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Introduction

In the previous paper [13] under the same title, we introduced a notion of

energy of functions on a self-adjoint harmonic space. By a self-adjoint harmonic
space, we mean a Brelot's harmonic space possessing a symmetric Green function.

We showed that a notion of energy which is given in terms of differentiation in
the classical case can be defined on such an abstract harmonic space. In [13],

however, we defined energy only for certain bounded functions and for harmonic

functions. In the present paper, we shall extend the definition to more general
functions, which correspond to BLD-functions (see [10] and [5]) or Dirichlet

functions (see [9]) in the classical potential theory.

Here, let us review basic definitions and main results in [13].

The base space Ω is a connected, locally connected, noncompact, locally

compact Hausdorίf space with a countable base. We consider a structure of

harmonic space ξ> = {^(co)}ω:open<=Ω on Ω satisfying Axioms 1, 2 and 3 of M.
Brelot [4]. In addition to these axioms, we assume:

Axiom 4. The constant function 1 is superharmonic.
Axiom 5. There exists a positive potential on Ω.

Axiom 6. Two positive potentials with the same point (harmonic) support

are proportional.

The pair (Ω, §) is called a self-adjoint harmonic space if there exists a
function G(x, y): ΩxΩ->(0, +00] such that G(x, y) = G(y, x) for all x, y<=Ω

and, for each yeΩ, x-»G(x, y) is a potential on Ω and is harmonic on Ω— {y}.

Such G(x, j;) is uniquely determined up to a multiplicative constant and is called
a Green function for (Ω, £>). In our theory, we assume that (Ω, £>) is a self-adjoint

harmonic space and fix a Green function G(x, y) throughout. For any domain

ω in Ω, δ|ω = {^f7(ω/)}ω'Cω is also a structure of self-adjoint harmonic space on
ω satisfying Axioms 1~6 and there is a Green function Gω(x, y) for (ω, §|ω)
having the same singularity as G(x, y) (see Proposition 1.2). For a non-negative

measure ( = Radon measure) μ on Ω (resp. on ω) Uμ(x)=\ G(x, y)dμ(y) (resp.
JΩ
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U$,(x)= \ Gω(x, y)dμ(y)) gives a potential on Ω (resp. on ω) if it is not constantly
Jω

infinite. Conversely, to any superharmonic function 5 on Ω, there corresponds a
unique non-negative measure σs on Ω such that s\ω=U% + uω with uω^3F(ω)
for any relatively compact domain ω. We use the symbols: π=σ1 and μM = σ_ M 2
for ue^(Ω). If a function / on Ω is expressed as f = si — s2 with finite-
valued superharmonic functions Si and s2, then σf = σsι — σS2 is determined by /
as a signed measure on Ω. We consider the classes

Mβ(Ω) = {μ; non-negative measure on Ω, Uμ is bounded and μ(Ω)< + 00},

HBE(Ω) = {w e ̂ (Ω) bounded and μM(Ω) < 4- oo }

and

B£(β) = {w + U * - Uv u e HB£(Ω) and μ, v e MB(O)}.

For/, #<=B£(Ώ), their mutual energy is defined by

which makes sense as a finite value. The energy of /eB£(Ώ) is defined by
£«[/] = -Eβ[/9 /]• The main results in Chapter II are:

PROPOSITION 2.1. Ifu&HBE(Ω)9 then

THEOREM 2.1. 7/μeMB(β), ίΛen £Ω[ί/μ] = ί
Jβ

COROLLARY. 7//.= L7/«-l/v', i = l, 2, wiίΛ μ l 5 μ2, v l 5 v2eMB(Ω),

THEOREM 2.2. Ifu^HBE(Ω) and

For a harmonic function w, its energy is defined by

We consider the space

HE(Ω) = {w e jr (Ω) EΩ[u] < + oo }

and the norm

1/2 if le«^(Ω)(x0eΩ: fixed);
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forweH£(Ω). Then

THEOREM 3.3. H£(Ώ) is a Hubert space with respect to the norm \\-\\.

COROLLARY 1 to PROPOSITION 3.5. HBE(Ω) is dense in H£(Ώ).

It follows from Proposition 2.1 and Theorems 2.1 and 2.2 thatEΩ[/]^0
for every / e B£(Ω) if and only if G(x, y) is a kernel of positive type. At present,
we do not know whether this property follows from our assumptions on (Ω, §).
In Chapter IV, which is the first chapter of the present paper, we shall investigate
this property and give several necessary and sufficient conditions; in fact, we shall
see that G(x, y) is of positive type if and only if any one of the domination principle,
Frostman's maximum principle and the continuity principle holds for super-
harmonic functions on Ω. Assuming this property as an additional axiom
(Axiom 7), we then make a functional completion of the space B£(ί2), or rather
of its potential part, in the sense of N. Aronszajn-K.-T. Smith [1], and thus
extend the class of functions for which the notion of energy is defined (Chapter V).
The local investigation of energy leads to a notion of energy measure (Chapter
VI), which is regarded as the measure {|grad/|2 4- Pf2}dx in the case where
§ is given by the solutions of Au = Pu on a Euclidean domain Ω. The notion
of energy measure is useful in the study of lattice structures of the spaces of
energy-finite functions.

We shall freely use the notation in [13] except for the reference numbers;
references are rearranged in the present paper.

CHAPTER IV. Energy principle and its equivalent forms

§4.1. Properties of (^-potentials.

LEMMA.4.1. Given a non-negative measure μ on Ω such that Uμ is a poten-
tial, we can choose a sequence {μn} in MB(Ω) such that each S(μn) is compact,
each Uμn is bounded continuous and Uμn t Uμ as π->oo.

PROOF. By [2; Satz 2.5.8], there is a sequence {/?„} of potentials such that
each σ(pn) is compact, each pn is continuous and pn t Uμ. The boundedness of
pn follows from [11 Lemme 3.1]. If we write pn= Uμn, then {μn} is the required
sequence.

LEMMA 4.2. Let C0(Ω) be the space of all finite continuous functions with
compact support in Ω and let

P£(Ω)={17*-17"; μ, veMB(Ω)}.

Then, P£(Ω)nC0(Ω) is dense in C0(Ω); in fact, given /eC0(Ω), ε >0 and a rela-
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tively compact open set ω containing the support S(f) off, there is geP£(Ω)
ΠC0(Ω) such that S(g)c.ω and \g(x)-f(x)\<ε for all xeΩ.

PROOF. The space P£(Ω) Π C0(Ω) is obviously a linear subspace of C0(Ω).
If 0eΞP£(Ω), i.e., g = U»-Uv with μ, veMΛ(Ω), then min(0, 0) = min(l/^, Uv)
-U\ It follows that min(#, 0)<ΞP£(Ω). Thus we see that P£(Ω)nC0(Ω) is a
vector lattice with respect to the max. and min. operations. For a regular domain
ω and y e ω, let

, G(X y) if x ί ω,

Then p£ is a continuous potential such that σ(p$?) c dω, so that it is also bounded
by [11; Lemme 3.1]. If ω and ω' are regular domains such that ά>cω' and if

jeω, then g = p%-p™' eP£(Ω)nC0(Ω) and 0(.y)>0. Then the present lemma
follows from an argument similar to the proof of Stone's approximation theorem
(see, e.g., [9; Hilfssatz 0.1]).

