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Introduction

This work was motivated by the recent papers of Calvert [7, 8] who discussed
potential theoretic properties of nonlinear monotone operators and extended the
Dirichlet space theory (cf. Beurling-Deny [1, 2], Deny [9, 10], 1td [13, 14],
Bliedtner [3, 4]) to the nonlinear case in Sobolev spaces. He treated nonlinear
analogues of the modulus contraction, the unit contraction, the principle of lower
envelope, the domination principle and the complete maximum principle, etc.
In his argument, however, there is no notion of potentials. In this paper, restrict-
ing our arguments to a class of gradients of convex functions, we introduce a
notion of potential with respect to a given convex function and show that Calvert’s
arguments are valid in a more general space, namely, in a regular functional
space. Moreover, by introducing a notion of capacity with respect to a given
convex function, we discuss the refinement of functions in a regular functional
space.

§1. Preliminaries

Let X be a locally compact Hausdorff space with a countale base and & be
a positive (Radon) measure on X. Let =2(X;¢&) be a real reflexive Banach
space whose elements are real-valued locally £-summable functions defined
£-a.e. on X (hereafter we write simply ‘‘a.e.” for “‘¢-a.e.””). We denote by
Z* the dual space of &, by |lul| (resp. |[u*|) the norm of ueZ (resp. u* e Zx*)
and by <u*,u> the value of u*eZ* at ueZ. We denote the strong (resp.
weak) convergence by *° For functions u,velL}, .=
L},(X; &), we write u Vv and u Av for max(u,v) and min(u, v), respectively.
Especially, we write u* and u~ for u vV 0 and —(u A 0), respectively.

Throughout this paper, let 1 <p<oo and @ be a strictly convex function on
Z such that

s (resp- €6 w9 .

®0) =0,
(1)
d(u) = Cllu|? forany ue&,
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where C is a positive constant. Suppose further that ¢ is bounded on each
bounded subset of & and is everywhere differentiable in the sense of Gateaux,
that is, there is an operator G: Z —»Z* such that for any u, ve &

<Gu, v> = lim

D(u+tv)— d(u)
ti0 t )

This operator G is called the gradient of @ and denoted by F ®.

Now, we state basic properties of ¥ @ without proof:

(@) LetueZ andu*eZ*. Then u*=F®(u) if and only if <u*,v—u><
d(v)—P(u) for all ve &.

(b) P& is strictly monotone, ie., <V®u)—FVd(v), u—v> >0 for any
u, ve Z such that u#v.

(c) ForeachueZ, <V ®(v),v—u>/|v]| >0 as |v|—>c0.

(d) F & is demicontinuous,i.e., if u,—~>u in £ as n— o0, then V¥ P(u,)—2>
V ®(u) in * as n—oo.

(¢) Foranyu,vedZ,

B(u)— () = §:<V<D(v+t(u—v)), u—v > dt.

LEmMMA 1.1. P @ is one to one and onto.

Proor. As remarked above, F® is a monotone!’, demicontinuous and
coercive!) mapping of Z into Z*. Hence, in view of a result of Browder [5;
Theorem 3], the range of F & is all of £*. The fact that it is one to one fol-
lows directly from property (b). q.e.d.

DEerFINITION 1.1 (cf. [2], [4], [9], [10], [13]) Z=%(X;¢&) is called a
functional space if the following axiom is satisfied:

Axiom (a) For each compact subset K of X, there is a constant M(K)>0
such that

S luldé < M(K)|u|  forall ued.
K
Next, denote by .# the space of all bounded &£-measurable functions on

X with compact support. Then Axiom [a] implies that for each fe.#, the
functional L, given by

L,(0) = { fode

1) For words “monotone” and “coercive”, see [6].



The Gradient of a Convex Function on a Regular Functional Space 745

belongs to #*. Therefore, from Lemma 1.1 we obtain

THEOREM 1.1. Let & be a functional space. Then for each fe .#, there
is a unique function u;e & such that

<V P(up),v> = Sfudf forall veZ.

From now on, we denote by % the space of all continuous functions on X
with compact support.

DEerINITION 1.2. (cf. [2], [4], [9], [13]) A functional space ¥ =%(X; &)
is called regular if the following axiom is satisfied:
Axiom (b) % N & is dense both in € and in &.

DEFINITION 1.3. Let & be a regular functional space. A function ueZ
is called a potential (with respect to ®) if there is a (signed) measure pu on X
such that

(1.2) <P d(u), 0> = Svdu forall ve#nZ.

If such a p exists, then it is unique and called the associated measure of u, and we
write u=u,. In particular, a potential u, is called pure if u is positive.

We note that the function u, obtained in Theorem 1.1 is a potential whose
associated measure is fd¢.

The lemma below will be needed in the proofs of our main thoerems in §3
and 4.

Let Q be an open subset of X and denote by () the space of all continuous
functions on Q with compact support.

