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Introduction

In the previous paper [13] under the same title, we introduced a notion of
energy of functions on a self-adjoint harmonic space. By a self-adjoint harmonic
space, we mean a Brelot’s harmonic space possessing a symmetric Green function.
We showed that a notion of energy which is given in terms of differentiation in
the classical case can be defined on such an abstract harmonic space. In [13],
however, we defined energy only for certain bounded functions and for harmonic
functions. In the present paper, we shall extend the definition to more general
functions, which correspond to BLD-functions (see [10] and [5]) or Dirichlet
functions (see [9]) in the classical potential theory.

Here, let us review basic definitions and main results in [13].

The base space Q2 is a connected, locally connected, noncompact, locally
compact Hausdorff space with a countable base. We consider a structure of
harmonic space H={H#(®)},.0pence On 2 satisfying Axioms 1, 2 and 3 of M.
Brelot [4]. In addition to these axioms, we assume:

Axiom 4. The constant function 1 is superharmonic.

Axiom 5. There exists a positive potential on Q.

Axiom 6. Two positive potentials with the same point (harmonic) support
are proportional.

The pair (2, ) is called a self-adjoint harmonic space if there exists a
function G(x, y): 2xQ—-(0, + ] such that G(x, y)=G(y, x) for all x, yeQ
and, for each yeQ, x—>G(x, y) is a potential on @ and is harmonic on Q— {y}.
Such G(x, y) is uniquely determined up to a multiplicative constant and is called
a Green function for (2, ). In our theory, we assume that (2, $) is a self-adjoint
harmonic space and fix a Green function G(x, y) throughout. For any domain
o in Q, Hlo={# (")}, <o, is also a structure of self-adjoint harmonic space on
o satisfying Axioms 1~6 and there is a Green function G“(x, y) for (w, H|w)
having the same singularity as G(x, y) (see Proposition 1.2). For a non-negative

measure (=Radon measure) 4 on Q (resp. on w) U“(x)=SﬂG(x, y)du(y) (resp.
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U‘,,‘,(x)=S G°(x, y)du(y)) gives a potential on Q (resp. on w) if it is not constantly

infinite. Conversely, to any superharmonic function s on £, there corresponds a
unique non-negative measure ¢, on Q such that sljw=U%+u, with u,e#(w)
for any relatively compact domain w. We use the symbols: n=0, and p,=0_,.
for ues#(Q). If a function f on Q is expressed as f=s;—s, with finite-
valued superharmonic functions s, and s,, then o,=0, —o0,, is determined by f
as a signed measure on 2. We consider the classes

M (Q)={u; non-negative measure on Q, U* is bounded and pu(Q)< + oo},
H;(Q)={uec s(Q); bounded and p,(Q)< + oo}
and
Be(Q)={u+U*r—-U"; uesHgg(R) and p, ve My(Q)}.
For f, g €Bg(Q), their mutual energy is defined by

Eolf, 1=—5-{{_fdo,+( g do,—o @+ fgdn),

which makes sense as a finite value. The energy of feBg(Q) is defined by
Eo[f1=Eq,[f, f]. The main results in Chapter II are:

ProposITION 2.1. If ueHgg(R2), then Eq[u]=0.
Turorem 2.1, If pueMy(Q), then EQ[U“]=S Urdy.
(2]

COROLLARY. If fi=Uri—=U"s, i=1, 2, with p,, p,, vy, v,EMp(Q), then

Ealfi 1= fidma—dv)={_fidu—dv,).
THEOREM 2.2. If ueHgg(Q) and pesMpg(Q), then Eglu, U*]=0.
For a harmonic function u, its energy is defined by
Eqlul=—3-{n(@+ | udn} (05 Eg[ul= +e0).
We consider the space
H (Q)={uc#(Q); Eglu]<+ =}

and the norm

lull={Eq[ul +|u(xo)|2}1/? if 1€#(Q) (xo€Q: fixed);

llull=Eq[u]'/? if 1¢#(Q)
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for ue Hg(Q). Then
THEOREM 3.3. H(Q) is a Hilbert space with respect to the norm ||*|.
COROLLARY 1 to PROPOSITION 3.5. Hgg(Q) is dense in Hg(Q).

It follows from Proposition 2.1 and Theorems 2.1 and 2.2 that E,[ f1=0
for every f e Bg(Q) if and only if G(x, y) is a kernel of positive type. At present,
we do not know whether this property follows from our assumptions on (2, ).
In Chapter IV, which is the first chapter of the present paper, we shall investigate
this property and give several necessary and sufficient conditions; in fact, we shall
see that G(x, y) is of positive type if and only if any one of the domination principle,
Frostman’s maximum principle and the continuity principle holds for super-
harmonic functions on Q. Assuming this property as an additional axiom
(Axiom 7), we then make a functional completion of the space Bg(Q2), or rather
of its potential part, in the sense of N. Aronszajn-K.-T. Smith [1], and thus
extend the class of functions for which the notion of energy is defined (Chapter V).
The local investigation of energy leads to a notion of energy measure (Chapter
VI), which is regarded as the measure {|grad f|2 + Pf2}dx in the case where
$ is given by the solutions of Au= Pu on a Euclidean domain Q. The notion
of energy measure is useful in the study of lattice structures of the spaces of
energy-finite functions.

We shall freely use the notation in [13] except for the reference numbers;
references are rearranged in the present paper.

CHAPTER IV. Energy principle and its equivalent forms

§4.1. Properties of G-potentials.

LemMA.4.1. Given a non-negative measure p on 2 such that U* is a poten-
tial, we can choose a sequence {u,} in Mg(Q) such that each S(u,) is compact,
each U#n is bounded continuous and Ut» t U* as n— oo,

Proor. By [2; Satz 2.5.8], there is a sequence {p,} of potentials such that
each o(p,) is compact, each p, is continuous and p, 1t U~ The boundedness of
p, follows from [11; Lemme 3.1]. If we write p,= U#~, then {u,} is the required
sequence.

LEMMA 4.2. Let Cy(Q) be the space of all finite continuous functions with
compact support in Q and let

Py(Q)={Ur—-U"; u, veMy(Q)}.
Then, Pz(2) N Cy(Q) is dense in Cy(Q); in fact, given f €Cy(RQ), ¢ >0 and a rela-
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tively compact open set w containing the support S(f) of f, there is g Py(Q)
NCy(Q) such that S(g)cw and |g(x)—f(x)|<e for all xQ.

ProOF. The space Pg(2) N Cy(R) is obviously a linear subspace of Cy(£2).
If gePL(Q), ie., g=Ur—U" with u, ve Mg(Q), then min(g, 0)=min(U*, U>)
—U». It follows that min(g, 0)Pg(2). Thus we see that P(Q2)NCy(Q) is a
vector lattice with respect to the max. and min. operations. For a regular domain
o and ye o, let

G(x, y) if x ¢ w,

p;"(x)={ .
o, nauze it xeo.