For non-negative measures μ, v on Ω, let

I(μ) = \ Uμdμ and < μ, v > = \ U^dv = \ Uvdμ.

The space of measures

M£(Ω) = {μ; non-negative measure such that J(μ)< + oo}

contains MB(Ω). For μ, v e M£(Ω),

, v>

has a definite value in [— oo, +00). We remark that if μeM£(Ω) and v is a non-

negative measure such that Uv^Uμ.> then veM£(Ω) and 7(v)^/(μ). Also, by a
standard method we can easily show:

LEMMA 4.3. // μπ, vπ, μ, veM£(Ω) (n = l, 2, ...), £/"» ί 17" and (7V« t Uv,
then <μn, vn> ΐ <μ, v> m particular, I(μn) t /(μ).

§4.2. Equivalence of various principles.

THEOREM 4.1. The following statements are mutually equivalent:
0) Eβ[/]^0/0rα»/6ΞB£(Ω);

(ii) G(x, y) is a kernel of positive type, i.e., for any μ, veM£(Ω),

(4.1) /(μ-v)^O,

or, equivalently, for any μ, veM£(Ω),
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(4.2) <

(iii) G(x, y) satisfies the energy principle, i.e., it is of positive type and, in

addition, the equality in (4.1) (resp. (4.2)) occurs only when μ = v (resp. μ and v

are proportional)',

(iv) (Cartan's maximum principle) Ifμ^ME(Ω) and ifs is a non-negative

superharmonic function on Ω such that s^Uμ on S(μ), then si> Uμ on Ω;
(v) (Domination principle) If p is a potential on Ω which is locally

bounded on σ(p) and if s is a non-negative superharmonic function such that

s^p on σ(p), then s^p on Ω;
(vi) (Frostman's maximum principle) If p is a potential on Ω, then

supp(x)= sup p(x)ι
xeΩ xeσ(p)

(vii) (Continuity principle) If s is a non-negative superharmonic function
on Ω and if s\σ(s) is finite continuous, then s is continuous on Ω.

PROOF. (i)φ»(ii): By Proposition 2.1, the corollary to Theorem 2.1 and

Theorem 2.2, we see that £Ω[/]^0 for all /eB£(Ω) if and only if /(μ-v)^O

for all μ, v<=MB(Ω). Since MB(Ω) c ME(Ω), the implication (ii)=>(i) is trivial.
Suppose now that /(μ-v)^O, i.e.,

(4.3) I(μ) + I(v):>2<μ,v>

for all μ, veMβ(Ω). Then, by virtue of Lemmas 4.1 and 4.3, we see that (4.3)

also holds for any μ, veM£(Ω). Thus we obtain the implication (i)=>(ii).

(ii)ιχiii) : By using Lemma 4.2, this implication is easily verified by a method
due to H. Cartan [6; p. 86] (also cf. [7; p. 234] and [3; pp. 132-133]).

(iii)=>(iv): The proof of this implication is again carried out by Cartan's
method (see [6; Proposition 2]; also [3; p. 133]).

(iv)=Xv) : Let p = Uμ be locally bounded on σ(p) = S(μ). For an exhaustion
{Ωn} of Ω, let μn = μ\Ωn. Then μn <Ξ ME(Ω) and UP* ̂  s on S(μn) for each n. Hence,

by (iv), Uμ»£s on Ω. Since [/"» t Uμ, we have 17" gs on Ω.
(v)=>(vi): The equality in (vi) is trivially true if α = supjce<τ(p) p(x)=+oo.

In case α< + °o, we apply (v) with s = α.

(vi)=>(ii): This implication follows from a general theory by N. Ninomiya
[14; Theoreme 3] or by G. Choquet [8].

(vi)=>(vii): To prove (vii), we may assume that 5 is a potential: s=Uμ.

Let x0 e σ(s) = S(μ). Assuming that s\σ(s) is finite continuous at x0, we shall prove

that s is continuous at x0 Let μ1=μ\Ω-{x0} and μ2 = μ|{*o} Since s=U»ί

+ Uμ2, Uμί \σ(s) is finite continuous at x0. We can apply the proof of [14; Lemme

3] and see that Uμι is continuous at x0, since μ1({x0}) = Q. (Note that the proof
of [14; Lemme 3] fails to be valid if K(ξ, ξ) < + oo and λ({ξ}) > 0.) On the other
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hand, since s(x0)< -f oo, μ2φ$ if and only if G(x0, x0)
< + °° In this case,

GXo<*G(x09 XQ) on Ω (GXQ(x) = G(x, x0)) by (vi). It follows from the lower semi-
continuity GXo that G^ is of continuous at x0. Hence Uμ2=μ2({xo})GXQ is con-
tinuous at x0, and hence s is continuous at x0.

(vii)=>(v): As the proof of (iv)=>(v) shows, it is enough to prove the case
where σ(p) is compact. Let p=Uμ. By Kishi's lemma ([12]; also see [9;
Hilfssatz 4.2] and [4; Part III, Proposition 4]), there exists a sequence {μn} of non-
negative measures such that S(μn) c S(μ) for each n, each Uμn is finite continuous
on Ω and Uβn ί Uμ (n-*oo). For each n, Uμn ̂ s on S(μπ), so that by [11; Lemme
3.1] this inequality holds on Ω. Letting n-»oo, we have Uμ^s on Ω.

REMARK 1. The domination principle (v) implies Axiom D of M. Brelot
[4; Part IV]. Thus we may prove the implication (v)=>(vii) in the following way:
We may assume that s is a potential and σ(s) is compact. Since s|σ(s) is finite
continuous by assumption, s is bounded on σ(s). Hence, by (v) (or, rather by
its immediate consequence (vi)), 5 is bounded on Ω. Then, by [4; Part IV,
Theorem 26], we see that s is continuous on Ω.

REMARK 2. Kishi's lemma mentioned in the proof of the implication (vii)
=>(v) is apparently an improvement of Lemma 4.1. However Kishi's lemma
requires the continuity principle.

§4.3. Axiom 7 and its consequences.

In order to assure that energies of functions are non-negative, we shall assume
any one of (i)~(vii) in the above theorem as our additional axiom. As an axiom
on a harmonic space, either (vi) or (vii) may be the most preferable form :

Axiom 7. Frostman's maximum principle (vi) holds.

Hereafter we shall always assume this axiom. By considering the continuity
principle and using the continuation theorem [4; Part IV, Theorem 14] (or [11;
Theoreme 13.1]), we can easily show

PROPOSITION 4.1. For any domain ωcΩ, §|ω also satisfies Axiom 7.

