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Introduction

In the previous papers [9], the author introduced a notion of energy for
functions on a self-adjoint harmonic space. Our model there was the harmonic
space formed by solutions of the self-adjoint second order partial differential
equation Au =Pu with P20 on a Euclidean domain Q. The energy of a function
f with respect to this harmonic space is given by

o) E[f] = DLf1+{_f*Pdx,

where D[ f] denotes the ordinary Dirichlet integral of f over Q.

For an abstract harmonic space (R, $), its self-adjointness was defined as the
property that it admits a symmetric Green function G(x, y), provided that there
is a positive potential on Q. The condition P>0 in the above model was inter-
preted as the condition that the constant function 1 is superharmonic. On a
self-adjoint harmonic space satisfying this condition, we defined the notion of
energy of a function f in terms of potential representation of f with respect to the
kernel G(x, y), in such a way that it coincides with E[ f] in the special case of the
above model.

The definition of energy in [9] also suggests how a value corresponding to
the Dirichlet integral D[ f] should be defined on such a harmonic space; but it
is not clear whether the value has such good properties as the ordinary Dirichlet
integral enjoys — among others, whether it is always non-negative.

On the other hand, solutions of the equation Au =Pu form a harmonic space
even if P is not necessarily non-negative on Q (cf., e.g., [7, Théoréme 34.1] and
[8, Theorem 2.1]), so that one might ask if the method developed in [9] is appli-
cable to the harmonic space on which 1 is not superharmonic. For such a har-
monic space, there may not exist positive potentials even if the boundary is
large, so that one had better consider the self-adjointness locally. However,
in order to make a consistent definition of Dirichlet integrals, some global con-
sideration is also necessary (see § 1.2).

For a self-adjoint harmonic space thus defined, we shal define (in §4) the no-
tion of gradient measures of certain locally bounded functions with the same
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idea as in the definition of energy measures in [9]; in fact the gradient measure
d, is given as a generalization of the measure |grad f|?dx on a Euclidean domain,
so that 6 ,(A) (4:a Borel set) may be called the Dirichlet integral of f over A.

Verification of non-negativeness of energy in [9] was not an easy task. It
requires more elaboration to verify that §, is a non-negative measure. For fun-
ctions of potential type, we make a certain estimate (Theorem 1.2), which is
a consequence of the energy-principle for Green functions (cf. § 1.3; also cf. [10]).
To deal with gradient measures of harmonic functions, we consider (in § 3) a per-
turbation of the given harmonic space. Perturbations of harmonic spaces were
first considered by B. Walsh [12] for a different purpose. What we need is a
perturbed harmonic space for which 1 is harmonic; in the model mentioned
above, the perturbed space should correspond to the harmonic space of solutions
of 4u=0. With these extra considerations, the non-negativeness of J, can be
shown by the method developed in [9].

For the equation 4du=Pu with P=0, M. Nakai [11] studied the space of
all Dirichlet-finite solutions (also cf. M. Glasner and M. Nakai [6]) and showed
that it is a vector lattice as well as a Hilbert space with respect to the Dirichlet
norm. In our axiomatic setting, we can prove Nakai’s results in case 1 is super-
harmonic (§ 5); but we fail to verify these properties in the general case.

As we did in [9] for energy, we shall extend the definition of gradient measures
to more general functions by functional completion (§6); the resulting class
of functions is the space of Dirichlet functions. Also, along the same lines as in
[9], we shall study the lattice structures of this space and the space of locally
Dirichlet-finite functions (§ 7).

§1. Self-adjoint harmonic space

1.1. Brelot’s harmonic space and P-domains

As a base space, we take a connected, locally compact Hausdorff space Q
with a countable base. On Q, we consider a structure $={H#(®)},:0pen Of
harmonic space satisfying Axioms 1, 2 and 3 of M. Brelot [3]. As usual, a func-
tion in s#(w) will be called harmonic on w. For notions of regular domains
(regular open sets), superharmonic functions and potentials, one may refer to
[3] (also, [1], [5]). The harmonic measure of a regular domain w at x € » will
be denoted by u¢. For a superharmonic function s on an open set @ in €, its
harmonic support will be denoted by S,(s) in this paper; that is,

Sy(s) = w—\J{w'; open, s|o’ € #(w’)}.

Given a domain w, in £, the restriction of $ to w, will be denoted by $,,,.
(00, Hw,) is again a harmonic space satisfying Brelot’s Axioms 1~3. If fis a
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positive continuous function on ,, then

3‘5(00/.](.= I(‘9f/f)((")):'{’o.):openCwo

defines a harmonic structure on w,, where

([ Nw) = {u[f; ue #(w)}.

This structure also satisfies Brelot’s Axioms 1~3 (cf. [3, Part IV, p. 68]). If,
in particular, f is harmonic (resp. superharmonic) on ,, then the constant func-
tion 1 is harmonic (resp. superharmonic) on w, with respect to 9, /f.

A domain w in Q is called a P-domain if it is non-compact and there is a po-
sitive potential on w. The following properties are known in a general theory:

(P,) Any subdomain of a P-domain is a P-domain (cf. [5, Corollary 2.3.3]).

(P,) 9 has a covering by P-domains, namely, every x € Q is contained in
a P-domain ([5, Theorem 2.3.3]).

(P;) If wis a P-domain, then there is a continuous positive potential on w
(cf. [3, Part IV, Proposition 11] or [5, Proposition 2.3.1]).

Furthermore, we have ([1, Satz 2.5.8] or [5, Corollary 2.3.1])

LemMA 1.1, Let w be a P-domain and p be a positive potential on w.
Then there is an increasing sequence {p,} of positive potentials on w such that
each p, is continuous, each S,(p,) is compact in @ and lim,_,,p,=p on .

1.2. Self-adjoint harmonic space
We shall assume

Axiom 4. On any P-domain w, the condition of proportionality is satisfied,
i.e., for each y e w, if p;, p, are two positive potentials on w with S,(p,)=S,(p,) =
{»}, then p, =ap, for some constant > 0.

RemARrk 1.1. The above axiom is equivalent to the following

Axiom 4'. There is a covering {w,},.; of @ by P-domains on each of
which the condition of proportionality is satisfied.

The equivalence of these two axioms can be seen by using [7, Théoréme
16.4 and its remark].

A harmonic space (Q, $) satisfying Axioms 1~4 is called self-adjoint if
to each P-domain @ there corresponds a function G,(x,y): © x w—(0, + 0]
having the following properties:

@ G, (x,y) =Gy, x)for all x, ye w;

(b) for each yew, G,(:, ) is a potential on w and S,(G,(*, y)) = {y};

(¢) if ' is a subdomain of w and y € ', then there is u, € #(w’) such that
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Gu(x, ) = Gy (x, .V)+uy(x)

for all xe '.

For a P-domain o, a function G,: @ X w—(0, +c0] satisfying (a) and (b)
above is called a Green function for w (or, more precisely, for (w, $,)). Such
a function, if exists, is positive and lower semicontinuous on @ X w ([7, Proposi-
tion 18.1]). By Axiom 4, we can easily see that the system of Green functions
{G (%, )} o: P—domain Satisfying (c) is uniquely determined up to a multiplicative
constant independent of w.

ReMARK 1.2. If there is an exhaustion {®w,}%; of Q such that each w, is
a P-domain with a Green function, then we can show that (2, $) is self-adjoint.
In particular, if Q itself is a P-domain and has a Green function, then (2, $)
is self-adjoint (cf. [9, §1.2; in particular, Proposition 1.2]).

RemARrk 1.3. If, for every xeQ, there is a P-domain containing x and
possessing a Green function, then we may say that (2, §) is locally self-adjoint.
Obviously, a self-adjoint harmonic space is locally self-adjoint. We can show
by examples that the converse is not true.

In the sequel, we shall always assume that (2, 9) is a self-adjoint harmonic
space and a system of Green functions {G,(X, ¥)}o:p-domain SAtisfying (c) is
fixed.

1.3. Energy principle

Let w be a P-domain. For a non-negative measure 4 on w, we denote by
U* its potential with respect to the kernel G, i.e.,

U = | Gulx, 2)H0).

By a general theory of R.-M. Hervé [7, Théorémes 18.2 and 18.3], we know that
U*% is a potential on w unless it is constantly infinite, and that any potential on w
is expressed as U% by a uniquely determined measure p. Let I, (1) be the G-

energy of u, i.e., I,,,(u)=§ U (x)du(x). We consider the following classes of

measures:
M H(w) = {u; non-negative measure on w such that I (1)< + o},
M g(w) = {o; signed measure on w such that |o| € £%(w)},

non-negative measure on  such that
ME(w) = {u' . }
B > W(w) < + 00 and U* is bounded on wf’
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A g(w) = {o; signed measure on w such that |¢| € £ §(w)}.

Obviously, #}(w) c AE(w) and A g(w) =4 g(w). For o€« g(w), we denote
its G,-energy by I,(0), i.c., I,,,(a)=Iw(a+)+Iw(a‘)—2SUg,+do".

THEOREM 1.1. The Green function G,(x,y) for a P-domain o satisfies
the energy principle, i.e., it is of positive type:

o Uav LWL forall pvedi©),

and the equality holds only when u=v.
Proor. Consider a positive continuous potential p, on w (cf. (P3)) and let

G,(x, y)

Gw,po(x9 y)= Po(X)po(y)

for x, yew. It is a Green function for (w, $,/p,). Since 1 is superharmonic
with respect to 9,/po, Gy, po(X, y) satisfies the energy principle by [10, Theorems
1 and 2]. Noting that pe #(w) if and only if pou (the measure defined by
d(poi) =podp) has finite G, ,,-energy, we obtain the theorem.

COROLLARY 1. On any P-domain o, the domination principle holds;
in particular, Axiom D of Brelot [3] is fulfilled. Also the continuity principle
holds on w.

For a proof, cf. [9, Theorem 4. 1].

COROLLARY 2. If p,, pe #¥(w)(n=1,2,...) for a P-domain w and if
UI:)" 1 U’:)s then Im(#n'—ﬂ)—’o (n_’w)°

1.4. Consequences of the domination principle

A set ecQ is said to be polar if there is a covering {w,},.; of @ by P-
domains such that for each cel we find a positive superharmonic function s,
on w, with the property that s,(x)=+ oo for all xeen w,. Using [7, Théoréme
13.1], we can easily show that if e is polar then for any P-domain w there is a
positive potential p on w such that p(x)=+ oo for all xeenw. Let

& = {e = Q; e:polar}.

We know: if ee #” and e’ ce, then e’ e #"; if e,e 4", n=1, 2,..., then UX ,e,€
. As usual, “q.e.” (quasi-everywhere) will mean ‘‘except on a set ee 4.
Lemma 5.1 and its Corollary 1 in [9] are still valid in the present case.
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Thus, by considering $,/s, for a positive continuous superharmonic function
So on w and applying [9, Corollary 2 to Lemma 5.1], we have (cf. Corollary 1
to Theorem 1.1 above)

LEMMA 1.2. Let w be a P-domain and p be a potential on w which is local-
ly bounded on S,(p). If s is a non-negative superharmonic function on  such
that s=p q.e. on S,(p), then s=p on w.