Then pg is a continuous potential such that o(p$) C dw, so that it is also bounded
by [11; Lemme 3.1]. If w and ' are regular domains such that ® cw’ and if
Y€, then g=p?—p2 eP(Q)NCy(R2) and g(y)>0. Then the present lemma
follows from an argument similar to the proof of Stone’s approximation theorem
(see, e.g., [9; Hilfssatz 0.17).

For non-negative measures g, v on 2, let
I(u)=SU“du and <u, v> =SU“dv=SU"du.

The space of measures
M(Q)={u; non-negative measure such that I(u)< + oo}
contains Mg(Q2). For p, ve Mg(Q),
Iu—v)=IwW+IM)—2<p, v>

has a definite value in [— oo, + o). We remark that if p=My(22) and v is a non-
negative measure such that U’ < U, then ve Mg(Q) and I(v)<I(y). Also, by a
standard method we can easily show:

LemMmA 4.3. If p,, v, p, vVEME(Q) (n=1, 2,...), Ut~ 1t U* and U~ 1 U”,
then <p,, v,> 1 <p, v>; in particular, I(u,) 1 I(1).
§4.2. Equivalence of various principles.

THEOREM 4.1. The following statements are mutually equivalent:

() Eglf1=0 for all f eBg(Q);
(i) G(x, y) is a kernel of positive type, i.e., for any u, ve Mg(Q),

@.n I(p—v)=0,
or, equivalently, for any p, ve Mg(Q),
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4.2) <p, v>2=I(WI(v);

(iii) G(x, y) satisfies the energy principle, i.e., it is of positive type and, in
addition, the equality in (4.1) (resp. (4.2)) occurs only when p=v (resp. u and v
are proportional);

(iv) (Cartan’s maximum principle) If peMg(Q) and if s is a non-negative
superharmonic function on Q such that s=U* on S(u), then s=U* on Q;

(v) (Domination principle) If p is a potential on Q which is locally
bounded on o(p) and if s is a non-negative superharmonic function such that
s=p on a(p), then s=p on Q;

(vi) (Frostman’s maximum principle) If p is a potential on Q, then

sup p(x)= sup p(x);
xef xea(p)

(vii) (Continuity principle) If s is a non-negative superharmonic function
on Q and if s|o(s) is finite continuous, then s is continuous on Q.

Proor. (i)&(ii): By Proposition 2.1, the corollary to Theorem 2.1 and
Theorem 2.2, we see that E,[f]=0 for all f €Bg(Q) if and only if I(u—v)=0
for all p, veMpg(Q). Since Myz(Q)Mg(Q), the implication (ii)=>(i) is trivial.
Suppose now that I(u—v)=0, i.e.,

4.3) IwW+Iv)=z2<p, v>

for all u, ve My(Q). Then, by virtue of Lemmas 4.1 and 4.3, we see that (4.3)
also holds for any p, ve Mg(). Thus we obtain the implication (i)=>(ii).

(ii)=>(iii): By using Lemma 4.2, this implication is easily verified by a method
due to H. Cartan [6; p. 86] (also cf. [7; p. 234] and [3; pp. 132-133)).

(ii))=>(iv): The proof of this implication is again carried out by Cartan’s
method (see [6; Proposition 2]; also [3; p. 133]).

(iv)>(v): Let p=U* be locally bounded on o(p)=S(u). For an exhaustion
{Q,} of @, let p,=p|Q,. Then u,eMg(Q)and U#»<s on S(u,) for each n. Hence,
by (iv), Uk»<s on Q. Since U#~ t U#, we have U*<s on Q.

(v)=>(vi): The equality in (vi) is trivially true if a=sup,.,.y P(X)= 4+ .
In case a < + oo, we apply (v) with s=a.

(vi)>(ii): This implication follows from a general theory by N. Ninomiya
[14; Théoréme 3] or by G. Choquet [8].

(vi)=>(vii): To prove (vii), we may assume that s is a potential: s=U*.
Let xo€0(s)=S(n). Assuming that s|o(s) is finite continuous at x,, we shall prove
that s is continuous at x,. Let pu,=pu|Q—{x,} and u,=pu|{x,}. Since s=Ur
+ U*2, U*1|o(s) is finite continuous at x,. We can apply the proof of [14; Lemme
3] and see that U#: is continuous at x,, since p;({x,})=0. (Note that the proof
of [14; Lemme 3] fails to be valid if K(¢, £)< + oo and A({¢})>0.) On the other
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hand, since s(x)< + oo, p,5=0 if and only if G(x,, x¢)<+oo. In this case,
G,, =G(xg, Xo) on Q (G, (x)=G(x, x,)) by (vi). It follows from the lower semi-
continuity G, that G, is of continuous at x,. Hence U#2=p,({x,})G,, is con-
tinuous at x,, and hence s is continuous at x,.

(vi)=>(v): As the proof of (iv)=>(v) shows, it is enough to prove the case
where o(p) is compact. Let p=U* By Kishi’s lemma ([12]; also see [9;
Hilfssatz 4.2] and [4; Part III, Proposition 4]), there exists a sequence {u,} of non-
negative measures such that S(u,) © S(u) for each n, each U#~is finite continuous
on 2 and Uk~ t U* (n— ). For each n, U#»<s on S(u,), so that by [11; Lemme
3.1] this inequality holds on Q. Letting n— oo, we have U#<s on Q.

ReEmMARK 1. The domination principle (v) implies Axiom D of M. Brelot
[4; Part IV]. Thus we may prove the implication (v)=>(vii) in the following way:
We may assume that s is a potential and o(s) is compact. Since s|o(s) is finite
continuous by assumption, s is bounded on a(s). Hence, by (v) (or, rather by
its immediate consequence (vi)), s is bounded on Q. Then, by [4; Part IV,
Theorem 26], we see that s is continuous on Q.

ReEMARK 2. Kishi’s lemma mentioned in the proof of the implication (vii)
=(v) is apparently an improvement of Lemma 4.1. However Kishi’s lemma
requires the continuity principle.

§4.3. Axiom 7 and its consequences.

In order to assure that energies of functions are non-negative, we shall assume
any one of (i)~(vii) in the above theorem as our additional axiom. As an axiom
on a harmonic space, either (vi) or (vii) may be the most preferable form:

Axiom 7. Frostman’s maximum principle (vi) holds.

Hereafter we shall always assume this axiom. By considering the continuity
principle and using the continuation theorem [4; Part IV, Theorem 14] (or [11;
Théoréme 13.1]), we can easily show

PrROPOSITION 4.1. For any domain wC Q, $|w also satisfies Axiom 7.

By virtue of Theorem 4.1, the following lemmas are proved by standard
methods:

LEMMA 4.4. For any f, g=Bg(Q),

Eolf, 91 <Eql f1Eolg]
and

Eolf+g]1'2 <Eo[f1'/2 +Eqo[g]'/>.
If fePg(Q2) (see Lemma 4.2) and Eg[ f]1=0, then f=0.



