such that there exists
a set of w+1 positive integers k; (i=0, 1, ..., i) satisfying the following condi-
tions:

(10.19) h=:2'0 kig*'—1) and D,[h]= .iDp[ki(q'“—-l)]

where D [n] is defined by (9.22).

The following theorem due to the present author [12] plays an important
role in enumerating the number of integers h satisfying the consition (10.19).

THEOREM 10.11. Let h be an integer such that 1<h<q'*'—1 and let the
p-adic representation of h be

(10.20) h=.}j' '2 pmiti

where q=p™, m;=(l4+1)m and c;;’s are non-negative integers less than p. Then
there exists a set of u,+1 posztwe integers k; (i=0, 1, ..., u) satisfying the condi-
tion (10.19) for the integer h if and only if there exists an ordered set (g, Sy ...
Sp,) in S¥ ,,(p™) such that
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ty
(10.21) i;;Ci,:SjHP—Sf

for each j=0, 1, ..., m;—1 where Sf ,(p™) is a set of ordered sets (s§, s¥, ..., s})
satisfying the condition (7.8).

Using the foregoing theorems, we can prove Theorem 10.5.

(Proof of Theorem 10.5) From Theorems 10.9, 10.10 and 10.11, it follows
that the p-rank of N(0,) is equal to the number of integers h, 1<h=<gq'*!, such
that there exists an ordered set (sq, Sy, ..., S,,) satisfying the condition (10.21) in
S, (P™). From Theorem 2.3, (2.56) and Lemma 2.6 in [12] due to the present
author, we can see that the number of integers h satisfying the above condition
is equal to R, (t, pm) where R,(t, p™) is given by (7.7) or (7.9). We have
therefore the required result.

11. The p-rank of the incidence matrix of points and p-flats not passing
through the origin in EG(t, q)

Let M,(q; t, n) be the incidence matrix of g* —1 points other than the origin
and b, p-flats not passing through the origin in EG(¢, q) where g=p™ and b, is
given by (9.1). Then if g+2, M,(q; t, 1) is the incidence matrix of an N, type
PBIB design with parameters:

v=q'—1, b=by, r=¢(t—1,p—1,q)—P(t-2,p-2,q), k=g
=0, dy=¢(t-2, n—2, q)—¢(t—3, p—3,q), n;=9-2,n,=q'—q,
pii1=4-3, p1:1=0, o,=(g'—q)(g—1), 0o,=(g—2)(g'—1D/(g—1),
pr=q""{g"'¢p(t—2, p—1, 9)—(q' - D(t—3, n—2, 9)},
p=q*d(t—2, u—1, q) and d=[r/2max{},, 1,}].

In the special case g =2, M(2; t, ) is the incidence matrix of a BIB design with
parameters:

v=20—1, b=Q=Dd(t—2, u—1,2), r=2¢¢(t—2, p—1,2),
(11.1)
k=2¢ and A=20"1¢)(t—3, u—2,2).

Since M,(2; t, p) is isomorphic with N(2; t—1, u, u—1),
Rankpo(Ml(Z; t H))= Rankpo(N(z; t— 1, u, p— 1))

for any prime p,. We shall therefore consider only the case g+2 in the follow-
ing. Since p;p,+0 and Rank, (M,(q; t, )) <v for any prime p,, it follows from
Theorem 5.1 that the py-rank of M (g; t, p) is equal to v unless p, is a factor of
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vrkp,p,. It is therefore necessary to investigate the p-rank and the p*-rank of
M (q; t, u) where g=p™ and p* is a prime which is a factor of vrkp,p, except for
D.

The p-rank of M(q; t, u) for the special case g=p (i.e., m=1) has been ob-
tained by Smith [31] and its p-rank for general case g=p™ has been obtained by
the present author [12]. The result is as follows:

THEOREM 11.1. The p-rank of the incidence matrix M(q; t, p) of q*—1
points other than the origin and b, p-flats not passing through the origin in
EG(t, q) is equal to R(t, p")—R,(t—1, p™)—1 where q=p™ and R,(t, p™) is
given by (1.7) or (1.9).

In the special case g =2, we have the following corollary:

COROLLARY 11.2. The 2-rank of M((2; t, p) is equal to tj"(;)
s=1

Table 11.1 gives solutions for GD type PBIB designs M,(p™; t, u) with 7=
v<50 and their p-ranks. The p-rank of M,(p™; t, u) with 50<v<10000 can be
obtained at once from Table 9.2. The p*-rank of M(p™; t, u) has not yet been
obtained in general. But I dare say its p*-rank is equal to v—1 or v.

TABLE 11.1.

SOLUTIONS FOR GD TYPE PBIB DESIGNS M, (p™; t, u)
AND THEIR P-RANKS

No.| v b rkAd,n p,p,|rankdé p™ t pu PBIB design

0, 2, 7) mod 8
(0, 8, 12, 14) mod 15
(0, 8, 17, 21, 22) mod 24

, 7, 10, 16, 17, 18, 21,
22, 24) mod 26

5(261041230111012[22 6 3 3 1/|(0,18,24),(0,1,5), (0,
3, 15), (0, 7, 16) mod 26

6148 48 77015 1 7127 3 7 2 1]|(0,18,22,28,29,31,43)
mod 48

3 3

11 8 8 33011 1
2|15 15 44012 1 4
3124 24 55013 1 514
4126 26 99031 3 9

—_ NN
W N NN
N = et

4
5
3

12. The dual of the BIB design PG(t, q):1 and its p-rank

Let g be a prime power, say g = p™ and let o be a primitive element of GF(g**1).
After numbering v*=¢(t, y, q) u-flats in PG(t, q) in some way, we define the in-
cidence matrix of v* u-flats and b*=(q**'—1)/(g—1) points in PG(t, q) to be
the matrix:
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N*(g; t, W=|n¥(q; t, Wl ;i=1,2,...,v* and j=0,1, .., b*~-1

where n¥;(q; t, p)=1 or 0 according as the jth points (a/) is incident with the ith
p-flat V; or not. Then we have the following theorem:

THEOREM 12.1. N*(q; t, p) is the incidence matrix of a PBIB design with
m*=min{u+1, t—pu} associate classes and parameters:

v*=@(t, u, q), b*=(q¢"*' —1)(g—1), r*=(¢** ' = 1)/(g—-1),
k*=¢(t'—1, ﬂ—la q)’ li=(qu_i+1’-1)/(q—'1)’
(12.1) n=q¢(t—p—1, i—1, Q)p(u, p—i, q),

m

Pik =VZ l;()qe“qﬁ(u—i, v, Qp(i—1, p—j—v, Qd(i—1, u—k—v, q)

pt—p—i—1, v+ j+k—pu—I-1, Qdy(w,, w,, 1: q)
(wy=v+i+j—p, w,=v+i+k—p)

for i, j, k=1, 2, ..., m* where my, m{, m, and e, are integers such that

mo=max{—1, u—i—j, p—i—k, p— j—k},

my=min{p—i, p— j, p—k},
(12.2) my=v+ j+k—pu,

e, =(u—i—v)Qeu—-2v—j—k+D)+@+i+j+k—pu-1I)

v+ j+k—p-10

and y(w,, w,, l; q) is defined by

-1

I1(¢”'—4")(q**~ ")

(12.3) x(wy, @y, 15 q)=-4=0—— .
'~

for any positive intergers w,, w,, | and y(w;, w,, 0; q)=1 for w,, w,=0.
In order to prove the above theorem, we prepare the following lemma:
LEMMA 12.2. Lett, n, u and v be any integers such that

(12.49) 0sv=n<t and n+p—tsv=u<t

and let W be a n-flat in PG(t, q). Then the number, y(t, &, u, v; q), of p-flats
V such that V N W coincides with the given v-flat U in W is equal to
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(12'5) ’1('3 T, U, v, q)=q(1r—v)(u—v)¢(t_n__1, [l—V—l, q)

and the number, n(t, n, u, —1; q), of u-flats V such that V.N W is empty is equal
to

(12.5) n(t, m, p, —1; q)=q@ VDGt —n—1, p, q).