From this lemma, the next lemma follows in the same manner as [4, Hilfs-
satz 5.1]:

LemMA 1.3. Ifeis a polar set in Q and w is a P-domain, then pu(w n e)=0
for any pe ().

If o is a signed measure on a P-domain w such that U!¢! is a potential, then
Us' —U¢ is defined q.e. on w. This function will again be denoted by U¢.
By the above lemma, it is y-measurable for any pe #%(w). It also follows that
U¢ is y-measurable for any non-negative measure u on w for which U% is
locally bounded.

LEmMMA 1.4. Let w be a P-domain on which there is a bounded positive
superharmonic function. If p is a potential on w such that S,(p) is compact in
w and p is bounded on S,(p), then it is bounded on w.

PrOOF. Let s, be a bounded positive superharmonic function on w. Since
infg, (p) S0 >0, there is a constant «>0 such that as,=p on S,(p). Hence, by
Lemma 1.2, p<as, on w.

LEMMA 1.5 (cf. [9, Lemma 4.5 and its corollary]). Let w be a P-domain
and ¢ be a signed measure on w such that Ul?! is a potential. Then, there
are sequences {u,} and {v,} in A E(w) such that their supports S(u,), S(v,)
are compact in w, U, Ulr are continuous on w and Ut U, Ulr 1t US,
Uer—-U? q.e. on o, where o,=u,—v,. If, furthermore, o€ .# g(w), then
I.,(0,—0)—0; if there is a bounded positive superharmonic function on o,
then o, € A g(w) for each n.

Proor. The first half is a consequence of Lemma 1.1 and Hervé’s results.
The second half follows from Corollary 2 to Theorem 1.1 and Lemma 1.4.

LeEMMA 1.6. Let w be a P-domain on which there is a bounded positive
superharmonic function. If p is a non-negative measure on  such that p(w)<
+ o0, then U% is a potential.

The proof of this lemma may be carried out as in the classical theory by
making use of [7, Lemma 3.1] and the above Lemma 1.4 (cf. [9, Lemmas 1.2
and 1.5]).
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LEMMA 1.7. Let w be a P-domain, e be a subset of w and s be a non-negative
superharmonic function on w. Then the reduced function

Rg@ = inf {v; superharmonic = 0 on w, v = s on e}

and its regularization Re® have the following properties:

(a) Ree=Re® g.e. on w; everywhere on o if e is open;

(b) Re© is non-negative superharmonic on w; it is a potential on w if
either e is relatively compact in o or s is a potential on w;

(c) Re@=s on e (and hence R&®=s g.e. on e);

(d) Re@=Re® on w—e and is harmonic there, i.e., S,(R¢'?) e (2 denotes
the closure of e in Q).

For proofs, see [3, Part IV (§13, § 15-a, Proposition 10, p. 124 and Pro-
position 23)].

1.5. Inequalities

In this paragraph, we shall establish the following useful inequality:

THEOREM 1.2. Let w be a P-domain and u be a non-negative measure on
w such that U is bounded on w. Then

S U2)2du < (sup UYL, (o)

for all o€ A g(w).

To prove this theorem we prepare two lemmas, the first of which is quite
elementary and is used to prove the second lemma.

LEMMA 1.8. Let S be an abstract set, @ be a non-negative real-valued
function on S and A be a mapping of S into itself. If @ is bounded on A(S)
and satisfies

(L.1) P(Ax)? £ P(x)P(A%x)
for all xe S, then

(1.2) P(Ax) < D(x)

forall xeS.

Proor. Suppose (1.2) is not true for some xg €S, ie., P(xq)<P(AX,).
By (1.1) and induction, we see that #(A"x,)>0foralln=1, 2,.... Let k=P(Ax,)/
&(xy). Again by (1.1),
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B(Axg) 5 DA™ 'x0) 5 5 P(dxg) _
D(A" 1xg) T B(A"%x0) = T D(x) )

Hence &(A"xo)=k"®(x,), n=1, 2,.... Since k> 1, this contradicts the assump-
tion that @ is bounded on A(S).

LemMMA 1.9. Let w be a P-domain and u be a non-negative measure such
that U% <1. Then

1,(Ugn) = 1,(0)

for any o € 4 g(w) such that Ul¢! is bounded and p-integrable.

Proor. For simplicity, we omit the subscript w in U, I () and S . Let

S = {cedyw); U] < 1,§|U«|d,; <1)
and
&(0) = I(6), Ao =U°u for o€S.
Then, for g € S, we have
U4l S UIIr S Uk S,
f1osetan < (vrwevap = (osive1an < {1oe1an < 1
and

(| 40 ) =SU|“|d|Aa| =SU'U"|"IU"|du §SU“|U“|du <1.

Hence A is a mapping of S into itself and #(406)<I(|A0|)<1, ie., P is bounded
on A(S). Furthermore,

®(40) = I(Ac) = SU‘“U"du - SUA’”da < I(420)\121(6)\/2

where the last inequality follows from the energy principle. Thus, (1.1) in the
above lemma is satisfied, and hence

I(U°p) = I(0)

for all eS. If 0€.#g(w) and Ul°l is bounded, p-integrable, then, for some
a>0, a6 €S. Hence
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IU7p) = -5 IU*w) < 5 I(00) = I(9).
ProOF OF THEOREM 1.1. If p=0, then the theorem is trivial. Thus, assume

u#0. Then B=sup, U%>0. Since UL¥F <1, the above lemma implies that

I,(Ugp) < B?1,(0)

for any ¢ € 4 g(w) such that Ul¢! is bounded and p-integrable. Hence, for such
o we have by the energy principle

(1.3) ( wordn = 1@ 21012 2 pL0).

Next, let 0e.#z(w) be arbitrary. We choose a sequence {o,} in #g(w) as
described in Lemma 1.5. Since there is a bounded positive superharmonic

function U%, 6, € .# g(w). Furthermore, since S(s,) is compact, S Ulenldp=
S U dlo,| < + o, i.e., Ulgn! is p-integrable for each n. Therefore, (1.3) holds
for 6 =0, and |o,|, so that

[ Wiz < Lol < prudoh<-+eo,

and hence

S Ul 2dp < + o

Since |Usr|Uls!, Lebesgue’s convergence theorem implies S Uer)2dy —»
S (U2)2dpu (n—o0). On the other hand I,(c,)—1,(c). Hence (1.3) holds for

the given o.

The next lemma, which is a consequence of the above theorem, will be used
later (in §7).

LeMMA 1.10. Let @ be a P-domain and u be a non-negative measure on
o such that U% is bounded. Then, for any u-square-integrable function f, fue
A g(w); in fact

L(/w) < GupU)| f2du.
Proor. Since I,(fp)<I,(|fln), we may assume f=0. Let {w,} be an

exhaustion of @ and let f,=min(f, n) on w,, f,=0 on w—w, Then Ul is
bounded and S(f,u)<®,. Therefore, f,ue #%(w) and
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1/2 1/2
1ot ={ ULwp,an <{{ wimzan "l reaul™”.
By the above theorem,
[ wtmrdu < prcsm,

where f=sup,U%. Hence

L) S B f2du.

Letting n— 0o, we obtain the required inequality.

§2. Preliminary theory on locally bounded functions

2.1. The space #,,.(w) and Axiom 5

A domain w will be called a PC-domain if it is relatively compact and there
is a P-domain w* such that ® cw*. By (P,)in §1, a PC-domain is a P-domain.
By (P,), we also see that PC-domains form a base of open sets in €.

We consider the following space of locally bounded functions on an open
set w (cf. [9, §6.1]):

for any PC-domain o’ such that @' cw, there
Z1,(w) = { f; are two non-negative bounded superhamonic
functions s, and s, such that flw'=s; —s,

For each fe #,,.(w), there is a unique signed measure 6, on w which has the
following property: for any PC-domain ' such that @' cw, Ulgs! is bounded
on ' and

flo' =u+Ug

with u e #(w’). We call o, the associated measure of f.
In this paper, we do not require that the constant function 1 is superharmonic;
but we assume

Axiom 5. The constant function 1 belongs to #,,.(Q) and U|*! is conti-
nuous for any PC-domain w, where = is the associated measure of 1 (i.e., n=0,).

ReEMARK 2.1. If 1 is superharmonic, then Axiom 5 is trivially satisfied. This
case, in which 7=>0, was treated in [9].

REMARK 2.2. The above Axiom 5 is equivalent to the fo1lowing
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Axiom 5'. There is a covering {w,},.; of 2 by domains on each of which
there are two non-negative continuous superharmonic functions s¢!) and s(2
such that 1 =s{1)—5(2) on w,.

2.2. PB-domains

A P-domain o will be called a PB-domain if Ulr! is bounded on w. It is
easy to see that a PC-domain is a PB-domain. Note that if 1 is superharmonic,
then any P-domain is a PB-domain.

LemMMA 2.1. If w is a PB-domain, then U%', UY", and hence U™, are
bounded continuous on w and

1 =u,+U%

with a bounded non-negative harmonic function u, on .

Proor. It is easy to see by Axiom 5 that Ulr! is continuous. Since 0 <
Ur' +Ur =U!rl and Ulrl is bounded, we see that U®', Ur" are bounded
continuous. Then u, =1—U?Z is bounded harmonic on w and u, = — U*" implies
that u,=0 on w.

By this lemma, for a PB-domain w, s,=1+U% =u,+U%" is bounded
superharmonic on w. Obviously, s,=1. Let

2.1 B, =sups, (2 1)

for any PB-domain w. Then Ur' <8, Ur <B,—1, Ul"1 <28, —1 and |Ur|<
Bo-

Using the functions s, for PC-domains w, we see easily that s#(wy) <
B 10.(wy) for any open set w,.

LeEmMmA 2.2. If w is a PB-domain, then for any potential p on w,
(2.2) sup p = B, sup p.
] Sn(p)

Proor. Let M=sups,(,p. If M=+ o0, then (2.2) is trivial. Suppose
M< +o00. Then Ms,=p on S,(p). Hence, by Lemma 1.2, we see that Ms,=p
on w, and hence (2.2).

LeEMMA 2.3. Let w be a PB-domain and p, v be two non-negative measures
onw. IfULZU} on w, then w) =, (w).

G,(x, y)

PROOF, G,(x, ) = 5 0D
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is a Green function for (w, $,/s,). For any non-negative measure yu on o,
US() = 59| Galx, 9)5u(3)H().

Hence, USS U implies | Cu(x, »sodu()= | Galr, 9)s()db(0). Applying
[9, Lemma 1.10] with respect to the structure $,/s,, we see that S s,dn =

S Spdv. Therefore,

() < S sodn < S s,dv < Bu(®).

