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§ 1. Introduction

Some semi-linear equations are in close connection with branching Markov
processes. Suppose we are given the infinitesimal generator A of a Markov
process xt on a topological space S together with the following quantities: (i)
a non-negative Borel function k(x) on S, (ii) a sequence {qn(x)}n=o,2,s,.. °f
Borel functions on S, and (iii) a sequence {πn(x, dy)}n=0 2,3>... of stochastic
kernels from S to the n-fold symmetric product Sn of S. We consider the fol-
lowing equations:

(I) ^ % ^ = Λu(f, *) + *(*){ Σ ί . ( * ) ( πn(xydy)u(t,y)-u(ί,x)\,
Ot [nΦl Js" )

(H) du(ί't

 x) = Au(t, x) + k(x) Σ g,(*)t πm(x,dγMt,γ),xeS,t>0.

In the equation (I) it is assumed that qn(x)>0, n=0, 2, 3,..., ΣnΦίqn(x) = l9

while in the equation (II) qn(x) can be negative but ^Λ^il^π(x) |=l. Then,
it is known that the equation (I) corresponds to the branching Markov process
(abbreviated: BM-process) whose non-branching part and branching system

are expί —\ k(xs)ds Vsubprocess of xt and (qn(x), πn(x, dy))n=02,3t..., respectively
(see N. Ikeda-M. Nagasawa-S. Watanabe [2]). BM-processes of this type do
not correspond to the equation (II) in a straightforward way. After a while,
M. Nagasawa and T. Sirao ([3], [4], [6]) constructed another type of branch-
ing Markov process with age and sign (abbreviated: BMAS-process) corres-
ponding to the equation (II).

The purpose of this paper is to remark that BMAS-processes can be construct-
ed in a frame of the ordinary BM-processes due to Ikeda-Nagasawa-Watanabe,
by introducing two extra states. More precisely, taking two extra points a and
b not belonging to 5, we extend the state space S of the given Markov process
xt to S0=S\j{a, b} so that the new states a and b become traps. We then in-
troduce new quantities k°(x), q°(x), π°(x, dy) for X G S 0 and dycSg by the for-
mulas (3.1), (3.2.a) and (3.2.6) in §3. Let X be the BM-process determined by
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this extended system {X°, k°(x), (g°(x), πj(x, dy))n=0Λt2tJ where X° is the
extended Markov process on the enlarged state space So. In the terminology
of Sevast'yanov [5], {a, b} is a final class. Our result is that the BMAS-process
Z due to Nagasawa and Sirao is equivalent in law to a certain factor process of
X (THEOREM in § 3).

§ 2. Preliminaries

We here introduce some notations following [2]. Let S be a compact
Hausdorff space with a countable open base, Sn the n-fold symmetric product

of S, S = \J™=0S
n the topological sum of Sn and S = S U {A} the one point compac-

tification of S where S°={d} and d is an extra point. We put N = {0, 1, 2,...},
J = {0, l}and

^ ( 5 ) = the topological Borel field of S (also similar notations ^(S), etc.
will be used),

B(S)=the set of all bounded Borel functions on S,

C*(S) = {/:/is continuous on S and sup |/(x)| <1},
xeS

C0(S x N x J) ={/ : / is continuous on S x N x J and lim/(x) =0},

where A is an extra point added by the one-point compactification of S x N x J,
^ A.

and define a function /(x) on S for a function / e B(S) as follows:

(2.1)

0 i f x = J .

In this paper we are given a conservative strong Markov process X=(W,
@v> xt> Px> x^S) on 5 with right continuous sample paths having left limits
such that &t = &t+0, and also the following quantities (i), (ii) and (iii):

(i) a non-negative Borel function k(x) on S,
(ii) Borel functions qn(x) on 5, n=0, 2, 3,..., satisfying ΣnΦί\qn(x)\=l,

(iii) stochastic kernels πn(x, dγ) on Sx Sn, n=0, 2, 3,....
Nagasawa [3], [4] and Sirao [6] constructed a BMAS-process correspond-

ing to the equation (II) on the basis of the Markov process X, k(x) and (qn(x)9

πn(x, dy))Π=0,2,3, I n this section we list some properties of the BMAS-process
Z = (Z f, P°(x,fc,j)) with state space Q = (S x N x J) U {Λ} constructed in [3] 1 }

1) In [3], Sn is the H-fold Cartesian product of S, but for simplicity we assume here Sn to be
the symmetric product.
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for later use. We put

ξ, = n, a, = k if Z,=(x, fc , ; )eSxNxJ,xε5" ,

τ=inf{ί: ξ,Φξ0}, =co if { }=0,

τ o =0, τ1=τ, τn = τn.1+τ°θτn_ι, n=2, 3,...,

and introduce the following quantities:

U<'>( , B)=P°(Z,eB, τ r < ί < τ r + 1 )

U,( , B)=P»(Z,eB),

/(x, fc,j)=(-lVA*/(x) for Λ>0,/eB(S).