ProoOF. Let (a?0), (a?:), ..., (a?’) be the defining points of the v-flat U and
let (ado), (a?:), ..., (a%), (a€t), ..., (x¢«-») be the defining points of a u-flat ¥ such
that VN W=U. Then the first points («¢t) can be chosen in b*—(g™*1 —1)/(g—1)
ways, the second in b* —(q**2 —1)/(q —1) ways, the third in b*—(g™*3—1)/(g—1)
ways and so on. The total number of ways of choosing u—v linearly independent
points (x°1), (¢°2), ..., (x¢s-») such that VN W=U is

(qt+1 _qn+1)(qt+1 _qn+2)”'(qt+l __qn+u—v)/(q_ l)u—v.

While, each p-flat ¥ which contains the given v-flat U can be generated by any
one of (gttl—gq 1) (g**t —q*2)...(q" 1 —q"**+ V) /(g—1)*v sets of pu—v inde-
pendent points (1), (x°2), ..., («¢#-»). Hence, the number of u-flats V such that
VNnWwW=U is equal to g=@&M¢(t—n—1, u—v—1, qg) when v=0. Since the
number of p-flats in PG(t, q) is equal to ¢(t, u, q) and the number of v-flats U in
Wis equal to ¢(m, v, q), the number of p-flats ¥ such that V' n Wis empty is equal to

ni

¢(t’ 22 Q)—V_Z q(n—v)(u—v)¢(t_n_1, ”—v_l’ q)d)(n’ Vs q)

=ng

e, gD @ DG(t—n—1, u, q) where no=max{0, n+u—t} and n, =min{zn, pu}.
Hence, we have the required result.

Note that this lemma shows that if we denote the empty set by (—1)-flat,
the number of u-flats ¥ such that ¥V N W coincides with a given v-flat U in W is
given by g~V eV ¢(t—n—1, pu—v—1, gq) for any integer v such that —1=<v<
min{u, n} where @(t, n, ¢)=0 in the case t<p or u<—1.

(Proof of Theorem 12.1) Since N*(q; t, u) is dual of the design N(q; t, ),
it follows that parameters v*, b*, r* and k* are given by (12.1). To prove that
parameters A;, n; and p’, are given by (12.1), we define a relationship of association
between every pair of v*=¢(t, u, q) treatments, ¢y, ¢,, ..., P, as follows: Two
treatments ¢, and ¢,, are ith associates (i=0, 1, ..., m*)if V;, NV}, isa (u—i)-
flat. From this definition and Lemma 12.2, it is easy to see that the number,
n(l,), of treatments ¢,, being ith associates of a treatment ¢,, is equal to g**:
o(t—u—1,i—1, 9)d(u, p—i, q) and the number, 1,(I,, 1,), of blocks which contain
both treatments ¢,, and ¢,, being ith associates is equal to (g*~i*1—1)/(g—1).
Hence, it suffices to show that parameters pi,’s are given by (12.1).

To calculate the number p;i; , let us consider any u-flats V,, and V;, in
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PG(t, q) such that ¥, NV, is a (u—i)flat, and a p-flat V,, such that V;, nV,,
is a (u—j,)-flat and V,,NV, is a (u—j,)-flat. Since V; NV,,NV,, is a flat
or the empty set, we can assume, without loss of generality, that ¥, nV,,nV,
is a v-flat (—1<v<pu—i) and that

W123=I/11 n I/lz n Vlg= W[dO’ dla seey dv]a
W12=I/11 n I/,2=W[d0, dl’ caey dv; el, ez, ceey eu_i_v],
Wk3=Vlk n I/ls= W[d07 dh [EEE) dv; e(lk)7 e(zk)a LRRE) e(k) v],

w=Je—

Vi=WIldo, dy, ..., dy3 €15 o iy €, oy e s B, L, R ],

Vi,=Wldo, dy, ..., dy; eV, ..., e _ s e, o, €2, 05 fisoons fonjutjamud

for k=1, 2, where W[c,, cy, ..., c,] denotes the n-flat generated by n+1 linearly
independent points («°), (act), ..., (a¢). Moreover, we can assume that the first
I points (a/1), (a/2), ..., (a/?) belong to the (u+i)-flat T(V;,, V;,) and the other
points (af1+1), (af1*2), ..., (af>+i1+s2-4) do not belong to T(V,,, V;,) where [ is
an integer such that 0<I/<v+j,+j,—u and T(V,, V,) denotes the minimum
flat of flats which contain both V; and V,. For a moment, we shall fix points

(@d0), (@), ..., (@), (@), ..., @°a-1-), (@i7), ..., @), @), ..., («

"f:)wk-a) (k=1, 2) and investigate the number of u-flats ¥}, satisfying the above

conditions.  Since points (oceil)), (aegl)), ey (oceftl-)frv), (af+) and pu+1 defining
points of ¥}, must be linearly independent, and points (@ei™), (ae(zz)), ey (aeff_’,z_,)’
(«ft) and p+1 defining points of ¥;, must be linearly independent, point (a/1)

can not belong to W) and W{?) where W is a flat generated by the defining

points (ad°), ..., (af), (ocegl)), e (ocel(‘l')Jl-V), (ae(ln), ey (aef«z—)jz—v), (oc"(xk)), v

(oc"fﬁ)“fk-ﬂ), (aet), ..., (x®«-i-»). Hence, the number of ways of choosing a point
(aft)in T(V,,, V,) is equal to

qu+i+1_1 _{ q2u—j1-—v+1__1 qZu—jz—v+1_1 _ q3u—2v—-i—j1—jz+1 }
qg—1 q—1 qg—1 g—1 ’

ie., g #ritl(grv-izit—1)(g*v""i2—1)/(q—1). Since (aft) is a point in the
(u+i)-flat T(V,,, V3,), a/* can be expressed as

2 2
(12.8) oaf 1= Zi:agl)ad, + iZaﬁ”oc‘” + kzl Zi:bgk)aegk) + kzl chk)ahgk)
= =173

using elements a{¥, a{?, b{®, ¢ of GF(q) such that c{¥, ¢{¥, ..., c{®;, ;. -, are
not all simultaneously zero for each k=1,2. Let W{® be the flat generated by
a point («/1) and defining points of W{. Then it follows from (12.8) that W{V
NW?is a 3u—2v—i—j,—j,+2)flat. Since a point («/2) in T(V,,, V},) can
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not belong to W{!> and W{?), the number of ways of choosing a point (¢/2) in
T(V,,, V},) isequal to grtit1(gr-v=i=ji+l _1)(gr-v=i=j2*1 _1)/(g—1). Similarly,
we can see that the number of ways of choosing a point (a/r) (1< r=<))
in T(V,,, V,) is equal to g+*i*i(grvmizittr=l—1) (gr—rizjatr=1—1)[(q—1).
Hence, the total number of ways of choosing ! linearly independent points (/1),
@f2), ..., (@f1) is

