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§1. Introduction

Some semi-linear equations are in close connection with branching Markov
processes. Suppose we are given the infinitesimal generator A of a Markov
process x, on a topological space S together with the following quantities: (i)
a non-negative Borel function k(x) on S, (ii) a sequence {g,(x)},=0.2.3,. Of
Borel functions on S, and (iii) a sequence {m,(X, dy)},=02,,. Of stochastic
kernels from S to the n-fold symmetric product S* of S. We consider the fol-
lowing equations:
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In the equation (I) it is assumed that g¢,(x)=0, n=0, 2, 3,..., 3,..q.(x)=1,
while in the equation (II) g,(x) can be negative but 3,.,|q,(x)|=1. Then,
it is known that the equation (I) corresponds to the branching Markov process
(abbreviated: BM-process) whose non-branching part and branching system
are exp(——S;k(xs)ds)subprocess of x, and (q,(x), m,(x, dY))s=0,2,3,.., respectively
(see N. Ikeda-M. Nagasawa-S. Watanabe [2]). BM-processes of this type do
not correspond to the equation (II) in a straightforward way. After a while,
M. Nagasawa and T. Sirao ([3], [4], [6]) constructed another type of branch-
ing Markov process with age and sign (abbreviated: BMAS-process) corres-
ponding to the equation (II).

The purpose of this paper is to remark that BMAS-processes can be construct-
ed in a frame of the ordinary BM-processes due to Ikeda-Nagasawa-Watanabe,
by introducing two extra states. More precisely, taking two extra points a and
b not belonging to S, we extend the state space S of the given Markov process
x, to So=SU{a, b} so that the new states a and b become traps. We then in-
troduce new quantities k°(x), g2(x), n2(x, dy) for xS, and dy c S% by the for-
mulas (3.1), (3.2.a) and (3.2.b) in §3. Let X be the BM-process determined by
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extended Markov process on the enlarged state space S,. In the terminology
of Sevast’yanov [5], {a, b} is a final class. Our result is that the BMAS-process
Z due to Nagasawa and Sirao is equivalent in law to a certain factor process of
X (THEOREM in §3).

§2. Preliminaries

We here introduce some notations following [2]. Let S be a compact
Hausdorff space with a countable open base, S” the n-fold symmetric product

of S, S=\U%_,S" the topological sum of S* and S=su {4} the one point compac-
tification of S where S°={d} and 0 is an extra point. We put N={0, 1, 2,...},
J={0, 1} and

%(S)=the topological Borel field of S (also similar notations Z(S), etc.
will be used),

B(S) =the set of all bounded Borel functions on S,
C*(S)={f: f is continuous on S and sup | f(x)| <1},
xeS
Co(SxNxJ)={f: fis continuous on S x N x J and lim f (x) =0},
x4

where 4 is an extra point added by the one-point compactification of S x N x J,

and define a function f(x) on S for a function fEB(S) as follows:

1 if x=0,
(2.1) J) ={fx)f(x). . f(x)  if x=[x,, X3,..., X,]ES",
0 if x=4.

In this paper we are given a conservative strong Markov process X =(W,
B, %, Py, xeS) on S with right continuous sample paths having left limits
such that #,=4,,,, and also the following quantities (i), (ii) and (iii):

(i) a non-negative Borel function k(x) on S,

(i) Borel functions g,(x) on S, n=0, 2, 3,..., satisfying %, |q.(x)| =1,

(iii) stochastic kernels 7,(x, dy) on S x S*, n=0, 2, 3,....