By virtue of Theorem 4.1, the following lemmas are proved by standard
methods :

LEMMA 4.4. For any /, g e B£(Ω),

and

7//eP£(Ω) (see Lemma 4.2) and EΩ\_f] =0, thenf=0.
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LEMMA 4.5. If μn, μ<ΞM£(Ω) and U»» t l/μ, then I(μn- μ)-»0.

COROLLARY. Given μeM£(Ω), f/iere is a sequence {μn} of measures in MB(Ω)
such that each Όμn is finite continuous, each S(μn) is compact and /(μw — μ)-»0.

CHAPTER V. Functional completion

§5.1. Polar sets and G-capactity.

In order to obtain a functional completion in the sense of Aronszajn-Smith
[1], it is necessary to introduce exceptional sets. As in the classical case, we let
polar sets be our exceptional sets. In this connection we shall also introduce a
capacity defined by G(x, y).

By definition, a set eaΩ is polar if there is a positive superharmonic function
(or a potential) s on Ω such that s(x)= + oo for all xee. We denote by rf the
set of all polar sets in Ω. If βe^Γ and er ae, then e' eΛ"; if {en} is a countable
collection of polar sets, then \Jnen<=Λ" (cf. [4; Part IV, §32]). We say that a
property holds quasi-everywhere, or simply, q.e. on a set A if it holds on A — e
with eeΛΛ For any μ, v e M£(Ω), / = Uμ — 17 v is defined q.e. on Ω.

LEMMA 5.1. Let sί9 s2, s be superharmonic functions on an open set ωcΩ.
n ω/0r any ε>0, fnen S!^s2 on ω.

PROOF . For any regular domain ω' such that ωr c ω, H

for all ε>0. It follows that Hf^H^. Since s(x) = limω,e5βΛ:Hf fc>r any
superharmonic function s, where $$x is the directed family of regular domains
containing x, we have sί^s2 on ω.

COROLLARY 1. If sί9 s2 are superharmonic on an open set ω and sί^s2

q.e. on ω, then S1^s2 everywhere on ω.

COROLLARY 2. (Extended domination principle) If p is a potential on Ω
which is locally bounded on σ(p) and s is a non-negative superharmonic function
on Ω such that s^p q.e. on σ(p), then s^p on Ω.

PROPOSITION 5.1. Ifeisapolarsetandμ<=ME(Ω) (orμ\K^ME(Ω)forany
compact set K), then μ(e) = 0.

This proposition can be proved in the same way as in the classical case (see,
e.g., [9;Hilfssatz5.1]).

The following lemma is a consequence of [4; Part IV, Definition 9, Proposi-
tion 10, Example a) in § 1 5 and Proposition 23] :

LEMMA 5.2. Let A be a relatively compact set in Ω and let

px = inf{s; non-negative superharmonic on Ω, s^l on A}.
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Then the regular ization pA of pA is a potential on Ω such that σ(pA)dΆ, pA=i
q.e. on A and pA = i on the interior of A.

Let λA be the associated measure of pA: UλA = pA.
For a compact set K in Ω, the G-capacity C(K) is defined by

= sup{μ(K); U^l on Ω}

(cf. [4; Part III, Chap. IV]). By virtue of Corollary 2 to Lemma 5.1, we can
apply the methods in the classical potential theory to our case; for instance, by
the same methods as in [9; § 5], we can prove the following results.

LEMMA 5.3. For any compact set K, S(λκ)<^K and

For the proof, see [9; Satz 5.2].

PROPOSITION 5.2. C is a Choquet capacity (or, a strong capacity, in the
sense of [4; Part II]).

See [9; Satz 5.3] for the proof. Also cf. [4; Part III, Theorems 7 and 8].
The (outer) capacity of an arbitrary set is defined in the usual way : for an

open set ω in Ω,

C(ώ) = sup (C(K) K : compact c ω},

and for an arbitrary set A in Ω,

) = inf{C(ω); ω:

It is known that C is then a true capacity in the sense of [4; Part III] (see Theorem
2 there). In particular, it is countably subadditive:

C( 0 An) ^ Σ C(An).
n=l n=l

LEMMA 5.4. If ω is a relatively compact open set, then

(5.1) C(ω) = λω(Q) = I(λω).

More generally, if ω is an open set with C(ω)< + oo, then

pω = sup{Uλκι K: compact cω}

is a potential on Ω and its associated measure λω satisfies (5.1).

The proof is the same as that of [9; Hilfssatz 5.5]. Note that Hilfssatz
5.2 and 5.3 in [9] are also valid in our case.

Obviously, if C(ω) < + oo for an open set ω, then Uλa> ̂ 1 on Ω, Uλω = 1 on
ω and S(Λ,ω)cά>. It also follows that
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l/Ao=inf{s; non-negative superharmonic on ί2, s^l on ω}.

LEMMA 5.5. A set e is polar if and only if C(e) = 0.

For the proof, see [9; Hilfssatz 5.6]. Note that we use Lemma 1.5 (in
[13]) as well as the above lemma. Also, cf. [4; Part IV, the corollary to Theorem
10].

§ 5.2. Quasi-continuous functions.

Now that we obtain the G-capacity C, the notion of quasi-continuous func-
tions is defined in terms of this capacity: An extended real valued function /
on an open set ω in Ω is called quasi-continuous if for any ε>0 there is an open
set ωεcω such that/|(ω —ωε) is finite continuous and C(ωε)<ε. A quasi-con-
tinuous function is finite q.e. (cf. Lemma 5.5). If /is quasi-continuous on ω and
if # = /q.e. on ω, then g is quasi-continuous on ω. If/ι,/2 are quasi-continuous
on ω and α1? α2 are real numbers, then oίίfί + α2/2 is defined to be quasi-continuous
by assigning any value at every point where + oo — oo or — oo + oo occurs.

LEMMA 5.6. For any μeM£(β), Uμ is quasi-continuous on Ω; thus, for
any μ, veM£(ί2), Uμ—Uv is defined as a quasi-continuous function on Ω.

This lemma is proved in the same way as in the classical case (see [9; Satz
5.4] or [6; Proposition 5]).

For the later use we prove:

LEMMA 5.7. Let f be a quasi-continuous function on an open set ω0 in Ω.

I f f i s μ^-summable and \fdμ% = Qfor every regular domain ω such that ωdωQ

and for any xeω, thenf = Q q.e. on ω0.

