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Introduction

If fis a C'-function with compact support on the Euclidean space R” (n=3),
then it can be represented by its partial derivatives as follows:

L (0 4200
M o)== & [ Fx—a2Lar.
There are many ways to represent a C™-function (m: positive integer) with com-

pact support on R" (n=2) in terms of its partial derivatives of m-th order. Among
them, the following two are regarded as generalizations of (1):

_ (x=y)*D*¢(y)
@ o= 3 afE=2D00) 4y

(Yu. G. Reshetnyak [9]), and

)3 cagD“(lx—ylz'"‘")D“(p(y)dy

la|=m
if n—2m>0 or n is odd

3) p(x)= and n—2m<0,

5 c;SD“(lx-—yIz"""loglx—y|)D°‘(P(J’)dy

|a|=m

if niseven and n—2m<0

(H. Wallin [11]).

On the other hand, J. Deny and J. L. Lions [5] studied the space of Beppo
Levi functions, e.g., the space BL(L?(R")) of distributions on R" whose partial
derivatives belong to LP(R"). They showed that any quasi continuous function
fin BL(L?(R™)) (n=3) is represented as (1) quasi everywhere, with an additional
constant. M. Ohtsuka [8] extended their results to p-precise functions, which
belong to BL(LP(R3)), and gave many other properties of precise functions in his
lectures at Hiroshima University.

In this paper, we consider the space BL,(L?(R")) of Beppo Levi functions
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of higher order m, that is the space consisting of distributions on R" whose partial
derivatives of m-th order all belong to LP(R*). To obtain fine results, we need
a concept of (m, p)-capacity. For our purpose, the (m, p)-capacity introduced
by H. Wallin [12], which is denoted by I',, ,, is best suited. However, since we
fail to verify whether it is subadditive or not, we also consider another capacity
Iy p» which is subadditive, and in fact, a true capacity in the sense of M. Brelot
[2]. We shall see that it is equivalent to I, ,. Through our capacity I, ,,
we shall define (m, p)-quasi continuity of functions.

It is known that functions in the Sobolev space W™ P(R")are represented as
Bessel potentials (cf. [1], [3], [9]). Using Bessel potentials, Yu. G. Reshetnyak
defined (I, p) capacity and then gave a characterization of (I, p) polar sets (see
[9; Theorem 5.8]). We shall show that in case [ is a positive integer m, his ca-
pacity is equivalent to (I',, ,)? and that his characterization can be given by using
our integral representations.

Then we shall show that integral representation of the form (2) is possible
for certain (m, p)-quasi continuous functions in BL,,(LP(R")). Integral represen-
tation of the form (3) was given by H. Wallin for functions in BL,,(L?(R")) with
compact supports (see [11; Lemmas 7 and 8]). We shall extend his result to the
case where supports are not necessarily compact, and in fact we shall prove it in
a way different from his.

In the final section, we shall discuss representation of (m, p)-quasi continuous
functions in BL,,(LP(R")) as Riesz potentials of functions in LP(R"). It is an ex-
tension of M. Ohtsuka’s result for p-precise functions given in [8]. To obtain
our result we shall make use of the methods in the previous sections.

§1. Preliminaries

Let R" be the n-dimensional Euclidean space with points x=(x,, x,,..., X,),
Y=01s V2r---» V), €tc. For a multi-index a=(a;, ®,,..., ®,), we set |o|=o0,+
oy + e oy, X*=x%1x%2.--x% and

olel

bt= 0x%10x%2---0x% °

We shall use the following notations of L. Schwartz [10]: 2(R"), #(R").

In this paper, let 1<p<oo. For a non-negative integer m, we denote by
Wm™P(R") the Sobolev space, that is, the space of all distributions F such that
D*F € LP(R") for any o with |¢]<m. The norm of F in W™ P(R") is defined by

IFln,=I(, 33 ID<FI2)2,

where ||-|| ,denotes the LP-norm in R". It is well-known that W™P?(R") is a reflex-
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ive Banach space if 1 <p< oo (cf. [7]).

J. Deny and J. L. Lions introduced the following spaces ([5]): BL,(LP(R"))
is the space of Beppo Levi functions of order m attached to LP(R"), that is, the space
of all distributions T such that D*Te LP(R") for any |¢|=m with a semi-norm
[Tm,p=II( Z |D*T|?)!/2|,, and BL,,(LP(R")) is the quotient space of BL,,(LP(R"))

by the space of all polynomials of degree < m—1. We note that if FeBL,
(L?(R™)) has compact support, then F e W™ P(R") by [10; Chapitre 6, Théoréme
XV (Kryloff)].

§2. (m, p)-capacity

Let m be a non-negative integer. We introduce the notion of (m, p)-capacity.
First, for a compact set ec R", we define

Iy, (e)=inf {| @] ,; » € 2(R"), =1 on e},
r;, (@ =inf {|@[,; ¢ €2.(R"), p=1o0n e},

where 2 ,(R")={p € 2(R"); =0 on R"}. Next, for an open set w<R", we
define

rm,p(w)= sup Fm,p(e) ’
ecw,e:compact
r (o)= sup ry .(e.

ecw,e:compact

Then we note that I',, ,(e) =inf{I',, (®); ecw, w is open} and I';, ,(e)=inf{I’}, ,
(w); ecw, w is open}, which allow us to define for an arbitrary set 4 = R" the fol-
lowing quantities:

r,,(A)= inf nF,,,_ (@),

Acw,w:ope

ry (A= inf I} ().