Nagasawa [3], [4] and Sirao [6] constructed a BMAS-process correspond-
ing to the equation (II) on the basis of the Markov process X, k(x) and (g,(x),
To(X, dY))y=0,2,3,---- In this section we list some properties of the BMAS-process

Z=(Z,, P,y j)) Wwith state space 6 =(SxNxJ)u{4} constructed in [3]"

1) In [3], S is the n-fold Cartesian product of S, but for simplicity we assume here S* to be
the symmetric product.
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for later use. We put
&=n,a,=k f Z,=(x,k j)eSxNxJ, xeSs",
t=inf{t: & #&}, =0 if { }=0,
70=0, 1, =1, 1,=7,_1 +71°0,,_,, n=2,3,...,
and introduce the following quantities:
U(, B)=P%Z,€B, 1,<t<1,,,)
U,(-, B)=P°(Z,=B),
f(x, k, )=(=1)71*f(x)  for A1>0, f =B(S).
Then

(r,n) n
(2.2)  UDFx, k, j)=(—1)Ii* Z)_l;llUﬁ”)f(xi), X=[%X1,..., x,] €S

2.3) U.Jx, k )=Ufls(x, k. j),

where F|g=F(x, 0, 0), xS, FEB(Q) and Y™ denotes the sum over all (r,,
r2,..., I,) satisfying 2% r,=r. Furthermore,

(2.4) E?x,O,O)[f(Zt): a,=k,t<t]
— & ELA) | kxpdsyrexp(=2{' k(x)as)],

(2'5) P?x,O,O)(TSt, ZrEd(y,kaj))

= B (G b 00, K )+ (G K, 00, Ay, K )

-k(xs){S:)k(xu)du}kexp<—2S:)k(xu)du>]ds,

where I‘Li((x’ k’ O)’ d(ya kl’ j))=qr:§:(x)nn(x5 dy)(skk'éj't9 d(y, k” .])CS" x N x Js
n=0,2, 3,... and 6} =0,;, 67 =0,;. Finally, if we put

(2.6) u(t, x)=U,f(x, 0, 0), A=2,
T.f(x)=E[f(x)],
K(x, ds, dy)=E,[k(x\)ds: x;edy],

then the following S-equation holds:
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t
@ ue =TI+ Kex ds, a0 80,0 w00, dou- @),
which is an integral equation corresponding to the equation (II). The BMAS-
process Z corresponding to the equation (II) is a strong Markov process with

state space f) characterized by the three properties (2.3), (2.4) and (2.5).

§ 3. Construction of branching Markov processes with age and sign

In this section we construct the BM-process X stated in § 1, and then prove
that the BMAS-process Z in Nagasawa [3] is equivalent to a certain factor
process of X, that is, Z is obtained from X by means of a certain transformation
on the state space.

Let So=SU{a, b}, where a and b are extra points outside S. Given a
system {X, k, (4, T)n=0,2,3,..} as in §2, we first introduce a new system {X©,
k°, (g2, ®Qp=0,1,2..} on S, as follows. XO=(W°, B9, x?, P2, x€8,) is a
right continuous conservative strong Markov process with state space S, satisfy-
ing the following (i), (ii) and (iii):

(i) W°o W, #?={B:BNnWe4,,

(i) x%w=x, PA(x?€A)=P.(x,€A) for xS, A€ 4,,

(iii) a and b are traps for the process X°.
k°(x) is a non-negative Borel function on S, such that

3.1 k°|s=2k, k°(a)=k°(b) =0,

and (q2(x), n2(x, A))n=0.1,2,... is a branching system on S, defined by the follow-
ing (3.2.a) and (3.2.b).
(3.2.a) For xS, we put

93(x) =2~(g5(0)+ 1),

990) =5 (g5(X) +a5-1 (1)), n£2, n20,

1

n3(x, A-{a})= d(x, A), A€ #(S),

g3(x) +1
29(x, A)=—32) o o 4y A B(S?)
2 ] q;(x)_i_l 2 3 ’ ’
rQ(x, A (b)) =—T=1 ) - _p(x 4), e B(S™), n#2, n21,

gn(x) +qu-1(x)

0 - g5 (x) "
n(x, A) PHEIE TN E) n,(x, A), A€ B(S"), n+2, n>0,
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where q,(x)=q¢=,;(x)=0, A-{a}={[xy,.., X, a]ES"*: [x4,..., x,]€A} for

Ac S” and A-{a}{b} is defined similarly. If the form (9) appears in the definition

of n?, it is interpreted as 0.