LEMMA 1.2. Let ¥, be a dense linear subspace of €(Q) such that v*e %,
for any ve €,. Let L be a positive linear functional on ¢,. Then L can be
extended to a positive linear functional on ¥(Q) and hence there is a positive
measure ¢ on Q such that

L(v) = Snvda forall ve¥,.

The assertion of this lemma was shown in a more general form in [20;
Corollary 2.3].

§2. Normalized contractions

In this section, let & be a functional space.
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A mapping T: (— o0, 0)—(— 00, ) is called a normalized contraction on
(— o0, 00), if it has the following properties: TO =0 and |Tr—Tr|<|r—r'|.
Such a mapping T can be considered as a mapping from L}, into itself by putting
(Tu)(x) =Tu(x) for x € X at which |u(x)| <o0.

LemMA 2.1. Let T be a normalized contraction on (—oo, ). Let {u,}
be a sequence in & such that Tu,e & for all n. If u,—>u in & and {Tu,}
is bounded in &, then Tue & and Tu,—>Tu in Z.

Proor. Since & is reflexive, {Tu,} is weakly relatively compact in Z.
Let {Tu, } be any subsequence of {Tu,} weakly convergent and v be the weak
limit. Then we have

@n  |{qu=o ¢ <§iTu—Tu |1 £ 1de+ | §(Tu - 0) 12
for any fe # and n’. By Theorem 1.1,
S(Tu,,'—v)fdf = <V d(uy), Tu, —v>—0 as n'— 0.
By using Axiom (a) we have
SITu,.'—Tul | f1dE < Slu,.f—ul | f1d¢ < (sup| f DMlu, —ul|—0

as n'—o0, where M is a positive constant which depends on the support of f.
Hence by (2.1) we have

S(Tu—v)fd.f =0 for any fe.#.

This implies that v=Tu in & and Tu,—*>Tu in Z as n— oo. q.e.d.

In the Dirichlet space theory, there is an important class of normalized
contractions on (— oo, 00) of the following type:

DEerFINITION 2.1. Let k be a non-negative number or oo, and define a
mapping T:(— 0, ©0)—>[0,0) by T,r=min{max(r,0),k}. Then we say
that T, operates in & (with respect ot ®), if the following two conditions are
satisfied :

(C) TwueZx  forany ueZ.
(@C) P(u)+P(v) = P(u+ T(v—u))+ P(v— T(v—u))

forany u,veZ.
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We now give a necessary and sufficient condition for condition (¢C,).

PrOPOSITION 2.1. Let ke [0, ©0]. Under condition (Cy), condition (®C,)
is equivalent to the following:

(@C) <V d(u+Tw)—FVP(u),v—Tw>>0  forany u,veZ.
Proor. Clearly, (#C,) is equivalent to
2.2) D(2)+P(z+w) = P(z+ Thw)+D(z+w—Tw) for any z, we Z'.

First assume (2.2). Let u and v be any functions in & and ¢ be any positive
number, and take w=Tw+t(v—Tv) and z=u in (2.2). Then, noting that
T,w =T, we have

O(u+ T+ t(v—Tiv)) + P(u) = P(u+ Tv)+ P(u + t(v— T,v)).
Hence

<V ®(u+ Tw)—FV P(u), v—Tv>
= lif(r)l% {®(u+ T\ w+t(v—Ty))— P(u+Tw)— P(u+t(v—T,v))+ P(u)}
t

>0.

Conversely assume (®C,)'. For any u, ve &, we have by property (e) and
(2CY'

1
B(u+v)— B(u+ Tyv) = S0<V<D(u+Tku)+t(v——Tkv)), v—To>dt

> Sl <P ®(u +1(v—T,)), v— Too>dt
0

= d(u+v—Tv)—d(u).
Thus (2.2) is proved. q.e.d.

RemARk. Inparticular, when T, operates in &, we often say that the modu-
lus contraction operates in Z. Calvert [7: §2] gave the definitions of the con-
tractions onto [0, k] in the form (®C,)’ for a general class of nonlinear monotone
operators in a Sobolev space. Also, compare them with the definitions in Deny
[9] and 1Ito [13].

LEMMA 2.2. Suppose that condition (C,,) is satisfied for some ky such that
0<ko<oo. Then for every k, 0<k< oo, the following holds: T,¢p € X for any



748 Nobuyuki KenmocHr and Yoshihiro Mizuta

PeEFNZ.

ProoF. The lemma is trivial for k=0. Let ¢ be any function in Z n Z.
In case 0<k< o0, we observe that

Tip = (klko)Ti,(kod/k) € Z .

Next, let us consider the case where k=00. Taking a number M which is larger
than sup |¢|, we have by the above fact

T,d=0¢t=Tydex. q.ed.
Using this lemma we prove

LeEMMA 2.3. Suppose that Z is regular and that condition (C,) is satisfied
for some k such that 0<k<oo. Then for any open set G in X, {pe¥n%;
supp ¢ =G} is dense in €5={¢p € €; supp ¢ = G} with respect to the topology of
€.