Acw,w:open
I, (A) is called the (m, p)-capacity of 4 (cf. [12]).
REMARK 2.1. It is easy to see that I'y (A4)=I7%, ,(A)= {outer Lebesgue
measure of A}'/».  Furthermore, we have I'; ,(4)=I'{ ,(A), because, for FEBL,

(LP(R™), |F| € BL,(L?(R™)) and |grad |F||=|grad F| a.e. on R" (see [5; Théoréme
3.2 in p. 316]).

From the definitions, we can easily prove

Lemma 2.1. (1) T, and T
from the right.

m,p Gre monotone increasing and continuous
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(ii) I, is countably subadditive, that is
+ o0 Q0
T A)S 5 Th,(4)

for a countable family {A;} of sets in R".
For relationship between I',, , and I';, ,, we have
LEMMA 2.2. There exists a constant C=1 such that
Iy (e=Cr, (e)  for all compact set e in R".
From this lemma, the following theorem immediately follows:

THEOREM 2.1. There exists a constant C=1 independent of A such that
L (AT, (A=CT,, (A4)
for any set A in R".

PrROOF OF LEMMA 2.2. On account of Remark 2.1, it suffices to show the
case m=2. We use the Bessel kernel G,,, which is determined by the following
properties:

(i) G, is a non-negative function belonging to L!(R"),

(ii) the Fourier transform of G,, is (1+4n2|x|?)™™/2,

It is known that a distribution F belongs to W™?(R") if and only if there exists
a function fe LP(R") such that F=G,*f in W™P(R"), and that

2.1 CHAp =G> flmp = CUS,

for some constant C>0 independent of f (see [3; Theorem 7]).

Let o€ 2(R") and ¢>1 on e. We can write ¢ =G, f for some fe £(R").
Then G,xf* is obviously continuous and >1 on e, where f*(x)=max (0, f(x)).
If we show I';;, (€) S ||Gp* f* ], then

I @ SCIf M, =Cl A, S C?l@llm,ps

which implies I'}, ,(e) < C2I,, (e).
Take a function Y € 2 .(R!) which is equal to 1 on a neighborhood of 0.
Set

1 ) 1f t<]
;)= LT
W(I—j) lf t>J’
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and set jx)=y(Ix]). It is easy to check that Y ;F—>F in WmP(R") as j—o0
for any Fe W™P(R"). Let {h;} be a sequence of functions belonging to 2 ,(R")
such that supp(h,)<{x; |x|=(1/k)} and Sh,‘(x)dx=1. For each j and k {x/7j

(G, *f*)}*h, € 2 .(R") and for sufficiently large j and k, we have {/ (G f*)}yxh,
=21 one. Therefore

Iy p(e)slim ’{im {0 j(Gu* [ )} Pl p = | G ¥l -
Jj—o0 k=
Thus Lemma 2.2 is proved.

ReMARK 2.2. In the above proof, we have also shown that 2 ,(R") is dense
in Wr-P(R")={fe W™P(R"); f=0 a.e.} with respect to the topology of W™ P(R").

A set AcR" is called (m, p)-polar if I',, ,(4) =0, or equivalently, I'}, ,(4)=0.
If a property is true on a set A=R" except for an (m, p)-polar set in A, then we
say that this property is true (m, p)-quasi everywhere or (m, p)-q.e. on A.

A function fis called (m, p)-quasi continuous if given ¢>0, there exists an
open set w< R" such that I',, (w)<e and the restriction of f to R"—w is con-
tinuous.

By Lemma 2.1 and Theorem 2.1, we can prove the following lemma in the
same manner as J. Deny J. L. Lions [5].

LEmMMA 2.3. For each Fe W™P(R"), we set ®(F)={f; f is (m, p)-quasi
continuous and equals F a.e. on R"}. Then we have the following assertions:

(i) D(F) is non-empty, two functions of ®(F) are equal to each other (m, p)-
g.e., and any function which equals some function of ®(F) (m, p)-q.e. belongs
to ®(F) (cf. [5; Théoréme 3.1 in p. 354]).

(ii) If a sequence {F;} converges to F in W™P(R") as j— o0, then there exists
a subsequence {F;} of {F;} such that for any f; e ®(F; ) and any fe ®(F),
{fj.} converges to f (m, p)-q.e. as k— oo (cf. [5; Théoréme 4.1 in p. 357]).

A distribution Te BL,(LP(R")) can be considered as a function f with D*fe
Lf,.(R") for any « with |«| <m. For this f, there exists an (m, p)-quasi continuous
function equal to f a.e. (cf. [5; Théoréme 3.1 in p. 354]).

Let @ be an open set in R”. Denote by # ™™ P(w) the class of all FeW™ P(R")
such that F=1 a.e. on . Then we show

LemMma 2.4. T, (o)=inf{||F|,, ,; F €% ™?(w)}.