LEMMA 2.4. Let w be a PB-domain and o' be a relatively compact open set
such that @' cw. Then, there is a signed measure A=A w'; w) which has the
following properties:

(a) U =00now and Ut 20 0n w;

(b) SHeca’;

(© Ur £B,—1and UX £ B, on w.

Proor. Let v;=u,+U*" and v,=UZ% (=v,—1). By Lemma 1.7, p;=
Rg»@, i=1, 2, are potentials on w. Let 4; i=1, 2, be the associated measures
of p; and let A=A,—A,. Since v,=v,, p;=p,. Hence U3=0. Then, by
using Lemma 1.7 we see easily that this A is the required measure.

2.3. Product of functions in %,,.(®)

LEMMA 2.5. Let w be a PB-domain and s be a bounded non-negative super-
harmonic function on w. Then, for any constant o such that a =sup,, s,

v =2as+a2U% —s?
is a bounded non-negative superharmonic function on .
Proor. Obviously, v is bounded. Writing
v=0?2(1+U%)—(ax—5)2,

we see that v==0. Furthermore, since o — s is non-negative upper semicontinuous,
v is lower semicontinuous. Let w’ be any regular domain such that @' cw and

let xew’. Then, since gdyx' =u, (x) (see Lemma 2.1), we have

(oane) = (o foe)
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< ([s2ane ) 14z 0}

Hence,
Sv due = ocZSU;‘,‘du?' +2aSs dpe — Sszdu;"
2
< (U5 () -Us 0} +26{s dug (s ang ) {1405 0}
=a2{1+U% (x)} —(a— Ss du;")z
- ’ 2 -
+0- {1405 @) (s dug ) —a2Uz ().
Since 0= Ss du?’ <s(x)<a, (a— Ss du‘;")z =(a—s(x))2. Hence

foduy’ < o0+02[1-UZ (9 - {1+ U5 9} 1] < 060
Therefore v is superharmonic on .

COROLLARY. If w is a PB-domain and s is a bounded non-negative super-
harmonic function on w, then there are two bounded non-negative superharmonic
functions v, and v, such that s>=v,—v, on w. Thus, 6=0,. is well-defined,
s2=u+U¢? on o with ue #(w) and Ul¢ is bounded. If, furthermore, o (w)<
+ 00 and n~(w)< + 00, then o*(w)< + 0.

Proor. Let a>sup,s and v,=2as+a?UZ%". Then v, is bounded non-
negative superharmonic on w. By the above lemma v, =v, —s? is bounded non-
negative superharmonic on w. Furthermore, it follows that ¢*=<0,, =200+
a2n~. Hence we also have the last assertion in the corollary.

ProrosITION 2.1. If f, g € #,,.(®), then fg € #,,.().

PrROOF. Let o’ be any PC-domain such that @' cw. Then, by definition
flo'=s;—s, with bounded non-negative superharmonic functions s, and s,
on w. Since

f?o" = 2(s3+53)—(s;+5,)%,

the above corollary implies that there are two bounded non-negative superhar-
monic functios v, and v, such that 2|’ =v,—v,. Hence f? € #,,.(w). Then,
it follows that fg ={(f+g)*>—f2—g?}/2 also belongs to %,,.(®).
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2.4. Product of bounded potentials on a PB-domain

LEMMA 2.6. Let w be a PB-domain such that n~(w)< +oo. Then for any
o € M g(w), there is a ¢’ € M g(w) such that

wg)? =Ug.

Proor. If pe.#}(w), then by Lemma 2.5 (U%)?=v,—v,, where v, =
20U + 02U (a=sup,U%) and v, is bounded non-negative superharmonic on
. Thus we see that v; and v, are potentials on w. Let v, and v, be their respec-
tive assoicated measures. Then v, =2au+oa?n~ € #F(w). Since v, <y, v(W)<
+o by Lemma 2.3, and hence v,e.#j(w). Thus (U*)2=U}r"v2 and
v,—V, €A g(w). For o€ .#g(w), writing

(Ug)? = 2{(Ug")?+ (U )2}~ (Ul)?
and using the above result, we obtain the lemma.

REMARK 2.3. There are PB-domains o for which n~(w)= + oo.

PrOPOSITION 2.2. Let w be a PB-domain such that n~(w)<+oo. If
p=Ug with 0 € M g(w), then o ,2 € A g(w) and

op2(w) = S p2drm.

Proor. It is enough to prove the case o€ .#%(w) (cf. the proof of the
above lemma). First we note that p2 is |r|-integrable, since

S p2din| < (supp)g U din| = (supp)g Ulrldo < +oo.

For «>0, let f,=min(p/a,1) on w. Then 0Lf,<1 and f,11 as «}0. Let
1=u,+U? and

g, = min(p/a+U%" ,u,+UT").

For each «, g, is a bounded potential on w (in fact, g,<p,) and f,=g,—U%".
Let p,=o,,,ie., g,=Uks. Since g,<pfa+U%, we see that u,e.#3(w) by
Lemma 2.3. The above lemma implies that p2=Ug with o¢'=0,:€ .4 (w).
Hence, by Lebesgue’s convergence theorem,

¢'(w) = limS Sf.do' = limS (Uts—Uz")da'
a=0Jo [

a=>0

= limg pzdua-g pdn.

a=0
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Let w,={xew;p(x)>a}. Then w, is an open set and f,=1 on w,. It follows
that y,|lw,=n*|w,. Hence

Sp’d#ﬁg p’dn++g prdu,.

0=y

Since w,twasa |0,

limS p2dn* =S p3dnt.

a—>0

On the other hand,

0 ég pdu, £ aS pdu,

O—Wq O-0q

< ocS Uksdo < aB,o(w) =0 (&~ 0).
Thus we obtain the required equality.

COROLLARY. Let w be a PB-domain such that n~(w)< + 0. If p;=
Ugt with 0,€ M p(w), i=1, 2, then 6,,,, € M g(w) and

0",”,2(60) = gwplpz dTE.

2.5. The space & gp(w)

LeEmMMA 2.7. If w is a PB-domain such that n~(w)< + o0, then for any
bounded u € s (w), ot (w)< + .

Proor. Let a=sup,|u| and consider the function
v=0a2B, U —u?

on w. It is obviously a continuous function. Let ' be any regular domain
such that @' cw and let xew’. As in the proof of Lemma 2.5, we have

2
w0 = ((u dug ) s ((wrdug ) 1+v5 0}
Since
Suzdu?' = azgdﬂi‘:’ S 2 {1+U% (x)} < &?B,,,

we have
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w(x) < (wdug +a2B,U5 ().
Hence
foany =~ (urape +a2p,fUrany
< —ux)+ B UE () + 7B (UE () — UG ()

= v(x).

Therefore v is superharmonic, that is, 6,=0. Hence 6, <a?f,n~, which implies
o) a2f,n(w) < + co.

For an open set w, let
H# ge(w) = {u € s#(w); bounded, 6,2(w) < + 0}.

ProPOSITION 2.3. Ifwisa PB-domain such that n~(w)< + 00, then 3 gg(w)
is a linear subspace of #(w) and is a vector lattice with respect to the natural
order.

Proor. It is obvious that u e s#pg(w) implies ou € # gg(w) for any real
o. Letu, ve#gg(w). Obviously, u+vand u—v are bounded. Since (u+v)2+
(u—v)2=2(u?+v2),

O (u+v)? = 2(052 + 6;2) + O'z'“_,,)z .

By the above lemma, o¢,-,)2(w) < +0c0. Hence 6,4,)2(w)< + 0, so that u+ve
# pE(®).

Next, let u e # gg(w) and a=sup,lu|. —|u| is superharmonic on w and
0<|u|=Zas, (s,=1+U%"). Hence the least harmonic majorant w of |u| exists
and |u|Sw=as,. It follows that w is also bounded. For simplicity, let 6=0,2
and t=0,.. Since w—|u| is a potential and 0 w2 —u? 2B, (w—|u|), we see
that U3 <U:. Therefore, U, <UL +U? . By assumption ¢~ (w)< +o0o and
by the above lemma t*(w)< + 0. Hence Lemma 2.3 implies that t~(w) < + oo.
Therefore we s gp(w). Since #gp(w) is a linear subspace as proved above,
it follows that s gg(w) is a vector lattice.

The next lemma will be used in the later sections.

LEMMA 2.8. If fe #,,.(wy) (wo: an open set) and w is a PC-domain such
that @ cwy, then flw— U € # gp(w).

ProoFr. First, note that n~(w)< + o0 if w is a PC-domain. For simplicity,
let 0=0,. Let u=flo—Ug. It is a bounded harmonic function on . We
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can choose another PC-domain ' such that @ cow’, @ cw,. u' =f|lo’'—-U?,
is also bounded harmonic on w’. We can write

u =u'|lo+U%|w-U?).

Since 0,2 is a signed measure on @', 0, ):(w)<+ 0. Thus w'|we H# pp(w).
Next, we consider v=U¢,|w—UgZ. It is bounded harmonic on w. Since olw’e
A g(w'), there is a o' € #g(w’) such that (U, )2=U2. by Lemma 2.6. Now,

02 =Ug |o—-2(Ug |o)Ug+(Ug)>.

Let 7=0,.. By the corollary to Lemma 2.5, we see that v2=h+ U?, with he
H#(w) (cf. the proof of Proposition 2.1). Since |2(U¢.|w)U?2+(U¢)?| is majorized
by a potential on w, it follows that

U, =Us —2(Us, |w)Us+(U2)?.
Hence
Uy, UL +Ug ™ +2aUlel,

where a=sup,|U%.|. By Lemma 2.7, ‘C+(CO)< +o00. Obviously, ¢’ (w)< +
and |o|(w)< +o0. Hence, 77 (w)<+ 00 by Lemma 2.3, so that ve #gg(w).
Therefore u € 5 gg(w).

2.6. Product of a bounded harmonic function and a bounded potential

LEMMA 2.9. Let w be a PB-domain. If ce#g(w) and ueH#(w) is
bounded, then there is a signed measure ¢’ on o such that Ule’! is bounded and
uUg=U?. If, in addition, n~(w)<+ o0 and ue # gg(w), then o' € 4 g(w).

PROOF. As in the proof of Proposition 2.3, the least harmonic majorant of
|u| on w exists and is bounded, and hence u =u, —u, with non-negative bounded
harmonic functions u; and u,. Thus we may assume that >0 and o € #}(w).
Since

uly = - {(u+Ug)*—u?~ (U3},

it follows from the corollary to Lemma 2.5 that uU9 =h+ U? with a signed mea-
sure ¢’ on w such that Ul¢’! is bounded and h € s#(w). Since uU?, is dominated
by a potential, h=0, so that uU?=U? .