Energy of Functions on a Self-adjoint Harmonic Space I1 43

LeMma 4.5. If p,, usMg(Q) and U#» 1 U*, then I(u,— 1)—0.

COROLLARY. Given pe Mg(Q), there is a sequence {1} of measures in Mg(Q)
such that each U*#» is finite continuous, each S(u,) is compact and I(u,— 1)—0.

CHAPTER V. Functional completion
§5.1. Polar sets and G-capactity.

In order to obtain a functional completion in the sense of Aronszajn-Smith
[1], it is necessary to introduce exceptional sets. As in the classical case, we let
polar sets be our exceptional sets. In this connection we shall also introduce a
capacity defined by G(x, y).

By definition, a set e Q is polar if there is a positive superharmonic function
(or a potential) s on Q such that s(x)=+ oo for all xee. We denote by 4" the
set of all polar setsin Q. Ifes” and e Ce, then e €.47; if {e,} is a countable
collection of polar sets, then \U,e,& 4" (cf. [4; Part IV, §32]). We say that a
property holds quasi-everywhere, or simply, g.e. on a set A if it holds on A—e
withee#”. Forany u, v eMg(Q), f=U+—U" is defined qg.e. on Q.

Lemma 5.1. Let sy, s,, s be superharmonic functions on an open set o C Q.
If s, <s,+¢&s on w for any ¢>0, then s;<s, on .

Proor . For any regular domain w’ such that @ cw, H® <HZ +eHY

51 =

for all ¢>0. It follows that H® <H?. Since s(x)=lim, g H? for any

superharmonic function s, where B, is the directed family of regular domains
containing x, we have s; <s, on .

CoroLLARY 1. If sy, s, are superharmonic on an open set @ and s;<s,
g.e. on w, then s; <s, everywhere on .

COROLLARY 2. (Extended domination principle) If p is a potential on Q
which is locally bounded on o(p) and s is a non-negative superharmonic function
on Q such that s=p q.e. on o(p), then s=p on Q.

PrOPOSITION 5.1. Ifeis a polar set and peMg(Q) (or u|K e Mg(Q) for any
compact set K), then u(e)=0.

This proposition can be proved in the same way as in the classical case (see,
e.g., [9; Hilfssatz 5.1]).

The following lemma is a consequence of [4; Part IV, Definition 9, Proposi-
tion 10, Example a) in § 15 and Proposition 23]:

LEMMA 5.2. Let A be a relatively compact set in Q and let

pa=inf{s; non-negative superharmonic on Q, s=1 on A}.
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Then the regularization p, of p, is a potential on Q such that o(p)c A4, p,=1
g.e. on A and p =1 on the interior of A.

Let 1, be the associated measure of p,: Uta=p,.
For a compact set K in 2, the G-capacity C(K) is defined by

C(K)=sup {u(K); U*<1 on @}

(cf. [4; Part III, Chap. IV]). By virtue of Corollary 2 to Lemma 5.1, we can
apply the methods in the classical potential theory to our case; for instance, by
the same methods as in [9; § 5], we can prove the following results.

LeEmMA 5.3. For any compact set K, S(Ax)c K and
C(K)=2x(K)=1 ()“K)'
For the proof, see [9; Satz 5.2].

ProrosiTION 5.2. C is a Choquet capacity (or, a strong capacity, in the
sense of [4; Part II]).

See [9; Satz 5.3] for the proof. Also cf. [4; Part III, Theorems 7 and &].
The (outer) capacity of an arbitrary set is defined in the usual way: for an
open set @ in Q,

C(w)=sup {C(K); K: compact C w},
and for an arbitrary set 4 in Q,
C(4)=inf{C(w); w: openD A}.
It is known that C is then a true capacity in the sense of [4; Part 111] (see Theorem
2 there). In particular, it is countably subadditive:
(U 4)s 5 C,).

LemMA 5.4. If w is a relatively compact open set, then

(5.1 C(w)=2,(2)=1(4,).

More generally, if w is an open set with C(w)< + o, then
po=sup {U*x; K: compact C w}

is a potential on Q and its associated measure A, satisfies (5.1).

The proof is the same as that of [9; Hilfssatz 5.5]. Note that Hilfssatz
5.2 and 5.3 in [9] are also valid in our case.

Obviously, if C(w)< + o for an open set w, then U* <1 on Q, U* =1 on
o and S(1,)c®d. It also follows that
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U*» =inf {s; non-negative superharmonic on Q, s=1 on w}.
LEMMA 5.5. A set e is polar if and only if C(e)=0.

For the proof, see [9; Hilfssatz 5.6]. Note that we use Lemma 1.5 (in
[13]) as well as the above lemma. Also, cf. [4; Part IV, the corollary to Theorem
10].

§5.2. Quasi-continuous functions.

Now that we obtain the G-capacity C, the notion of quasi-continuous func-
tions is defined in terms of this capacity: An extended real valued function f
on an open set w in Q is called quasi-continuous if for any £>0 there is an open
set w,Cw such that f|(w—w,) is finite continuous and C(w,)<e. A quasi-con-
tinuous function is finite q.e. (cf. Lemma 5.5). If fis quasi-continuous on w and
if g= f q.e. on w, then g is quasi-continuous on w. If f;, f, are quasi-continuous
on w and a, a, are real numbers, then «, f; +«, f, is defined to be quasi-continuous
by assigning any value at every point where + co — oo or — oo 4+ oo occurs.

LEMMA 5.6. For any pneMg(Q), U* is quasi-continuous on Q; thus, for
any u, ve Mg(Q), U*—U" is defined as a quasi-continuous function on Q.

This lemma is proved in the same way as in the classical case (see [9; Satz
5.4] or [6; Proposition 57]).

For the later use we prove:

LemMMA 5.7. Let f be a quasi-continuous function on an open set w, in Q.
If f is u@-summable and Sfd/,tx =0 for every regular domain w such that ® C w,

and for any x€ w, then f =0 q.e. on w,.

Proor. (Cf. the proof of [9; Hilfssatz 5.9]) We say that a set e in w, is
negligible (cf. [4; Part IV, Def. 8]) if u®(e)=0 for any regular domain  such that

® Cw, and for any xew. The assumption that S fdu2=0 for any such w and x

implies Sl fldu2=0 for any such @ and x (see [4; Part IV, Proposition 16 and

the proof of Basic Lemma 1 (pp. 103-104)]), and hence that A= {x € w,; f(x)70}
is negligible. Given >0, let w, be an open set such that C(w,)<e and f|(w, — ®,)
is finite continuous. Then the set

o’ ={xE w,; there is a neighborhood U of x such that U — w, is negligible}

is an open set containing w,. Since A—w, is relatively open in w,—w,, for each
x€A—w,, there is a neighborhood U of x such that U—w,c A—w,, so that x
€w’. Therefore ACw’. On the other hand, since @’ is covered by a countable
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number of open sets U such that U—w, are negligible, o’ — , is negligible. It
follows that, for any compact set Kin w’, U*x <1=U?: on ' except on a negligible
set, where A,=1,,. Since U*x, U%: are superharmonic, it then follows that U*x
< U% on w’ (cf. the proof of Lemma 5.1). Hence, by the domination principle,
U*x < U everywhere on Q. Thus, C(K) < C(w,) <e, and hence C(w’)<e. There-
fore C(4)=0.