Then

(2.2) U<"/(x, k, j) = ( - ) Σ t y } f ( ι [ 1 J

(2.3) Uj(x, fc,;)=Uj|s(x, k,j),

where F| s=F(x, 0, 0), xεS, FeB(Q) and (̂•"•"> denotes the sum over all (rx,
r2,..., rπ) satisfying 2'J=1rί = r. Furthermore,

(2.4) E ( %,

(2.5)

c.)rf «} *exp( - 2

where μ±((x, k, 0), d(y, fe', j)) = ? ί W Φ , dy)««• 5?, d(y, t ' , j ) c 5 " x N x J,
n=0, 2, 3,... and 5 t = ^ O j , ^J=<5 l j . Finally, if we put

(2.6) u(ί,x)=Uj(x,0,0), λ=2,

τ,f(χ)=ExU(χ,)l

K(x, ds, dy)=Exlk(xs)ds:

then the following S-equation holds:
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(2.7) u(t, x) = TJ(x) + (' f ^(x, ds, dy)Σqn(y)\ πn(y, dz)u,_s(z),
JOJS n±l JS"

which is an integral equation corresponding to the equation (II). The BMAS-

process Z corresponding to the equation (II) is a strong Markov process with

state space Q characterized by the three properties (2.3), (2.4) and (2.5).

§ 3. Construction of branching Markov processes with age and sign

In this section we construct the BM-process X stated in § 1, and then prove

that the BMAS-process Z in Nagasawa [3] is equivalent to a certain factor

process of X, that is, Z is obtained from X by means of a certain transformation

on the state space.

Let SΌ=Su{α, b}, where a and b are extra points outside S. Given a

system {X, k, (qn, ππ)M=0>2,3,...} as in §2, we first introduce a new system {X°,

k°Λq°n,π°)n=0tU2,J on"So as follows. X° =(W°, a?9 x?9 Px°, X G S 0 ) is a

right continuous conservative strong Markov process with state space 5 0 satisfy-

ing the following (i), (ii) and (iii):

(i) W°DW, <%?={B:BΠW<=<%t}9

(ii) x?\w=xt, P°(x?€= A) =Px(xt6i4) for xe5, Ae= at9

(iii) a and b are traps for the process X°.
k°(x) is a non-negative Borel function on 5 0 such that

(3.1) fc°ls=2fe, fco(α) = fe°(6)=0,

and (qn(x), π°(x, A))n=0Λf2,... is a branching system on 5 0 defined by the follow-
ing (3.2.α) and (3.2.5).
(3.2.α) For x e S , we put

πi(x, A {a})= +^) + ιδ(x, A),

π°2(x, A) = -«*W π2(x9 A),

%fe ), nΦ2,

l ^ π(χ A^ ^®{S"), nΦ2, n>0,
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where ^ 1(x)=^l 1(x)=0, A {a}={[xi9...9 xπ, α]<ΞS"+1: [x l f..., x J e Λ } for

AaSn and A {a}-{b} is defined similarly. If the form ^ appears in the definition

of π°, it is interpreted as 0.

(3.2.b) For x = α or b9 #°(x) and π°(x, A) are defined arbitrarily but subject
to the condition:

π°(x, •) is a probability measure on Sg, w=0, 1, 2,....

REMARK. We can see immediately that for X G S

π°(x, A {a})=0, ^ e ^ S " " 1 ) , nΦ2, n > l ,

πj(x, A {a} {b})=0, A e ^ S " " 2 ) , n>2,

where {̂ } {α}={α}, {<?}•{<*}•{*>} ={[α, 6]}c5§.

We next define a stochastic kernel π°(x, ^) on So x S 0

2 ) by

(3.3) π°(x, ^) =^Π°(x)πΠ°(x, ^) for

or what is the same, by

π°(x, ^.{α}) = -i-δ(x, ^) if

(3.4.β) y
i f

if

(3.4.ft) π°(x, •) is an arbitrary probability measure on So if x = α, b.

Then we can get the branching Markov process X=(Ω, Jίt, Xf, P x, x e S 0 )
determined by (X°9 k°, π°), that is, the branching Markov process with the

branching law π° and exp ( — \ k°(x®)ds Vsubprocess of X° for the non-branch-

ing part (cf. Ikeda-Nagasawa-Watanabe [2]).
Now we shall make a transformation of X so that the transformed process

is equivalent to the BMAS-process Z. For x = [x0, α,..., α, b,..., b ] e S 0

we put n(x) = n if xo = [x1,..., x j e 5 r t , nα(x)=the number of a in x, nb(x) =
the number of b in x, j(x)=0 (if nb{x) is even) and = l (if nb(x) is odd), and in-
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troduce the mapping y :S 0 -^SxNxJu{^} defined by y(x)=(x0, «
fl(x), j(x))

and y(A)=A.