Next, suppose 77 (w) < + o0 and u € # gx(w). For simplicity, put s=u+ U¢,

and p=Ug. Then 0'I='é—(0'sz-—0'uz—0p2). Since o,=0, the corollary to
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Lemma 2.5 implies that 6}:(w)< + 0. By Lemma 2.6, 6,: € .#p(w) and by as-
sumption g;2(w)< +oco. Therefore,

o (w) £ %— {oh(w)+0,:(0)+052(0)} <+ 0.

Since U9 20, Us"<U¢*. Hence, by Lemma 2.3, we also have ¢'~(w)< + 0.
Therefore ¢’ € A g(w).

The rest of this section is devoted to the proof of the following proposition

(cf. [9, §2.3]):

PRrOPOSITION 2.4. Let w be a PB-domain such that n~(w)< +oo0. If p=U¢,
with o € A g(w) and if u € 5 gp(w), then

()] =S uda+S updn.

Given an open set w in Q, if @ is not compact, then let w® be the closure
of w in the one point compactification of Q2; otherwise, let w*= .

We fix a PB-domain w, such that n~(w,)<+ . For yew, and «>0
(x< G, (¥, ¥)), consider the open set

wa,y = {x Ewo; Gmo(x’ y) > O!} .

By using [2, Corollary 3 and Lemma 1], we see easily that w§ , is a resolutive
compactification of w,,. Let Hy=> be the Dirichlet solution of w,, for the
boundary function ¥ € C(0“w,,,), where 0w, ,=wi ,—w,, and C(X) means the
set of continuous functions on X. We shall denote by y, , the harmonic measure
at y for the open set w,,. By [2, Lemma 1], we see that p, (0@, ,— o) =0
(cf. [9, Lemma 2.6]). We note that each component @’ of w,, is a PB-domain
and 1 =H¢=>+U?, on o’. On account of the fact that UZ, <p,,, we obtain
the following lemma in the same way as [9, Lemma 2.5]:

LEmMMA 2.10. 7*(w,,,) < —ﬁaﬂ'— and limoan*(w,,,) =0.
a=+0
By virtue of this lemma and our assumption that 7~ (wg) < + 00, we see that
A

Do,y

is a bounded linear functional on C(6°w,,). Hence, there is a signed measure
V,,y ON 0%, , such that

S Hgevdn = St// dv,,,
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for all Y € C(0°w,,). Since p, (0°0,,—w,)=0 and hence v, (0?0, ,—we)=0,
we may regard u, , and v, , as measures on w,.

Lemma 2.11.  With the notation given above, let

1
= Ute,y — Ve, l]nlw )
w by = Y h y+ @y,

Then w,,=1 on w,, and |w, (x)|<4B,,—1 for all xe we.

Proor. Fix a and y and let u=py, , v=v,, 0o=w0,, and w=w,,. Also,
let =p,,- We first remark that U% (x)< G, (x, y) for all xe w, and U% (x)=
aH9(x) for x € w (cf. [9, Lemma 1.4]). Hence

Ulo(¥) = Guo(x, ) S a
for x ¢ w and
Ulo(x) = aHP(x) < a{l + U (x)} < of

for xew. Therefore, Ut <of on w,.
Next, as in the proof of [9, Lemma 2.8], we have

Uy, (x) =§ Hy.dn,

where ¥, (§)=G,,(x,&) if {edwnwy and Y (&)=0 if {ed'@w—w, Since
HY (2)£G,,(x, z) for z € , we have
U < Ul < 2p-1.
Also |Uzle|<B. Thus
wl = B+QB—-D+B =4p—1.

If x € w, then let o’ be the component of w containing x. Then, again as in the
proof of [9, Lemma 2.8], we see that

Ubo(x) = Unlo(x) = Uz.(x).
Therefore,
w(x) = H¢(x)+ U=%.(x) = 1.

By virtue of this lemma, we obtain the following lemma in the same way as
[9, Lemma 2.9]:

LEMMA 2.12. With the same notation as above, if ¢ is a signed measure on
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g such that |o|(wy) < + o0, then
o(w,) = lim {LS s, du, Y—S s, dv, y} +S s, dn
a0l & Jag ’ @o ’ wo

for any y € w,.

PrOOF OF PROPOSITION 2.4 (cf. the proof of [9, Lemmas 2.10 and 2.11]).
Let ¢’'=0,,. By Lemma 2.9, 0'e.#p(w) and up=Ug. It follows that up is
||-integrable. Let {w,} be an exhaustion of w and consider the signed measures
A, =Mw,; w) given in Lemma 2.4. Then {U2*} is uniformly bounded and
U#»—1 on w. Therefore, by Lebesgue’s convergence theorem,

n—oo n—+w

' (@) =limS Ukrde' = limg up di, .

Since 1,|w,=7|w, and S up dn—-»S up dr,

@n

() = 1im§ up d/l,,+g up dr.

n-—>o0

Thus, it is enough to show that

@.3) lim|  upan, =S udo .
n=0/O—wn (]
Consider any yew and fix it for a while. Choose m such that yew,,.
Let y=SUPieo-0.Gu(X,y) and py(x)=min(G,(x,y),y). As in the proof of
Lemma 1.4, we see that y< +co. It follows that p,+yUZ% ™ is a potential whose
associated measure belongs to .#j(w). Hence, by Lemma 2.9, up,=U?% for
some 7,€ .4 g(w). By the same argument as above, we have

2.4) (o) = limS up, dl,,+g up, dn

n—>w

- limS uG (-, y)dl,,+S up, dn.

n—o0

On the other hand, letting w,=w and using the notation introduced above, we
obtain from Lemma 2.12 the equality

7,(w) =ling{%—g up,,du,,y—g up,dva,y}+§ up,dn.

Now, if 0<a=<y, then p,=a on 0w, , (=®,,—w,,). Since S(y,,)<dw,, and
S(v,,y) = 0w, when we regard p, , and v, , as measures on w, we have
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1
‘a—gwupy du’a,y = Smu d”a,y = u(}’)

and

S upydva,},=ag udv,,y=ocS udn—0(x—0),

Do,y

where the last convergence follows from Lemma 2.10. Hence

() = u(y)+§ up, dx,

so that, by (2.4), we have

tim{  uG(, )i, = u(y).

n—»w0

Since this is valid for any y € w, integrating both sides by ¢ and using Lebesgue’s
convergence theorem as well as Fubini’s theorem, we obtain (2.3).

§3. Perturbation theory

The theory in this section may be regarded as a special case of the perturbation
theory developed by B. Walsh [12]. Since our formulation is slightly different
from his, we shall give some of the details.

3.1. The operator G,,

For an open set w, let

B(w) = the linear space of all bounded Borel measurable functions on w,

Cy(w)= {feB(w); f is continuous on w}
and for a relatively compact open set o, let

C(®) = the linear space of all continuous functions on @,

Co(@) = {feC(®w);f=0o0ndw}.
The space B(w) is a Banach space with respect to the sup-norm: || f|,=sup, |f|;
Cy(w) is a closed subspace of B(w). In case w is relatively compact, C(®) and
C,(@) can be regarded as closed subspaces of B(w) (or of C,(w)).

Given a PB-domain w, we define an operator G, by

Cuf)® = Gulx, NIV

When = is replaced by =t (resp. n~), the corresponding operator is denoted by
G} (resp. G;). These are bounded linear operators of B(w) into C,(w) and
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their operator norms are evaluated as
IGLI S IU M s IGEIS U I and |GG SNUE | -
If w is a regular PB-domain, then these operators map B(w) into Cy(®).

LemMA 3.1. Let w be a PB-domain. If feCyw) and f—G,fe #(w),
then for any regular domain @' such that ®' c ,

f=HY+G,f on o'.

Proor. G, f—G,f is continuous on @' and harmonic on ®’. Hence
v=f—G, f is continuous .on @' and harmonic on w’. Since v=f on Jw’,
v=HY.

3.2. Perturbed sheaf $H~

For each open set w in Q, we define

for each x € w, there is a regular
#~(w) =4 veC(w); PB-domain w’ such that xew’, @' cw;.
and v =H% +G,v on o'

ProPosITION 3.1. For each open set w, 5#~(w) is a linear subspace of C(w)
and $~ ={# ()} »:0pen Satisfies Axiom 1 of Brelot [3].

This proposition is easily verified by the definition of s#7(w), Lemma 3.1
and Axiom 2 for $.

ProrPoOsITION 3.2. 1€~ (w) for any open set .
Proor. If o’ is a PB-domain, then 1=H¢' +G,.1.

ProPOSITION 3.3. Let w be a PB-domain. If ve s#~(w) and v is bounded,
then v— G v € H#(w).

Proor. Let u=v—G,v. For each x € w, there is a regular domain @’ such
that xe w’, @' cw and v=H% + G, v on . Hence

u=HY+G,v—G,v on w,
so that u|w’ € #(w’).  Since x is arbitrary, u € s (w).

LEMMA 3.2 (cf. [12, p. 342]). Given xe€Q and >0, there is a PB-domain
o containing x such that |U!|, <4,
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Proof. Fix x,€ Q2 and let w, be a PB-domain containing x,. If |n||we =0,
then we may take w=w,. Suppose |n|lw,#0. Then p,=Ulz is positive
continuous on w,. Let

0<e <min{1,vo‘sm}.

By continuity, there is a regular neighborhood w’ of x, such that @’ = wg and |py(x)
—po(x0) <epo(xo) for all xe @’. Since u=HY$  is positive continuous on @',
there is a domain w such that x, e wcw’ and

i <
12“‘: 1+¢

sup u.
w

Since H? =u on w, we see that |[1—H¢|,<e Then
Hp, 2 (1-8)po(xo)H¢ 2 (1—¢)?po(xo)  on w.
Hence
Ulrl = po—Hg, < (1+€)po(x0) — (1 —€)?po(Xo) < 3epo(xo) <3 on .
A PB-domain w will be called a small domain if
e o+ 105 o < 1.

By the above lemma, small domains form a base of open sets in Q. If w is a
small domain, then (I —G;)~! exists as an operator of Cy(w) into itself and

IGEI-I(UI=G5)~ M = U5 (1= U5 )7t < 1.
Therefore, [12, Lemma 3.2.1] asserts the following

ProrosiTION 3.4. If w is a small domain, then (I—G,)~! exists as an
operator on Cy(w) and for any non-negative bounded continuous superhar-
monic function s on o, (I—G,) 1s=0.

From this proposition and Lemma 3.1, the next proposition immediately
follows:

PrOPOSITION 3.5. Let w be a small domain. If u e s#(w) and u is bounded,
then (I—G,) lu e #~(w).

Let w be a small regular domain. Then, for each ¢ € C(dw),

~

= (I-G,) 'HY

w
¢
makes sense and it is continuous on @ if extended by ¢ on dw. By Propositions
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3.3,34 and 3.5, we see that H3e#~(»), $=0 implies H3>0 and that if
ve C(®), v=¢ on dw and v|w € #~(w) then v=FI$. Thus we have

ProrosiTION 3.6 ([12, Proposition 3.2.2]). Small regular domains are
regular with respect to ™, so that $~ satisfies Axioms 2 of Brelot [3].