COROLLARY. Let f be a quasi-continuous function on an open set o in .
If f is y-summable and Sfdy=0for all ueMg(Q) such that S(n) is compact and

contained in w, then f =0 q.e. on w.

§5.3. Functional completion of the potential part.

The space B(Q) is a direct sum of the spaces Hy(Q2) and Pg(Q). We know
that Hg(Q) is complete and contains Hgg(Q2) as a dense subspace (Theorem 3.3
and Corollary 1 to Proposition 3.5). Thus we shall now consider a functional
completion of Pg(Q2), or rather its subspace

Prc(Q)={Ur—U"; u, veMg(Q), U* and U" are continuous}.

By virtue of the corollary to Lemma 4.5 and the corollary to Theorem 2.1, Py(€)
is dense in Pg(Q) with respect to the norm E,[-]!/2.

LEMMA 5.8. If f€P(Q), then | f|€Ps(Q) and Eq[|f[1=Eq[f].

Proor. Let f=U*—U" with u, ve Mg(Q) such that U#, U" are continuous.
Then |f{=U#+UY-2min(U# U*). Obviously min(U#, U®) is a continuous
potential. Hence, we see that its associated measure A belongs to Mp(2) and that
|f1EPE(Q). Since f is continuous, Q,={x€Q; f(x)>0} and Q_={xeQ;
f(x)<0} are open sets. It follows from Lemma 1.8 ([13]) that 1|2, =v/Q, and
AQ_=pu|Q_. Hence, by the corollary to Theorem 2.1,

Eql\f11={ |1 (du+dv—2a1)

=, fu—an={_ sv—dw

Q-
={_fu=dn=Eql 1.
COROLLARY . If fEePy(Q) and pesMgy(Q), then

(§, 1714 L1110

Proor. ([I1du)’ =EqlIf1, U1* S Eqll /|1 EaLUAI= Eqlf11G0).
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LEMMA 5.9. For any set A in Q,
C(A)<inf{Eq[f]; f €Ppc(Q), | f(x)| 21 g.e. on A}.

Proofr. Let fePg(2) and |f(x)|=1 q.e. on A. We shall show that C(A4)
<E,[f]. Fore>0, A,={x€Q; |f(x)|>1—¢} is an open set and C(4—A4,)=0.
For any compact set K C A4,, using the above corollary and Lemma 5.3 we have

CRY=2x(K) S| |fldig

< 113 Eq[f]/21()" /2 = lis Eo[f112C(K)1/2.

Hence C(K)<E,[f]/(1—¢)?. Therefore C(4,)<SEq[ f1/(1—¢)?. It then follows
that C(4)<E,[f].

LeMMA 5.10. Let {f,} be a sequence in Pg(Q) such that Eg[f,—f,]—0
(n, m— ) and f,—0 g.e.on Q. Then Eg[ f,]-0 (n— o).

ProoF. Let pu=Mpg(@2). Then, the corollary to Theorem 2.1, Proposition
5.1, Fatou’s lemma and the corollary to Lemma 5.8 imply

|Ealfor UA11 = fudu|

<{ | faus timint{ |£,~fldu

= {liminf Eo[ f,—f,]'/2}I(W)* /2.
Since Eg[ f,—fwl—0 (n, m—o0), it follows that E,[ f,, U*]—»0 (n— ). Hence
(5.2) lim Eqlfy, fn]=0

for each m. Now, {Eg[f,]} is bounded: E,[f,]<M (n=1, 2,...). Given
£>0, choose m so large that n=m implies E[ f, —f,.] <¢2/M. Then, for n=m,

Eﬂ[fn] =Eﬂ[f;v fn _fm] +En[fm fm]
§M1/2Eﬂ[ﬁl_fm]1/2 + IE.Q[fm fm]l =&+ |E.Q[f;v fm][‘
Hence, by (5.2), limsup,_,Eq[ f,]<¢, and hence E,[ f,]-0 (n— o).

The space Py(2) is a normed functional space in the sense of Aronszajn-
Smith [1] with respect to the norm ||f||=E,[f]'/2. Lemma 5.9 shows that the
G-capacity C is admissible with respect to Pg-(2) and the exceptional class ..
Therefore, in view of Lemma 5.10, it follows from [1; § 6, Theorem I] that Pg(2)
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has a functional completion relative to .4°; more precisely, we obtain (cf. also,
[9] and [10]):

THEOREM 5.1. Let

there is a sequence {f,} in Pgc(Q) such that
ss@={ f; in Puc b.
Jamf q.e. on @ and || f,—fnl| >0 (n, m— o)

Then &(R2) has the following properties:

(@) Iffeéy(Q) and g is a function on Q such that g=f q.e. on Q, then g
EEH(Q).

(b) For any fE&4(RQ), let {f,} be a sequence in Pyc(Q) such that f,—f
g.e. on Q and ||f,—f.||>0 (n, m—> o). Then

If I=lim |1£,]

is well defined, i.e., it is independent of the choice of {f,}. Furthermore,
Ilfa=f 110 (n—>o0) for such {f,}.

(c) If we identify functions which are equal q.e. on Q, then &(R) is a
Banach space with respect to the above norm, and contains Pyc(2) as a dense
subspace.

Q) If f,, fe€,(Q) and ||f,—f||>0 (n—o0), then there is a subsequence
{f.} which converges to f q.e. on Q.

The energy of a function f € &(Q2) is defined by

Eolf1=I111?
and the mutual energy of f, g &4(2) by

Eqlf, 1=—{Eqlf +91—Eo[f1~Eqlq]}.

If ”fn_f“'—’o and ”gn_g“—)O with fm gnEPEC(Q)’ then E!)[fm gn]_’EQ[f’ g]'
Hence, we see that the mapping (f, g)—=Eq[f, 9] is a symmetric bilinear form on
Eo(Q)x &y(2). Obviously E,[f, f1=Eo[f]. Therefore, by (c) of the above
theorem we have

COROLLARY. &o(Q) is a Hilbert space with respect to the inner product
Eo[f, g1, identifying functions which are equal q.e. on Q.

PROPOSITION 5.3.  Any function in &y(Q2) is quasi-continuous.