PROOF. (Cf. the proof of [9; Hilfssatz 5.9]) We say that a set e in ω0 is
negligible (cf. [4; Part IV, Def. 8]) if μj(e) = 0 for any regular domain ω such that

<£cω0 and for any x^ω. The assumption that \fdμ% = 0 for any such ω and x

implies \ \f\dμ% = Q for any such ω and x (see [4; Part IV, Proposition 16 and

the proof of Basic Lemma 1 (pp. 103-104)]), and hence that A = {x e ω0 /(x)^0)
is negligible. Given ε > 0, let ωε be an open set such that C(ωε) < β and/| (ω0 — ωε)
is finite continuous. Then the set

ω' = {:xeω0; there is a neighborhood U of x such that U — ωε is negligible}

is an open set containing ωε. Since A — coε is relatively open in ω0 — ωε, for each
x^A-ωε, there is a neighborhood 17 of Λ; such that l/-ωεc^4-ωε, so that x
eω'. Therefore AC.CO'. On the other hand, since ω' is covered by a countable
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number of open sets U such that U — ωε are negligible, ω'— ωε is negligible. It
follows that, for any compact set K in ω', Uλκ^ 1 = Uλe on ωf except on a negligible
set, where λε = λωe. Since Uλκ, Uλe are superharmonic, it then follows that Uλκ

^ Uλ on ω' (cf. the proof of Lemma 5.1). Hence, by the domination principle,
Uλκ g Uλ everywhere on Ω. Thus, C(K) g C(ωε) < ε, and hence C(ω') < ε. There-
fore

COROLLARY. Let f be a quasi-continuous function on an open set ω in Ω.

Iffis μ-summable and \fdμ = Qfor all μeMB(Ω) such that S(μ) is compact and

contained in ω, thenf = Q q.e. on ω.

§ 5.3. Functional completion of the potential part.

The space B£(Ω) is a direct sum of the spaces Ή.BE(Ω) and PE(Ω). We know
that H£(Ω) is complete and contains HB£(Ω) as a dense subspace (Theorem 3.3
and Corollary 1 to Proposition 3.5). Thus we shall now consider a functional
completion of P£(ί2), or rather its subspace

p£C(β) = {ίyμ_LΓv ; μ9 VeMβ(Ω), 17" and U v are continuous}.

By virtue of the corollary to Lemma 4.5 and the corollary to Theorem 2.1, P£C(Φ)
is dense in P£(Ω) with respect to the norm £Ω[ ]1/2.

LEMMA 5.8. /// e P£C(ί2), then |/|eP£C(Ω) and EΩ[|/|] = £«[/].

PROOF. Let/= 17"- L/v with μ, veMβ(β) such that L ,̂ 17V are continuous.
Then |/| = (7'ί+l/v-2min(ί7^, U v). Obviously min(l/^, U v) is a continuous
potential. Hence, we see that its associated measure λ belongs to MB(Ω) and that
|/|eP£C(Ω). Since / is continuous, Ω+ = {xeΩ; /(x)>0) and Ω_ = {xeΩ;
/(x)<0) are open sets. It follows from Lemma 1.8 ([13]) that λ\Ω+=v\Ω+ and
λ\Ω_ =μ|Ω_. Hence, by the corollary to Theorem 2.1,

= \ f(dμ-dv)-\ f(dv-dμ)
JΩ+ JΩ-

JΩ

COROLLARY . /// e PEC(Ω) and μ e MB(Ω), then

PROOF.
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LEMMA 5.9. For any set A in Ω,

C(A)^mf{EΩ\:n J<ΞPEC(Ω\ |/(x)|^l q.e. on A}.

PROOF. Let /eP£C(Ω) and |/(x)| ̂  1 q.e. on A. We shall show that C(A)
jj[/] For ε>0> v4ε = {xeΩ; |/(x)|>l —ε} is an open set and C(A—^4ε) = 0.

For any compact set KaAε, using the above corollary and Lemma 5.3 we have

Hence C(K)^£β[/]/(l-ε)2. Therefore C(Λ)^£β[/]/(l-ε)2. It then follows

LEMMA 5.10. Let {/„} be a sequence in PEC(Ω) such that £fi[/n-
(n, m^oo) andfn-*Q q.e. on Ω. Then £β[/π]->0

PROOF. Let μ^MB(Ω). Then, the corollary to Theorem 2.1, Proposition
5.1, Fatou's lemma and the corollary to Lemma 5.8 imply

<: \f,\dμ£ liminf \f,-fm\dμ
JΩ m-*oo JΩ

Since £Ω[/n-/m]->0 («, m->oo), it follows that £β[/n, [7"]-> 0 (n->oo). Hence

(5.2) lim £«[/„, /J=0
H-+00

for each m. Now, {£β[/J} is bounded: £β[/J^M (n = l, 2, ...)• Given
ε>0, choose m so large that n^m implies EΩ[fn—fm]<ε2/M. Then, for n^ra,

Hence, by (5.2), limsup^E^/J^ε, and hence Eβ[/J->0 (n-»oo).

The space P£C(^) i§ a normed functional space in the sense of Aronszajn-
Smith [1] with respect to the norm ||/|| = £β[/]1/2. Lemma 5.9 shows that the
G-capacity C is admissible with respect to PEc(Ω) and the exceptional class ΛΛ
Therefore, in view of Lemma 5.10, it follows from [1 § 6, Theorem I] that
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has a functional completion relative to ^Γ; more precisely, we obtain (cf. also,
[9] and [10]):

THEOREM 5.1. Let

( there is a sequence {/„} in PEC(Ω) such that)
& ft(ώώ) == { 7 I f

I /.-*/«.«• on Ω and \\f.-fm\\-*0 (n, m^~) ί

Then #o(Ω) has the following properties:
(a) 7//e<f0(Ω) and g is a function on Ω such that g=f q.e. on Ω, then g

(b) For any /e<?0(Ω), let {/„} be α sequence in
.e. on Ω and !!/„ — /w||->0 (n, m-»oo).

is we// defined, i.e., it is independent of the choice of {/„}. Furthermore,

(c) // we identify functions which are equal q.e. on Ω, then #0(Ω) is a
Banach space with respect to the above norm, and contains P£C(^) as a dense
subspace.

(d) If fn, /e^0(Ω) and !!/„—/ 1|->0 (π-*oo), then there is a subsequence

{//ikl w/zic/z converges to f q.e. on Ω.
The energy of a function /e*ί0(Ω) is defined by

and the mutual energy off, g^<ί0(Ω) by

EΩU, g l ί

If IIΛ-/IHO and H^-βlHO with /„, gn^PEC(Ω), then £β[/n, gJ^EΩ\J9 g}.
Hence, we see that the mapping (/, g)-+EΩ[f, g~\ is a symmetric bilinear form on

<f 0(Ω) x <f 0(
β) Obviously EΩ[f, /]=£β[/]. Therefore, by (c) of the above

theorem we have

COROLLARY. #0(Ω) is a Hilbert space with respect to the inner product
EΩ\_f, g~\, identifying functions which are equal q.e. on Ω.

PROPOSITION 5.3. Any function in <00(Ω) is quasi-continuous.

PROOF. Let/e«f0(Ω). There is a sequence {/„} in P£C(Ω) sucrι Λat /„-*/
q.e. on Ω and EΩ\_fn—fn+l~\<ll22n (n = l, 2,...). Then, using Lemma 5.9, we can
show by the same method as in the proof of [9; Hilfssatz 7.8] (also cf. the proof
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of [10; Theoreme 3.11]) that given ε>0 there is a set Bε such that C(Bε)<ε and

{/„} converges uniformly on Ω — Bε. Then we immediately see that / is quasi-

continuous.