Proor. Let ¢ be any non-negative function in ;. Given &>0, there
exists a function ¥ € € N & such that [¢p—y|<e on X on account of Axiom (b).
Set y,=(y—T,¥)*. Then, by Lemma 2.2, y,e ¥ N & and we see that y,(x)=0
if ¢(x)=0, so that Yy,e¥;nNZ and |y,—¢|<2¢ on X. Thus the lemma is
proved. g.ed.

PROPOSITION 2.2. Suppose that & is regular and let r be a positive num-
ber. In addition to assumptions on @ made in § 1, suppose that ®(Au)=|A|"P(u)
for any ue X and any real number A. If T,, operates in X for some k, such
that 0<ky< o, then all T,, 0<k < o0, operate in Z.

Proor. Clearly, T, operates in &. Now, assume that 0<k<oo. For
an arbitrary ¢ €€ nNZ, we have T, €2 by Lemma 2.2. Moreover, by our
assumption and (®C, ),

&(Tip) = D((k/ko) Tio(kod/k))
= (k/ko) ®(Tyo(kod/K))
< (kfko) @(kod/k)
= &(¢).

This implies that the mapping: ¢—T,¢ from € n & into Z is bounded on each
bounded subset of € N & in the topology of &. Therefore, by Axiom (b) and
Lemma 2.1, condition (C,) holds. Next, notice that
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(2.3) F&(u) = A" tsign()F du), A #O.
Let ¢, i be any functions in # n 2. Then, by (2.3) and (¢C,,)
<P S+ Th) P B(@), ¥ — Ty >
<7 B(¢ + (k[ ko) Tag koW [K)) — 7 D), ¥ — (klko) Ty kot )>
(kko) <P B(ko/k+ Tro(koW[K)) — 7 D(kod[K), kow[k
— Tk [K)> > 0.

Hence, just as in the proof of Proposition 2.1, we obtain

(¢ + T — )+ (Y — T(Y — 9)) < B(P) + P(Y)
for any ¢, Yy e€¥nZ.

Taking account of the strong continuity and weak sequential lower semicontinuity
of @, we consequently see that (@C,) holds. Thus T, operates in Z".
Finally, we can show (C,) and (®C,) in a way similar to the above.
q.e.d.

§3. Potentials with respect to ¢

For a ¢-measurable set 4 in X and v, w in L},., we simply write ‘“‘o>w
(resp. v=w) on A” for “‘v>w (resp.v=w) a.e. on A”. Especially, we write
“v>w (resp. v=w)” for “v>w (resp. v=w) on X’

In this section, let 2 be a regular functional space.

The following theorem is a nonlinear version of a result of Beurling-Deny
[2; Lemma 2].

THEOTEM 3.1. Suppose that vteZ for any veZ and the mapping:
v—v* from & into & is bounded on bounded subsets of . Let ue%. Then
the following three statements are equivalent to each other:

(i) wu is a pure potential.
(ii) P(u+v) > d(u) for all ve & such that v > 0.

(iii) <Vow),v> >0  forall ve X such that v > 0.

Proor. The equivalence between (ii) and (iii) is easily obtained from the
definition of 7 @ and property (a). Next assume (i). Then there exists a positive
measure u on X such that (1.2) holds. Let v be an arbitrary non-negative function
inZ. Inview of Axiom (b) and Lemma 2.1 for T=T,, we find a sequence {v,}
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in € NZ such that v,>0 for all n and v,—>v in & as n—>o0. Therefore we
see that

<V o(u), v> =lim <V ®(u), v,> = limgv,,du >0,

so we have (iii). Conversely, assume (iii) and consider the functional:
vEZNE — <P P(u),v>.

From Lemma 1.2 and Axiom (b) it follows that there exists a positive measure
1 on X such that

<V o), v> = Svd,u forall ve®nZ. g.e.d.

COROLLARY. Suppose that vt e Z and ®(v*)<P(v) for any veZ. Then
any pure potential is non-negative.

PrOOF. Let ueZ be a pure potential, and let us consider 4 ={veZ’;
v>u}. Then inf{®(v); ve ¥} is attained at a unique function of ¢°, because
X is closed and convex in & and @ is strictly convex. By Theorem 3.1, u is
the minimizing function. On the other hand, by our assumption, u* €2 and
d(ut)<P(u). Hence u=ut,i.e., u>0. q.e.d.

Throughout the rest of this section, we assume that T, operates in . In
this case, the following holds:

3.1 D)+ d(—u~) < d(u) forany ueZ.

Moreover, Theorem 3.1 is valid, since it follows from (3.1) that the mapping:
v—>T v=v* from & into itself is bounded on each bounded set in &.