PrOOF. Let fe&y(R). There is a sequence {f,} in Pgc(2) such that f,—f
qg.e.on Q and Ey[ f,—f,+11<1/22" (n=1, 2,...). Then, using Lemma 5.9, we can
show by the same method as in the proof of [9; Hilfssatz 7.8] (also cf. the proof
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of [10; Théoréme 3.11]) that given £>0 there is a set B, such that C(B,)<e and
{f,} converges uniformly on Q—B,. Then we immediately see that f is quasi-
continuous.

LEMMA 5.11. If ueMgQ), then Ute &(Q) and Eo[U*]=I(y).

Proor. By the corollary to Lemma 4.5, we can choose a sequence {u,}
in Mg(Q) such that each U*» is continuous and I(y,—u)—0. Then UtrePr(Q)
and, by the corollary to Theorem 2.1, Eo[U#» — Utm]=I1(u,— tt,,) >0 (n, m— o).
Hence U*re£y(Q2). Furthermore, E,[U*]=lim,.,  E,[U**]=1lim,., I(u,) =I(1).

COROLLARY. If u, ve Mg(Q), then Eo[U*—UY]=I(u—v) and E,[U*, U]
=<p, v>.

LemMA 5.12. If fe84(Q) and neMg(Q), then f is u-summable; in fact

53) (§, 1714 < Eal 11 EaLUA,
and
(5.4) (, ran=EqLs, v,

Proor. First suppose fePr(Q2). By Lemma 5.8, |f|€Pg(Q), ie.,
|fI=U*=U? with 4;, 1, EMgR). Given pucsMgQ), choose u,eMz(Q),
n=1, 2, ..., such that U#» 1 U*. Then, using the corollary to Lemma 5.8, we have

S |f|du=S (U'“—Uh)du=g Uud,ll—g Urdi,
n N (2} (2]

= lim S Utnd), — limg Urndl,
(9] (9]

= lim S [fldp, < Eq[f11/2 lim I(u,)' /2 =Eq[ f1*/2-I()*/2.
n—-o J2 n—oo
Similarly, we obtain
[ rdu=1im { fdu,= lim EqLf, Us1=Ealf, U]
n—+o JQ n—o

where the last equality follows from the fact that Eo[ U#»— U*#]—0 (n— o) (cf. the
proof of the above lemma).

Next, let fe£o(Q). Choose {f,} in Pr(Q) such that f,—f q.e. on Q and
E,[f,—f1-0 (n—> ). By the above result, Proposition 5.1 and Fatou’s lemma,
we have

[, 171aus timint { |,laus Qimint Eql £,1112) E[U]1/2
(7] n—o [?] n—o

= Eq[f]'/E[U¥]'/.
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Applying this result to f—f,, we also have
{1/~ fldus EgLf~£]1/ Eg[UAT 70 (n>e0).
Hence,
[ fau=tim { f.du= lim Eqlf,, UMI=EqLf, U]
LemMma 5.13. Iffe&,(Q) and a>0, then
Cxe®; [f@|sap <Ealfl,

We can prove this lemma in a way similar to the proof of [9; Hilfssatz 7.6],
using Proposition 5.3 and the above lemma (also, cf. the proof of Lemma 5.9).

By means of this lemma, we obtain the following proposition in the same way
as [9; Hilfssatz 7.7]:

PROPOSITION 5.4. For any f € &(Q), there is a potential p on Q such that
|fISpon Q.

COROLLARY. &o(2)Ns#(2)={0}; in particular, &,(2) NHQ)={0}.

§5.4. The space of energy-finite functions.

Now we consider the vector sum of two function spaces Hg(2) and &,(Q):
E(Q)=HgQ)+ &o(Q).

This is a direct sum by virtue of the corollary to Proposition 5.4, so that each
fe¢&(Q) is uniquely expressed as f=u+f, with ucHg(Q) and foe&,(RQ). We
define the energy of f by

Eqlf1=Eqlul+Eql fo]
and the mutual energy of f and g € £(Q) by
Eqlf, g1=Egqlu, v]+Eg[ fo, 9ol

where g =v+g, with ve H(Q) and g, &((Q).

By definition, Bx(Q) c £(2) and the notion of energy for functions in &(R)
is compatible with that for functions in Bz(€2) defined in Chapter II. By Proposi-
tion 5.3, any function in £(Q) is quasi-continuous. As immediate consequences
of Theorem 5.1, its corollary and Theorem 3.3, we obtain

THEOREM 5.2. (a) Iffeé&(Q) and g=f qg.e. on Q, then g <= &(Q).
(b) &(Q) is a linear space (identifying functions which are equal q.e.)
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and Eg[f, g] is a symmetric bilinear form on &(Q)x &(RQ); in case 1€ #(Q),
Eo[f11/? defines a semi-norm on &(Q) such that Eq[ f1=0if and only if f =const.
g.e. onQ;in case 1 ¢ #(Q), Eo[ f1'/? defines a norm on &(Q); &(Q) is complete
with respect to the semi-norm Eg[ f1'/2 in any case.

() For any fe&(Q), there is a sequence {f,} in Bg(R) (or, in Hx(Q)
+Prc(Q)) such that Eg[ f,—f1-0 and f,—f g.e. on Q.

(d) If Eq[f,—f]1-0 (n— ) for f,, f €E(Q), then there are a subsequence
{fu.} of {f,} and a sequence {c;} of constants such that f, +c,—f g.e. on Q; we
can choose ¢,=0, k=1, 2, ..., if 1 ¢ #(Q).

The following lemma will be used in the next chapter:

LemMA 5.14. If fe&(Q2) and u is a non-negative measure such that u|K
€Mg(Q) for any compact set K, then f is locally y-summable. If {f,} is a se-

quence in &(L2) such that f,—f g.e. on Q and E,[ f,—f]-0 (n—> ), then S I fs
K
—f|du—0 (n— o) for each compact set K.

Proor. Let f=u+g with ueHg(Q) and g=&,(R). Since u is locally
bounded and g is u|K-summable for any compact set K by Lemma 5.12, fis locally
u-summable. Let f,=u,+g, with u,eHZ(Q) and g,=&((Q2) for each n. Then
Eolu,—u]—0 and Eg[g,—g]—0 (n—>). By the corollary to Theorem 3.2
([13]), there are constants ¢,, n=1, 2, ..., such that u,+c,—u locally uniformly
in Q. We shall show that ¢,—0. Supposing the contrary, we find ¢,>0 and a
subsequence {c,} of {c,} such that |c,|=eg, for all j. Since Eg[g,—g]—0
(j— ) and g,,, g€ &¢(£2), Theorem 5.1, d) implies that there is a subsequence
{94} of {g,,} converging to g q.e.on Q. Since f,. . —f q.e. on Q,u, ,—u q.c. on
Q. This is impossible, since u,.,+c, ,—u and |c, | =&, Thus we have shown

that u,—u locally uniformly on Q. Hence, for each compact set K, S [u,—uldu
K

—~0 (n—o0). On the other hand, by Lemma 5.12, S g, —gldu—0 (n—oo).
K
Hence we have the lemma.