PrOOF. Let e be a compact set in w, and let {}J ;3 and {h,} be the same as in
the proof of Lemma 2.2. Then for any F e #™P(w), we have I',, ,(e)<lim;,,,
1y |7 jF)# il = | Fll- ~ Therefore I\, (@) Sinf{|Fllp,p; Fe#™p(@)}.
To prove the converse inequality we may assume I, (w)<oco. Take a sequence
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{e;} of compact sets such that e;c the interior of e;,; <w for any j=1, and
U%ej=w. Next, for each j, choose {¢;} = 2(R") satisfying ¢;=1 on e; and
1@lmp<I'mp(e)+(1/j). Then {¢;} is a bounded set in the reflexive Banach
space Wm™P(R"). Hence there exists a subsequence {¢; } of {¢;} and Fe Wmr
(R") such that ¢; —F weakly in W™P(R") as k—co. This implies F21 a.e.
on w and ||F||,, ,<liminf, ., @; lmp<Tn(®w). Thus our lemma is proved.

Let A be a set in R*. Denote by # ™ P(A) the closure of the class of all F e
Wmp(R"™) such that F=1 a.e. on a neighborhood of A.

THEOREM 2.2. If T, (A)<co, then there exists a unique Fe#™P(A)
such that

(@) if fe O(F), then f=1 (m, p)-q.e. on A,
(®)  NIFllm,p=Tm,p(A).

Proor. By Lemma 2.3, the class of all F e W™P(R") such that f=1 (m, p)-
q.e. on A for any fe &(F) is a closed set in WmP(R") and includes #°™P(4).
Therefore all F € w™P(A) satisfy (a).

On the other hand #™™ P(A)is a closed convex subset of the reflexive Banach
space W™P(R"), and by using Lemma 2.4, we see that I', ,(A4)=inf {||F||,,,;
Fe#w™p(A)}. This infimum is attained at a unique element Fe# ™ P(A) because
of the uniform convexity of W™ P(R") (see [7; Chapitre 1, 3.3]). This F is the
required one.

For any set A in R", we set #' 7:P(A)={Fe# ™P(A); F=0 a.e. on R*}. It
is easy to see that #™7:P(A4) is a closed convex set and consists of all F in
Wmp(R™) such that any function of ®(F) is=0 (m, p)-q.e. on R" and =1 (m, p)-
q.e. on A.

Lemma 2.5. T} (A)=inf{|F|,, ,; Fe#P(A)}.

Proor. Let Fe# 7:P(A). Then I} ,(A)<|F|,,,can be shown in the same
way as J. Deny and J. L. Lions [5; Lemme 4.1 in p. 356]. Hence we have
rf (A=inf {||F|,,,; Fe#P(A)}. The converse inequality can be shown
in the same way as in Lemma 2.4 and Theorem 2.2.

By this lemma, we have the following theorem:

THEOREM 2.2'. For an arbitrary set A with I'}, (A)<oo, there exists a
unique F € W™P(R") such that

(@) for any fe ®(F), f=0 (m, p)-q.e. and f=1 (m, p)-q.e. on A,

(®) N Fllm,p =T, ,(A4).

DerFINITION. We shall denote by f, any function in @¢(F) in Theorem 2.2’.
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LEMMA 2.6. Let {A;} be any increasing sequence of sets in R", and set
A=\U%,A;. Then T} (A) 1T (A)asj—oo.

Proor. Take F;e W™P(R") with the properties in Theorem 2.2’ for each
A;. We may assume that lim;, I}, (4;)<c. Then {F;} is bounded in W™»
(R"). Therefore there exist a subsequence {F;} of {F;} and Fe W™P(R")
such that F; —F weakly in W™P(R") as k—oo. Moreover we have Fe N}
WP(A;) =W"P(A). Hence

P =

F;:,p(A)é “F”m <1im lnf”ij”m,p:hm Fr‘:,p(Aj)érz,p(A),
k— o0 j—

which implies that lim ;I (4;) =T}, (A).

Lemmas 2.1 and 2.6 mean that I';, , is a true capacity in the sense of M. Brelot
[2]. Thus we have

THEOREM 2.3. Any analytic set in R" is capacitable with respect to I}, .

Yu. G. Reshetnyak defined the (I, p) capacity Cap,,E of sets E in R" in
case [ is a positive number and p>1, as follows (see [9]):

Cap,,E=inf{| fl,; fe LP(R"), 20 and G;*f=1 on E}.
As another application of Lemma 2.4 we give

THEOREM 2.4. In case | is a positive integer m and mp<n, there exists a
positive constant C such that

(2.2) C~ I, (E)}r <Capg,,,E<C{T,, (E)}?
for any set E in R".

Proor. It suffices to show (2.2) for any open set w in R" because of the
definition of I, , and Lemma 2.2 in [9]. Recall that, if fe LP(R"), then G,x*f
belongs to W™ P(R") and satisfies (2.1). To show the left inequality of (2.2) for
, choose a non-negative function fin LP(R") such that G, *f =1 everywhere on
o. (If such an f does not exist, then Cap,, ,,w=0c0.) By (2.1) and Lemma 2.4
we have C™7 {I',, (w0)}? < Cap,, ,o.