LemMA 3.1. Let u and v be associated measures of potentials. If ¢ is a
measure such that p<o<v, then o is the associated measuer of a potential.

ProoOF. Let ¢ be a non-negative function in ¥ N %. Then we have

gd)da < §¢dv — <P (u,), $>
and
Sq&do > Sqﬁdy = <P d(u,), b> .

Therefore for any Y € € N & we write Yy =y* —y~ and have by (1.1) and (3.1)
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St//da < <P D(u), Yt>+ <P (), —Y~>

< (1P ®(uy)l+ llV‘D("v)l])(—?%I/)—)”p '
Hence

(fwdo| < a7 @@I+17oa)D(-2EL)".

This means that the functional: ye¥ n%— Sl[/dO' is continuous with respect

to the topology of &, so there exists a u*eZ™* such that <u*,y> =gx//da for

any ye#nZ. Lemma 1.1 shows that u*=F®(u) for some ueZ. This
u is a potential u, by definition. q.e.d.

THEOREM 3.2. Let u and v be associated measures of potentials. If
there is an associated measure o of a potential such that u>o and v>o, then
u,Au, is a potential. Moreover, if we denote by n the associated measure of
u, Au,, then we have n>a.

Proor. By the above lemma u A v is the associated measure of a potential.
Let #"={ve%;v>u,Au,} and define an operator B: Z—->Z* by Bv=F ®(v)—
V®(u,pn,). Then B is a monotone demicontinuous operator from % into
Z* such that for each we %, <Bv, v—w>/||v]| >0 as |v]|—>00. By virtue of
a result of Browder [6; Theorem 3] there is vy € " such that <Bvgy, v—v,> >0
foranyveo. Forany ve % such that v >0, we have v, +v e & and hence < Bu,,
v>>0. Therefore by Lemma 1.1 and Theorem 3.1 there exists a pure potential
u,, such that Boy=V®(u,,). This means that v, is a potential whose as-
sociated measure is no+uAv. If it is shown that vy =u, Au,, then the proof
of the theorem is completed.

First we see that <Buvgy, vo—voAu,> <0, because voAu,ex’. Next,
by (2C.,)’,

<B(vg Auy), vo—vo Auy>
= <B(“u—(“u_vo)+), (“u_vo)—>
> <Bu,, (u—vy)™>.

For a non-negative function ¢ € ¥ N & we have

<Bu,, ¢> = Xd)d,u—Sd)d(yAv) >0.
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By Lemma 2.1 we see that <Bu,,v>>0 for any non-negative ve%. Hence,
<Bu,, (u,—vy)”>>0. Therefore

<V D(vy)—V P(vo Aut,), vo—vo At >
= <Bvy—B(vogAu,),vo—0v9 A u,> <0.

Property (b) implies that v,=vy Au,. Similarly we obtain vo=veAu,. Since
Vo €N, Vo=U, AU,. g.e.d.

COROLLARY. Ifu, vare pure potentials, then u Av is also a pure potential.

THEOREM3.3. Let u and v be associated measures of potentials. If
there exists an associated measure o of a potential such that uy>o,v>o and
<V o(u,)—Vd(u,), (u,—u,)*> =0, then u,<u,.

Proor. By Theorem 3.2, u, Au, is a potential whose associated measure
nis >o. Asin the proof of Theorem 3.1 we see that <V ®(u,)—F &(u,), v> >0
for any non-negative ve . Hence we have

<V o(u,)—V d(u,), (u,—u,)*> >0.
Since u,—u,=u,—u, Au,=(u,—u,)*, we have by using our assumption
<V o(u,)-Vodu,),u,—u,> <0,
which implies u, =u, (cf. property (b)). Then u,<u,. q.ed.

COROLLARY 1. Let u and v be associated measures of potentials. If
u<v, then u,<u,.

Proor. Take o=y in the theorem. q.ed.

CoROLLARY 2. Let f be a non-negative function in .# and u, be a pure
potential. Ifu;<u, on the set {x € X; f(x)>0}, then u,<u,.
In fact, take 0 =0 in the theorem and note that <V ®(u,), (u,—u,)* > =0.

ReMARK. Ideas in the proofs of Theorems 3.2 and 3.3 are found in Calvert
[7; §2]. Theorems 3.2 and 3.3 are nonlinear analogues of the principle of
lower envelope and the domination principle in the Dirichlet space, respectively.