!
q(u+i+1)lr1=—11{(qu—v—i—j1+r~1 —1)(gr-v-imiztr-1_1)/(q— 1)}

While each flat W[d,, d, ..., d,; e(l“, v @ e, e s S, s A
can be generated by any one of H {(q3r—v—J1-Jatitl — g2u=v=i1=Jiatr) [(qg — 1)}
sets of | independent points (a/?), (ocf 2), ..., (@f7). Hence, the number of flats
Wldy, dy, ..., d,; e, ..., el _,; e?, .. eff)“ i f1s -y f1] passing through
the fixed points (ad0), (ad1), ..., (a®), (22, ..., (@%=1,-»), (@237, ..., (@e621,-7)
is equal to g =dly(v+i+j,—u, v+i+ j,—u, I; q) and it does not depend on
the fixed points. From Lemma 12.2, it follows that the number of p-flats V,
in PG(t, q) such that

VN Ty, Vi)=WIdo, ..., d,; eV, ..., e _,; &2, ..., &2, f1, ..., fi]

is equal to n(t, u+i, u, 2u+1—v—j,—j,; q) and it does not depend on the
fixed points. Since the number of v-flats W,,; in W, is equal to ¢(u—i, v, q)
and the number of (u— j)-flats V in ¥V, such that V N W;,=W,,; is equal to
n(p, p—i, u—ji, v; q) for k=1, 2, it follows that p}, ;,(I;, I,) is equal to

m; m3
Phhy 1= 2 2 =1, v, On(, p=1, p=ji, v Nk, k=1 p=ja, v; 4)

qU Ty~ Vit = L @t p i 20+ 1=y —j1— 25 @)
and it does not depend on p-flats V;, and V}, such that V; nV,, is a (u—i)-flat.
This completes the proof.

Since N*(q; t, p)T is isomorphic with N(q; t, p), we have the following theo-
rem from Theorem 7.2.

THEOREM 12.3. The p-rank of the incidence matrix N*(q; t, u) of a PBIB
design with parameters (12.1) is equal to R,(t, p™) where q=p™ and R,(t, p™) is
given by (7.9).
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Part IV. Applications to error correcting codes

13. Applications to BIBD codes and PBIBD codes

Consider a channel which is capable of transmitting any one of g distinct
symbols, Such a channel is called a g-ary channel. In this paper, we shall
confine ourselves to the case when g is a prime or a prime power, say g=p™. The
symbols can then be put into a one-to-one correspondence with the elements
of the Galois field GF(g). Given a set of s(<g”) distinct messages, we can set
up a one-to-one correspondence between the massages and a set C of s distinct
n-vectors with elements of GF(q). The elements of C may be called code vectors
or code words. Thus each message corresponds to a unique code vector. If
C is a subspace of the vector space W,(q) of all n-vectors with elements of GF(q),
the code is said to be a g-ary linear code with length n. The dimension, k, of
the subspace C is called the number of information symbols of the code C. The
orthogonal or null space Cp, of C is also a linear subspace of W,(g) and it is called
the dual code of C. A matrix H whose row vectors span the dual code Cj, is called
a parity check matrix of the code C. To transmit a message over the channel,
the n elements of the code vector (¢;, ¢, ..., ¢,) corresponding to the message
are presented in succession to the channel. Due to the presence of noise a trans-
mitted symbol may be received as one of the other g—1 symbols. In this case,
we say that an error has occurred in transmitting the symbol and, at the receiver,
a decision is made, based on the information in the received vector, which speci-
fies a unique vector of C, from which the corresponding message is interpolated.
The process of specifying a code vector, based on the received vector, is called
decoding. If the decoding procedure necessarily gives a correct result, provided
at most J errors have occurred in transmitting the code vector, we say that the code
is capable of correcting up to é errors. The ratio k/n is called the transmisson
rate of information. A problem of error correcting codes is how to construct a
linear code such that

(i) itis capable of correcting a relatively large number of errors,

(i) it has a relatively high transmission rate of information and that

(iii) the encoding and decoding procedures are simple and economical to
implement. If we use the transpose matrix of the incidence matrix N of a BIB
design or a PBIB design as a parity check matrix, a relatively simple decoding
procedure, called majority decoding [18], is applicable. So, we call such a code
C a BIBD code and a PBIBD code, respectively and we shall investigate them in
this and next sections.

Let N be the incidence matrix of a PBIB design with m* associate classes and
parameters v, b, r, k, A, n;, piy (i, j, k=1, 2, ..., m*) and let C be a g-ary PBIBD
code with parameters v, b, r, k, 4;, n;, p,, that is, let C be the g-ary linear code
with length v which has N7 as a parity check matrix.



208 Noboru HAMADA

Suppose that xT=(x,, x,, ..., x,) is a transmitted code vector of C and the
corresponding received vector is rT=(r,, r,, ..., r,). Then the error vector,
eT=(ey, e;, ..., ¢,), is rT—xT and the syndrome, sT= (s, s;, ..., 5), of rT is
(NTr)T,i.e,, s=NTr. Applying the majority decoding algorithm [18, 30, 31] to
a PBIBD code, we can obtain a relatively simple decoding algorithm as follows:

THEOREM 13.1. Let C be a g-ary PBIBD code with parameters v, b, r, k, 4;,
n, P (i, J, k=1,2, ..., m*) and let A=max{A,, 4,, ..., A,+}. Provided at most
0=[r/21] errors have occurred in transmitting the code vector, ¢; (i=1, 2, ..., v)
are given correctly by the following rule:

(i) e is that value of GF(q) which is assumed by the greatest fraction of
the {54,y S¢aGy> -+ Seniy)» Uf Such a most frequent value exists where @ (i)
(I=1,2,...,r) denote the r integers j such that n;;=1 for the given integer
i(1=i=<v), that is, Ny 5y =Nip,0y=--- =MNig =1
(i) In the case where no single value is assumed by a strict plurality of the
{S6 .Gy So26iy ++» Sbu(iy)» € 1S Zero.

Theorem 13.1 shows that a PBIBD code with parameters v, b, r, k, A;, n;, piy
G, j, k=1, 2, ..., m*) is capable of correcting up to 6=[r/21] errors. Hence,
in PBIBD codes with the given length v, a PBIBD code with parameters such that
[7/22] is as large as possible is desirable. In the special case of a BIBD code,
it follows from the equation A(v—1)=r(k—1) that a BIBD code with parameters
v, b, r, k, A such that k is as small as possible is desirable. Hence, a problem in
PBIBD codes is how to construct a g-ary PBIBD code which has a relatively high
transmission rate of information, in other words, a relatively small g-rank in
PBIBD codes with the given parameters v, b, 7, k, A;, n;, pi;.

Theorem 2.1 shows that the transmission rate of information of a g-ary
BIBD code with parameters v, b, r, k, A is never greater than 1/v unless g is a factor
of r-4 and that for g which is a factor of r-A, the transmission rate of a g-ary BIBD
code depends on the block structure of the design which is used as a parity check
matrix. For a PBIBD code, it follows from Theorem 3.1 that the transmission
rate of information of a g-ary PBIBD code with parameters v, b, r, 4;, n;, piy
(i, j, k=0,1, ..., m) is zero unless g is a factor of ¢, ﬁ ¢,p;, provided that z;;’s are
all rational and pgyp, ... p,5<0. For example, the; toransmission rate of a g-ary
PBIBD code which has the transpose of the incidence matrix of a regular GD
design as a parity check matrix is zero unless g is a factor of vrk(rk—uvi,)(r—24,)
(see Theorem 5.1).