ReMARK 3.1. We know ([12, Proposition 3.2.2]) that $~ has the Bauer
convergence property in the sense of [5, § 1.1]. But it is not clear whether $~
satisfies Axiom 3 of Brelot [3] even in our special case. In this connection,
we note the following: in case =0, i.e., 1 is superharmonic, any non-negative
$~-harmonic function is superharmonic; and hence $~ is elliptic in the sense
of [5, p. 66] by virtue of Axiom 3 for §.

3.3. $H~-superharmonic functions

We shall restrict §~-superharmonic functions (superharmonic functions with
respect to $™) to continuous ones; namely, a $~-superharmonic function on an
open set w is a continuous function s on w such that for each small regular domain
' with @' cw, s=H® on w'.

ProposITION 3.7 (cf. [12, Proposition 3.3.1]). Let w be an open set and f
be a continuous function on w. Then f is H~-superharmonic on w if and only
if fe Boc(w) and 6,2 fr on w.

ProoF. First suppose fe #,,.(w) and 6,2 fr on w. Let w’ be any small
regular domain such that @' cw. Then

f=HY+U% 2 HY +G, f

on w'. Putv=({I-G,)f—H%. Then vis a non-negative bounded continuous
function on ' and o,=o,;—fn=0. Therefore v is superharmonic. Hence,
by Proposition 3.4, (I—G,)"'v=0, so that f—H$ =0. Thus f is $~-super-
harmonic on w.

Conversely, suppose f is $~-superharmonic on . Let £¢>0. Since f
is continuous, for each x € w there is a PC-domain w, such that xew,c@,cw
and (0=2)f-H %" <e on ' for any small regular domain o’ with ®' cw,. Con-
sider the function

s=f-G, f+eG}i 1
on w,. For any small regular domain w’ with @’ < w,, since

HY = A% -G, AY

IIA

f—Gw'ﬁ?I ’
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we have
¢ =HY =G, f+Guf+e(Gh 1-GE 1)
< s+Gy (f—HY)—eG1.
Now,
G (f—HY) 2 GL(f—-HY) < &Gl 1.
Hence H®' £s. This means that s is superharmonic on w,, so that fe #,,.(w,) and
6,—frn+ent 20

on w,. Since w,’s cover w, fe #,,.(w) and the above inequality holds on w.
Thus, ¢ being arbitrary, we conclude that 6, —fr=0 on .

COROLLARY. If u € s#~(w), then 6,2Su?n on w.

ProoF. Since 1 € 5#~(w), we see easily that —u? is $~-superharmonic on w.

§4. Gradient measures of locally bounded functions

4.1. Gradient measures

Let w bean opensetin Q. Forf, g € #,,.(w), we define their mutual gradient
measure on @ by

1
Ors,91 = 35 {fa,+ga,—6”—fgn}
and the gradient measure of fe #,,.(w) by
1
5.[ = 6[.,-,.’-] = —2—{2f0'f_0'f2—f2n} .

By virtue of Proposition 2.1, these are well-defined signed measures on w. Note
that if ¢ denotes a constant, then

Ote, ;1= -%— {co,+fo.—0. —cfn} = —é— {co;+cfn—co;—cfn} =0

for any fe #,,.(w), and hence 6,=0 and J., =0, for any fe Z,,.(®).

REMARK 4.1. In case Q is a Euclidean domain and $ is defined by solutions
of Au =Pu, the measure §; is nothing but |grad f|2dx provided that fis continuously
differentiable. (Cf. the introduction of [9]-1.)
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THEOREM 4.1. Let wy be an open set. For any fe #,,.(w,), 6, is a non-
negative measure on wo. In case wg is a domain, 6,=0 if and only if f=const.
on wq.

ProoF. Let w be any small PC-domain such that @cw. Then f=u+ UZf
on o with u € #(w). Since u is bounded and w is a small domain, v=(I—-G,) 'u
exists and belongs to #~(w) by Proposition 3.5. Let p=U% —G,v. Then
f=v+p, so that

4.1) Op = 0,+20p,,+6,.
Since v=u+G,v, o,=vn. Hence
d, = »é— {2v2n—0,.—0v?n} = —é— {v’n—0,.}.
By the corollary to Proposition 3.7, we see that §,=0. Next we have
4.2) 201y,p) = V0,4 po,—0,,—UPT
= (u+Gyv)o,+vpn—o,,—vpn
=u0,+(G,0)0,—0,,— 0 G 0)p

Since w is a PC-domain, |0 |(w)< + o0 and [n|(w)<+co. From the bounded-
ness of v it follows that o, ,), € # p(w) and o,€ # g(w). Moreover, by Lemma
2.8, u € # gp(w). Therefore, we can apply Propositions 2.3 and 2.6 and obtain

0 (Goo)p(®) = Sw(Gwv)p drn
= vap dn— Smup dn
= Sw(qu)da'p— Swup drn
and

()] =S uda,,+g updr.

Therefore (4.2) implies
(4.3) 5[0",](60) = 0 .

Also, by Proposition 2.3, apz(w)=g p?dn, so that
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(4.4) 3 () = Smp do,~{ pdn.

Since U%t <1, using Theorem 1.2 we have
(4.5) ( pran <{ prant <105 totop < pdo,.

Therefore, §,(w)=20 by (4.4), and hence by (4.1),
4.6) 0 (@) = 0, (w)+2, ;(w)+0,(w) = 0.

Since this is true for any small PC-domain w such that @ < w, and such domains
form a base of open sets in w,, we conclude that §,20.

If f=c (const.), then 6,=0 as remarked before. Conversely, suppose w,
is a domain, fe & ,.(wy) and 6,=0. Let w be any small PC-domain such that
@ < w, and use the same notation as above. Since 6,20 and 6,20 on w as we
have shown above, (4.3) and (4.6) imply that 6,=0 and §,=0 on w. It follows
from (4.4) that inequalities in (4.5) become equalities, in particualr,

“Uz+ |1w1w(6p) = Iw(ap) .

Since |U%' ||, <1, we have I,(c,)=0; hence p=0 on w by the energy principle.

Next we shall show that §,=0 on w implies v=const. on w. Since ,,,,=0
on o for any g € #,,.(w) and for any real number a, we see that J,,,=0 for
any g € #,,.(w). In particular, if h € #(w), then

0= 5[0,!1] = % {hO’u—O'Uh'—UhT[} = _]T Typpe
This means that vhe s#(w) for any he s#(w), and hence v2he #(w) for any
he #(w). Since w is a PC-domain, there is hy € #(w) which is positive on w
(see [3, p. 94]). Let x4 € w be fixed and consider the function w=(v—v(x¢))%h,.
By the above observation, we s#(w). Since w=0, w(x,)=0 and hy>0, we
conclude that v=v(x,) on w. Thus we have seen that f=const. on w. Since
o is connected, it follows that f=const. on w,.

COROLLARY. Let wg be any open set in Q.
(a) Iff9 ge gloc(wo): then

|5[f,g]|§——é—(5f+5g) and 874, S2(6,+6,).

) If f,ge #Bo(wy) and A is a relatively compact Borel set such that
Acwy, then
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8g7,61(A)] = 0,(A)1/2 5(A)/2
and
Opp (A2 S 0,(A)/24+0,(A)/2.
The value J,(A4) may be called the Dirichlet integral of f over A (cf. Remark
4.1).

REMARK 4.2. If u € #(w), then §,= ——;— (0,2+u?n). Hence if u € # gg(w)
and n~(w)< + o, then §,(w)< + c0.

4.2. Gradient measures of max. and min. of functions

LEMMA 4.1. Z,..(wy) is a vector lattice with respect to the max. and min.
operations for any open set w,.

Proor. Let fe #,,.(w,) and let w be any PC-domain such that @ cw,.
Then flw=s,—s, with bounded non-negative superharmonic functions s; and
s, on w. Then

max (f, 0) = s; —min(s,, s,)

and min(s,, s,) is bounded non-negative superharmonic on w. Hence max(f,
0)e #,,.(wg). Since F,,.(wy) is a linear space, it follows that it is a vector
lattice with respect to the max. and min. operations.

LEMMA 4.2. If fe #,,.(w,) and f is continuous on w,, then
5[mu(j,0),min(f,0)] =0.
ProoF. Let f*=max(f,0) and f~=—min(f,0). Since f*f~ =0,
1 -
5[f+,f—] = T{f+6f—+f O'J'+} .

Let wt={xew; f(x)>0} and v ={xew; f(x)<0}. Then w*, v~ are open
sets. Hence we see that o,-|w*=0 and o,«|w~=0. Therefore &+ -,=0.

COROLLARY. For a continuous fe€ #,.(wo), 6,7, =0

REMARK 4.3. We shall see later (§7) that the above results hold for any
f €EZ loc(wo)-
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4.3. Dirichlet integrals of locally bounded potentials on a PB-domain

LEMMA 4.3. Let w be a PB-domain and let p=U¢, with o € A g(w). Sup-
pose Ule! is locally bounded on w. Then p is |n|-square-integrable on w,

0,(0) < Bolu(0)

and
5,() = Ia,(o)-—g p2dn.

Proor. Theorem 1.2 implies that p is |n]-square-integrable. First, suppose
620. Let {w,} be an exhaustion of w. For each n, p,=R2~® is a potential on
, S,(p,) =@, and p,=p on w, by virtue of Lemma 1.7. Since p is bounded on
@, Lemma 1.4 implies that each p, is bounded. Hence pu,=0,, €. £§w).
Since p, t p, we have I (u,) 1 1,(0) and I,(u,—0)—0 (Corollary 2 to Theorem
1.1). By Proposition 2.2 (cf. (4.4) in the proof of Theorem 4.1), we see that

@7 5,,(@) = Lo(u)—{ paar.
By Theorem 2.1, S p?dn~=(B,—1I,(6). Hence

50u(@) S I+ | pdn~ s T(@)+{ p2an= < L.

Since p,=p on w,, 6,(w,) =4, (v,) <6, (w)<B,l,(0), which implies that J,(w)=<

Bolu(0).

Similarly, we see that d, _, (0)<B,I,(#t,— ), and hence

51’:- - P(wm) = 51’" - pm(wm) é ﬁmlw(ﬂn - ﬂm) .
Therefore

0p,-p(@) S Bulo(pty—0) >0 (n—00).

It follows that d, (w)—d,(w). Since I,(u,)—1,(c) and S p? dn—»S p*drn, (4.7)
implies that

5 () = Im(a)—g p2dn.

Next, let o be arbitrary. Applying the above result to f, =U%", f,=U¢"
and f, =Ul¢s!, we see that
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8,(®) = 28, ,(0)+26,,(0) =8 ;,()

= 2I,o(o+)+2Iw<a-)—1.o(|a|)—§ Q2 +23—f3)dn

- Iw(a)——g pdn.

Finally, applying Theorem 1.2 again, we see that J,(w)=p,/,(c) in the same
way as above.