THEOREM 3.4. Let k be a positive number and suppose that T, operates
in &. Let pu and v be associated measures of potentials such that u>o and
v=0 for some associated measure ¢ of a potential. Then u,A(u,+k) is a
potential whose associated measure is >o.
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Proor. We note that u A (v+k) belongs to & for any u, veZ, because
uAN@+k)=uAv+T(u—v). Set w=u,A(u,+k), # ={veZ;v>w} and define
the operator B from & into 2* by Bv=V ®(v)—F ®(u,,,). Then, just as in the
proof of Theorem 3.2, we see that there exists v, € # such that <Bvy, v—vy> >0
for all ve " and that v, is a potential whose associated measure is >pu A v and
vo=vo Au,. Therefore we have only to show that v,=vyA(u,+k). For this,
first note that < Bvg, vo—vy A (u,+k)> <0. Next, by (®C,),

<B(UO A (uv+k))’ Vo — 1y A (uv+k)>
= <B(00 A uv+ ’rk(UO _uv)+)a (UO _uv)+ - T;c(vo _uv)+ >
> <B(vy A u,),00—0y A (u,+k)>.

By Theorem 3.2, v, A u, is also a potential whose associated measure is >p A v.
Therefore, the right hand side of the above inequality is non-negative, so that

<V ®(e)—V P(vy A (u,+k)),vo—v0 A (u,+k)>
= <B(vo)—B(vo A (uy+k)),vo—vo A (u,+k)> <0.
By property (b) we have vy=v, A (u,+k). g.e.d.

COROLLARY. Let k be a positive number and suppose that T, operates in
Z. Ifu,and u, are pure potentials, then u, A(u,+k) is also a pure potential.

THEOREM 3.5. Let k be a positive number and suppose that T, operates
in . Let u and v be associated measures of potentials. If there exists an
associated measure o of a potential such that p>o,v>oc and <V®(u,)—
v o(u,), (u,—u,—k)*> =0, then u, <u,+k.

Proor. By using Theorem 3.4 and Property (b), we can obtain the theorem
in the same way as in the proof of Theorem 3.3. q.e.d.

COROLLARY. Let k be a positive number and assume that T, operates in
Z. Let f be a non-negative function in .# and u, be a pure potential. If u,<
u,+k on the set {x e X; f(x)>0}, then u,<u,+k.

ReMARK. Theorems 3.4 and 3.5 are nonlinear versions of the strong principle
of lower envelope and the complete maximum principle in the Dirichlet space,
respectively.

§4. The condenser and balayage principles

In this section, let & be a regular functional space in which T, and some
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T, with 0<k < co operate.

THEOREM 4.1. (Condenser principle) Let G, and G, be two open sets in
X with disjoint closures, G, being relatively compact. Then there exists a
potential u, such that

(1) 0<u, <k;

(2) u,=00nGyand =konGy;

(3) u* is supported by G, and u~ by G,.

Proor. Define a closed and convex set " in & by
A ={wveZ;v>00n G, and v < 0on Gy}.

It is easily seen that 4" is non-empty. Let us consider a=inf {®(v);ve H}.
Then there exists a unique function u such that x=®(u). Besides, we see that

<V o), v—u> >0 for any ves,

and that u=Tu, since T,ue# and &(T,u)<P(u) by (®C,). Thus u satisfies
(1) and (2). Next, we shall show that u is a potential whose associated measure
satisfies (3). Set

% ={pe¥nZ;d=>0 onG,and <00nG,},

vV ={peén%;¢ =0 onG,andsupp ¢ = X—G,}
and

W ={pe¥nZ;¢=>0 onG,andsupp § =« X—G,}.
Since u+ ¢ € ¢ for any ¢ e %, we have
“.1) <V du),dp> >0 forany ¢ex.

Noting Lemma 2.3 and applying Lemma 1.2 for Q=X-G,, ¢,={pe¥nN<Z;
suppp<=X—G,} and L: pe¥,— <VP(u), > which is non-negative on
¢t={pe¥,; >0 on X—G,} and vanishes on {Ppe%,; (suppd)n G, =g}
on account of (4.1), we can find a positive measure v on X such that

<PV o(u),dp> = Sq&dv forany ¢ev”

and suppv<G,. Similarly, we find a positive measure T on X with support in
G, such that

<P du),dp> = —Sd;dr forany ¢e¥ .
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In the same way as in Deny [9; Théoréme 1], Bliedtner [4; Theorem 13.2] and
Fowler [11; Lemma 3.2], for each non-negative ve ¥ NZ on X and open sets
V,W such that X—Go>V>(suppv)nG,, X—G,>W> (suppv)nG, and
Vn W=g, we can find sequences {¢,}, {¢,} in ¥" with support in V and {y,},
{¥,} in #~ with support in W such that ¢, 1 v, ¢/, | v uniformly on G, and ¥, 1 v,
¥, | v uniformly on G, as n—»o0. Then we see by (4.1) that

Sgb,,dv—gn//;,dr < <Pd®u), v> < Sd);,dv—gzp,,dt.

Letting n— oo yields that
<V o(u),v> = gvdv—gudr.

This shows that u is a potential whose associated measure is v—1. Thus the
theorem is proved. g.e.d.

REMARK. As was seen in the above proof of Theorem 4.1, in addition to the
assumptions on @ made in §1 we needed only the property that &(T,u) <P(u)
for any ueZ. Fowler [11: Theorem 4.1] showed the condenser principle in
the case of ®(u)=|ul|2. Our theorem is a generalization of it.