CHAPTER VI. Energy measures and lattice structures
§6.1. Energy measures for locally bounded functions.
Let us consider the space
B,,(Q2)={f; for any relatively compact domain w, f|w e Bg(w)}.
First we observe

LemMma 6.1. If ues#(Q) and U*, U’ are locally bounded potentials, then
f=u+Ur—=U" belongs to B, ().
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Proor. For any relatively compact domain w,
flo=u,+U%—U;,

with u, € s#(w). Obviously, U# and U}, are bounded. Furthermore, u(w)< + oo
and v(w)< 4+ o, so that ujw, vjoeMg(w). Thus, what remains to prove is u,,
€Hgg(w). Since there is another relatively compact domain @’ such that @ c ’,
we may assume that y, ve Mg(Q). Now

uy,=ulw+ (U w—-UL)+ (U |w-U}).

Since u|w is bounded and p,) (@)= p (@) < + o0, ulo EHpg(w). Next we consider
v=U*w—U% Then ve #(w) and is bounded. By Lemma 2.3 (in [13]), (U#)?
=U*rt—U*2 with y,, u, eMg(Q). Thus

v2=h+ Uk —Usz +(UK)2 —2U*U%
on o with he s#(w). It follows that
Ukv=— Uk + Utz —(UL)2 +2U*UL < U¥2 +2MU%

on @, where M=sup,U#. Hence p,(0)=<pu,(w)+2Mu(w)< + o, and hence v
€Hpy(w). Similarly, we see that U¥|w— U}, € Hgg(w). Therefore u, & Hpygg(w).

By this lemma, we see that Bi(Q)c B, (Q), #(Q)CB,(2) and constant
functions belong to B, (Q).

For each f €B,,(€), its associated measure o is well-defined by the following
condition: for any relatively compact domain o, flo=u,+ U%.—U?, with u, e
#(w) and ofjw=p—~v. Lemma 2.3 ([13]) implies that if f, g&€B,,(€2), then
fgeB,,(Q). Therefore,

1
s[f.y]=7(faa+gaf'—afy +fgm)

defines a signed measure on Q for f, g=B,,(2). Here, in general, fo means the
signed measure defined by d(fo)=fdo for a signed measure ¢ on Q and a locally
|o|-summable function fin Q. The measure g, ,; may be called the mutual energy
measure of f and g. The mapping (f, g)—¢y,,; is symmetric and bilinear on
B,,.(2) X B,.(£2). The measure

1
afzs[f,f]=—2_(2fo'f_af1 +f27r)

will be called the energy measure of f € B, (£2).

We shall write E,[f] for E,[f|lw]. Obviously, if fEB,(2), then &(w)
=E,[f] for any relatively compact domain w and if fEB(Q), then £/(Q)=
Eo[f1<+00.
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PROPOSITION 6.1. For any fE€B,,(Q), &; is a non-negative measure.

Proor. Since H|w satisfies Axiom 7 (Proposition 4.1), e (0)=E,[f]1=0
for any relatively compact domain w. It follows that £(w)=0 for any open set
o, and hence that ¢, is a non-negative measure.

Proposition 6.1 implies that if f, g =B,,(2) then
6.1) e g1 (A)] S & (A)1/26,(A)1 12
for any relatively compact Borel set 4 and
62) B (A2 Se(A)112 4, (4)112

for any Borel set 4 in Q.

§6.2. Locally energy-finite functions.

Next we consider
€1,(2)={f; for each relatively compact domain w, f|w e &(w)}.

&100(2) is a linear space if we identify functions which are equal q.e. Each fe&
&1,(R) is quasi-continuous on Q. Obviously, B, (Q)C &,,.(Q).

LEMMA 6.2. &(Q2)C &, (Q).

Proor. Let fe&(2). Then there is a sequence {f,} in Bg(£) such that
fi—fq.e. on Q and Eo[ f,—f,.]—0 (n, m—o0). For any domain w,

Em[fn —fm] =3f..—fm(w) é‘gfn—fm(g)= Er)[fn —fm]'—>0 (n’ m-— °°)
Hence, floe &(w). Therefore f € &,,.(2).

THEOREM 6.1. For each fe&&,,(Q), there exists a unique non-negative
measure g, such that

(6.3) elw)=E,[f]
for every relatively compact domain w. If f€&(Q), then e (Q)=Eq[f].

Proor. Uniqueness immediately follows from (6.3). Let f&&,(Q) and
o be a relatively compact domain. (In case f €£(Q), @ may be equal to Q.)
Choose {f,} in Bg(w) such that f,—f q.e. on w and E,[f,~f]-0 (n— ). For
any Borel set 4 in o,

leg (> —ep (D2 Sep,—p, (A2 <ep, _p, ()12

=Ea)[fn—fm]_’0 (l‘l, m_’°°)
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It follows that a set function &% is defined for all Borel sets 4 in w by

ep(A)= lim &, (A4)

and that it is a non-negative measure on . It is easy to see that if @’ is another
relatively compact domain containing o, then &% |w=g¢%2. Therefore, there is a
non-negative measure &, on Q such that g;w=¢p. Obviously, e/(w)=eYw)
=lim,, &, (w)=lim,, E,[ f,]= E,[f] for each relatively compact domain w
and for 0=Q if f €£(Q).

The measure ¢, in the above theorem will be called the energy measure of
fE€6,,(Q). For f, g &,,.(Q), their mutual energy measure is defined by

1
e =5 {Er+g—Er —&)-

It is easily verified that the mapping (f, g)—¢ ,; is symmetric bilinear on &,,0(€2)
X 610,(82) and ;7 1(w) =E,[ f, g] for each relatively compact domain w. Further-
more, g () exists and equals Eo[f, g] if f, g=&(Q). Also, (6.1) and (6.2)
hold for f, g € &1,.(€).

PROPOSITION 6.2. If f €&1,(R) and a is a real constant, then
B[f,a] = OLfTC;
in particular, g,=a?n.

Proor. By considering locally, we may assume that fe&(Q). Choose
{f,} in BE(Q) such that f,—f q.e. on Q and E,[ f,—f]—0 (n— ). Since o,=an,
a[,ma]=%(f,,om+ocafn—aafn+ozf,,n)=af,,1r.

As in the proof of the above theorem, we see that e, ,(A4)—¢ . (4) for any
relatively compact Borel set 4. On the other hand, Lemma 5.14 implies that
S o f,,dn—»S ofdn for such A. Hence we have the proposition.

A A

LEMMA 6.3. Let f€6,,(R2) and w be a relatively compact domain. If
E,[f, Ut —Uk]=0,

where p,=pet and p,=p22, for any regular domains w, and w, such that &,
Cw,Cd,Cw and for any xsw;, then there is ucHg(w) such that flo=u
g.e. on .