Table 6.1 shows that in Table 6.1, a g-ary BIBD code derived from PG(, q)
or EG(t, ¢) has the maximum transmission rate of information in BIBD codes
with the same parameters. This suggests that a g-ary BIBD code derived from
PG(t, g) or EG(t q) might be the most desirable code in BIBD codes with the
same parameters. (In the special case k=2, a BIB design with parameters:
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v=r+1, b=<r_'2'1>, k=2,2=1 is unique and its p-rank is equal to v or v—1

according as a prime p is odd or not. So, such a design is omitted from Table
6.1). In Section 14, we shall investigate such a geometric code in detail.

14. Applications to geometric codes

A g-ary linear code C of length n is called a cyclic code if, for every code
vector (o, €y, --.» C5—1) Of C, the vector (c,_1, ¢g, --., €,—>) is also a code vector of
C. A convenient representation of cyclic codes may be made through the theory
of ideals in the residue class ring of polynomials over GF(g) modulo x*—1 [26].
In the residue class ring, we correspond the polynomial ¢(x)=co+c;x+...+
¢,—1x""1 with the vector ¢T=(cy, ¢y, ..., ¢,—1). Under this correspondence, it
may be shown that a linear code C is cyclic if and only if it is an ideal in the residue
class ring. Such ideal C contains a unique monic generator polynomial, g(x),
of smallest degree less than n such that each element of C is a multiple of g(x).
Moreover, g(x) is a divisor of x"—1 in GF(q), say x"—1=g(x)h(x). The dual
code of C is also cyclic and its generator polynomial, g,(x), is given by

(14.1) gp(x)=x*h(x"1)

where k is the degree of h(x).

A cyclic code may be specified by the roots of its generator polynomial of
an extension field of GF(gq). In the case where the code length n is a divisor of
g*— 1 for some positive integer u = 2, which has been investigated by many authors,
the roots of x"—1 are simple and are expressed by f°, 81, 2, ..., f»~! where =
a@“~1)/n and o is a primitive element of GF(g¥). In such a case, every root of
the generator polynomial of a cyclic code is simple and is expressed by a
power of B, say fB*. A characterization of a class of cyclic codes can, there-
fore, be made by the type of the roots of their generator polynomials.

14.1 Projective Geometry codes
Let N(q; t, u) be the incidence matrix of v=(g**! —1)/(g—1) points and b=
o(t, u, q) p-flats in PG(t, g) where q is a prime power, say g = p™.

DerINITION 14.1.1. A g-ary pth order Projective Geometry (PG) code is
a g-ary linear code of length v which has N(q; t, u)T as a parity check matrix.

It is known [31] that this code is a cyclic code and by using the generator
polynomial, it may also be defined as follows:

DEerFINITION 14.1.2. A g-ary uth order Projective Geometry code is the cyclic
code of length v=(g**! —1)/(q — 1) with symbols from GF(q) such that the genera-
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tor polynomial g,(x) of the dual code has as roots those elements a*@~1), 1 <h<v,
such that

(14.1.1) 0< Oréllin D [p'h(g—1)]=u(g—1)
Si<m
where « is a primitive element of GF(q**') and D,[n] is defined by (9.22).
From Definition 14.1.1 and Theorem 7.2, we have the following theorem:

THEOREM 14.1.1. The number of information symbols of a q-ary uth
order Projective Geometry code of length v=(q'*1—1)/(q—1) is equal to v—
R,(t, p™) and the number of information symbols of its dual code is equal to
R,(t, p™) where q=p™ and R,(t, p™) is given by (7.9).

In the special case m=1, we have the following corollary:

COROLLARY 14.1.2. The number of information symbols of a p-ary uth
order Projective Geometry code of length v=(p**1—1)/(p—1) is equal to v—
R,(t, p) and the number of information symbols of its dual code is equal to
R,(t, p) where R,(t, p) is given by (7.12).

This result has been obtained by Smith [31]. The Projective Geometry
code defined by Definition 14.1.1 may also be characterized as follows:

THEOREM 14.1.3. Let h be an integer such that 1<h=<v and let the p-adic
representation of h(q—1) be
m—1

Z c; ,pim+j
=

(14.1.2) h(g—1)= .);a

where g=p™ and c;;’s are non-negative integer less than p. Then B* is a root of
the generator polynomial gp(x) of the dual code of the g-ary uth order PG code
if and only if h is an integer such that

t
(14.1.3) g}oc,-j=sj+1p—sj (j=0,1, ..., m-1)
for some integers (so, Sy, -.., Sp,) in T, (p™) where f=a2~! and T, ,(p™) is a set of
(m+1)-tuples (S, Sy, -+, S,) Of integers s, such that
(14.1.4) Sw=50, 1=5;<t+1, 0<s;,,p—5;Z(t+1)(p—1)

for j=0,1, ..., m—1 and 1<s,<pu for some integer k.

Proor. Let 3 be a u-flat (u(0)-flat) in PG(t, g) composed of k=(g***—1)/
(g—1) points (), (x°2), ..., (2°<) and we define the incidence polynomial 65(x)
of the u-flat X' as the polynomial:

(14.1.5) 05(x)=x°1+x°2 + -0 + x°k,
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Between 05(x) and Sy(x) defined by (10.15), the following relation holds:
(14.1.6) S5(x)=05(x) +x°05(x) + -+ + @~ 2)v04(x)
=(g—1)65(x) mod x*—1.

From Theorems 10.10, 10.11 and (14.1.6), it follows that a necessary and sufficient
condition for an integer h, 1 <h <v, that there exists at least one p-flat ¥ in PG(t, q)
such that Oy(a#(a~1))=£0 is that h is an integer such that there exists an (m+1)-
t
tuple (s, Sy, -..» Sp) in S ,(p™) such that ;‘ocij_—.sjﬂp—sj for j=0,1, ..., m—1.
From the above result, Lemmas 2.1 and 2.3 in [12] due to the present author,
it is easy to see that a necessary and sufficient condition for an integer h that
0:(8")=0 for every u-flat ¥ is that h is an integer such that there exists an (m+1)-
tuple (so, 8¢, ..., S,) satisfying the condition (14.1.3) in T, ,(p™). Since p* is a
root of gp(x) if and only if 85(a*)=0 for every u-flat 5, we have the required result.

COROLLARY 14.1.4. The generator polynomial g(x) of the g-ary uth
order PG code has B* as a root if and only if h is an integer such that there exists
an (m+1)-tuple (so, 5y, .--» Sw) Satisfying the condition (14.1.3) in S, ,(p™) where
S,,.(p™) is the set of (m+1)-tuples (so, Sy, ..., S) of integers s; (I1=0, 1, ..., m)
satisfying the following conditions:

(14.1.7) So=58m 0=s5;<t—p, 0<s;,,p—s=(t+1)(p—1)
forj=0,1, ..., m—1.

Proor. From (14.1), it follows that the generator polynomial g(x) is given
by

(14.1.8) g(x)=x"hp(x~1)
where hp(x) is a polynomial of degree r=R,(t, p™) such that
(14.1.9) gD(x)hD(x)=x"—1.