THEOREM 4.2. (Balayage principle) Given a pure potential u, and an
open set G in X, there exists a unique pure potential u, such that

(1) u, =u,onG;

(2) ' is supported by G;

(3) ifu, is a pure potential and u,>u, on G, then u,>u,

on X.
Proor. Define a closed and convex set ¢ in & by
A ={veZ;v>u, onG}.

Then it is non-empty and there exists a unique vy € ¢ such that <V ®(v,), v—

vo> =0 for any ve #". Since v+vy e for any ve & such that v>0, we have,
<V P(vy), v> >0 for such v. Hence v, is a pure potential by Theorem 3.1. Let
u, be any pure potential such that u,>u, on G. Then vy Au,e " and <V P(v,

AUy), Vo—Vo Auy,> =<V P(u,—(u,—vy)"), (U,—v9)">=><VPu,), (u,—vy)" >

>0 because of (2C, ). So we have

<P d(vg) =V P(vy A u,),v9—v9 A u,> <0.

Therefore we have v,=vy Au,, that is, vo<u, by property (b), and especially
vo<u,. It remains to show that the associated measure u’ of v, is supported by
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G. For this, take any function ¢ € ¥ nNZ such that suppdpcX—G. Noting
that vy +¢ e ¢, we see that Sqﬁdu' =<V P(vy), > =0. It follows from Lemma

2.3 that suppu’=G. Thus v, is a function having the required properties.
Finally we note that properties (1) and (3) imply the uniqueness of such

au, g.ed.

e

§5. Capacity with respect to @

Let us assume in this section that £ is a regular functional space in which
T,, operates. We introduce a notion of capacity with respect to ¢ and discuss
the refinement of functions in &'.

Let K be any compact set in X. We define

Cap(K) = inf{P(¢); pe€nNZ,¢ >1o0n K}.

Note that such ¢ exists by Axiom (b) and that 0<Cap(K)<oo. Since T,
operates in &, Cap(K)=inf{®($);pe¥NZ, =0 on X and >1 on K}.
For any open set G in X, we define

Cap(G) = sup {Cap(K); K <= G, K is compact}.
LemMA 5.1. Let K be any compact set in X. Then
Cap(K) = inf{Cap(G); K = G, G is open}.

Proor. Since Cap(K)<inf{Cap(G); K<=G, G is open} is trivial, we show
the converse inequality. Given ¢>0, choose ¢ € ¥ N & such that ¢>1 on K
and &(¢p)<Cap(K)+e. Set G,={xeX;¢d(x)>n} for any number n, 0<n<1.
Then, since G, is open and contains K, inf {Cap(G); K =G, G is open} <Cap(G,)
<®(¢/n) for each n. By the continuity of @, ®(¢p/n)—P(¢p) as n11. Hence
we have

inf {Cap(G); K<=G, G is open} < ®(¢) < Cap(K)+e.
Since ¢ is arbitrary, the lemma is valid. q.e.d.
The above lemma allows us to give the following definition:
DEFINITION 5.1.  For any set A in X we define
Cap(A4) = inf {Cap(G): 4 = G, G is open}.

and call it the capacity of A (with respect to ®).
Using condition (@C,,), we can easily prove the following two lemmas,
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LemMA 5.2. For any set Ay and A, in X, we have
Cap (4, U 4,)+Cap(4, n4,) < Cap(4,)+Cap(4,).

LemmMmA 5.3. Cap(:) is countably subadditive, i.e., for any countable
family {A,} of sets in X we have

Cap (U 4,) < 3 Cap (4,).

LEMMA 5.4. Let A be a Borel set in X and let u be the associated measure
of a pure potential. Then

ud) < ||V(D(uu)|| .<§g;#>1/p .

Proor. According to the definition of capacity and Lemma 5.1 it suffices
to show the case where A4 is a compact set K in X. Given ¢>0, choose a function
PeFNZ so that >0o0n X, ¢>1 on K and &(¢)<Cap(K)+e. Then by the
definition of u, and assumption (1.1),

w(K) < §¢>du = <P o), $> < [P D) Id]

< 1P o)l (2L)" < 1 o) (2RI N,

so the lemma is obtained. q.e.d.

CorOLLARY 1. If A is a Borel set in X such that Cap(A)=0 and if u is
the associated measure of a pure potential, then u(A)=0.

COROLLARY 2. If A is as in the above Corollary, then £(A)=0.

Proor. Setting u=fd¢ for any non-negative function fe .#, we see from
Theorem 1.1 that u is an associated measure of a pure potential. Therefore,

by Corollary 1, we have S fd&=0. It then follows that £(4)=0. q.e.d.
A

THEOREM 5.1. With each function ve &, it is possible to associate a func-
tion ¥ (refinement of v) such that

(1) ¥=va.e. onX;

(2) there exists a decreasing sequence {G,} of open sets in X such that
Cap(G,) | 0 as n—o0 and ¥ is continuous as a function on X —G, for each n;

(3) 0 is measurable with respect to the associated measure p of any pure
potential and
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<V o(u,),v> = Sﬁdu.