To give the right inequality of (2.2), it suffices to show it only for any compact
set e in R" by the capacitability of e for Cap,, ,, (Theorem 2.1 in [9]) and the
definition of I',, ,. Let us choose ¢ € Z(R") so that ¢ =1 one. As in the proof
of Lemma 2.2 we write ¢ =G,,x f for some fe &(R") and have

Capim eIl flI;=Crleln, -
This yields Cap,, ,je < CP{I,, ,(e)}?.
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§3. Integral representation I

Hereafter, let m be a positive integer.
Let [ be an integer and « a multi-index such that m=|a|—I+n=1. We
set x(x)=x%/|x|'. For a multi-index B with || =m, we can express

3.1) (DPr)(x) = i —ﬁﬁ%

k=0

where each a,(x) is a homogeneous polynomial of degree (I + 2k)—n, or constantly
zero. We shall show that K=D*k fulfills the conditions for a kernel listed on
p. 89 of [4]. In our case,

)= E i e Ko=pre().

K= [x[* “\Ix]

Since Y31 oa,(x)/|x|**2k~" is a homogeneous function of degree 0, we can consider
Q(x) as a function on the unit sphere with center at the origin of R*. If |x|=|y| =1,
then

1209~ < 5 [au(x) —au(y)] S elx -]
for some positive constant c. Next we show
LEMMA 3.1. S: _ K)ds()=0.

Proor. First we observe

(A G0 (2t
2711 r
i=1 2 2

(3.2) Sle:ledS(x)= . F( n+2| 7l )

for a multi-index y, which can be obtained from an elementary calculus.
We prove the lemma by induction with respect to m. Let a, § and I be given
so that |a|—I+n=|f|=1. Then we have

> xa-—ﬂ [ xa+ﬁ
(IXI’ <ﬁ> IE R ETE

where

<ol§>= flljll(%') ﬂﬂ,'(txa—'ﬂi)! if a; = B, for all i,

otherwise.

(=]
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Using (3.2), we have

—1)xi—B: —R.
(1+( 1) (% Bi+1

211
§ o P Jis00= (ﬂ) = F<2n+|;—ﬂl> :

21_1 (1+(—1)¢*+ﬁi>r<ai+gi+1>
r<n+|;+ﬂl>

Since |B| =1, the right-hand side is seen to be zero.
Next we assume that the lemma is true for |a| —[+n=|f|=m. Leta, fand!
be given so that |¢|—I+n=|Bf|=m+1. Writing f=y+d, where |y|=1 and

|6] =m, we have
() =(5)P ()~ 12 )-

Here if «—7y is not a multi-index, the first term of the right-hand side disappears,
and if otherwise, |¢—y|—I+n=m. Moreover |a+7y|—(I+2)+n=m. Con-
sequently, by the assumption of induction, we obtain

Slx[=ID<| I,)dS(x) =0  and Szx|=1D6<T£%>dS(x)=0’

ie.,

S;x|=1Dﬂ<|§a;t>dS(X)=0.

Thus Lemma 3.1 is proved.

Let f be a function in LP(R"). For a positive integer j, we set K, ;(x)=
K(x) if |x|=1/j and =0 if |x|<1/j. Then, we can apply the results of singular
integrals in [4] and obtain:

(i) K(y,j*f belongs to LP(R™)for each j, and converges in LP(R") as j— oo
([4; Theorems 1 and 7]),

(i)
(3.3) K ¢1/y*fll,<const. | f], ([4; Theorem 1]).

Next, we consider x;(x)=x*/(|x|2+(1/j)?)"/2. Let f be a function in
LP(R™) satisfying the following condition:

(34 fit+ st geonax = {1+ xre-1fldx < oo,
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or equivalently,
flx = yim=ri 001y # o0
(see Remark in p. 191 of [6] and also Lemma 9.1 of [8]). We set
(e ) = [ 2220 7(y)ay

and k ;*f is similarly defined. By our assumptions, it is easy to see that « ;x fe C*®
and DP(ic;xf)=(DFPk;)«f for any f. Furthermore we have

LEMMA 3.2. For any multi-index B with |B|=m, DF(x;*f) converges in
LP(R") as j—o0.

Proor. We can write
(DA ) = (K1 £X0) =17 05 JCx = DS )y
where 05 =DFfx;—K;,. We shall show that 6, L!(R"). First we notice that

_ a,(x)
Dﬂxl(x)—k§0 (le2+k1)(t+2k)/2

for the same a,(x) as in (3.1). Therefore if |x| =1, then

—_ ¥ a,(x) 2 -
O5(x) = k§0(|x|2+1)(:‘+2k)/2|x|1+2k((|x| +1)(F2RI2— | x| 12k

and (|x|2 +1)(*20/2 — |x|!+2k =O(|x|!*2k~2) as |x|>00. Hence 85(x) =0(|x|~"~2)
as |x|— oo, because each a,(x) is a homogeneous polynomial of degree (I+2k)—n,
or constantly zero. Thus ;€ L'(R"). We set A,,=S(),(x)dx. Then

(DP(c jx fH)X) = (K (11 y* )x) = Ap f(x)
= (84— )y = (0, f )y
= (0,0 fx = I~ S dy.
Therefore we have by Holder’s inequality,
”Dﬂ(Kj*f)— K(l/j)*f_ Aﬁf”,’;

<((105001ay (10,0 1(§ 15— (w10 =100 17 Y,
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where (1/p)+(1/q)=1. Noting that 6,e L'(R"), S[f(x—(y/j))|l’dx=S|f(x)|"dx

and that Sl fx=W/))—f(x)|Pdx—0 locally uniformly as j— oo we obtain

3.5 ”Dﬁ(Kj*f)_K(l/j)*f_ Aﬂf"p_’o
as j— oo by Lebesgue’s convergence theorem. This yields Lemma 3.2.