Since f* (1=h<=<v) is a root of hy(x) if and only if k is an integer such that there
exists an (m+1)-tuple (so, sy ..., S,) satisfying the condition (14.1.3) in S¥ ,(p™)
and f~#=pv"* we have the required result from (14.1.8).

It is known that the minimum distance of a g-ary uth order PG code is at
least equal to dgcg=(¢""**1—1)/(q—1)+1 and the minimum distance of its
dual code is equal to (g** 1 —1)/(g—1) where dg.y denotes the designed distance
of a BCH code [3, 4, 13]. We can therefore summarize these results as follows:

THEOREM 14.1.5. A g-ary uth order PG code is a cyclic code with pa-
rameters:
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(14.1.10)  n=(@"*'-DNg—1), k=n—Ryt, p™), d=(q"**' = 1)/(g—1)+1
and its dual code is also a cyclic code with parameters:
(14.1.11) n=(¢""' -1/(q—1), k=R, p™), d=(¢*"' —1)/(q—1)

where n, k and d denote the code length, the number of information symbols
and the minimum distance of the code, respectively.

14.2 Affine Geometry codes

Let M,(q; t, p) be the incidence matrix of ¢*—1 points other than the origin
and b, u-flats not passing though the origin in EG(¢, g).

DErFINITION 14.2.1. A g-ary pth order Affine Geometry (4G) code is a
g-ary linear code of length n=g*—1 which has M,(q;t, ©)T as a parity check
matrix.

The term Affine Geometry code has been introduced by Smith [31] and it
is defined as follows:

DEFINITION 14.2.2. A g-ary uth order Affine Geometry code is the cyclic
code of length n=¢*—1 with symbols from GF(q) such that the generator poly-
nomial gp(x) of the dual code has as roots those elements a*, 0<h<g*—1, such
that

(14.2.1) 0< min D,[p'h]<p(g—1)
0si<m

where g=p™ and « is a primitive element of GF(q").
We shall show that the above two definitions are quivalent. The g-ary
uth order AG code defined by Definition 14.2.1 can be characterized as follows:
THEOREM 14.2.1. Let h be an integer such that 1<h<q*—1 and let the
p-adic representation of h be
t—1m—1

(14.2.2) h=73, X c;pim*i
i=0 j=0

where g=p™ and c;;’s are non-negative integers less than p. Then a" is a root
of the generator polynomial gp(x) of the dual code of the g-ary uth order AG
code defined by Definition 14.2.1 if and only if h is q¢* —1 or an integer such that
there exists an (m+1)-tuple (so, Sy, ..., Sp) in Ty ,(p™) such that

t—1
(14.2.3) (st—-l)p—-(sj——l)éi;()c,-jésjﬂp—sj

for every j=0, 1, ..., m—1 and that
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t—1
(14.2.4) iéoc,-,, <Sg41P—Sk

for some integer k.
To prove the above theorem, we prepare the following lemmas:

Lemma 14.2.2.  For any set {c;; i=0, 1, ..., t—1, j=0, 1,..., m—1} of
nonnegative integers c;; less than p, not all zero, there exists a unique set of
integers s, (1=0, 1, ..., m) satisfying the conditions (14.1.4), (14.2.3) and (14.2.4).

—l m—

t 1
Proor. Let h= 3, 2 c;p'™*i. Then h is an integer such that ISh=<gqg*
i=0 j=0
-1.

(i) In the case where h is not a multiple of p™—1; there exists a unique set

{c,j; j=0, 1, ..., m—1} of non-negative integers c,; less than p, not all zero, such
m—1

that Zt] 2, ¢;;pi™*J is a multiple of pm—1. It follows therefore from Lemma

i=0 i=0
2.1 due to Hamada [12] that there exists a unique set of m+1 integers s; (I=0,
1, ..., m) such that

t

(14.2.5) sm=So, 1§51§t+1 and i;ocij=sj+1p_s]

for j=0, 1, ..., m—1. Since c,;’s are non-negative integers less than p, not all
zero, these integers s; (I=0, 1, ..., m) satisfy the conditions (14.1.4), (14.2.3) and
(14.2.4). Hence, in this case, Lemma 14.2.2 holds.

(ii) In the case where h is a multiple of p™—1; there exists a unique set of
m+ 1 integers s§ (I=0, 1, ..., m) such that

t—1
(14.2.6) sh=s8, 1=st<t and Eo cij=5s¥1p—s¥

forj=0,1,...,m—1. Lets=sf+1forl=0,1, ..., m. Then s;s satisfy the con-
ditions (14.1.4), (14.2.3) and (14.2.4). Hence, we have the required result.

From Lemma 3.2 in [12], we have the following lemma:

LemMA 14.2.3. For any set {c;;; i=0, 1, ..., t—1, j=0, 1, ..., m—1} of
non-negative integers c;; less than p such that there exists a set of integers s}
(1=0, 1, ..., m) satisfying the following conditions:

(14.2.7) Sm=58, u+1=s¥=<t+1,0<s¥,,p—s¥=<(t+1)(p—1)

and

-1
(14.2.8) T ey (3~ Dp— (3 -1
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forj=0,1, ..., m—1, there exists a unique set of integers s, (1=0, 1, ..., m) satisfy-
ing the conditions (14.2.3), (14.2.4) and

(14.2.9) Sm=350, U+ 1=5;Zt+1,0=<5;,,p—5;Z(+1)(p—1)
forj=0,1, ..., m—1,

(Proof of Theorem 14.2.1) From Theorems 9.12 and 9.14, it follows that
a necessary and sufficient condition for the integer i that there exists a u-flat *
not passing though the origin such that 0;.(x*)=0 is that h is an integer such that
(i) h=~=q*—1 and (ii) there exists a set of m + 1 integers s} (1=0, 1, ..., m) satisfying
the conditions (14.2.7) and (14.2.8). Using the above result, Lemmas 14.2.2 and
14.2.3, it can be shown that a necessary and sufficient condition for integer h
that 0;+(a*)=0 for every u-flat I* not passing through the origin in EG(¢, q)
is that h is g* —1 or an integer such that there exists an (m + 1)-tuple (sq, Sy ---»
s, of integers s; (I=0, 1, ..., m) satisfying the conditions (14.2.3) and (14.2.4) in
T,,(p™. Since a is a root of gp(x) if and only if 0;-(a*)=0 for every u-flats
not passing through the origin in EG(t, q), we have the required result.

COROLLARY 14.2.4. The generator polynomial g(x) of the g-ary uth order
AG code has o* as a root if and only if h is a positive integer less than q*—1
such that there exists an (m+1)-tuple (sq, Sy, ..., S,) Satisfying the conditions
(14.2.3) and (14.2.4) in S, ,(p™), provided that h is an integer such that 1<h=<q’
—1.

Taeorem 14.2.5. The g-ary uth order PG code defined by Definition
14.2.1 and the q-ary uth order PG code defined by Definition 14.2.2 are equivalent.