(3.2.b) For x=a or b, q%(x) and n0(x, A) are defined arbitrarily but subject
to the condition:

g2(x) =0, 32 0q%(x)=1,
n9(x, ) is a probability measure on S}, n=0, 1, 2,....
REMARK. We can see immediately that for xS
nd(x, A-{a})=0, A= B(S"" 1), n+2,n>1,
nd(x, A-{a}:{b})=0, A€ B(S""2), n>2,
where {9)-{a} ={a}, {0}-{a}-{b} = {[a, b]} c S3.

We next define a stochastic kernel n°(x, A) on S, x §02) by
3.3) n%(x, A)=q%(x)n(x, A) for xeS,, A€ Z(Sp)

or what is the same, by

10(x, A-{a}))=—L-8(x, 4)  if xS, Ac &(S),
2

Gaa) | ™0 A () =g (O (x, A)if x5, A€ AT,

n¥2, n>1,

79(x, A)=17q:(x)n,,(x, A)  if xeS, A€ B(S"), n+1,

(3.4.b) 7°x, °) is an arbitrary probability measure on S, if x=a, b.

Then we can get the branching Markov process X=(Q, .#,, X,, P,, xego)
determined by (X©, k%, n°), that is, the branching Markov process with the

branching law #° and exp(— St k°(x§’)ds)-subprocess of X© for the non-branch-
0

ing part (cf. Ikeda-Nagasawa-Watanabe [2]).

Now we shall make a transformation of X so that the transformed process
is equivalent to the BMAS-process Z. For x=[xq, a,..., a, b,..., b]ES,
we put n(x)=n if xo=[x,,..., x,] €S", n%x)=the number of a in x, n®(x)=
the number of b in x, j(x)=0 (if #n®(x) iseven) and =1 (if #b(x) is odd), and in-

2) Sg=U3.,S} and §,=S,U {4}
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troduce the mapping y: 'S\o—>S x NxJU {4} defined by y(x) =(x,, n*(x), j(X))
and y(4)=A4.

Lemmal. yX)= (i,, j,, ﬁ;) is a strong Markov process on (3 =SxNxJU
{4}, where X,=yX,, #*°=c{{X,eT}: t>0, T #(Q)}, M,=M,N A" and
P, (4)=P(4) for A", xe8,.

PROOF . Put f(X)=(—1)i1*f(x,) and f(X)=1*f(x,) for X=(Xq, k,j),fE
C*(S), A=>0. Then the linear hull of the subset {f, f: 0<i<1, f&C*S)} of
Co(SxNxJ) is dense in Co(Sx N x J). Since

Jx) =f(yx) if fla)=4 f(b)=—1,
fx)=f(yx) if fla)=4, f(b)=1,

we can see, by the branching property of X, that
E [J(X)]=E.[/(X)]=(- 1)"'/1"1,I:I1 E. [JX)]1=E.[J(oX)],

E,[fOX)]1=E.[f(6X))],

provided yx=yx’, x=[x,,..., X,, 4,..., a, b,..., b], n®(x)=k, nb(x)=m. There-
fore, by Theorem 10.13 of Dynkin [1] y(X) is a strong Markov process.

THeorREM. The Markov process y(X) and the BMAS-process Z in
Nagasawa [3] are equivalent.

CoroLLARY. We extend a function f&B(S) to a function f on S, so that
f(a)=2, f(by=—1. If u(t, x)=E,[f(X)], x€S, has definite value, u(t, x)
is a solution of

t
utt, =T+ (" | KCx, ds, dy) £a,0)|_ 700, dou,, @),
where T,(x)=E,[ f(x,)] and K(x, ds, dy)=E [k(x,)ds: x,dy].

For the proof of the theorem we shall prepare some lemmas. Let Z?, n?
and n? denote the number of particles in S, in {a} and in {b}, respectively. More

precisely, we put Z? =n(X,), n? =n%(X,) and n? =n?(X,). We define some Markov
times of X as follows.

. {inf{t: Z?+# ZJ or n{#n$ or n?+nh},
T =

oo if { }=09,
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13=0,19=1°19=1%,+1%80,0_ , forn=2,3,...,
Jinf {t: Z0+ Z§ or n? #nb},
o=
lo if{ 1=,
for n=2, 3,....