LEMMA 5.11. If μ<=ME(Ω), then l7*e=*0(Q) and EΩ[U*] = I(μ).

PROOF. By the corollary to Lemma 4.5, we can choose a sequence {μn}

in MB(Ω) such that each Uμ» is continuous and 7(μπ-μ)->0. Then U^n^PEC(Ω)

and, by the corollary to Theorem 2.1, EΩ[Uμn — Uμ™]=I(μn — μw)->0 (n, w-»oo).

Hence U»e*0(Ω). Furthermore, £Ω[C/^] = lim/I^00EΩ[C/^] = lim

COROLLARY. If μ, veM£(ί2), f/ien £Ω[[/'ί-l/v]=/()U-v) and EΩ[Uμ, l/v]

μ, v>.

LEMMA 5.12. i//e<f0(Φ) «wd μeM£(Ω), then f is μ-summable; in fact

(5.3)

and

(5.4)

PROOF. First suppose /eP£C(Ω). By Lemma 5.8, |/|eP£C(Ω), i.e.,
1/1 = 17^1-17^2 with λi9 λ2<=MB(Ω). Given μeM£(Ω), choose μMeMβ(Ω),

n = 1, 2, ..., such that Ufίn t Uμ. Then, using the corollary to Lemma 5.8, we have

\f\dμ = ( (Uλι-
Ω JΩ

= lim ( 17""̂ ! - lim ( U"»dλ2
π->oo JΩ n-*ao JΩ

= lim ί \f\
n-*ob JΩ

Similarly, we obtain

( fdμ= lim ί /^n= lim£β[/, £/'-] = £„[/, t/"],
JΩ w-*oo JΩ w-»(30

where the last equality follows from the fact that EΩ[_Uμn- U>]-+0(n->oo)(cf. the

proof of the above lemma).

Next, let/e<f0(Ω). Choose {/„} in PEC(Ω) such that /„->/ q.e. on Ω and
Eβ[/π— /]-»0 (n-»oo). By the above result, Proposition 5.1 and Fatou's lemma,

we have

liminf \
n^oo JΩ
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Applying this result to /-/„, we also have

( \f-fn\dμ^EΩtf-fnγ^EΩ\:U»γ/2->Q (n->oo).
JΩ

Hence,

( fdμ = limί fndμ= lim EΩ[/Π, t/"]=Eβ[/, I/"].
JΩ n-»oo JΩ n-»oo

LEMMA 5.13. ///e<f0(Ω) and α>0, then

We can prove this lemma in a way similar to the proof of [9; Hilfssatz 7.6],
using Proposition 5.3 and the above lemma (also, cf. the proof of Lemma 5.9).

By means of this lemma, we obtain the following proposition in the same way
as [9; Hilfssatz 7.7]:

PROPOSITION 5.4. For any /e^0(Ω), there is a potential p on Ω such that

COROLLARY. £0(Ω) n 3e(Ω) = {0} in particular, <f 0(Ω) Π H£(Ω) = {0}.

§ 5.4. The space of energy-finite functions.

Now we consider the vector sum of two function spaces H£(Ώ) and &Q(

This is a direct sum by virtue of the corollary to Proposition 5.4, so that each
/e<f(Ω) is uniquely expressed as/ = w+/0 with weH£(Ω) and/0e^0(Ω). We
define the energy of /by

and the mutual energy of /and g^#(Ω) by

where g = v+g0 with v^HE(Ω) and
By definition, B£(Ω) c #(Ω) and the notion of energy for functions in <f (Ω)

is compatible with that for functions in B£(Ω) defined in Chapter II. By Proposi-
tion 5.3, any function in #(Ω) is quasi-continuous. As immediate consequences
of Theorem 5.1, its corollary and Theorem 3.3, we obtain

THEOREM 5.2. (a) /// e ̂ (Ω) and g =/ q.e. on Ω9 then
(b) #(Ω) is a linear space (identifying functions "which are equal
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and £#[/, g~] is a symmetric bilinear form on #(Ω)x#(Ω); in case
£β[/]1/2 defines a semi-norm on <f(Ω) such that EΩ[/] =0 if and only iff = const.
q.e. onΩ; in case 1 ̂ «^(ί2), £Ω[/]1/2 defines a norm on «f(Ω); £(Ω) is complete
with respect to the semi-norm £β[/]1/2 in any case.

(c) For any /e*f(ί2), there is a sequence {/„} in B£(Ω) (or, in H£(Ω)

+P£C(Ω)) such that £Ω[/n-/]->0 and fn-+f q.e. on Ω.
(d) //£«[/„— /]-»0 (n-+oo) for fn, /e<f(Ω), ί/ien ί/iere are a subsequence

{fnk} °f {fn} and a sequence {ck} of constants such that fttk + ck^>f q.e. onΩ; we
can choose cfc = 0, fc=l, 2, ..., ίf

The following lemma will be used in the next chapter :

LEMMA 5.14. 7//e<f(Ω) and μ is a non-negative measure such that μ\K
eM£(Ω) for any compact set K, then f is locally μ-summable. If {/„} is a se-

quence in #(Ω) such that fn-+f q.e. on Ω and EΩ\_fn— /]-»0 (n->oo), then \ \fn

—f\dμ->Q (n->oo)/or each compact set K.

PROOF. Let f = u + g with weH£(Ω) and g^#0(Ω). Since u is locally
bounded and g is μ|K-summable for any compact set K by Lemma 5. 12, /is locally
μ-summable. Lεtfn = un + gn with un^HE(Ω) and gn^#0(Ω) for each n. Then
£β[ww — w]-»0 and EΩ\_gn — ̂ ]->0 (n^oo). By the corollary to Theorem 3.2
([13]), there are constants cn, n = l, 2, ..., such that un + cn-+u locally uniformly
in Ω. We shall show that cM->0. Supposing the contrary, we find ε0>0 and a
subsequence {cnj} of {cn} such that \cnj\^ε0 for all j. Since £«[#„, -0]-»0
(7*-»oo) and ^WJ, gG^0(Ω), Theorem 5.1, d) implies that there is a subsequence

{βn'j} of {#„,} converging to 0 q.e. on Ω. Since /„',.->/ q.e. on Ω, WM^->M q.e. on
Ω. This is impossible, since un^ + cnfj-^u and |cn/J^ε0. Thus we have shown

that un^u locally uniformly on Ω. Hence, for each compact set K, \ \un — u\dμ

->0 (n-*oo). On the other hand, by Lemma 5.12, \ \gn — gldμ^O (n-^oo).
J K

Hence we have the lemma.

CHAPTER VI. Energy measures and lattice structures

§6.1. Energy measures for locally bounded functions.