Proor. Let flo=u+g with ueHg(w) and ge&o(w). Since Uri=Ur:2
on Q—®,, we have U#1 —Ur2=U% —U%2 on w. Hence, by (5.4) in Lemma 5.12,
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EuLf, U — U] =E,[g, Ut~ Ug]= (g dus~ g du.

Thus, by assumption,g g duet= Sg du22 for any regular domains w,, w, such that

®,Cw,c®,Cw and for any xEw,. Therefore, if we define v(x)=\g dug’ for
XE w’, where «’ is a regular domain such that @' C w, then v is defined asa har-
monic function on w. Since S(v—g)du;" =0 for any such w’ and xew’, Lemma

5.7 implies that g=v q.e. on w. It follows that v=0, since g=&,(w). Hence
flo=u q.e. on w.

COROLLARY Let fe&,,(2) and w be a relatively compact domain. If

E,[f, g1=0 for any g &y(®) (or, for any g=Pyw)), then flo=a harmonic
function q.e. on w.

THEOREM 6.2. &(Q)={fE&1,(Q); e Q)< + o}.

PROOF. Let &' ={f €&, (Q); /()< +o}. By Lemma 6.2 and Theorem
6.1, £(Q)cé’. So, we shall prove the converse inclusion. If f, ge&’, then
lerrall(@)<+o0. Hence <f, g> =g ,(Q) gives a symmetric bilinear form on
& and <f, f>=0. Letfed&’ be given. Since &,(2) is complete with respect
to the norm <f, f>1/2=E,[f]!/? (Corollary to Theorem 5.1), by the usual
method of orthogonal projection, we find fo&y(Q2) such that <f—f,, g>=0
for all ge &,(R2). Let w be a relatively compact domain and w;, w, be regular
domains such that @;cw,c®,cw. Let g=U#1—U*#2, where pu,=p? and
py=pg2r with xew,;. Then, gedy(Q). Since g=0 on Q—d,, & sy
(2—d,)=0. Hence

E,[f—fo, 9] =3[f—fo,g](w) =8[f—fo,g](‘g) =< f~=fo, g>=0.

Therefore, by the above lemma, there is u € Hg(w) such that f—f,=u g.e. on w.
Since o is arbitrary, modifying the values of f, on a polar set (i.e., re-defining f,
by f—u on w), we have f=u+f, on Q with ues#(Q) and fo=&,(Q). Since f,
fo€&, usé’. 1t follows from the definition of Hy(Q) that ue Hg(R). Hence
feéQ).

§6.3. Energy of superharmonic functions.

LEMMA 6.4. Let u be a non-negative measure such that U* is a potential.
Then

(i) Ureé(Q) if and only if ue My(Q);
(i) Ureé,(Q) if and only if u|KeMg(Q) for every compact set K in Q.

Proor. The “if” part of (i) is already shown (Lemma 5.11). If y|K e M4xQ)
for every compact set K, then, for each relatively compact domain o, ujw € Mgw),
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and hence ULe&o(w)C & (w). Since U*|lw—U% is harmonic, it belongs to
&o(®). Hence, Ut|we &, .(w). Since this is true for any relatively compact
domain w, we see that U* & &,,.(€2). Thus the ““if”” part of (ii) is proved.

Next, suppose u(2)< + o and U*=£(R2). Then Ut &y(2) by Proposition
54. Let Utm=min(U# m) for m>0. Then p,MgQ), so that Urme &(Q).
Using (5.4) of Lemma 5.12, we have

0 Eg[Us— Usn] = Eg[U¥]= | Usdp+ | (Usn—UM)d,
(2] (2]
gE,,[Un]—S Usmdy,
[?]

Hence, SU“mdugEn[U"] for all m>0. Therefore, I(W)<E[U*]< + 0, ie,

LEMER). Now let Ut £ (R) and let {Q,} be an exhaustion of Q. Let
Uk|Q,=u,+ Ul with u,e#(Q,). Since U Q,e8(Q,), we have u,eHg(Q,),
U €6oRQ,) and E, [Uh 1<E,[U*]. The above result implies that u|Q,
eMg(Q,), since u(2,)< + . Hence the “only if” part of (ii) follows. Further-
more, by Lemma 5.11,

( Ub.du=FEq[UB1<Eq [V,
2n

Hence, if Ute &(Q), then I(u)=1im,,_,mg UL du<Eg[Uv]< +oo. This means
Qn
that the ““only if”” part of (i) holds.

PROPOSITION 6.3. Let s be a superharmonic function on Q.

(i) se&(Q)ifandonlyif it has a harmonic minorant, its greatest harmonic
minorant belongs to Hy(Q) and o,& Mg(Q);

(i) SEE1(Q) if and only if 0| K= Mg(Q) for every compact set K in Q.

Proor. The ““if” part of (i) is obvious. Suppose s€&(Q). Thens=u+p
with ue Hg(Q) and pe£4(Q). By Proposition 5.4, we see that p is a potential,
so that u is the greatest harmonic minorant of s. Furthermore, 6,=0,. Hence,
by the above lemma, o, Mg(Q), and (i) is proved. Next, let s be any super-
harmonic function and w be a relatively compact domain. Then s has a harmonic
minorant on w; in fact s=u,+ UZ on w with u, € s (w). By the above lemma,
sloe &),(w) if and only if o |K eMg(w) for any compact set K in w. Since w
is arbitrary, we obtain (ii).

§6.4. Lattice structures.

In this section, we first study the lattice structures of the following spaces:
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Q) ={f; f=U*-U" q.e. on Q with u, ve Mg(Q)},
S(Q)=Hg(2)+Qx(X)
and

SE1(2)={f; for any relatively compact domain w, f|weSg(w)}.

Obviously, Py(Q2)CQx2)C¢¢(Q), Bi(Q) TSR E(2) and B,,(2) TS 0(R2)
C&1(2). Furthermore, from Lemma 6.2 we can show that Sz(Q) cSg ,.(2).

LEMMA 6.5. If ue Hg(Q), then min(u vV 0, (—u) V 0)= QxQ).

Proor. Let ut=max(u, 0) and u~=max(—u, 0). Then u*=uv0-U*
and u~=(—u)VvO0—U* with a non-negative measure T on Q. By Theorem 3.1
(13D, uv0,(—u)VOeHKL). Since U is locally bounded, U* < B,, () by Lem-
ma 6.1. Hence u*, u€B,(2). Since utu~=0 and S(r)c{xeQ; u(x)=0},
we have

St u-] =%(——u+t—u‘1:)=0.

It follows that ¢,=¢,+ +¢,-. Hence ¢,+(2)<¢,(2)=E,[u] < + =, so that ut = £(Q)
by Theorem 6.2. Therefore, Ure & (Q2), and by Lemma 6.4, U Q). Since
U*=min(u V0, (—u) v 0), we have the lemma.