LEMMA 1. γ(X) = (X,, Jίt, P~) is a strong Markov process onQ = SxNx/U

{A}, where Xf = yXt, J"° = σ{{Xt^Γ}: ί>0, Γ<=^(Q)}, i ^ ^ n / 0 and

Pyx(Λ)=Px04) for ΛEΞJ"0, xeS 0 .

PROOF . Put/(x) = (-l)W/(x o > and f(x) = λkf(x0) for ± = (xo,k,j)Jeι
C*(S), Λ>0. Then the linear hull of the subset {/, /: O<A<1, /eC*(5)j of
C0(S x N x J) is dense in C0(S x N x J). Since

if / ( f l )=

f(x)=f(yx) if /(α)=A,

we can see, by the branching property of X, that

Ex[/(yX,)] =Ek[/(X,)] = ( - l)«λ* ft EX|[/(X f)] =

Ex[/(yX t)]=Eχ,[/(yX ί)],

provided yx=yx;, x = [x1,..., xw, α,..., α, ft,..., b], «fl(x)=/c, «b(x)=m. There-
fore, by Theorem 10.13 of Dynkin [1] y(X) is a strong Markov process.

THEOREM. The Markov process γ(X) and the BMAS-process Z in
Nagasawa [3] are equivalent.

COROLLARY. We extend a function / e B(S) to a function / on So so that
/(α)=2, /(ft) = - l . If u(t, x)=E,[/(X,)], x e S , has definite value, u(ί, x)
is a solution of

u(t, x) = TJ(x) + Γ f ΛΓ(χ, Λ,
JOJS

where Tf(x)=£JC[/(xf)] and K(x, ds, dy)=Ex[k(xs)ds: xs^dy~\.
For the proof of the theorem we shall prepare some lemmas. Let Z?, n?

and n\ denote the number of particles in S, in {a} and in {ft}, respectively. More
precisely, we put Zr° = n(Xt), n% = na(Xt) and «? = nb(Xt). We define some Markov
times of X as follows.

% otna

tΦn% oτnb

t

if { } = 0,
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τg=O, τ? = τ°, τj = τ»_1+τ°oθτo_1 for « = 2, 3,...,

1JJ.1 \ I . Z~ι f -f— Z-* Q U l II* -f- ΐl Q j ,

σ =
loo if { }=0,

σ o=0, σ!=σ, (τn = σn-1 + σoθσn_ί for n=2, 3,....

Since ĝ  =0 by the assumption, the condition nb

tφnb

o in the definition of τ° and
σ is not necessary here. The Markov time σ corresponds to the Markov time
τ of the BMAS-process Z. In fact, Fx(σ<t, γXσ^E)=F^XtOtO)(τ<t, Zτ<=E),

), as will be seen later by comparing (2.5) with LEMMA 4.

LEMMA 2. For x = [x1,..., xΛ, α,..., α, 6,..., &] with na(x)=k, nb(x)=m

and for / e B(S0), w e n a v e

EX[/(X,); σr<t<σr+ 1 ] = {/(β)} k {/() }2

PROOF. Since

where xo = [x I v.., xπ], it is sufficient to prove that

If/o is a function in B(S0) such that/ 0 =/on Su{fc} and fo(a)=λf(a),
then it is known [2:1, p. 271] that

EXo[/o(X(); τr° i

On the other hand

(3.5) EX o[/o(X r); τ ? < ί < τ r ° + 1 ] = k Σ λ*E,o[/(X,); nf = Λ, τ?

and

< 2 ) Π E I 1 [ / 0 ( X ( ) : τ ? i < / < τ » + 1 ]

(3.6) = < r i f π Σ E j / o W : «?=*!, τr°l^/<τ» + 1 ]

= Σ ^ ^ Σ ^ ^ Σ ^ ΠEχ,[/(X,): «f =
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where 2 ( r > w ) ' denotes the sum over all (r l 5..., rn) satisfying ΣiUιri = r a n c * ri^K-

Putting r — k = r', ri — ki — r'i and comparing the coefficients of λk in (3.5) with

those of (3.6), we have

(3.7) E /

(r'» n)(fc, it) n .

= Σ Σ P J I [ / ( X l ) ; « ; = έ j , t » ; t i l ^ < t » r l t l l + 1 ] .