LeMMA 3.3. Let f be a function in LP(R") satisfying (3.4). Suppose |B|=
m. Then

(i) DP*(kxf)->D*(xxf)  in LP(R") as j— oo,

(ii) [|DP(kxf)ll,<const.| f],,

(iii) kx*f is (m, p)-quasi continuous.

Proor. From Lemma 3.2, it follows that x;xf is a Cauchy sequence in
BL,(L?(R™). Then there exist a sequence {P;} of polynomials of degree <m—1
and u € BL,(LP(R")) such that k ;* f—u in BL,(LP(R")) as j— oo and D#' (i j* f+ P;)
—DFf'y in LY (R") as j—oo for any B’ with |f'|<m (see [5; Théoréme 2.1 in

Chap. III]).
First we consider the special case:

K(x)=|x|""" and (x)=(|x|2 + (1[I,

Since x ;x| f|—K*|f| pointwise as j— o0, there exists a polynomial P, of degree
<m-—1 such that x*|f|=u—P, a.e. on R*. Moreover, for any ¢e2(R"), ¢
(x| f1) > (x| f|) in W™ P(R") as j—co. It follows from Lemma 2.3, (ii), that
@(k*| f]) is (m, p)-quasi continuous, which means that x| f| is (m, p)-quasi con-

tinuous and that {x; Slx—yl'”‘”lf(y)[dy=oo} is (m, p)-polar.
Now we consider the general case. We observe that x;* f converges to k*f

except on an (m, p)-polar set, in fact, except on the set {x; Xlx— yIm f(y)ldy =

oo}. Therefore, in a way similar to the above, we obtain (i) and (iii). Moreover,

IDE(rex f)ll, S | D (i j% f) — DP(xex f)
+IDP(xcjx f) = K (1) jy* f— Ap f I,
K qp*fllp+ 1451111,
for any j. Letting j— oo and using (3.3) and (3.5), we have (ii) of the lemma.

LemMMA 3.4. (Yu. G. Reshetnyak [9; Lemma 6.2]) For ¢e€ 2(R"), we
can write
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_ (x—=y)*D*o(y)
() Ia;—maag [x—y|" 4y

where a,=(—1)"m/(a! ®,), w, being the surface area of the unit sphere in R".

THEOREM 3.1. Let f be an (m, p)-quasi continuous function belonging to
BL,(LP(R™)) such that

(3.6) S(1+|x|)"""|D"‘ f)ldx<co  for any a with |a|=m.

If there exists a sequence {¢;} of functions in 2(R") such that ¢;—f in BL,
(LP(R™) as j— o0, then

Gn  fe= 3 af EPID 4y px)  (mp)ge,

where P is a polynomial of degree <m—1.

Proofr. By Lemma 3.4, we have

(x)= (x—=y)*D*¢,(y)
@) |a>|:=ma“s [x—y|" ay.

Here we set

6/(9= 5 a | C=DDID) g,
f( ) |a|2=ma [x—p]" y
From Lemma 3.3, it follows that G, is (m, p)-quasi continuous and that ¢;—G,
in BL,(LP(R")) as j—oo. Therefore G;=f" in BL,(L?(R")). Hence there exists
a polynomial P of degree <m—1 such that f=G,+ P a.e. on R", which implies
Theorem 3.1 by virtue of Lemma 2.3.

ReEMARK 3.1. Let f be an (m, p)-quasi continuous function in W™ P(R")
satisfying (3.6). Then we have (3.7), because there exists a sequence {@;} of
functions in 2(R") such that ¢;—fin W™P(R") as j— oo (cf. Remark 2.2).

REMARK 3.2. Let f be an (m, p)-quasi continuous function belonging to
BL,(LP(R")). If f has compact support, then we have (3.7). Moreover if (1)
m<n, then P=0.

REMARK 3.3. In Theorem 3.1, if (m<) mp<n, we can omit (3.6). In fact,
in this case,

(2D e (12700 1) (- ) <0
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where g =p/(p—1).

REMARK 3.4. In case m=1, these Remarks and Theorem 3.1 were given by
M. Ohtsuka [8; Theorem 9.11].

As a consequence of Theorem 3.1, we have

THEOREM 3.2. (cf. [9; Theorem 5.8] and [12; Theorem 1]) A set A in R"
is (m, p)-polar if and only if there exists a non-negative function f in LP(R")

satisfying (3.4) such that S[x—y["“"f(y)dy=oo for every x € A.

Proor. The ““if”” part was observed in the proof of Lemma 3.3. We prove
the “‘only if” part. Suppose m<n. First we consider the case where A4 is bound-
ed. Take a sequence {w;} of open sets in R" such that w, is bounded, w;>w;, ;>
A and I'}; (w;)<1/2/ for each j=1. Let ¢ be a non-negative function in 2(R")
such that ¢ =1 on w,. By Theorem 3.1 and Remark 3.2, we have

_ (x=»)*D*(¢f0,)(¥)
(@fo)()= 3 a(CZIEZID) gy (m, p)ge.

