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Nonoscillation criteria for second order elliptic equations have been obtained

by Headley [4], Headley and Swanson [5], Kreith [6], Kuks [7] and Swanson

[10]. The purpose of this paper is to establish nonoscillation criteria for the

non-self-adjoint elliptic equation

(1) Lu= Σ DtaιXx)Dju) + 2Σbfa)Dtu + c(xyu=0.
i,j=l ΐ=l

Nonoscillation criteria for (1) due to Swanson [10] will be derived from our main

theorem.

Let R be an unbounded domain in π-dimensional Euclidean space En with

piece wise smooth boundary dR, A generic point of En is denoted by x =

(x l5..., xΛ). Partial differentiation with respect to xf is denoted by Dh i = l,..., n.

It is assumed that the coefficients aij9 bt and c of L are real-valued and continuous

on R9 that the bt are differentiable in R and that the matrix (αι7) is symmetric

and positive definite in R. The domain of L relative to R, Φ(L; R), is the set of

continuous functions on R which have uniformly continuous first derivatives

in R and for which all derivatives involved in L exist and are continuous in R.

A solution of equation (1) is a function weT)(L; R) which satisfies (1) at every

point of R.

DEFINITION 1. A bounded domain G with GcR is a nodal domain of

a nontrivial solution u of (1) iff w=0 on dG. The partial differential equation

(1) is said to be strongly oscillatory in R iff for arbitrary r > 0 there exists a

nontrivial solution ur of (1) with a nodal domain contained in Rr, where

R r=jRn{xeE 1 1 : |x |>r} .

Equation (1) is said to be nonoscillatory in R iff it is not strongly oscillatory in

R, i.e. iff there exists a number s > 0 such that no nontrivial solution of (1) has a

nodal domain contained in Rs.

DEFINITION 2. Consider the two self-adjoint operators

(2) Lou = ^
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(3) Lι0 = . Σ_ DlA^Djv) + C(x)v,

where α^ , γ, Aij9 C are real-valued and continuous on R and the matrices (αf j ),

(4^) are symmetric and positive definite in JR. We say that Lx belongs to *iBl[L0\

RJ for some s > 0 iff for every bounded domain G with GczRs the functional

(4) Vlu;G]

is nonnegative for all real-valued piecewise C 1 functions u on G vanishing on

δG. The functional V[u; G] in (4) is called the variation, relative to G, of Lt

from Lo. For example, Lγ e9W[L0; ΛJ if the matrix {μ^—Aij) is positive semi-

definite in Rs and C — γ is nonnegative in £ s .

Our main result is stated in the following

THEOREM. Equation (1) is nonoscillatory in R if for some number s>0

there exist a self-adjoint elliptic operator Lt e90ΐ ^-(L + L*); Rs L L* b^/π^

the formal adjoint of L, and a function weT>(L1; Rs) with the property that

(i) w>0 in Rs;

(ii) LiW^O in £ s .

To prove the theorem we require the following three lemmas that provide

useful information regarding bounds for eigenvalues of self-adjoint and non-

self-adjoint elliptic operators.

Let G be a bounded domain with piecewise smooth boundary dG and such

that GczJR. By an eigenvalue λ of L relative to G we mean a number λ with the

property that there exists a nontrivial solution u e T)(L; G) of the problem

Lu + /lu=0 in G, w=0 on dG.

The solution u is called an eigenfunction associated with the eigenvalue λ.

LEMMA 1. (Allegretto [1]) Let L be the elliptic operator defined by (1).

Then, no eigenvalue of L relative to G can be less than the smallest eigenvalue

^ relative to G.

LEMMA 2. (Swanson [8]) Let Lo and Lt be the elliptic operators defined

by (2) and (3), respectively. If there exists an eigenvalue λ of Lx relative to

G with an associated eigenfunction u satisfying V[u; G]^0, then λ cannot be

less than the smallest eigenvalue of Lo relative to G.

LEMMA 3. Let μ0 be the smallest eigenvalue of the self-adjoint elliptic

operator Lx relative to G. Then, for any veT>(Lί; G) such that v>0 in G,
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xeG V

PROOF. Our method is essentially that used by Swanson [9]. If u is an

eigenfunction of Lj associated withμ0, then the following identity holds (see [2]):

(5) Σ AijDiuDjU-Cu2= Σ Λ ' ~
v

where

Since u=0 on dG and v>0 on G, u/v is nonconstant in G and hence we have

Σ AiJX
iXjdx>0. By integrating (5) over G and applying Green's

JG

formula, we obtain

>-( J^-L^dx
JG V

^inf ~LlV { u2dx,
xeG V JG

from which the desired conclusion immediately follows with the use of Courant's

Minimum Principle [3, p. 399].