Proor. Since a?*~1=¢0, it suffices to consider only the case where 1<h<
g*—1. If h is an integer satisfying the conditions in Theorem 14.2.1, then we
have

t—1 m—1-1

__1 m—
(14.2.10) Dphl="5 "3 e pitit’S ST ¢, pitiom
4 =0 d i g

Jj=0 i=0 j=m-—1

m—1-1 . m—1 .
< jZE) (Sj+1p=sPpi*+ X l(sj+1P—Sj)P’H_m
= -

= sm—l(pm_ 1)
for each =0, 1, ..., m. Since s,,_, < u for some integer k, it follows that
(14.2.11) Dy[p*h]<sp-d—1)=p(g—1)

for some integer k. This implies that the integer h satisfies the condition (14.2.1).
Conversely, if h is positive integer satisfying the condition (14.2.1), there



On the p-Rank of the Incidence Matrix of a BIBD or a PBIBD 215

m—1
exists an integer ho= 2] ¢,;p'™*/ such that h*=h,+h is a multiple of p™—1 where
j=0

¢ (j=0, 1, ..., m—1) are non-negative integers less than p, not all zero. Hence,
it follows from Lemma 2.2 in [12] that

(14.2.12) D [p'h*]1=D,[p'ho]+D,[p'h]
for each [=0, 1, ..., m. Since h*= Zt] "Elcijp“"” is a multiple of p™—1, it fol-

i=0 j=0
lows from Lemma 2.1 in [12] that there exists a unique set of m+1 integers s;

(I=0, 1, ..., m) satisfying the condition (14.2.5). Since c;;’s are non-negative in-
t—1

tegers less that p and c,;’s are not all simultaneously zero, }] c;;’s satisfy the con-
i=0

ditions (14.2.3) and (14.2.4) for the integers s;. It suffices therefore to show that
there exists at least one integer s, such that s, <pu.
Using a similar method used in (14.2.10), we have

(14.2.13) D [p'h*]=s,_(p"—1)=5,_(q—1)

for 1=0, 1, ..., m. Since D,[p™~*h]< u(q—1) for some integer k and

m—1-1 . m=1 .
D [Plh0]= ZO Ctjpj+l+j 2 lcljp1+l-m<prn_1,
j= =m-—
it follows from (14.2.12) and (14.2.13) that s, <(u+1) for some integer k. This
completes the proof.
From Definition 14.2.1 and Theorem 11.1, we have the

THEOREM 14.2.6. The number of information symbols of a g-ary uth order
AG code of length n=gq*—1 is equal to n—{R,(t, p")—R,(t—1, p™)—1} and the
number of information symbols of its dual code is equal to R, (t, p™)—R,(t—1,
p™)—1 where g=p™ and R,(t, p™) is given by (7.9).

Since the minimum distance of a g-ary uth order AG code is at least equal to
g *+ pq*~#~1 —1 and the minimum distance of its dual code is equal to g*, we
can summarize those results as follows:

THEOREM 14.2.7. A g-ary uth order Affine Geometry code is a cyclic code
with parameters:

n=q'—1, k=n—{R/(t, p)—R,(t—1, pm)—1}, dzq" *+pg~* -1
and its dual code is a cyclic code with parameters:

n=gt—1, k=R”(t, p"')—R,‘(t—l, p™—1, d=gq*
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14.3 Euclidean Geometry codes

Let M(q; t, u) be the incidence matrix (defined by (9.5)) of g* —1 points other
than the origin and all u-flats in EG(t, g).

DEerINITION 14.3.1. A g-ary uth order Euclidean Geometry (EG) code is
a g-ary linear code of length n=g*—1 which has M(q; ¢, p)T as a parity check
matrix.

This code is a cyclic code and can be characterized as follows:

THEOREM 14.3.1. Let h be an integer such that 1=<h<q'—1 and let the
p-adic representation of h be

t=1 m—-1

h= 3, 2, cijg™i.
i=0 j=0

Then the generator polynomial gp(x) of the dual code of a q-ary uth order
Euclidean Geometry code has o® as a root if and only if h is an integer such that
there exists an (m+1)-tuple (sq, Sy, ..., S,,) satisfying the conditions (14.2.3) and
(14.2.4) in T, ,(p™).

ProoF. From Theorems 9.11 and 9.12, it follows that (i) in the case when
1=<h=<q*—2, a necessary and sufficient condition for an integer h that there exists
a u-flat ¥, (passing or not passing through the origin) in EG(¢, g) such that 0y,
(a*)+ 0 is that there exists a u-flats 3* not passing through the origin such
that 0;.(x*)+0 and (ii) in the case when h=gq*'—1, there does not exist a u-flat
JI* not passing through the origin such that 6;.(x4"~1)+ 0 but exists a p-flat I
passing through the origin such that 65(«4°~1)0. This implies that (i) in the
case when 1<h=<gq*'—2, gzp(x) has a* as a root if and only if g,p(x) has a* as a
root and (ii) g* —1 is not a root of gzp(x), where ggp(x) and g,,(x) denote the
generator polynomials of the dual codes of the EG code and the AG code, re-
spectively. Since there is no (m+1)-tuple (sq, sy, .., S,,) satisfying the conditions
(14.2.3) and (14.2.4)in T, ,(p™) for integer h=q*—1, we have the required result
from Theorem 14.2.1.

CoOROLLARY 14.3.2. The generator polynomial g(x) of the g-ary uth order
Euclidean Geometry code has a* as a root if and only if h is an integer such
that there exists an (m+1)-tuple (sg, Sy, --., Sp) Satisfying the conditions (14.2.3)
and (14.2.4) in S, ,(p™), provided that h is an integer such that 1=h=q'—1.

ExamPLE 14.3.1. Let us consider the case when p=2, m=2, t=3 and u=
1. In this case, g=4 and T;;(22)={(1, 1, 1), (1,2, 1),(2,1,2)}. The generator
polynomial gp(x) of the dual code of the 4-ary 1st order Euclidean Geometry code
with length 63 can be obtain as follows:
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In the case (s, sy, 52)=(1, 1, 1), there are six solutions for ordered sets (cqq,

C10> €205 Co1> C11s C21), DOt all zero, satisfying the conditions (14.2.3) and (14.2.4)
as follows:

(1,0,0;0,0,0), (0,1,0;0,0,0),...,(,0,0;0,0, 1).
2 1
Let h= 3}, ¢;;2%1*J. Then h=1,2,4,8,16and 32. Similarly, it follows from
i=0 j=0
(S0 515 s2)=1(1, 2, 1) and (2, 1, 2) that h=35, 17, 20, 10, 34 and 40. Let « be a pri-
mitive element of GF(43). For example, let o be a root of the irreducible function
f(x)=x3+yx2+yx+y where y is a primitive element of GF(22) such that y2=
y+1and y3=1. Then,

go(X)=(x—at)x—a?)(x —at)(x—af)(x —alte)(x—a®?)
(x—a3)(x—al0)(x —a2%)(x —a*O)(x —al ") (x —a34)
=x124x104x%9+x7+x3+x2+1.

From Theorem 14.2.1, 14.3.1 and 14.2.5, we can see that using the generator
polynomial, the EG code defined by Definition 14.3.1 may also be defined as
follows:

DEerINITION 14.3.2. A g-ary uth order Euclidean Geometry code is the cyclic
code of length n=g*—1 with sumbols from GF(q) such that the generator poly-
nomial g,(x) of the dual code has as roots those elements a*, 1 <h=<g*—2, such
that
(14.3.2) 0< min D,[pth]<p(qg—1)

0sI<m

where « is a primitive element of GF(q").