00,=0, 0,=0, 6,=0,_,+0-0

On-1

Since g, =0 by the assumption, the condition #?#n} in the definition of 7° and
o is not necessary here. The Markov time ¢ corresponds to the Markov time
7 of the BMAS-process Z. In fact, P (6 <t, yX,EE)=P{, o, 0y(1<t, Z,EE),
E= %#(Q), as will be seen later by comparing (2.5) with LEMMA 4.

LemMmAa 2. For x=[x,,..., X, a,..., a, b,..., b] with n%(x)=k, nb(x)=m
and for f € B(S,), we have

EL(X); 0,51 <0, 1= (/@SB S TIELIX); 0,51 <001,

ProoOF. Since

Ex[f(xt); O',,St<0',.+ 1]={f(a)}k{f(b)}mExo[f(Xt); O-rst<o.r+ 1]

where x,=[x,,..., X, ], it is sufficient to prove that

~ (r,n) n
Exo[f(xt); 0',£t<0,.+1]= Z ];[IExi[f(Xt); Gr1£t<an+1]’xoes'

If f, is a function in B(S,) such that f,=f on SU{b} and fy(a)=4f(a), 0<i<]1,
then it is known [2: I, p. 271] that

(r,n) n
E. [fo(X); P <t<tli]= 3 TIE,[Jo(X); 7, <t <t
On the other hand

(35) B [fo(X): w2 <r<tli]= 3 1E, [f(X); n=k, 1<t <tli],

k=

and
(r,n) n
Z _].;[lExg[fO(xt): T'(‘)'St<‘r?¢+1]
(r,m) n ry
(3.6) = Z 1:[1 kZOEx'[fO(Xt): n"’=ki’ Tgst<1-9l+1

(k,n)(r,n)

=k§0}*k Z Z i]-____{Ex([f(Xt): n;’:ki’ T?,St<1'?;+1]
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where >}»®" denotes the sum over all (..., r,) satisfying 2,7, r;=r and r;>k;.
Putting r—k=r', r;—k;=r; and comparing the coefficients of A* in (3.5) with
those of (3.6), we have

3.7 Exo[f(xt); ng=k, 10 <t<TPyp1]
(r',n)(k,n) n 0 0
= Z i]=]l Ex.[f(xr);nxa=kia Tr§+k1£t<1r§+k,+l]-

Noting the definition of 72 and o,, we have
(3.8) Exo[f(xt); ni=k, 19 <t <tipiq]
=Exo[f(xt); ng =ka Oy St<0py 1]

and hence, using (3.7) we obtain

Exo[f(xt); Gr' St <ar'+l] = ,¢Z=0Exo[f(xt); n;‘=k, Or St<a’r'+1]

*r',n) n
= > il;.[lExl[f(Xt); O’,;St<0’,;+1],

completing the proof of the lemma.
In the next two lemmas, we use the following formulas [2: III, p. 99]: for
feB(S), xS,

(3.9 EL/(X); <201 =E¢] fsexp (= kox)ds) |
=& fexgexp (=2 k(x)ds)],
a10) (' Pueoeds, Xocdnro =Y [ soroc)
exp (— S;ko(x,‘,’)du>dsJ - 2g;Ex[f(xs)k(xs)exp ( - 2g;k(x,,)du)]ds.
Lemma 3. For f€B(S) and x€S,
GID  ELAX); 1<0, ne=k] =L B s f@) kwoaul”
-exp(-ZSLk(x,,)du)], k=0, 1,2,....

Proor. Put

o(x, t, r, k)=E_[ f(X,); 10<t<1%%,, XoeS{a}¥], xe&S,.
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Then E [ f(X,); t<o, nf=k]=®(x, t, k, k) for x&S. If k=0, (3.11) is nothing
but (3.9). Now assume that (3.11) is true for k. Then using the strong Markov
property of X, (3.10) and the induction hypothesis successively, we have

P(x, t, k+1, k+1)=E[D(X,0, t—7°, k, k+1): X,0=S{a}, 1°<(]

S'SSP(toeds, X.0 €dy)®([y, al, t—s, k, k+1)>

0

-

=f(a)S;Ex[k(xs)exp(—ZS:k(x,,)du>d>(xs, t—s, k, k)]ds®
~(@|! EdLk(xexp( ~2{ K(xpdu
2Bl [ 1@ k) au} exp( =2 k) au)1as.