Let us consider the space

Bloc(Ω) = {/; for any relatively compact domain ω,/|ωeB£(ω)}.

First we observe

LEMMA 6.1. // we^(Ω) and 17", 17V are locally bounded potentials, then
f = u + U»-Uv belongs to Bloc(O).
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PROOF. For any relatively compact domain ω,

with uω e « (̂ω). Obviously, 17£ and £/£, are bounded. Furthermore, μ(ω) < + oo
and v(ω)< +00, so that μ\ω, v|ωeMB(ω). Thus, what remains to prove is uω

εHB£(ω). Since there is another relatively compact domain ω' such that ωcω',
we may assume that μ, veMβ(Ω). Now

Since w | ω is bounded and μu j ω(ω) = μtt(ω) < + oo , u \ ω e Hβ£(ω). Next we consider
t?= l/"|ω- I/ft. Then t e^T(ω) and is bounded. By Lemma 2.3 (in [13]), (I/")2

= Uμί- U»2 with μ1? μ2 e MB(Ω). Thus

on ω with hejf(co). It follows that

on ω, where M = suρωt/μ. Hence μv(ώ)^μ2((jd) \-2Mμ(ώ)< + 00, and hence i;
eHβE(ω). Similarly, we see that l/v|ω- 1/£ eHBE(ω). Therefore wωeHB£(ω).

By this lemma, we see that B£(Ω) c Bloc(Q), ^(O)cBlβc(β) and constant
functions belong to Bloc(ί2).

For each/eBloc(Ω), its associated measure σs is well-defined by the following
condition: for any relatively compact domain ω, /|ω = wω+l/£— U^ with wωe
.̂ (ω) and σf\ω=μ — v. Lemma 2.3 ([13]) implies that i f/, #eBloc(Ω), then
/0<ΞBloc(Ω). Therefore,

defines a signed measure on Ω for/, 0eBloc(Ω). Here, in general, fσ means the
signed measure defined by d(fσ) —fdσ for a signed measure σ on Ω and a locally
|σ|-summable function/in Ω. The measure ε[/f^ may be called the mutual energy
measure o f f and 0. The mapping (/, #)->£[/,0] is symmetric and bilinear on
Bloc(Ω) x Bloe(Ω). The measure

εf - εif,n=-5~(2/σ/ - σ/2 +/2π)

will be called the energy measure of/eBloc(Ω).
We shall write Eω[/] for Eω[/|ω]. Obviously, if/eBloc(Ω), then ε/ω)

=£ω[/] for any relatively compact domain ω and if/eB£(Ω), then εf(Ω) =
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PROPOSITION 6.1. For any /eBloc(£2), εf is a non-negative measure.

PROOF. Since §|ω satisfies Axiom 7 (Proposition 4.1),
for any relatively compact domain ω. It follows that εy(ω)Ξ>0 for any open set
ω, and hence that εf is a non-negative measure.

Proposition 6.1 implies that if/, 0eBloc(Ω) then

(6.1) \είftg,(A)\

for any relatively compact Borel set A and

(6.2) W^)1/2 ̂

for any Borel set A in Ω.

§ 6.2. Locally energy-finite functions.

Next we consider

(floc(Ω) = {/; for each relatively compact domain ω,/|ωe<f(ω)}.

< l̂oc(Ω) is a linear space if we identify functions which are equal q.e. Each/e
*floc(β) is quasi-continuous on Ω. Obviously, Bloc(Ω) c <floc(Ω).

LEMMA 6.2. <f (β) c «f Ioc(ί2).

PROOF. Let /e <f (£2). Then there is a sequence {/„} in BE(Ω) such that
/rt->/q.e. on Ω and E0[/rt— /m]->Ό (n, m-»oo). For any domain ω,

/m(Ω) = £β[/n-/J^O (n,

Hence, /|ω <Ξ ̂ (ω). Therefore / e if loc(Ω).

THEOREM 6.1. For each f^^lOG(Ω\ there exists a unique non-negative
measure εf such that

(6-3) ε/ω)=Eω[/]

for every relatively compact domain ω. ///e^(Ω), then εf(Ω) = EΩ^f].

PROOF. Uniqueness immediately follows from (6.3). Let /e<floc(Ω) and
ω be a relatively compact domain. (In case / e if (£2), ω may be equal to Ω.)
Choose {/„} in B£(ω) such that fn-+f q.e. on ω and £ω[/rt-/]->0 (n->oo). For
any Borel set A in ω,

(n,
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It follows that a set function εj is defined for all Borel sets A in ω by

) = lim εfn(A)

and that it is a non-negative measure on ω. It is easy to see that if ω' is another
relatively compact domain containing ω, then εj'\ω = εj. Therefore, there is a
non-negative measure εf on Ω such that εf\ω = εj. Obviously, εf(ώ) = εj(ώ)
= limrt^00ε/n(ω)=limn_+00£;ω[/π] = Eω[/] for each relatively compact domain ω
and for ω = Ω if/<E«f(β).

The measure εf in the above theorem will be called the energy measure of
(Ω). For/, 0e<£Ίoc(Ω), their mutual energy measure is defined by

It is easily verified that the mapping (/, όO-^y^ , is symmetric bilinear on &\OC(Ω)
x #ιoc(Ω) and ε[/>g](ω) = £ω[/, g~\ for each relatively compact domain ω. Further-

more, β[/fri(Ω) exists and equals £β[/, g~\ if/, g^#(Ω). Also, (6.1) and (6.2)
hold for/, gζ=*loc(Ω).

PROPOSITION 6.2. /// e if loc(Ω) and a is a raz/ constant, then

in particular, εa = a2π.

PROOF. By considering locally, we may assume that /e*f(Ω). Choose
{/„} in B£(Ω) such that/M->/q.e. on Ω and £β[/,,-/]->0 (n->oo). Since σα = απ,

= α/nπ.

As in the proof of the above theorem, we see that ε[yιifα](y4)->β[/fβ](A) for any
relatively compact Borel set A. On the other hand, Lemma 5.14 implies that

\ α/Πdπ-> \ ocfdπ for such A. Hence we have the proposition.
J A. J A.

LEMMA 6.3. Let /e<floc(Ω) and ω be a relatively compact domain. If

where μ1=μ%ί and μ2 = ̂ x2 > for any regular domains ωt and ω2 such that lάί

cω2cά>2cω and for any x^ωί9 then there is weH£(ω) such that f\ω = u
q.e. on ω.

PROOF. Let f\ω = u + g with weH£(ω) and g^S>

0(ω). Since Ufiί = Uμ2

on Ω-ω2, we have Uμι - Uμ2 = U& - Utf on ω. Hence, by (5.4) in Lemma 5.12,
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J, ϋμι - 17**] = Eω[0, Uζf - 17£>]

Thus, by assumption, \ g dμ^1 = \g dμ%2 for any regular domains ω l5 ω2 such that

ft>2c:^ and for any xeco^ Therefore, if we define v(x) = \gdμ%' for

', where ω' is a regular domain such that ώf cω, then i? is defined as a har-

monic function on ω. Since \(t; — g)dμ%' =Q for any such ω' and xeω', Lemma

5.7 implies that g = v q.e. on ω. It follows that u = 0, since 0e<f0(ω). Hence
/|ω = w q.e. on ω.