(for the notation f,, see the Definition given after Theorem 2.2").  This implies that

2 laalSlx—yl"""ID“wa,)(y)Idyzl for xew;.

la|=m
We set f=31% {2 |a)=m|@:| | D*(¢f,,,)|}. Then fis a non-negative function in
Lr(R") with compact support. Moreover, for xe A, we obtain glx— y|mn

J(y)dy=co.
Next we consider the general case. For each j, we set 4;=A4n {x; |x|<j}.
Then from the above argument, for each j, there exists a non-negative function

fj€ LP(R") satisfying (3.4) such that glx—yl"""fj(y)dy =oo for every xe 4;. By
Lemmas 3.3 and 2.1, the set B=\U%{x; glx—yl"‘"'fj(y)dy=oo} is seen to be
(m, p)-polar. Hence there exists a point x,¢ B. Set cj=glxo—y|"""fj(y)dy,
&=2/max {c;, Ifl, 1} and f=5%,(1U)f Then {lxo=yImf(dy < oo

and Slx— yImf(y)dy =c0 for any xe A. Thus f is the required function.
If m=n, then A=0 on account of the next proposition, so that we may take

f=0.

PropPoOSITION 3.1. Any non-empty set A in R" is not (m, p)-polar if and
only if mp>n.
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This can be proved in the same way as H. Wallin [12; Proposition 2].
By using our integral representation, we can prove the following theorem;
cf. Theorem 13.5 in [1].

THEOREM 3.3. Let f be an (m, p)-quasi continuous function belonging to
BL,(L?(R™)). Then any partial derivative of f of order o with |a|<m exists
(m—|al, p)-q.e. and is (m—|a|, p)-quasi continuous.

§4. Integral representation II

In this section, we study a representation of the form (3) (see Introduction).
We denote by 4,, the Laplace operator iterated m times. First we show

LemMmA 4.1. Let He BL,(L?(R")). If A,,H=0, then H is a polynomial of
degree <m—1.

Proor. Let a be any multi-index with |¢| =m, and set T=D*H. By our
assumptions, Te LP(R") and 4,,T=0 in the distribution sense. Then the Fourier
transform of T exists and

(—4n?|x|?y"#(T)=#(4,T) =0,

where Z#(T) denotes the Fourier transform of T. Hence &#(T) is supported by
{03}, so that we can write #(T)=2ZX,czDP5, where J is the Dirac measure and con-
stants ¢, are equal to 0 except for a finite number of f. Therefore T is a poly-
nomial. Noting that Te L?(R"), we have T=0. Thus H is seen to be a poly-
nomial of degree <m—1.

We note the following well-known representation of ¢ € 2(R"): If n—2m>
0 or n is odd and n—2m <0, then

o) =c||x = 1274, 0(3)dy
and if n—2m <0 and n is even, then
9(0)=¢'|[x= y["~"log |x — 114, ()dy
where ¢ and ¢’ are certain constants. Furthermore notice that 4,, is of the form
2 1aj=mC,D?* for suitable constants &,. Setting c,=(—1)"cé, and c;=(—1)"
c'¢,, we have

LEMMA 4.2. (H. Wallin [11; p. 71]) Let ¢ € 2(R"). If either n—2m>0
or n is odd and n—2m<0, then
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o(x)= |a|z=mc°' SD“(Ix—ylz"“")D%p(y)dy,
and if n—2m <0 and n is even, then
0()= % ct|D(Ix=yI*"log|x =y D p(x)dy,

where ¢, and c, are constants.

THEOREM 4.1. Let f be an (m, p)-quasi continuous function in BL,(LP(R"))
such that S(l + |x|)m=»|D*f(x)|dx < 0o for any a with |a|=m. If either n—2m>0

or n is odd and n—2m<0, then

f0)= % e [Dellx—y o nD)dy+PC) (. prgee,

and if n is even and m<n=<2m, then

J6)= % e [De(x—yi2mnlog|x—yDD)dy+P(x) (m, prqe.

where c, and c!, are the same constants as in Lemma 4.2 and P is a polynomial
of degree <m—1.

Proor. First, suppose n—2m>0 or n is odd and n—2m<0. We set
Gf(x)=Z|¢|=mcaSD“(|x—ylz""")D“f(y)dy. By Lemma 3.3, G, is seen to be
an (m, p)-quasi continuous function belonging to BL,(LP(R")). Let ¢ € 2(R").
In view of our assumption thatg(l + |x|)y"~"|D*f(x)|dx < co for any a with |«|=m,

we can apply Fubini’s theorem, and have

6,0 anoedx= 3 e.(Dray[D3(1x= 17 dpp(rax
= B e D0)dyDsIx—ylzmrdygx)dx
—_— [2 1 a
= I e Loy
= {700 3 (~1m Do)y

=§f(y)Am<P(y)dy,

where c is the same constant as given after Lemma 4.1. Therefore, 4,(f—G,) =0
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in the distribution sense. By Lemma 4.1, there exists a polynomial P of degree
<m~—1 such that f—~G,=P a.e. on R". Thus f=G,+ P (m, p)-q.e. on account
of Lemma 2.3.

The second half of the theorem is similarly obtained, since if m<n and n
is even then D%(|x|2™ " log|x|) is a linear combination of functions like x in § 3.

To consider the remaining case, we first prove the following lemma similar
to Lemma 3.3.

LEMMA 4.3. Let |a|=m—n=0, and set x(x)=x*log|x|. Let f be a non-
negative function in LP(R™) such that

@4.1) S(l +1x))m" log (1 + [x[)f(x)dx < oo.

Then kx f is a continuous function belonging to BL,(LP(R")).