By the Markov property of x, the last term is equal to

Aty (! Bk [ kee)aul

‘exp ( - 2S:k(x,,)du>exp ( - 2S:k(x,,)du>] ds
= i@y B Lf oexp( =2 kxdu )| ke {{ kodu) " ds)
=gy F@P ELA)| 1@ kxadul exp( =2 kxdu )],

and hence the proof is finished.

LeMMA 4. For xS, A€ #(S,U{4})% and k=0, 1, 2,...,
(3.12) P o<t X,eA-{a}")=72’—StEx[k(xs) {Ssk(x“)du}k
- Jo 0
-exp(—zgsk(x,,)du)nO(xs, A)]ds.
0

Proor. Put

Y(x, t, r, k) =P (1% <t,X,o, €A-{a}¥, X,0€8,{a}¥) for x€S,.

3) UseP,(c%ds, X,oeA-{a})=Ssl’,(r"eds,x,gedj)&(_y,A),AE B (S).

4) Use O([x,al, t, k, k+1)=f(a)D(x, t, k, k).
5) Sy=U%.o(SU {8})" where (SU {6})°= {3}.
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Then P(0<t, X,€A4-{a}*)=Y(x, t, k, k). For k=0, (3.12) is true by (3.10).
Let us assume that (3.12) is true for k. Then using the strong Markov property
of X, (3.10) and induction hypothesis successively, we have

Y(x, t, k+1, k+1)=E,[P(X,o, t—1% k, k+1): X0 S{a}, 1°<1]

=%ng P, (1°cdu, X,o€dy)¥([y,al, t—u, k, k+1)
0JS

S;E,,[k(x,,)exp (- ZS:k(x,,)dv) W(x,, t—u, k, k)]du

=2S' Ex[k(x,,)exp(—-ZS “k(x,)dv)
0 0

2 ) e {[| kxao) exp( =2 kGrdo Jo(x,, 4)1dsTdu

Then, by the Markov property of x, the last term is equal to

2 S;S'_" ELk(x k) || K(x)do} exp( - 2S:+"k(xv)dv>

k!)odo

'no(xs+u’ A)]deu

= 2. Eutkegexs( =2 kGrav o e, ' kGe) {{ ke ao} auas

e ke e,

and the proof is finished.

PROOF OF THEOREM. Put f*=f and f%=f for a function f on S. Since
the linear hull of {f, f: 0<A<1, f&C*(S)} is dense in Co(S xNxJ) and

E;[f10X0)]1= 2L Bz [F10X): 0,<1<0,.,],
it is sufficient to show that

(3.13) EQ[HZ): 1, <t<t,,]1=E; [f¥(3X,): 6,<t<0,,]

for r=0, 1, 2,.., i=1, 2,XeSxNxJ and fC*S). Let f; be a function
in B(S,) such that f;=f on S, f(a)=4 and f(b)=(—1)! for i=1, 2. Then right
hand side of (3.13) is equal to

E.[fi(X,)): 0,<t<0,,,]
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where ¥ =7yx, and therefore it is sufficient to prove that

(3'14) Eg[ﬁ(zt): T,St <Tr+1] =Ex[fi(xt): G,St <0',+ 1]’

r=0,1,2,..,i=1, 2.

When r=0, Lemma 3 and (2.4) imply

E.[/i(X): t<0]= S E[fi(X,): t <o, ni=k]

=E{ 0,00[f¥(Z,): t<7] for xS,

and therefore (3.14) for r=0 is obtained by Lemma 2 and (2.2). Since

EL/i(X): o,<t<0,,]=('[ Eloeds X,cdy]
0J/So

'Ey[ii(xt—s): o, <t—s<o0,],

we can prove (3.14) by induction in r using Lemma 4, (2.5), Lemma 2 and (2.2).
Thus the proof of the theorem is completed.

m
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