COROLLARY Let /e^loc(Ω) and ω be a relatively compact domain. If

£ω[/> 0] = 0 /or βfl)7 0e<^o(ω) (°r> for any 0eP£(ω)), then f\ω = a harmonic
function q.e. on ω.

THEOREM 6.2. «?(Ω) = {/ e ̂ loc(Ω) ε/O) < + oo } .

PROOF. Let <2" = {/ e ̂ loc(O) ε/Ω) < + oo }. By Lemma 6.2 and Theorem
6.1, <f(ί2)c<f' . So, we shall prove the converse inclusion. If/, g <£.&', then
|ε[/) |̂(Ω)< + 00. Hence </, 0 > Ξ β[/>ί7](β) gives a symmetric bilinear form on
£' and </,/> ̂ 0. Let/e<f' be given. Since <f0(

β) is complete with respect
to the norm </,/> 1/2 = £Ω[/]1/2 (Corollary to Theorem 5.1), by the usual
method of orthogonal projection, we find /Oe^0(β) such that </— /0, 0> =0
for all #eίί0(Ω). Let ω be a relatively compact domain and ωi9 ω2 be regular
domains such that ci)1cω2cα)2cω. Let g = Ufii — Uμ2

9 where μι = μ?1 and

μ2=μ%2 with xeα^. Then, g^#0(Ω). Since 0 = 0 on Ω-ω2, %-/0,»]l
(β — ά>2) = 0. Hence

EJLf-fo, ^]=e[/-/o^](ω) = ε[/-/o^(Ω)= </-/o5 0> =0-

Therefore, by the above lemma, there is u e H£(ω) such that /— /0 = M q.e. on ω.
Since ω is arbitrary, modifying the values of/0 on a polar set (i.e., re-defining /0

by/— u on ω), we have/ = u+/0 on Ω with we^ίΩ) and/0e<f0(Ω). Since/,
we^'. It follows from the definition of H£(Ω) that weH£(Ω). Hence

§ 6.3. Energy of superharmonic functions.

LEMMA 6.4. Lei μ be a non-negative measure such that Uμ is a potential.
Then

(i) 17* e (f (Ω) i/ and only if μ e M£(Ω)
(ii) C/"e^loc(Ω) //and on/y if μ\K^ME(Ω) for every compact set K in Ω.

PROOF. The "if" part of (i) is already shown (Lemma 5.11). If μ\K^ME(Ω)
for every compact set K, then, for each relatively compact domain ω, μ\ω e M£(ω),
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and hence (7^e^0(ω)c l̂oc(ω). Since Uμ\ω-U^ is harmonic, it belongs to
Λoc(ω) Hence, l/μ|ωe<^loc(ω). Since this is true for any relatively compact
domain ω, we see that Uμ e #loc(Ω). Thus the "if" part of (ii) is proved.

Next, suppose μ(Ω)< + 00 and Uμ<Ξ#(Ω). Then Uμ<=#0(Ω) by Proposition
5.4. Let Uμ*»=mm(Uμ

9 m) for m>0. Then μmeM£(]Q), so that U
Using (5.4) of Lemma 5.12, we have

-( Uμdμm+( (
JΩ JΩ

Hence, (uμ™dμ^EΩ[Uμ] for all m>0. Therefore, 7(μ)^£β[U^]< + 00, i.e.,

μeM£(β). Now let [7μe^loc(Ω) and let {Ωn} be an exhaustion of Ω. Let
Uμ\Ωn = un+U&nvtith un^je(Ωn). Since U"\Ωn<=*(ΩJ9 we have wn<ΞH£(ΩM),
C/gne^0(Ωn) and EΩn[Uμ

Ίn~]^EΩn[Uμ']. The above result implies that μ\Ωn

e ME(Ωn), since μ(Ωπ) < + oo . Hence the "only if" part of (ii) follows. Further-
more, by Lemma 5.11,

Ωn

Hence, if Uμ<=£(Ω), then 7(μ) = limll_00\ UΩndμ^>EΩ[Uμ']< + 00. This means
JΩn

that the "only if" part of (i) holds.

PROPOSITION 6.3. Let s be a super harmonic function on Ω.
(i) se<f (Ω) if and only if it has a harmonic minor ant, its greatest harmonic

minorant belongs to H£(Ω) and σseM£(Ω);
(ii) se<^loc(Ω) if and only ifσs\K&ME(Ω)for every compact set K in Ω.

PROOF. The "if" part of (i) is obvious. Suppose se<f(Ω). Thens = u + p
with weH£(ί2) and pe*f0(Ω). By Proposition 5.4, we see that p is a potential,
so that u is the greatest harmonic minorant of s. Furthermore, σp=σs. Hence,
by the above lemma, σseM£(Ω), and (i) is proved. Next, let s be any super-
harmonic function and ω be a relatively compact domain. Then s has a harmonic
minorant on ω; in fact s = uω+11% on ω with Mωe^(ω). By the above lemma,
s|ωe<floc(ω) if and only if σs\K^ME(ώ) for any compact set K in ω. Since ω
is arbitrary, we obtain (ii).

§6.4. Lattice structures.

In this section, we first study the lattice structures of the following spaces:



Energy of Functions on a Self-adjoint Harmonic Space II 57

= {/;/=^-C/v q.e. on Ω with μ, veM£(Ω)},

and

S£ίloc(Ω) = {/ for any relatively compact domain ω, /|ωeS£(ω)}.

Obviously, P£(Ω)cQ£(Ω)c<f0(Ω), B£(Ω) c S£(Ω) c *(fl) and Bloc(Ω) c S£ftoβ(Q)
Cί?locOΩ). Furthermore, from Lemma 6.2 we can show that S£(Ω) c S£>loc(Ω).

LEMMA 6.5. 7/weH£(Ω), then min(w VO, (-u) Vθ)eΞQ£(Ω).

PROOF. Let w+=max(M, 0) and M~"=max(— w, 0). Then w+ = w V θ — (7τ

and M~ = ( — M) V O — Uτ with a non-negative measure τ on £2. By Theorem 3.1

([13]), u V 0, ( - u) V 0 e H£(Ω). Since £Λ is locally bounded, C/τ e Bloc(O) by Lem-
ma 6.1. Hence w+, M~eBloc(Ω). Since M+w~ = 0 and S(τ)c{xeΩ; w(x) = 0},
we have

It follows that εM = εu+ + εu- . Hence εu+(Ω) ̂  εu(Ω) = jEβ[M] < + oo , so that u+ (

by Theorem 6.2. Therefore, CΛe^0(β), and by Lemma 6.4, L/τeQ£(Ω). Since
l/r = min(w V 0, ( — M) V 0), we have the lemma.