LEmMMA 44. Let w be a PB-domain and p=U? with o€ #g(w). Let
{w,} be an exhaustion of w and let p,=U¢, . Suppose Ul¢! is locally bounded
on o. Then

6p—pn(wn)+gw (p—pn)zdlnl -0 (n—>oo)

Proor. We may assume that ¢=0. Since S pld|n|<+o00,0Zp,<p on
w

w, and p,—p, Lebesgue’s convergence theorem implies that S (p—py?din|—
0 (n—o00). Thus it remains to show that J§,_, (w,)—0 (n—‘:go). First we
remark that u,=p—p, belongs to #gg(w, by virtue of Lemma 2.8. Since
olw, e A }(w,) and 77 (w,)<+ oo, the definition of J;,,, and Proposition 2.4
yield

Otp=pmpni(@n) = 5["";1’"]((0")

] o= 00

u,.p,.dn}

= _S unpnd7r

=— Swn(p—pn)pndﬂ-
On the other hand, by the above lemma,
5,0 = Lo, @)~ p2ar
and
5 () = I(6)— Swpzdn.

Therefore
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0p—pa(@n) = 0,(@) =8, (W) =201, p, p1 (@)

< 8,@)=1o,@)+| pidn+2{ (p—ppdn

(o 1]

= 1,,,(0)—10,"(«:)—5& (p—pn)Zdn—S p2dn

w—wp

-0 (n-ooo).

LeEMMA 4.5. Let w be a PB-domain, p=U? with ¢ € # g(w) and u € #(w)
with 5u(a))+S u?d|n|<+oco. Suppose Uls! is locally bounded on w. Then

O, (@) = — Smup drm.

ProOF. By the corollary to Theorem 4.1, we see that &, ,;(w) has a definite
finite value. Obviously, S up dn is also definite. Let {w,} be an exhaustion of

o and let p,=Ug . By Po;oposition 2.4 (cf. the proof of the previous lemma),

Stupia(@n) = = updr.
By Lebesgue’s convergence theorem,
Sw up,dn — Swup dn (n—> ).
On the other hand, by the corollary to Theorem 4.1, we have
[0tu, pn1(@n) = Spu, (@)

=< |5[u,p—p,.](wn)| + [5[u,p](w —w,)|

S 6 @)? 6, ()2 +6(0—w,)' 6 (0—w,)"?

-0 (n—>0),

where we used the previous lemma to conclude the convergence.

§5. The spaces of harmonic functions with finite Dirichlet integral
and with finite energy

5.1. Lattice structures

Given an open set @, we consider the following spaces of harmonic functions:
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#p(w) = {ue #(0);6,(w) < +oo},

H#p(0) = {u e.%’(w);é,,(w)+g u?dn~ < + o0},

#4(0) = {u € #(w); 5,,(w)+S wrdim| < + o0} .

Since (u+v)?+(u—v)2=2u?+v2?) and 6,,,+90,_,=2(6,+9,), we see that these
are linear subspaces of s#(w). Note that if 1 is superharmonic on w, then
#p(w)=5Fp(w). Let

lullp,o = du(@)!/?,

4l 0 = 8@+ { urdnyrrz,

Il = @)+ udinly's2.

These are semi-norms on £ p(w), #p(w) and s g(w), respectively, They are
norms if and only if |n||w’#0 for every component @’ of w.

LemMA 5.1. Let w be a PB-domain. Then
I(01) = 2(Bo=Dul3, .
for any u e #p(w).

Proor. For any PC-domain w’ such that @’ cw, u|w’ € 57 5g(w’). Hence,
by Proposition 2.3, the least harmonic majorant v of |u| on ' exists. Let p=
—Usl«t. Then p=0 and |u|=v—p on w’. By Lemma 4.5,

5[,,,p](w’)+g vpdn =0.
[0)

Hence, using Lemma 4.3, we deduce

To(ow) = 8@)+{ _pan

= =5gu.n(@)={_lulpdn

IIA

= Oy, (@) + Sw'lulp dn~

IIA

8y (@0')1126 (00") 112 +<Sw’uzdn'>1/ 2<Sw' pzdn">ll z,
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By the corollary to Lemma 4.1, §|,)=6,. By Lemma 4.3,

5p(wl) é ﬂw'Iw’(alld) é ﬂwlw’(alul)'

By Theorem 1.2,
| pdr < (o= Dlo(@w) S (Bo= Dl (@).
Hence,

1/2
To(ow) 3 [ Bud@ 2 + {0 _wan | |12,
so that
Iw’(alul) é (2ﬁm_1)”u”%',w' .
Letting ' 1 w, we obtain the required inequality.

Given u, ve #(w), if max(u, v) (resp. min(u, v)) has a harmonic majorant
(resp. harmonic minorant) on , then its least harmonic majorant (resp. its
greatest harmonic minorant) will be denoted by u V ,v (resp. u A ,v).

' THEOREM 5.1. (cf. [9, Lemma 3.3 and Thoerem 3.1]). If w is a PB-domain,
then s (w) and 5# g(w) are vector lattices with respect to the operations V
and A,. Furthermore, we have the following estimates:

luV o (=Wlp,0 = {1+3Bo—D}ulp o for ueH#p(w)
and

luVo(—tlg,o = {1+3Bo—D}Hlullg,o  for uestg(w).

PrOOF. Let ues#p(w) and v=—o0), (20). By the above lemma, we see
that p=U}, is a potential, and hence v=uV ,(—u) exists; in fact v=|u|+ p.
Since I,(v)< + oo by the above lemma, it follows from Theorem 1.2 and Lemma
4.3 that

5,,(w)+g pdin)< + .

Therefore ve s#p (w), and if in particular u € #z(w) then ve #g(w). Thus,
# p(w) and 5 (w) are vector lattices with respect to V , and A,

Now, let {w,} be an exhaustion of w, p,=U}, and u,=p|w,—p, Then
u, € # gp(w,) (c # g(w,); cf. Remark 4.2), v=|u|+u,+p, and v—u,=|u| on w,.
By Lemmas 4.3 and 4.5 and the corollary to Lemma 4.2, we deduce
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50_,,"(wn)+g (v—u,)2dn = 5u(w,,)+g wldn—1I, ().

@Dn

Hence,
0y, (@) + S (v—u,)?dn~
=6,,(w,,)+S u?dn~+ S {u?—(v—u,)?}dn*
+2{o-uyr—udn-1,,0)
< 5,’,(w)+g wrdn+ 2g (0—up)? —u}dn——1I, (v)
and

bo-sn(@)+ | (0=u)din]

=6,,(w,,)+g u2d|n|+2g {((0—up)? —u?Ydn—1, (v)

Wn

< 5,,(a))+S u2d|n|+2g (0—u,)? —u2}dn=—I, (v).

By Lemma 4.4, 3, (,)—0 and S w2d|n|—0 (n—>0). Hence

5.1) o> < ul?+2{ @2 —u?)dn=~1,0),
where ||u| =|ulp,, if ue#p(w), =|ullg,, if ue# w). If n~=0, then (5.1)
immediately implies the required estimates. If n~3#0, then f,>1. Since v2—

u2<ku?+(1+k=1)p? for any k>0,

2S (02 —u?)dn- < ZkS uzdn“+2<1+—]1?—>g pdn-

< 2kful*+2 (14— ) (Bo= DI()
Letting k=2(8,—1) and using Lemma 5.1, we have from (5.1)
Ivll> = {1+4(Bo— 1D +2(Bo—1)(2B,— D} ul?
< {1+3(Bu—D}2|ull?.

CoroLLARY (cf. [11, Theorem 2] and [6, Theorem 10 D]). If 1 is super-
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harmonic on a domain w, then 5 p(w) is a vector lattice with respect to V ,, and
A, and

Hll vw(_u)”D,(u é "“”D,w'

REMARK 5.1. We do not know whether this corollary remains valid in case
1 is not superharmonic.

5.2. Bounded families in 57, () and 57 (w)
THEOREM 5.2. If ® is a PB-domain such that |n||w#0, then the family

#p(0) = {ue#p(0);lullp,, = 1}
is locally uniformly bounded on w.
Proor. First suppose 77 |w#0. Consider the family
% ={uetp(®;uz0,ulp,,=<1+3B,—1}.

If ues#}(w), then |u|SuV , (—u) and |uV  (—u)lp,,=1+3(B,—1) by the
previous theorem. Hence it is enough to show that # is locally uniformly
bounded. Fix xoew. We shall show that {u(x,);u €@} is bounded. Suppos-
ing the contrary, we would find u,e#, n=1, 2,...,such that u,(xo)=n. Let
v,=u,/u,(xo). Then, Harnack’s principle (cf. [9, §3.3, (B)]) implies that there
is a subsequence {v,} converging to a ve s#(w) locally uniformly on w. In
particular, v(x,)=1 and v>0 on w. Now,

2,7, - 1 S 2.7, -
Swv,,drc BTRENT wu,,dn

1
72——”“,,”12):,(0

lIA

< L {14+3(B,—1)} » 0 (1ow).

Therefore, we may assume that v, -0 n~—a.e. on w. It follows that v=0 n~—
a.e. on w, which is a contradiction. Thus we have seen that {u(x,);ue#} is
bounded. Then, by Harnack’s inequality (cf.[9, §3.3, (A)]), we conclude
that # is locally uniformly bounded on w.

Next, suppose 7~ |w=0, i.e., =0 on w. Let ' be any PC-domain such
that @'cw and 7jw'#0. Choose another PC-domain w* such that @' cw*
and o*cw. Let a=inf,UT.. By our assumption, «>0. Given u € s#(w),
let p=0_,.(=20). Then u?2=h—U%. on w* with he s# zz(w*) (cf. [9, Lemma
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2.12]). In the proof of [9, Proposition 2.2], we showed that

wWow*) = Sw'h dn = S u?drm.

WD

Hence
lull3,0r = 0u(0*)
= %{u(w*)—g u2dn}
1 2
g—z— (h—u?)dn
= %S Ut dx
1 o
= n > % !
3 gmUw.du 2 - pw),
so that
4l = 5 {n@)+ | _udn}
! ! ’ 2
= /.l((l) )—514(60 ) é M((D ) é T"u"lz),an .
Hence,

(ulo’; ue b (@)} < {vers(@);lolse < (2) "}

The family on the right is locally uniformly bounded by virtue of [9, Thoerem 3.2],
and hence s }.(w) is locally uniformly bounded on w’. Since @’ can be chosen
arbitrarily close to w, we obtain the theorem.

CoroLLARY 1 (cf. [9, Theorem 3.2]). If w is a PB-domain such that
|mllw#0, then the family

Hp(w) = {ue#p(w); ulg, =1}
is locally uniformly bounded on w.

CorOLLARY 2. If @ is a PB-domain and 1 is superharmonic on o, but
not harmonic on w, then the family

H#h(w) = {ue #pw); |ullp,. =1}
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is locally uniformly bounded on w.