Proor. By Axiom (b) and the continuity of @, we can take a sequence
{$,} in € n & strongly convergent to v € Z in Z such that

(5.1) DHCCLCRTIN BT CLCIRETS) RS

We then set Gj={x€X;|p;, (x)—d;(x)|>1/27} for each j, G,= U %,G; for
each n and A=n%%,G,. Now, note that lim,.¢,(x) exists for each xe X — A4,
and define

lim ¢,(x) if xeX—4,
¥(x) = { e
0 if xeA.

From (5.1) and Lemma 5.3 it follows that Cap(G,) | 0 as n— 00, so that Cap (4) =
0. Therefore, using Corollaries 1 and 2 to Lemma 5.4, we see that § fulfills (1)
and (2) in the theorem and that # is measurable with respect to the associated
measure u of any pure potential. Next we observe from (C,.), (#C,) and
(1.1) that

(16,=dmlan = <7 o), 16, ¢u1>

< o) lidn—dull
< [|V¢(uu)||< ¢(¢n_¢m)é—¢(¢m—¢n))1/p.

Since {¢,} is a Cauchy sequence in &, it is also a Cauchy sequence in L1(X; p).
Therefore there are a py-measurable function v, and a subsequence {¢, } of {¢,}
convergent to v, in L'(X;p) such that ¢, —vopu-a.e. on X as j—oo. Clearly

vo=0 p-a.e.on X and <V ®(u,), v>=lim;,, <V ®(u,), ¢,,> =1imj_.mg¢,,1d,u
=g5du. Thus (3) is proved.
ReEMARK. Recently, Fowler [12] introduced a notion of a capacity with

respect to the norm in a regular functional space in which the unit contraction
T, operates and discussed the refinement of functions.

§6. Examples
ExaMPLE 1. (Discrete case) Let X be a finite set, say {1, 2,..., N}, equipped
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with the discrete topology. In this case, € can be identified with R¥. We put
N
fleell =(i§1|ui|”)1“’, u=(uy, uy, .., uy) € RY

and £ =R". Clearly, & is a regular functional space. Let & be a convex and
continuously differentiable function on RN with the property (1.1). Then we
observe that V@ is a mapping of R" into RN such that V &(u) =(®,(u), P,(u),...,
&y(u)) for ue RN, where ®;=(9/0x;)®, i=1, 2,..., N. Let us denote by e,
the element (1, 1,..., 1) in RV, and define r* =max(r,0) for a real number r.
For any u=(u,,u,,...,uy) and v=(v,v,,..., vy)€RN, we write u<v when
u;<v; for all i, and write u Av for (wy, w,,..., wy) With w;=min (u;,v;) for all i.

PrOPOSITION 6.1.  The following statements are equivalent to each other:
(1) T, operates in RN,

2) Vo(uAv)=F P(u) AV D(v) for any u, ve RN,

3) Ifu=(uy,u,,..., uy) and v=(y, v,,..., vy) € RN and if

2 (@)= P) W= 0)* =0,

then u<v.

In fact, assertions (1)—(2) and (2)—(3) are already shown in Theorems 3.2
and 3.3, respectively. For a proof of the assertion (3)—(1), see Kenmochi-
Mizuta [16].

PROPOSITION 6.2. Assume that T,, operates in RN, and let k be a positive
number. Then the following statements are equivalent to each other:

(a) T, operates in RN,

(b) Fo(u A (v+key) =Fdu) AN PP(v)  for any u,veRVN.

(©) Ifu=(uy,uy,...,uy) and v = (vy,0,,...,0y)€RV

and if
2 (@)~ P =0~ ) =0,

then u <v+ke,.

Assertions (a)—(b) and (b)—(c) follow from Theorems 3.4 and 3.5, res-
pectively. For a proof of the assertion (c)—(a), see Kenmochi-Mizuta [16]
in which the assertion is proved in a more general form.

ExaMpPLE 2. Let X be a bounded domain Q in the n-dimensional Euclidean
space R" and ¢ be the Lebesgue measure dx. We consider Sobolev spaces W1:?(Q)
and W §-7(Q) (=the closure of CF(Q) in W1-P(Q)) with norm |ul;,=ullrrc)
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du For these Banach spaces, Axiom (a) can be verified. Besides,

LP(2)
we see that W §-P(Q) is regular, but W1-7(Q) is not.