THEOREM 6.3. Q£(Ω) and SE(Ω) are vector lattices with respect to the max.
and mm. operations and

£0[max(/,

PROOF. It is enough to prove that if/ e S£(Ω) (resp. e Q£(Ω)), then max(/, 0),
/, 0)eS£(Ω) (resρ.eQ£(Ω)) and

(6.4) £Ω[max(/, 0), min(/, 0)] = 0

(cf. the proof of Theorem 3.1 in [13]). Let /=u + l/μ-L7v q.e. on Ω with we
H£(Ω) and μ, veM£(Ω). By the above lemma, min(wVθ, (-w) Vθ)eQ£(Ω).
It then follows that mm{uVQ+Uμ, (-w)Vθ+ί7v} is a potential belonging to
QE(Ω). Let

1/^minίM VO+17", (-

Since max(/, 0) = w V 0+ 17" - U\ min(/, 0) = w Λ 0+ Uλ- U* q.e. on Ω and M V 0,
(-M)Vθ€ΞH£(Ω), we see that max(/, 0), min(/, 0)eS£(Ω). Furthermore, if
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/<ΞQ£(ί2), then w=0, so that max(/, 0), min(/, 0)eQ£(Ω).
To obtain (6.4), we first suppose that Uμ, Uv are continuous. Then/ e Bloc(ί2)

and the above observations show that max(/, 0), min(/, 0)eBίoc(ί2). Let Ω+

= {xeΩ;/(x)>0} and Ω_ ={xeΩ; /(x)<0). Since Ω+, Ω_ are open sets, it
follows from Lemma 1.8 ([13]) that λ\Ω+ = v Ω+ and A|Ω_ = μ|ίλ_. Hence, noting
that max(/, 0) min(/, 0) = 0, we have

, 0) (λ - v) + mίn(/,

where χA means the characteristic function of a set A. Therefore, we obtain
(6.4) in case Uμ, Uv are continuous. In the general case, we choose μn and VM,
w = l, 2, ..., such that 17"", C7V» are continuous, 17"» ΐ 17" and 17V» | 17V. Let
/Il = t* + I7'1»-I7v» and

t7A» = min{w Vθ+l^», (-w) VO+17V»}.

Then, /„ <E S£(β), I7λ» t ί/λ, max(/B, 0) = u V 0 + 17*» - ί7λ« and min(/M, 0) = u Λ 0
+ l/λ»~ 17V-. By Lemma 4.5 and the corollary to Lemma 5.11, E^L^- 1̂ ]->0,
£β[ί7Vw- 17V]->0 and EΩ[l7λ«- l/λ]->0 (π->oo). Hence Eβ[max(/M, 0)-max(/, 0)]
-^0 and £β[min(/M, 0)-min(/, 0)]-*0 (n-^oo). Since Eβ[max(/n, 0), min(/n, 0)]
= 0 for each n, we obtain (6.4).

COROLLARY. S£)loc(Ω) is a vector lattice with respect to the max. and mίn.
operations and, for /, 0eS£)loc(ί2),

ε l/l = β/» ε[max(/,0),min(/,0)J = 0

and

REMARK. The proof of Theorem 6.3 shows that Bloc(Ω) is also closed under
max. and min. operations.

THEOREM 6.4. g (Ω) and #Q(Ω) are vector lattices with respect to the max.
and min. operations; iff, g^#(Ω), then

and

£β[max(/,

PROOF. Let /e^(Ω), i.e., f = u + p with u<=HE(Ω) and pe^0(Ω). By
Theorem 5.1, there is {pn} in PE(Ω) such that EΩ\_pn — p]-^0 and pn-^p q.e. on Ω
(n^oo). It follows from Lemma 5,14 that
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(6.5) \u + pn\dμ-+ \f\dμ (n->oo)
JΩ JΩ

for any μeM£(Ω) with compact support. Let gn=\u + pn\ — u V ( — w). Since
M + pπeS£(Ω), Theorem 6.3 implies that gn<=SE(Ω). Furthermore, since ' \gn\
^ {M V ( — M) — \u\} + \pH\, we see that α^Q^Ω) by using Proposition 5.4. There-
fore, using Theorem 6.3 again, we have

Hence {£Ω[0 „]} is bounded. Regarding £0(Ω) as a Hubert space, we can choose a
subsequence {gnj} of {#„} which converges to a function # e <s?0(

β) weakly in

ίfo(Ω). It follows from Lemma 5.12 that \ gn.dμ-+\ gdμ for any μeM£(£2).
JΩ J JΩ

Hence

(6.6) β ln + ̂ j d μ - ^ t f l f + ii V(-ιι)}dμ

for any μeM£(Ω) with compact support. By (6.5) and (6.6),

( \f\dμ=\ {g + uV(-u)}dμ
JΩ JΩ

for any μeM£(Ω) with compact support. Hence, by the corollary to Lemma 5.7,
we conclude that \ f \ = u V ( — u)+ g q.e. on Ω. Hence, |/| e^(Ω). Furthermore,
if/e<f 0(Ω), then w = 0, so that |/| e^0(Ω). Since gnj-^g weakly in #0(Ω), we see
that \u+pnj\-*\f\ weakly in £0(Ω). It then follows that

£β[|/|]^liminf£Ω[|W + Aυ|]^ lim £fl[ιι + pj = £0[/].
J-*oo n->oo

COROLLARY. ^ιoc(Ω) is α vector lattice with respect to the max. and min.
operations', for any /,!# e <f loc(Ω),

εmax(/> f lr) + εmin(/,flf) ̂  ε/ + £flf

Finally we give

PROPOSITION 6.4. ///e^(Ω) (resp.e^0(Ω)) and a^O, ί/ien min(/, a)
<Ξ(f(Ω) (resp.

PROOF. Since ae^loc(Ω), the above corollary implies

εmax(/,α) + £min(/,α) ̂  β/ + βα

Now, max(/, α) = {/- min(/, α)} + α. Hence

εmax(/,α) = ε/-min(/,α) + ̂ ε[/- min(/,α),α] +
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so that we have

£f ~~ εm in(/,α) = £f - m in(/,

or, by Proposition 6.2,

(6.7) ε/~εmin(/>α)^ε/_min(/>α) + 2α{/-min(/, α)}π.

Since the right-hand side is a non-negative measure, βmin(/jα)^ε/. Hence
εmin(/,α)(^)^ε/(Ώ) = £β[/]< + 00. Therefore, by Theorem 6.2, min(/, α)e«f(Ω),
and Eβ[min(/, α)] = εm in(/)α)(β) ̂  £β[/] . Furthermore, if/ e «f 0(Φ)» then Proposi-
tion 5.4 and the inequality |min(/, α)| ̂  |/| imply that min(/, α)

REMARK. In view of the corollary to Theorem 6.3, the equality holds in

(6.7)if/eSEJoe(0).
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