CoroOLLARY 3 (cf. [9, Corollary to Theorem 3.2]). Let w be a PB-domain
such that |n|lw#0. If u,e#p (w) and |u,lp ,—0 (in particular, u, € 5 g(w)
and ||lu,lg,,—0), then u,—0 and u,V ,(—u,)—0 both locally uniformly on w.

REMARK 5.2. In Theorem 5.2 and its three corollaries given above, the con-
dition that |n||w#0 cannot be omitted; though we obtain the same assertions
if we normalize functions (see [9, § 3.1 and § 3.3]).

COROLLARY 4. Let w be a PB-domain and let o be a PC-domain such
that @’ cw. Then there is a constant M >0 such that

lullg,o = Mlulp 0
for all u € 5# p (w).

PrOOF. If |7l|=0, then [ulls,o =llpr 0 < llpr,0- Suppose |allw#0.
Then, by the theorem, |u| <M’ on ' for all u € ##}.(w) for some M’'>0. Hence

[ wdrzmpulg o),
.
so that
B = Nl uPdm® < {14 M 255 @)} ulB o
(o]

For a PB-domain w and u € # g(w), Ué« and U%*'*! are potentials on w by
virtue of Lemma 1.6. Since ¢,. = —238,—u?n,

© = 424U+ U™ € #(w).
Since u2 =0, it follows that h® =0.

LEMMA 5.2 (cf. [9, Lemma 3.5]). If w is a PB-domain such that |r||w#0,
then the family {h®;u e 52 L(w)} is locally uniformly bounded on w.

ProOF. Let K be any compact set in o such that |z|(K)>0. By the above
Corollary 1, there is M >0 such that |u(x)|<M for all ue#L(w) and xe K.
Since h® =0, Harnack’s inequality implies

sup A9(x) < o inf A9(x)
xeK xekK

< a{M? +i2f(2U3,“+U,',‘,’"*)}
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for some >0 which is independent of u. Now,

inf QU+U%"")
= ;S QU3+ U " )d ||
[7](K) o
- ﬁSwUL"'d(26u+ unt)
s 2ol (25,0) 4 uran) s 22azl)

for ue s# ,‘;(;o). Hence

0] 2(2ﬂw_ [)
sup () < ot + 22 ez U}

for all u € o L(w).

5.3. Completeness of the spaces 57, (w) and 5# g (w).

LeEMMA 5.3. Let w be a PB-domain. If u,e #g(w), n=1,2,..., {|lu,llg,0}
is bounded and u,—u locally uniformly on w, then u € 5 g(w) and

lullg,o < Bo/*lim inf |lu,|| g, -
n—o

Proor. The case n|w=0is given in [9, Proposition 3.3]. Thus we shall prove
the case n7|w#0. Taking a subsequence, we may assume that lim,,,llu,l £, .
exists. Let @’ be any PC-domain such that @' cw and n~|w’#0. Since u,—u

uniformly on ’, u is bounded on w’ and |7||(w’)< + 00, we see that g 'u,2,d|n|—>
S (u?d|n| and Usn**>Uw* uniformly on w’. Consider the sequence {h®}
in the notation in §5.2. By Lemma 5.2, it is locally uniformly bounded on w'.
Hence, by Axiom 3, we can choose a subsequence {v;} of {u,} such that {h{}

converges locally uniformly on ’. For simplicity, let J;=6,, and h;=hg).
Obviously, h*=lim;_,,h; is harmonic on w’. Consider the function

v=h*—u2-Uur
uir,
Since 6,=—0,:—u?n=20,20, v is superharmonic on w’. Furthermore,

(5.2) v = lim {h;—v?—U%*"} = 2limU% > 0.

Jj=o iad

It then follows that
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08 =Ucy <v=21limU%.

Jjoo

Given any open set w” such that @” c w’, let 1= A(w”; »’) in the notation in Lemma
2.4. Since S(A)=@” and the convergence in (5.2) is uniform on ", we deduce

s < ULds,
= vgar-{ vsai-

<tim{ vsa

Jjoo

= limg ULidS; < B lim inf 8 (e') .
o’ Jj—o o

Jjow
Letting " T w’, we have
0, (w’) £ B, liminfé ().
jmw
Hence,

”u"lzf,w’ = ﬂw 1lflll.ionf 5j(w')+g uzdlﬂfl

g/i'mlirpinf<6j(w’)+g v}.d|n|>
jo o o’
= Bolim lunllZ,c-

Since we can choose w’ arbitrarily close to w, we obtain the required inequality.

THEOREM 5.3 (cf. [9, Theorem 3.3]). If w is an open set such that |n||w, #
0 for every component w; of w, then 5 g(w) is a Hilbert space with respect to
the norm |*|| g, -

Proor. Obyviously,

(#,0)5,0 = Spuon(@) + | uvdini

is well-defined for any u, ve s# g(w) and is an inner product in s g(w) such that
(u,u)g,,=llull},o. To prove the completeness of 5 g(w), let {u,} be a Cauchy
sequence in 5 g(w), i.e., |u,—u,| g, ,—0 (n,m—o0). Let w; be any component
of w and consider the set
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A = {x € wy; limu,(x)exists}.
n—oo0

If ' is a PB-domain such that o’ cw, and |x||w’#0, then, by Corollary 1 to
Theorem 5.2, u, converges to a u € 5#(w’) locally uniformly on ’, so that o’ < 4.
Furthermore, using the previous lemma, we see that u € 5# g(o") and |u,—ul g, —
0 (n—o0) (cf. the proof of [9, Theorem 3.3]). If w’ is a subdomain of w, such
that |n||w’=0, then by [9, Theorem 3.2], {u,—u,(x,)} is convergent locally
uniformly on ' for a fixed x, € @’, and hence either ' 4 or o' cw;—A4. If
o' <A, then, by [9, Theorem 3.3], u=lim,. u,€# z(w’) and |u,—ulg , —0
(n—>0o0). Since PB-domains form a base of open sets, the above results show that
A and w,; — A are both open. Since |n||w, #0, it follows that A=w,. There-
fore, u=lim,_, ,u, exists on w; and [u—u,|g , —0 (n—o0) for any PB-domain
o’ contained in w,.
For any compact set K in o, the above result implies that

6“n_“(K)+SK(u,,—u)2d|n| -0.
Hence
6,,(K)+qu2d|1r| =}£rg{5u"(K)+gKuﬁd|n|}
< lim g0 <+ 0.
Thus, u € # g(w). Furthermore, for each m,
buan )+ (w—up2din) = tim {6, (K)+{ (w,—undinl}
< lim [y~ trnll5,0 > 0 (m->c0).

Hence |[u—u,||g,,—0. Thus, # g(w) is complete.

THEOREM 5.4. If w is an open set such that |r||w;#0 for every component
y of , then 5# p.(w) is a Hilbert space with respect to the norm ||*||p- .

Proor. For u, ve s, (w).
W, V)p o = 6[u,ul(w)+g uvdn”
(2]
is well-defined and is an inner product in 5# 5. () such that (u, u)p ,,=|ull3 ..

Let {u,} be a Cauchy sequence in s#p.(w). If w’ is a PB-domain contained in
o and ®" is a PC-domain such that @”cw’, then Corollary 4 to Theorem 5.2
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implies that
||un_um”E,w" é M”un_um”D’,w' - 0 (ns m-— w)

for some constant M >0. Hence, by the previous theorem, there is u € 5 g(«w")
such that |u,—ulg,, —0(n—>o0) and u,—u locally uniformly on w"”. Since
such @”’s cover w, an argument similar to the last part of the proof of the previous
theorem shows that u=lim,,u, € s p(w) and |u,—ulp ,—0 (n—oc0).

CorOLLARY (cf. [11, Theorems 3 and 4]). If 1 is superharmonic on w
and is not harmonic on any component of w, then 3 p(w) is a Hilbert space with
respect to the norm ||*||p .

REMARK 5.3. If 7=0 on some component of w, then ||‘|g, and |||y,
fail to be norms; though +# g (w) and 5, (w) are still complete with respect to
these semi-norms respectively (see [9, Theorem 3.3]).

ReEMARK 5.4. The above corollary may remain valid in case 1 is not super-
harmonic on w. In fact, if the harmonic space is given by solutions of 4u=_Pu
on a Euclidean domain, then we can show that the space of Dirichlet-finite solu-
tions is complete with respect to the Dirichlet norm.

§6. Dirichlet potentials and Dirichlet functions on a PB-domain

6.1. Quasi-continuous functions

Let w be a PB-domain. We consider the capacity C, on w relative to the
kernel

— Gw(xs J’) P n-
Gw("a)")"m (5, =14+U%),

ie.,

C.(K) = sup{u(K) ne Ay, SmGw(x, y)du(y) £1 for all xew}

= sup{gxswdv; ve L}(w), U, < s, on co}

for every compact set K in . C,, defines a Choquet capacity on o (cf. [9, Pro-
position 5.2]). By [9, Lemma 5.5], we see

LEMMA 6.1. A set ecQ is polar if and only if G (e n w)=0 for every PB-
domain w.
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Next we prove

LEMMA 6.2. Let w and ' be two PB-domains such that o' cw and let
K, be a compact set in o'. Then there are constants ¢;=c;(w,®’)=1 and
¢, =cy(w, ', Kg) 21 such that

Cu(4) £ ¢,Cyr(4)
for all Borel sets Ain o' and

Cur(A) £ ¢,Cy(4)
for all Borel sets A contained in K.

Proor. It is enough to prove the inequalities for compact sets A. If U} =
S, on A with ve #§(w), then U}, U} <s,=<f.,5, on A. Hence

Thus,

Next, suppose A<K,. Let G,(x,y)=G,(x,y)+h(x,y) for x, yew'. Then,
h(x, y) is positive and continuous on wxw. Put M =sup,.k,, yex,1(x,y) and
m=infyeg, yekoGo (X, ). Then 0<M< 4o and O<m<+4o00. Let c,=1
+M/m. Then G, (x, y)<c,G,(x,y) for all x, ye K,. Thus, if ve #}(w) and
S(v)cK,, then U}=c,U). on K,. Let ve#}(w), S(v)cA and U} Zs,,
on A. Then U} Zc,s, on A4, so that

R
)

S S,dv = Lg SodVv.
A Cyr JA

Co(4) 2
It then follows that
Cold) =L C,(4).
Cy

An extended real valued function f on an open set w, is said to be quasi-
continuous there if, for any PB-domain w contained in w,, f|w is quasi-continuous
with respect to the capacity C,. By virtue of the above lemma, a function on a
PB-domain w, is quasi-continuous in the above sense if and only if it is quasi-
continuous with respect to C,,. By Lemma 6.1, a quasi-continuous function is
finite q.e.; if f is quasi-continuous and g =f q.e., then g is quasi-continuous.
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LEMMA 6.3. Let w, be an open set and f be a quasi-continuous function on
wo. Then f is p-measurable for any non-negative measure u on , such that
Ulw e A g(w) for each PC-domain w with @ <wy; in particular, f is |n|-mea-
surable.