Proor. Set k;(x)=x*log(|x|2+(1/j)*>)!/2. Then x;*xfeC®. Moreover,
recalling the discussions in §3, we infer that {x;*f} is a Cauchy sequence in
BL,(LP(R™). If a=0, then we have

2
L8 =y /O

(k% f)(x) =log 2 glx—y|< 1f(y)dy_ Sl’f‘ﬂ<

+S|x—y|;11°g\/|x‘Y| 241/ f(yydy.

By Lebesgue’s convergence theorem, the second term of the right-hand side in-
creases tog (log2/lx—y|)f(y)dy as j—» oo and the last term decreases to
<1

[x=y
SI s 1log |x—ylf(y)dy as j— o because of (4.1). Therefore (i ;* f)(x)— (rcxf)(x)
asjiao. If |¢| =1, then since |(x — y)*log (]x — y|2 +(1/j)?)1/2| < const. (1 +|y[)m"
log(2+yl), (xc;*f)(x)=>(x*f)(x) as j—»oo by Lebesgue’s convergence theorem.
Hence, in a way similar to the proof of Lemma 3.3 xxf is shown to be (m, p)-quasi
continuous. Because of Proposition 3.1, any (m, p)-quasi continuous function
is continuous for mp>n. Thus we obtain the lemma.

On account of this lemma we can prove the following theorem in the same
way as Theorem 4.1:

THEOREM 4.2. Let n be even and n<m. Let f be an (m, p)-quasi continu-
ous function in BL,(L?(R")) such that

S(l +|x)"mlog(1+|x|)|D*f(x)|dx<oo  for any a with |a|=m.
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Then we have the following representation of f :

Je)= % et D=yl log x—y)D*f(3)dy + PG),

where P is a polynomial of degree <m—1, and ¢, are the same constants as in
Lemma 4.2.

ReEMARK 4.1. The function fin the above theorem is continuous by Proposi-
tion 3.1.

§5. A representation by Riesz potentials of functions in L?(R")

Given a multi-index « and a number /, we set k(x)=x?/|x|' and K ;(x)=x%/
(Ix]? +(1/j)?)!2 for each positive integer j. Let f be any multi-index with |B|=m
and set K=Dfk. For a function f in LP(R"), the convolutions k#*f, x;*f and
K (1,jy*f make sense (see § 3).

Suppose that || —I+n=m. Then we see from (i) and (ii) stated after Lemma
3.1in §3 that K, ,;)* f converges to a function RE ,fin LP(R") as j— o0 such that

(5.1 IRZ, . f Il <const. [| fl,.

First we show

LeEmMMA 5.1. Let a, | be given so that m<Z|a|—1+n<m+2. If a function
f in LP(R") satisfies S(1+|x|)|°'|"|f(x)|dx< 00, then kxf is an (m, p)-quasi con-

tinuous function in BL,(LP(R") and D*(kxf)=RE ,f+ab ,f for any B with |B| =
m, where

0 ifm<la]—l+n<m+2,
B
Qa1 = Ap defined in the proof of Lemma 3.2
if la|—l4+n=m.

Proor. First consider the case |a|—I+n=m. From Lemma 3.3, we see
that xf is an (m, p)-quasi continuous function in BL,(LP(R")) and that x ;* f—
kxf in BL,(LP(R")) as j—oo. In the proof of Lemma 3.2, we showed that D?
(k% f)— Ky j*f—ab, f tends to 0 in LP(R") as j—>oo. Hence we have D#(kxf)
=RE ,f+ad} .f.

Next let us consider the case where m<|a|—I+n<m+2. We note

|DBx(x)| < C|x|lal=t=m for all x

and
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| DAk j(x) — DP(x)| < C|x]|le11-m=2 for all x with [x|=N

where C and N are constants. Hence by using Lebesgue’s dominated convergence
theorem we have

ng"xj—D"xldx—vo as j—oo,

so that {x;*f} is a Cauchy sequence in BL,(L?(R")). In a way similar to the
proof of Lemma 3.3, we see that x*f is an (m, p)-quasi continuous function in
BL,(LP(R™) and that x;*f converges to k*f in BL,(LP(R")) as j—»co. On the
other hand,

"Dﬁ(xj*f)—K(I/j)*f”g
§2P‘1{(SlDﬂxj—D”xldx)P+<Sl | | Dol ) Hsis.
xs1/)

The right-hand side tends to 0 as j—oo. Therefore we obtain DA(xxf)=R" | f
and the lemma is proved.
For a number ! and a function f, we set

U ={lx= 15y

By the above lemma we have

THEOREM 5.1. Suppose that m=<l<m+2. If a function f in LP(R")
satisfies S(1+|x|)"”|f(x)|dx<oo, then U{ is an(m, p)-quasi continuous function
in BL,(LP(R")) and

(5.2) DA(U{)=R%, ,_ 1 f+af,usf
for any B with || =m.

ReEMARK 5.1. In case m=1, Theorem 5.1 was given by M. Ohtsuka [8;
Theorem 9.6].