Let ay and a, be bounded measurable functions such that a,, a; >c a.e. on
Q for a positive constant ¢. Then functions ¢, on W {§:?(Q) and ¢, on W 1:P(Q)
defined by

@, (v) =_1—S o, |7 v|?dx
P Je
and
@,(v) = d>o(v)+—1—3 oo | v|Pdx
P Je

satisfy all of the assumptions for ®=@, and ¢ =@, respectively, where Fv
is the gradient of v. It is also easy to see that all T;, 0 <k < oo, operate in each
space with respect to the corresponding function.

By definition, a function u in W{:?(Q) is a potential (with respect to d>o) if and
only if for some measure u on Q, it satisfies the following differential equation in
the distribution sense on Q:

—div(a,|Pv|?"2FPu)=p.
In this case, u is the associated measure of u.

ExAMPLE 3. Let Q be a bounded domain in R* with smooth boundary I.
We consider the trace space W!/P"?(I') (1/p+1/p’=1) with norm

A R — p 1/p
19015 = V0o +({ § LD Z0 ar,ar, )™,

rlx

where dI" means the surface measure on I', and we denote by 7y the trace operator
which is a linear continuous operator from W1.?(Q) onto W/?"-P(I') (cf. Lions-
Magenes [18]). Clearly, W1/?"-P(I') is a regular functional space; in this case,
we take I and dI" as X and &, respectively.

Now, let @, be as in Example 2. Then we see that

<Vo,(v),w> = Zn:S o |Po|P 2@—a—wdx+g oo |v]|P " 2vwdx ,
k=1Je 0x, 0
and

¢1(v)=—}1’—<7<1>1(v),v>.

Consider the boundary value problem for given 24e WU/?P(I'): Find ue
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W1.2(Q) such that

J—div(alIVuI"‘ZVu)+<x0[u|"'2u=O on Q

(in the distribution sense) ,

yu="f.

This problem has a unique solution u for any @i € W1/?"-P(I'); in fact, u is the func-
tion at which inf{®,(v);ve WL.P(Q), yv=14} is attained (cf. [15; §3]). Hence
we can define an operator S: WU/? /(- W1?(Q) by setting S =u. Notice
that for each ve W1.?(Q) the value <V & ,(S#), v> depends only on yv, that is,
<P ®,(Sh),p> =0 if pe W§-P(Q). This allows us to define an operator o :
WP (- W-1/P.P([') (=the dual space of W1/?:’(I')) by :

<HLl, yo>p=<VP,(S0h),v>, ve WLr(Q),

where <-,-> [ denotes the duality pairing between W~1/?-?"(I') and W1/P"-P(I),
In view of a result in [15; § 6] the operator S is bounded and continuous, so that
& is also bounded and continuous. Define the function & on W!/?-’(T') by
&(u)=®,(Sh). Then we have

PROPOSITION 6.3. (i) & is strictly convex and bounded on bounded sets
in W1/Pp(T),

(i) @ is everywhere differentiable in the sense of Gateaux and V&(0)=
i for every ie W/PP(I),

(iii) For some positive constant C',

d(0) > C'laly,y,, forevery t € WLP-P(I),
and (0)=0.

PrOOF. The fact that & is bounded on bounded sets in W!/?-?(I') follows
from the definition of & and the boundedness of S. Let # and 9 be any functions
in WUP>P(') and t be a number such that O0<t<1. Then we see that if
2 #90, then

S(th+(1—1)d) = ®,(S(th +(1—1)d))
=inf{®,(v); ve WLA(Q), yv = t0+ (1 —£)d}
< @,(tSA+ (1 —1)SD) < td,(S0) +(1— )P, (Sb)
= t®(0) +(1—1)d (D).

Thus (i) is proved.
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Next, to prove (ii) we observe that for any 4, o € W1/?.P(I")
6.1) ltlllgl——;- {B(a+1D)—B()} < %1}{)1 % {D (Sh+1tSD)— @ ,(Sih)}
= <P ®,(Sh), SH> = <L, D> .

On the other hand, by virtue of a result in [19], there is 6i* € W~ 1/2.P(I")
for each fie W1/?"-P(I') such that

(6.2) <0*, 0—0>,<P@®)—-D()  forall be WLPP(I),
Therefore, by (6.1) and (6.2) we have

<i* 0>, < lilm»}— (B(0+10)— B(0)) < <h, D>
tio
for any & € W 1/P.P(I'), so that i* =1 holds. This shows (ii). (iii) is clear.
q.e.d.

PROPOSITION 6.4. For every ke[0, 0], T, operates in WP -’(I') with
respect to P,

Proor. Since it is clear that condition (C,) is satisfied for every ke [0, o],
we shall show (#C,) with @ replaced by &.
Notice that for any k € [0, co] and any u, ve W1:7(Q),

D)+ P1(v) = 1 (u+ T(v—u))+ P (v—T(v—u)).

From this inequality and the definition of & we see that condition (#C,) with
@ = is satisfied for every k e [0, c0].

REMARK. Such an operator ./ was also treated by Lions [17; Chapter 2]
so as to formulate initial value problems on I'.
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