PROOF OF THEOREM. Suppose to the contrary that equation (1) is strongly

oscillatory. Then, there exists a nontrivial solution u of (1) with a nodal domain

G contained in Rs. By Lemma 1, the smallest eigenvalue λ0 of -=-(L + L*) relative

to G is nonpositive.

By hypothesis, there exists a self-adjoint elliptic operator Lx e $R -y(L + L*);

Rs . Since the variation, relative to G, of Lt from -=-(L + L*) is nonnegative,

we can apply Lemma 2 to conclude that the smallest eigenvalue μ0 of Lt relative

to G does not exceed λθ9 i.e. μ o ^ 0 . On the other hand, it follows from Lemma

3 that μ0 is greater than inf [ — LiVv/vv] which is nonnegative on account of (i)
xeG

and (ii), i.e. μ o > 0 . The contradiction proves our theorem.

REMARK 1. The above theorem is an extension of the sufficiency part of

Kuks' nonoscillation theorem [7, Theorem 3] for self-adjoint elliptic equations.
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Our method is different from the one used by Kuks.

COROLLARY 1. Equation (1) is nonoscillatory in R if for some s>0 there
exists a function ΛeT)(L; Rs) such that

Σ ίD,{aiJ(x)Djh) + a^DthDjh] + c(x) - div b(x) ̂  0

in Rs9 where fe(x)=(fc1(x),..., bn(x)).

PROOF. This corollary follows from the observation that the function
w = exp [/i(x)] satisfies

JLw + L*w = £ IDia

Let λ(x) be the smallest eigenvalue of the matrix (ao(x)), x e R, and let / be
an arbitrary positive-valued function of class C^O, oo) such that

f(r) ^ min λ(x), 0 < r < oo ,
xeSr

where SΓ = {xeR: |x |=r}. We define the function g by

0(r)=max \_c(x) — divfc(x)], 0<r<oo .
xeSr

Let us consider the self-adjoint elliptic operator

(6) L2υ= Σ

Since, for all x e R and all ξ e £",

the operator L2 e501 -y(L-i-L*); R L moreover, if ve X>(L2; R) depends only on

r = |x|, then

COROLLARY 2. Equation (1) is nonoscillatory in R if

(7) lim sup \r2g(r)- - ^ ! L f ( r ) _ « z l r / ' ( r ) Ί < 0 .

PROOF. Observe that the function w = r ( 2"Λ ) / 2, r = |x|, satisfies
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REMARK 2. If L is uniformly elliptic in R with ellipticity constant K, then

we can take f(r) = K, and in this case condition (6) reduces to

2g(r)<(n2) K ,
r-+oo 4

which is a nonoscillation criterion of Swanson [10, Theorem 2].

The following corollary was first obtained by Swanson [10, Theorem 1].

COROLLARY 3. Equation (1) is nonoscillatory in R if the ordinary dif-

ferential equation

(8)

is nonoscillatory at r= + oo.

PROOF. Since (8) is nonoscillatory at r = + oo, there exists a solution y(r)

which does not vanish on some half-line [s, + oo). Without loss of generality

we may assume that y(r)>0 on [s, +oo). Define the function w in R by w(x)

=y(r)9 r = \x\. Then w satisfies the elliptic equation L 2 w = 0 in Rs, where L2

is the operator defined in (6). Now the conclusion follows from the main theorem.

Our final result is an extension of that of Kuks [7, Corollary 1].

n

COROLLARY 4. Let the operator L be defined in R—Yl //, where Jf =
i = l

[s;, +oo), Ϊ = 1,..., n, and uniformly elliptic in R with ellipticity constant

K. Assume that each of the ordinary differential equations

(9) J ^

is nonoscillatory in Ih i = l,..., n. //

Σ Φd ^ c(x) - div b(x) in R ,
i=ί

then equation (1) is nonoscillatory in R.

PROOF. By hypothesis there exist solutions y.^yfa.) of (9) such that

yt(Xi)>0 in /S = [sί, +oo)c:Jr., j = l,.. .,n. Now the conclusion follows from

the main theorem by taking
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LJ = fcΔ 4- Σ Φd and w = Π yfct) .
/= l /= i
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