THEOREM 6.3. Qg(Q) and Si(Q) are vector lattices with respect to the max.
and min. operations and

Eo[|fl1=Eolf]  for any f€SL(Q);

Eg[max(f, 9)]+ Eo[min(f, g)]=Eq[f]1+Eolg] for anyf, g=S(Q).

Proor. Itisenough to prove that if f € S(Q) (resp. € Q(£2)), then max(f, 0),
min(f, 0)eSK(R) (resp.€ Qx(Q2)) and

6.4) Eg[max(f, 0), min(f, 0)]=0

(cf. the proof of Theorem 3.1 in [13]). Let f=u+U*—U" qg.e. on Q with ue
Hi(Q) and p, veMg(2). By the above lemma, min(u V0, (—u)V 0)eQQ).
It then follows that min{u Vv O+ U*, (—u)VO0+U"} is a potential belonging to
Qx(Q). Let

Ut=min{u V O+ U¥, (—u)V0+ U}, A& ML(Q).

Since max(f, 0)=uV 0+ U*—U? min(f, 0)=u A0+ U*—U*q.e. on Q and u VO,
(—u)vOsHLQ), we see that max(f, 0), min(f, 0)=Sg(). Furthermore, if



58 Fumi-Yuki MAEDA

f€Qg(RQ), then u=0, so that max(f, 0), min(f, 0)= Qx().
To obtain (6.4), we first suppose that U#, U" are continuous. Then f €B,(Q)
and the above observations show that max(f, 0), min(f, 0)eB,(€2). Let Q,
={xeQ; f(x)>0} and Q_={xeQ; f(x)<0}. Since 2,, Q_ are open sets, it
follows from Lemma 1.8 ([13]) that 1|Q, =v|Q, and A|Q_=u|Q_. Hence, noting
that max(f, 0)-min(f, 0)=0, we have

1 .
g[max(f,O),min(f,O)]=T{max(f’ 0) (A—v)+min(f, 0) (u— A1)}

=510, (A=0) 4 1o (u=D} =0,

where y, means the characteristic function of a set 4. Therefore, we obtain
(6.4) in case U*, U are continuous. In the general case, we choose y, and v,,
n=1, 2, ..., such that U#», U'» are continuous, U#» 1 U# and U>~1 U". Let
f,=u+Ur—U"» and

Ut»=min{u v 0+ Uk», (—u) VvV O+ U~}

Then, f,eSg(Q), U* t U, max(f,, 0)=uVO0+ U#»—U?*» and min(f,, 0)=u A0
+ U#»—Uv», By Lemma 4.5 and the corollary to Lemma 5.11, Eo[ U#»— U#]—0,
E, [U»—U"v]-0and E,[U*— U*]-0 (n— o). Hence E,[max(f,, 0)—max(f, 0)]
—0 and E,[min(f,, 0)—min(f, 0)]-0 (n—> o). Since Eg[max(f,,0), min(f,, 0)]
=0 for each n, we obtain (6.4).

COROLLARY. Sg ,(Q) is a vector lattice with respect to the max. and min.
operations and, for f, g €S 1,(2),

E/1=€p  Emax(f,0),min(s,01=0
and

Emax(f,9) T Emin(s.g) =Es + &

ReMARK. The proof of Theorem 6.3 shows that B, () is also closed under
max. and min. operations.

THEOREM 6.4. &(Q) and &y(Q2) are vector lattices with respect to the max.
and min. operations; if f, g &(Q), then

Eq[| fI1=EqLf]

and
Ego[max(f, g)]1+ Eg[min(f, g)]1< Eo[ f1+ Eq[g].

Proor. Let fe£(Q), ie., f=u+p with ueHgQ) and pefyR). By
Theorem 5.1, there is {p,} in Px(Q) such that Eq[p,—p]—0 and p,—p q.e. on Q
(n—c0). It follows from Lemma 5,14 that
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for any peMg(Q) with compact support. Let g,=|u+p,|—uV(—u). Since
u+p,eSKQ), Theorem 6.3 implies that g,=Sg(Q). Furthermore, since |g,|
<{uV(—u)—|ul}+|p.l, we see that g, Qg(£2) by using Proposition 5.4. There-
fore, using Theorem 6.3 again, we have

Eqlg,]1=Egllu+ pal1=Eqlu + pp]= Eglul+ Eq[p,].

Hence {Eg[g,]} is bounded. Regarding & () as a Hilbert space, we can choose a
subsequence {g,,} of {g,} which converges to a function ge& &,(f2) weakly in

&o(Q). 1t follows from Lemma 5.12 that S g,,jduﬂg gdu for any peMg(Q).
Q Q

Hence

6.6) [t pulau-s{ {g+uv(-w)dp

for any ueMgx(Q) with compact support. By (6.5) and (6.6),

[ 171dn={ {g+uv(-w)du

for any peMgQ) with compact support. Hence, by the corollary to Lemma 5.7,
we conclude that | f|=uV (—u)+g q.e. on Q. Hence, |f|=&(2). Furthermore,
if f €&84(Q2), then u=0, so that [f|E€&¢(€2). Since g,,—g weakly in &(€2), we see
that |u+p, |—|f| weakly in &,(£2). It then follows that

Eql|f (1< liminf Egllu-+ p, 1= lim Eqlu+p,]=EqLf].

COROLLARY. &,,.(2) is a vector lattice with respect to the max. and min.
operations; for any fYg € &,,(Q),

€max(f.9) + €min(f.9) = &r + &y

Finally we give

ProrosITION 6.4. If fe&(Q) (resp.€&(Q)) and a=0, then min(f, o)
€8(Q) (resp.€ & y(Q2)) and

Eg[min(f, 0)]< Eq[f].

Proor. Since a e &), (R2), the above corollary implies

€ma x(fa) + €m in(f,a) = 8f + &g
Now, max(f, o) ={f—min(f, @)} +«. Hence

Emax(f,) =&f ~min(f,a) T 2801 - min(f,2),0) T Eas
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so that we have

€~ Emin(f,0) = &f — min(f,0) T 2601 - min(f0),00

or, by Proposition 6.2,

(6.7)

Since the right-hand side is a non-negative measure, &yin(sa)=E&;-

Sf— Emin(f,a)g gf—min(f,a) +2a{f—— min(f, a)}TE.

Hence

Emin(fa)( Q)= (2)=Ey[ f]1< + . Therefore, by Theorem 6.2, min(f, o) € £(£),
and Eo[min(f, ®)]=&nincr,a(RQ) S Eolf]. Furthermore, if f € £((£2), then Proposi-
tion 5.4 and the inequality |min(f, «)| <|f| imply that min(f, &) € & ().

REMARK.

In view of the corollary to Theorem 6.3, the equality holds in

6.7) if f €Sg,10(2).
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