Noting the definition of τ° and σn, we have

(3.8) EXo[/(Xr); «• = *, τ?-+,</<τ?-+ t + 1]

and hence, using (3.7) we obtain

r ' + 1 ] = gE X o [/(X,);

completing the proof of the lemma.

In the next two lemmas, we use the following formulas [2: III, p. 99]: for

(3.9) E

= Ex[f(xt)exp ( - 2 j '

(3.10) ['[

•exp ( -

LEMMA 3. For/eB(S) and xeS,

(3.11) E,[/(Xf); t<σ,n! = kl=^E

( j f ) ] A:=0, 1,2,....

PROOF. Put

Φ(x, ί, r, fc)=E,[/(X,); τr°<ί<τr°+1, X τ .eS {c}»], x e S 0 .
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Then EX[/(X,); ί<σ, n« = fc]=Φ(x, t, fc, k) forxeS. If/c=0, (3.11) is nothing
but (3.9). Now assume that (3.11) is true for k. Then using the strong Markov
property of X, (3.10) and the induction hypothesis successively, we have

Φ(x, t, fc+1, /c + l)=EJC[Φ(Xτo, ί-τ°, fc, fc+1): XtoG5 {α}, τ°<ί]

s9 Xτo edy)Φ([y9 α], t-s, k9 k

s> t-s, k,

[
oJs

By the Markov property of x, the last term is equal to

•exp - 2 ̂ fcCxJί/t̂ exp ( - 2( 'k(xjdtΐpds

and hence the proof is finished.

LEMMA 4. ForxeS, Ae@(SbV {J})5) and fe=0, 1, 2,...,

(3.12)

( j o ) ( x s > Aftds.

PROOF. Put

y(x, ί, r, fc)=Px(τ?+1 ^/,XTo+ieΛ {β}*, X τ ? e S 6 {α}*) for x e S 0

3) Use P .

4) Use Φ([x, a], t, k, k+l)=f(a)Φ(x9 t, k, k).

5) S>= U~=0(
5U {b})n where (5U W ) ° = {3}
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Then Fx(σ<t, Xσ^A {a}k) = Ψ(x, t, k, k). For fc=0, (3.12) is true by (3.10).
Let us assume that (3.12) is true for k. Then using the strong Markov property
of X, (3.10) and induction hypothesis successively, we have

Ψ(x9 t, fc+1, fe+l) = Ex[y(Xto, t-τ°, K fc + 1): XτoeS {α}, τ°

OJS

= [Exlk(xu)exp(-2[Uk(xv)dv)Ψ(xu, t-u, fc, fc)]diι
Jo Jo

Then, by the Markov property of xt the last term is equal to

•π°(xs+u, A)-\dsdu

s, Aftds,

and the proof is finished.

PROOF OF THEOREM. P u t / J = / and f\=] for a function / on S. Since
the linear hull of {/,/: 0^λ<l,/eC*(S)} is dense in C0(SxNx J) and

)] Σ
r=0

it is sufficient to show that

(3.13) Eg[/?(Zf): τ r < / < τ r + 1 ] = E 2 [/f(yXf): σΓ</<σ r + 1]

for r=0, 1, 2,..., ΐ = l, 2, X E S X N X J and /eC*(5). Let /| be a function
in B(S0) such that f~f on S,fi(ά)=λ and/i(fe)=(-l)i for ί = l, 2. Then right
hand side of (3.13) is equal to
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where χ = yx, and therefore it is sufficient to prove that

(3.14) E°[/f(Z,): τ r ^ / < τ r + 1 ] = E x [ / i ( X t )

r = 0, 1,2,...,/= 1,2.

When r=0, Lemma 3 and (2.4) imply

: ί < σ ] = g
fc=O

and therefore (3.14) for r = 0 is obtained by Lemma 2 and (2.2). Since

we can prove (3.14) by induction in r using Lemma 4, (2.5), Lemma 2 and (2.2).

Thus the proof of the theorem is completed.

References

[1] E. B. Dynkin, Markov processes, Springer, 1965.
[2] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes, I, II, III, J.

Math. Kyoto Univ., 8 (1968), 233-278, 365-410, 9 (1969), 95-160.
[3] M. Nagasawa, Branching property of Markov processes, Lecture Note in Math. 258,

177-196, Springer, 1972.
[4] M. Nagasawa, Construction of branching Markov processes with age and sign, Kόdai

Math. Semi. Rep., 20 (1968), 469-508.
[5] B. A. Sevast'yanov, Branching processes, Nauka, Moscow, 1971.
[6] T. Sirao, On signed branching Markov processes with age, Nagoya Math. J., 32 (1968),

155-225.

Department of Mathematics,

Faculty of Science,

Hiroshima University