In the case g=2™, this code was introduced by Weldon [34] and called a
(v, m)th order Euclidean Geometry code where v=¢— .
From Theorem 9.1 and Definition 14.3.1, we have the following theorem:

THEOREM 14.3.3. The number of information symbols of a g-ary uth order
Euclidean Geometry code of length n=q'—1 is equal to n—{R,(t, p")—R,
(t—1, p™)} where q=p™ and R,(t, p™) is given by (7.9).

It is known that the minimum distance of a g-ary uth order EG code is at
least equal to ¢*~#+ pg*~#*~! and the minimum distance of the dual code is equal
to g*—1. We can therefore summarize those results as follows:

THEOREM 14.3.4. A g-ary uth order Euclidean Geometry code is a cyclic
code with the following parameters:

n=qt—1’ k=n_Ru(t’ p"’)—R”(t—l, pm)’ dqu_u'i—pqt—u_l
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and its dual code is a cyclic code with parameters:
n=q'—1, k=Rt p")—R,(t—1, p™), d=q*—1.

Let M*(q; t, u) be the incidence matrix (defined by (9.2)) of all points and
all u-flats in EG(t, q).

DErFINITION 14.3.3. A g-ary puth order extended Euclidean Geometry
(EEG) code is a g-ary linear code of length n=gq* which has M*(q; t, u)T as a
parity check matrix.

This code is not a cyclic code. From Theorem 9.2 and Definition 14.3.3,

we have the following theorem:

THEOREM 14.3.5. The number of information symbols of a q-ary uth
order EEG code of length n=gq" is equal to n—{R,(t, p™)— R, (t—1, p™)}.

15. Applications to polynomial codes and Reed-Muller codes

(a) Definition and the main theorems

Let g be a prime power, say g =p™° and let t and m be any positive integers.
Suppose that b is a factor of g™ —1 and let

(15.1) z=(g"—1)/b  and n=(g™—1)/b.

DEerFINITION 15.1. An (n, t, m, v, q)-polynomial code is the cyclic code of
length n=(g™ —1)/b with symbols from GF(q) such that the generator polynomial
gp(x) of the dual code has as roots those elements a*®, 0<h<n, such that
(15.2) max D [q'hb]=jb

0sl<m
for some integer j(0=< j=<v) where D [n] is defined by (9.22) and a is a primitive
element of GF(q™) and v is an integer such that 1<v<tz.

This code has been introduced by Kasami, Lin and Peterson [17]. An
explicit formula for the number of information symbols has not yet been obtained.
In this section, we shall show that using a similar method used in proving Theorem
7.1, an explicit formula for the number of information symbols of a polynomial
code can be obtained.

We denote by T(t, z, m, q), the set of (m+ 1)-tuples (so, Sy, --., S) Of integers
s; such that

(15.3) Sm=59, 0=s;<tz and 0=(s;419—s;)/z=t(q—1)

and that (s;+ ,p—s;)/z is an integer for each j=0, 1, ..., m—1 and by S (t, z, m, q),
the set of (m+ 1)-tuples (so, s, ..., S,) of integers s; such that
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(15.4) (S0s 515 «es SET(L, z, m, q) and 0=<s<=<v
for every 1=0, 1, ..., m. Then we have the following main theorem:

THEOREM 15.1. The number of information symbols of the (n,t, m,v,
q)-polynomial code is equal to

155 L zmep=_ 3 ff "Z“”( l)i(l{X L+ jua0— sJ)/z—-tq>

(S0s.e0s Sm) j=0 i=0

where the summation is taken over all (m+1)-tuples (sg, Sy, .-, Sm) in S\(t, 2z, m,
q) and L(s;,q, s)=[(5;+19—5))/qz], i.e., L,(sj4+1, ;) is the greatest integer
not exceeding (s;+19—S5;)/qz.

In the special case z=1 and g=p, we have the

COROLLARY 15.2. The number of information symbols of the ((p™ —1)/
(p™—1), t, m, v, p)-polynomial code is equal to

(156) Iv(t’ 1, m, p)=Rt—1—v(t_1) pm)
where R,(t, p™) is given by (7.9).
In the special case m=1, we have the

COROLLARY 15.3. The number of information symbols of the (n, t, 1, v,
q)-polynomial code is equal to

159 e 1,q)=§ ; )( X 1+s(q—l)/z——lq>

where the summation is taken over all integers s such that 0<s<v and that
s(gq—1)/z is an integer, and L (s, s)=[s(q—1)/qz].

In the special case b=1 (i.e., z=q™—1 and n=g™ —1) and v=vy(¢g"—1)—1
for some positive integer v,, we have the following theorem which may be useful
in calculating I.(t, g"—1, m, q).

THEOREM 15.4. The number of information symbols of the (g™ —1, t, m,
vo(q™—1)—1, q)-polynomial code is equal to

(15.8) Lggm-1y-1(t, q"—=1, m, @)=I, (t+1, 1, m, q)—1, (¢, 1, m, q).
In the special case g=p, we have the following corollary:

CoROLLARY 15.5. The number of information symbols of the (p™ —1, t,
m, vy (p"—1)—1, p)-polynomial code is equal to

(15.9) Lyg(pm—1)-1(t; P" =1, m, p)=R,_,(t, P") =R, 1 _,o(t—1, P").
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The following generalization of the original Reed-Muller code [19, 29] to
the non-binary case is due to Kasami, Lin and Peterson [16].

DEerINITION 15.2. The vth order Generalized Reed-Muller (GRM) code is
the cyclic code of length n=g* — 1 with symbols from GF(q) such that the generator
polynomial g,(x) of the dual code has as roots those elements a*, 0<h<gq‘—1,
such that D ,[h]=<v.

From Definitions 15.1 and 15.2, it follows that the vth order GRM code is
the (¢*—1, t, 1, v, g)-polynomial code with parameters:

(15.10) n=q¢'—1,b=1, m=1 and z=q-1.
From Corollary 15.3, we have therefore the following corollary:

COROLLARY 15.6. The number of information symbols of the vth order
GRM code is equal to

v [s/q] —_ —
asiny  Ltg-LLo=3 3 (-D(j L)
s=0 i=0 t—1
In the special case v=v,(q—1)—1 for some interger v,, we have the

COROLLARY 15.7. The number of information symbols of the (vo(q—1)
—1)st order GRM code is equal to

(1512) IVo(q-l)~1(t’ q_l, 1’ q)=Ivo(t+1’ 1’ 1’ q)—Ivo(t: 1’ 19 q)

where

(15.13) I (6 1,1 q)_iz"; ““’Z“"” 1)<Xt—1+s(q1—1)—zq>

i=0

This result has been obtained by Smith [31]. In the special case g=2, we
have the following well known result:

CoROLLARY 15.8. The number of information symbols of the vth order
Reed-Muller code is equal to

(15.14) 01, 1, 2)=1+<§)+(§)+--- +<$)

(b) Proof of the main theorems

In order to prove Theorem 15.1, we prepare the following lemmas:

LEMMA 15.9. Let h be an integer such that 0<h<(q™ —1)/b and let the
g-adic representation of hb be

(15.15) b=

!,L\’J_

2 tm+1
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where c;;’s are integers such that 0=c;;<q. Then there exists a unique set of
m+1 integers s, (1=0, 1, ..., m) such that

(15.16) Sw=S0r 0Ss;<2t, 0=(s;1a—5)/z=Hg—1),
t—1 .

(15.17) z§0c11=sj+1q—sj and qu[qjhb:I:Sm_jb

forj=0,1, ..., m—1.