Let2m<n. Aswasseenin §4, any ¢ € 2(R") is written in the form: ¢(x)=
cS[x—- Y12 " 4,0(y)dy, where 4,,=3,=mC,D?*. By Riesz’s composition for-

mula, we have

0(0) =it Ix—z1maz{ 2= y 1m0 (),

where
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c(m, m) =n"/2F _n22—>2 ["(”'_z?'m)
F(n-zm >2F(m)

[4

Setting Y(z) =" s

Slz—yl'"‘”A,,.w(y)dy, we have by (5.2)

V= sy B 8o 2=y 7D p()dy

= ) 1y Gx (RS un D2 9)(2) 8,1 D* ()}

For simplicity we write R, and a, for R} ,_,, and a§ ,_,, respectively. Then we
obtain ’

LEMMA 5.2. Let 2m<n, and let o€ D(R"). Then ¢=UY, where Y=

c ¢ a
Z'(_m,—m) Zla|=mca(Ra+a,,)D Q.

LeMMA 53. Let mZ|a|l—Il+n<m+1.. If @eC™ satisfies |Dvo|=
O(|x|~1"1=1) as |x|— o0 for each y with |y|<m, then

Slx—y|>r (DPK)(x = y)p(y)dy—(kxDPg)(x) —as 1¢(x) as r—0
for all x, where |B|=m.

Proor. We write B=Zi-"=1 B; where |B| =1 for i=1, 2,..., m and set y,=0,
9,=25=1 B for i=1,2,...,m. Then we have

[ .. @R =y

=1lim (D) (x—=p)o(y)dy

R—0 Sr<|x—y|<R

= tim| K(x— ) DPo(y)dy
r<|x-y|<R

R—

m

_ (DV'-lrc)(x—y)(D"‘“(P)(JI)ny'ﬂidS(y)]

i=1 S{y;lx—yl=r}U(y;Ix—yI=R)

= S]x—yl>r k(x—=y)Dlo(y)dy

-2 SIX“y|=r (D7i-1x)(x— y) (D71 @) (), B:dS(p),

i=1
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where n, means the outward normal on the boundary of the domain {y; r<|x—
y|<R}. Hence we obtain

[ . @=)e0)dy= - y)D?e(dy - o) as r-0,

where c={  @m-)G=nBudSG)=] (D )yindSO) if 1l
x=y|=r yl=

I+n=m and =0 otherwise. This c is just equal to a® . In fact, if || —I+n=m,

then

al = limg 8,(x)dx
R |x|<R

~*00

=tim{ [P Fmi)(x) = (DF ) ()1 B S(x)

R—0
+ Xl (D) (x)xPmd ()

=C.

LeEMMA 5.4. Let 2m<n. Then for a function f in LP(R") we have

(5.3) —C ¥ E(Ry+a)f=f.

c(m, m) la[=m

Proor. It suffices to show (5.3) for f=¢ € 2(R") on account of (5.1). We
note that R ¢ =|x|"""*D*p —a,p € C* and that |[D"(R,p)|=0(|x|"™"1) as |x| >0
for any y with |y|<m. From Lemma 5.3 it follows that R, (R,p)=|x|""*D*
(R,9)—a,R,p. Using (5.2) and Riesz’s composition formula, we have

(R, +a.)* ¢ =c(m, m)|x|>"~"xD>*¢,
which yields (5.3) with f=¢ € 2(R*). Thus the lemma is shown.

THEOREM 5.2. Let2m<n, and let f be an(m, p)-quasi continuous function
such that there exists a sequence {¢;} in 2(R") converging to f in BL,(LP(R")).

If

54 fa+ppm % a(R,+a)Defldx<co,
then there exists a function g € LP(R") such that

¢.5) S(l +xmmlg(oldx < oo

and
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f=Un+P  (m, p)q.e.

for some polynomial P of degree <m—1; actually

—_ 4 b a
(5.6) g—c——(m’ m) |a|Z=m ¢, (R,+a,)D*f .
Conversely if there exists a function g € LP(R™) satisfying (5.5) and f— U}, is equal
(m, p)-q.e. to a polynomial of degree <m—1, then (5.4) and (5.6) are fulfilled.

PROOF. Assume (5.4). By Lemma 5.2, we can write ¢;=UY, where
v =c—(;:—m2|,|=m'c“a(R,+aa)D“(p ;- Denote by g the right-hand side of (5.6).
Then g e LP(R") and by (5.1), |¥;—gl, tends to 0 as j—»oo. Therefore from
Theorem 5.1, it follows that UY, is an (m, p)-quasi continuous function in BL,
(L?P(R™) and that ¢;=U%—U¢ in BL,(LP(R") as jooo. Thus f'=(U%) in
BL, (LP(R™), so that there exists a polynomial P of degree <m—1 such that
f=U8%+P(m, p)-q.e.

Conversely suppose that g € LP(R") satisfies (5.5) and that f— U?Y, is equal (m,
P)-q.e. to a polynomial of degree at most m—1. By (5.2) and (5.3) we have

%, CRuta)D*f = % &R, +a,) DU

|a|=m =m

= 2 E(R,+a,)%g

|a]=m

_c(m, m)

g.

Hence (5.6) is fulfilled and then so is (5.4) by assumption (5.5).
REMARK 5.2. If mp<n, then condition (5.4) is satisfied.

REMARK 5.3. In case the support of f is compact, then condition (5.4) is
satisfied. Moreover, in this case, f=UY (m, p)-q.e., where g is the right-hand
side of (5.6).

REMARK 5.4. In case m=1, these Remarks and Theorem 5.2 were given by
M. Ohtsuka [8; Theorem 9.7].
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