Note that since ¢;;’s are non-negative integers less than g, (s;;19—s;)/z’s
must be integers such that 0=(s;,;q—s))/z=t(q—1).

Proor. Since
(15.18) Z Zlc,,q’ Z Zc g™ — Z Zlc'.,(q”"—l)q’

it follows from (15.15) and (15.1) that the left hand side of (15.18) is a multiple
of b. There exists therefore an integer r, 0<r<tz, such that

(15.19) S i =rb.
=0 j=0

Since b=(q™—1)/z, we have

t—1 m—1

(15.20) ZZ Zciqu="(q -1).

This equation can be expressed as follows:

t—1 jo—1 t—1 m—1
(15.21) r+zz; Z: cijqf=rq™ —zZJ0 2 cijq?
i=0 j=jo

for each j,=1, 2, ..., m—1. Since the right hand side of (15.21) is a multiple of

q’o, there exist m — 1 integers s;,, 0<s;, <tz, such that

t—1 jo—1

(15.22) r+z2 2 ciqi=5;,9%
i=0 j=0

for each j,=1, 2, ..., m—1. Solving m—1 equations (15.22), we have
t—1

(15.23) z 2, €=5;414~S;

for j=0, 1, ..., m—1 where s,=so=r. The uniqueness of the set of intergers
5;(1=0, 1, ..., m) is obvious. From the definition of D [n], it follows that

t—1 m—1- t-1 m—-1

(15.249) zD ,[q'hb] =z 3, Z" gtttz Y N gttt

i=0 i=0 j=m-l
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m—1-1 . m—1 e
= jZO (Sj+1q—sj)qj+l+.Zl(sj+1q_sj)qj f=m
- e

=sm-l(qm"' 1)
Since b=(g™—1)/z, we have the required result from (15.24).
From the above lemma, we have the following lemma:

LemMA 15.10. If h is a non-negative integer less than (q™ —1)/b which
satisfies the condition (15.2), there exists a unique set of m+1 integers s, (1=0,
1, ..., m) such that

-1
(15.25) (505 S15 ---» S ES (1, z, m, q) and z:§)c,~j=sj+1q—sj

t—1 m-1
for j=0,1, ..., m—1 where hb=i§) j;oc,-jq"'"*f.

Conversely, the following lemma holds:

LemMA 15.11.  Let (S, Sy, ..., S,) be any set in S, (t, z, m, q) and let {c,;;
i=0,1,...,t—1,j=0, 1, ..., m—1} be any set of non-negative integers less than
q such that

t—1

(15.26) '_=Ocij=(sj+1q—sj)/z
_1 m—
for each j=0,1, ..., m—1. Then tZ Zlc,-jq"'"” is a multiple of b, that is,
i=0 j=0
there exists an integer h, 0<h<(q™ —1)/b, such that
t—1 m—1 )
(15.27) 2. 2¢qmti=bh
i=0 j=o

and the above integer h satisfies the condition (15.2).

Proor. From (15.26) and s,,=s,, it follows that

t=1m=1 .
(15.28) i;}) i};lociqu =(5,4™— 8¢)/z=5,b.

Since (g™ —1) is a multiple of b for i=1, 2, ..., t—1, it follows from (15.18) and

(15.28) that ti}l mZ_“lc,-jq"'”‘ff is a multiple of b. There exists therfore an integer
i=0 j=o0

h satisfying the condition (15.27).

From (15.26) and (15.24), we have
(15.29) D w[q'hb]=s,,_ (g™ —1)/z=s5,_,b.
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Since s;’s are integers such that 0<s,<v, h satisfies the condition (15.2). This
completes the proof.

(Proof of Theorem 15.1) For a set of non-negative integers u; (j=0, 1, ...,
m—1), we denote by N,(ug, 4, ..., 4,_,) the number of ordered sets (cq9, C10»
ve0s €103 +++ Com—15 Cim—1> -++» Crm—1) Of NON-negative integers c;; less than g which
satisfy Zt]ci j=u;forj=0,1,...,m—1. Then it follows from the foregoing lemmas

i=0
that the number of integers h, 0<h<(q™ —1)/b, satisfying the condition (15.2)
is equal to
(15.30) (SO’§Sm)Nr— 1(519—=50)(25 -5 (Sud = Sm—1)/2)
where the summation is taken over all (m+1)-tuples (so, $1, ..., Sy) i S,(¢, 2,

m, q). Since the number of information symbols of a cyclic code C is equal to
the number of roots of the generator polynomial g,(x) of the dual code and

m—1 [uj/q] .
(15.31) No(ttg, try ooy i) =TI 3 (_1)i("'f1)(’+“1 "1>,
j=0 i=0 1 t

we have the required result from (15.30).

(Proof of Theorem 15.4) Since the number of information symbols of a
cyclic code C is equal to the number of roots of the generator polynomial gp(x)
of the dual code, it follows from the definition that I, m_qy—1(t, q"—1, m, q)
is equal to the number of integers h, 0<h <g™ —1, such that

(15.32) ,max Dm[q'h]=j  with 0= j<vy(gm—1).
Sl<m
Let the g-adic representation of h be

(15.33) h="3} "% ¢ gt
i=0 j=0

m=1
and let h, be an integer such that hy= Zoc,jq'"“‘f and that h+ h, is a multiple of
=
qm—1, say h+ho=h*(g™—1), where c,;’s are non-negative integers less than g.
Then it follows from Lemma 2.2 in [12] that
(15.34) D m[q'h*(g™—1)1=Dm[q'h]+ D m[q'h]

for 1=0,1,...,m—1. Since 0=D m[q'ho]<q™—1 for 1=0,1, ..., m—1, it follows
from (15.34) that h is a non-negative integer less than g™ — 1 satisfying the condi-
tion (15.32) if and only if h* is a non-negative integer less than (g™¢+1 —1)/(g™—1)
such that

(15.35) onsl?x D m[q'h*(qm—1)]=j(q"—1) with 0= j<vo+1.
Sl<m
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If h is not a multiple of g™—1, the correspondence h and h* is unique. But if
h is a multiple of g™ —1, the correspondence h and h* is not unique, that is, two
integers h and h+(q™—1)g*™ are corresponding to the integer h. Since the number
of integer h* satisfying the condition (15.35) is equal to I, (t+1, 1, m, g) and the
number of integers h, 0 < h < g™ —1, such that h is a multiple of g™ —1 and satisfies
the condition (15.32) is equal to I, (t, 1, m, q), the number of integers h satisfy-
ing the condition (15.32) is equal to I, (t+1, 1, m, q)—1,,(¢, 1, m, g). This com-
pletes the proof.

Since the p™-ary uth order Projective Geometry code is the dual code of the
((pme+O—-1)/(pm—1), t+1, m, t—pu, p)-polynomial code, we have the

COROLLARY 15.12. The number of information symbols of the uth order
PG code with length n=(pm**1) —1)/(pm—1) is equal to n—1I,_,(t+1, 1, m; p),
i.e., n—R,(t, p™).

Since the p™-ary uth order Euclidean Geometry code is the dual code of the
(p™—1,t, m, (t—p)(pm™—1), p)-polynomial code, we have the '

COROLLARY 16.13. The number of information symbols of the uth order
EG code with length n=p™ —1 is equal to n—{I,_,(t+1, 1, m, p)—1,_,_,(t, 1,
m, p)}, i.e., n—{R,(t, p)—R,(t—1, p™)}.
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