This lemma is easily verified by the definition of quasi-continuity and Lemmas
1.3 and 6.1 (cf. [4, p. 52]).

LEMMA 6.4. Let w, be an open set and let f be a quasi-continuous function
on wy. If f is p-integrable and Sfd;t=0 for any ue.#%w) with a PC-

domain w such that @ cw,, then f=0 g.e. on w,.

ProoF. Let w’ be any PB-domain contained in w,. If pe.#}(w') and
S(p) is compact in ', then fis y-integrable and S _fdu=0 by assumption. Hence,

[9, Corollary to Lemma 5.7] implies that f=0 q.e. on @’ with respect to the
capacity C,.. This means that f=0 q.e. on w,.

REMARK 6.1. Similarly, we also see that [9, Lemma 5.7] is valid in the
present case.

6.2. Dirichlet potentials

Let w be a PB-domain and consider the classes
M ge(w) = {0 € Mg(w); Ulg! is continuous} ,
Ppc(w)={UZ; 0 € Mpc(w)}.

Every function in & gc(w) is bounded continuous on w. £ g-(w) is a normed
space with respect to the norm

UGN 1,0 = 1,(c)!/? (e, [ flre=I,(a.)"2).
THEOREM 6.1. Let w be a PB-domain and let

2o(w) = { _ there is a sequence {f,} in 2 gc(w) such that }
D=V fof e onwand | fy=ful1o=0 (n,mc0)]"

Then 2,(w) has the following properties:

(@) If fe 2y(w) and f, is a function on w such that f, =f q.e. on w, then
J1€ Do(w).

(b) Any function in 2y(w) is quasi-continuous on .

() For fe 2y(w), if {f,} is a sequence in Pg(w) such that f,—f q.e.
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on @ and || fy—full 1.4-0 (n, m—c0), then

17110 = lim [ fulr0

exists and is independent of the choice of {f,}.

(d) If we identify functions which are equal g.e. on w, then 2y(w) is a
Hilbert space with respect to the above norm ||, and contains 2 pc(w) as a
dense subspace.

€ If f,, fe 2y(w), f,—f q.e. on w and | f,—ful1,.—0 (n,m—0), then
I fa=fll1,0—0 (n—>0).

® If fo.fe Do(w) and | f,—fll1,.—0, then there is a subsequence of
{f,} converging to f q.e. on w.

(g) For any fe 9y w), there is a potential p on w such that |f|<p on w.

Proor. For g€ # g(w), let

030) = [ Gulx, o) = 5§ EelB D oy,

Since w is a PB-domain, we see that o € .# pc(w) if and only if Ul¢!(x) is bounded
and continuous. Let

Ppc(w) = {02; 0 € Mpc(0)},
10%) .0 = L(s30) !/
and
there is a sequence {g,} in 2 sc(w) such that

Do) =1 g; .
gn—9g q.e. on w and ||g,—gmllg,,—0 (n, m—o0)

Since 2 pc(@)={s.9; g€ Ppc(@)} and |[sugll10=Iglz.0 for ge2pzc(w),
we see that 2,(w)={s,g9;9g€ éo(w)}. Now, applying [9, Theorem 5.1 and
Propositions 5.3 and 5.4] to the harmonic structure $,/s, and noting that s,
is positive continuous, we obtain the required results.

REMARK 6.2. In case 1 is superharmonic on w, the space 2,(w) is the same
as &,(w) given in [9].

PROPOSITION 6.1. If w is a PB-domain and ¢ € M (), then f=UZ € 24(w)
and | f1},.o=1.(0).

Proor. By Lemma 1.5, we can choose 0, € 4 gc(w), n=1, 2,..., such that
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Us»—f q.e. on o and I, (0—0,)-0 (n—>o). Hence fe 24(w) and |fl},=
lim, ., 1,(0,) =1,(0).

The following three lemmas will be used in the next section.

LEMMA 6.5. Let w be a PB-domain. If fe Pgc(w), then |f|e P pc(w)
and | fll1,o=1fl1,0-

Proor. If f=Ug? with o€ .#pc(w), then |f|=Uls'—2min(US", U?).
It follows that |f|€ #gc(w). By the corollary to Lemma 4.2, 6,;=J,. Hence,
by Lemma 4.3, we have

1S 1170 = Sip(@)+{ 1f1%d7 = 8,(@)+( f2dn = 1£1}.0.

LEMMA 6.6. Let w be a PB-domain. Then, for any pe #%(w) and fe
9O(Co)’

Sw'f ldp S £ 1 olo(m) /2.

Proor. Let {f,} be a sequence in 2y(w) such that f,—fq.e. on w and
|f/~£l1,o—0 (n>c0). Let 6,=ay,,,. By the above lemma, o, # (@) and
Ly(ow)=|full},o- Hence

(1nnlan = vpan < 1001 21,0172 = 1l L) '72.
By Lemma 1.3, u(e)=0 for a polar set e. Hence, Fatou’s lemma implies
({1r1dn < timine { 1,14
< (m 1o} (W2 = 111, uu(W)' 2

LEMMA 6.7. Let w be a PB-domain and ' be a PC-domain such that @' <
w. If fe 24w"), then

r=

0 on w—o'

[f on o'

is an element of 2 ().

Proor. Let {f,} be a sequence in 2 z(w’) such that f,—f q.e. on @’ and
| fu=full,or =0 (n, m—00). By virtue of Lemma 1.5, we may assume that
S(o,,) is compact in o’ for each n. Let 6,=0,, for simplicity. Each o, can be
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regarded as a measure on @w. Using Lemma 2.2, we see that p,=U?"" and q,=
U?¢»™ are bounded on w, so that ¢, € .#3(w). By Lemma 1.7,

P, = 'R;)n—w',m and ‘7” = ﬁz)"—m',m

are bounded potentials on ® and p,—q,=p,—§, q.. on w—w'. Let p, and
v, be the associated measures of j, and §, respectively, and let t,=u,—v,. Since
Pulo—&"'=p,lo— &' and §,|w— &' =q,|/o— @' and they are harmonic on v — @',
we see that S(u,)=0w’ and S(v,) =0w’. Therefore 1, # g(w) for each n. Let
In=Pun—4qn— P+ d,=U% . Then g,e€ 2,w) by Proposition 6.1. Fur-
thermore, g,=0 gq.e. on w—w’. On the other hand, by Axiom D (see Corollary
1 to Theorem 1.1), we see that p,—p,=U?" and q,—§,=U?:" on o’ (see, e.g.,
[3, p. 129] or [5, p.225]). Hence g,=f, on w’. It then follows that g,—f*
g.e. on w. Furthermore, using the fact that S(r,)cdw’, Lemma 1.3 and Pro-
position 6.1, we deduce

”gn_gm”I,m = Sw(gn_gm) d(O',,'—T"_O'm'I"Tm)

= Sw,(fn_fm) d(O'"—O'm) = ”fn—fmlll,w'_’o

(n, m—>o0). Thus, it follows from Theorem 6.1 that * € 2y(w).

6.3. Dirichlet functions and gradient measures

For a PB-domain w, let
2(0) = #p(w)+Do(w) = {u+fo; ueH#p(w),foe Do(w)}.
This is a linear space consisting of quasi-continuous functions on w.

THEOREM 6.2. Let w be a PB-domain. For each fe 2(w), there is a uni-
que non-negative measure 69 on o having the following property: if f=u+f,
with ue s# p(w) and ge 2y(w) and if {f,} is a sequence in P gc(w) such that
fa—fo g.e. on @ and || f,—full;,,—0 (n,m—>0), then 6, (A)—06YA) for any
Borel set A in w.

Proor. Let {f,} be a sequence in £ z-(w) as described in the theorem. By
Lemma 4.3,

5]'"(60) é ﬁw”fn”%,a)’ h = 1, 2,
and

5fn‘fm(a)) é Bo)"fn—fm”lz,m, n, m= 1, 2,... .
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Since 6, ;, < 2(6,+9y,), it follows that {5,. ;,(A4)} is bounded for any Borel set
A in w. Furthermore,

|($”+fn(A) 12— (S!I+fnl(A) 1/2 |
§ 5f:|—frrl(A) ! /2 g (an_fm(w) ! /2 é /gllt)/z ”fll —f;"l| I,o
-0 (ny,m-o0).
Therefore, {5, ,(A)} is a Cauchy sequence, so that

HA) = lim3,.,(4)

exists. The uniform convergence with respect to A implies that 6% is also a
measure on . Obviously 69=0. If {f}} is another sequence in £ pc(w) such
that f¥—f, q.. on w and ||f%—f%ll;,,—0 (n, m—o0), then by Theorem 6.1,
we see that ||f,—f*;,—0 (n—c). Then, by an argument similar to the
above, we see that d,,,(4)—0d,,,(4)—0 (n—0). Thus 59 is uniquely deter-
mined by f.

For f, g € 2(w), let

We can easily see that the mapping (f, g)—0f, , is symmetric and bilinear
on 2(w)x 2(w).
Note that if fe 2pc(w), then 69=3d,; and hence if f, ge 2 pc(w), then

0r,91="017.01-

THEOREM 6.3. Let @ be a PB-domain and let fe 2,(w). Then,

6.1) [ rodinl = @Bo=DIS 120
(62) [ r2an < Ba=DIS 1.0
63) #e) < Bl {10

64) s+ { r2an =112
and

(6.5) 50, ,](w)+g ufdr =0
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for u € # g(w).

Proor. Let {f,} be a sequence in £ p-(w) such that f,—f q.e. on w and
| fo—fullr,o=0 (n, m>0). By Theorem 1.2,

[ 72171 < @B~ DILI,

[ 73d7 < (Bo= DAl
and
| Gt ?dinl < @Bo=DIfy=Sulfo >0 (n,m> c0).

Since f,—f q.e. on w and |r|(e) =0 for a polar set e, Fatou’s lemma implies (6.1)
and (6.2), and furthermore,

[ (h=prdim >0 (>,

Then (6.4) is easily seen by Lemma 4.3. The inequality (6.3) immediately fol-
lows from (6.2) and (6.4). Finally, if u € 5# (), then, by Lemma 4.5,

5ru,f..1(‘0)+g uf,dn = 0, n=1,2,...

By the definition of éf, r;, we see that d, ; (w)—6f, ;(w) (n—>c0). By the

above result, we also see that S uf,,dn—-»S ufdn (n—o0). Hence we obtain (6.5).

THEOREM 6.4. Let fe o g(w)+ Do(w). If
tran(@+{ fodn =0

Jfor all ge 2(w), then f=u q.e. on w with u € 5 g(w).

ProOF. Let f=u+f, with u € 5/ z(w) and f, € Do(w). By assumption
6tr. @+ fodn =0
and by the above theorem
6t ra@)+{ ufodr = 0.

Hence
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Ifollfo = 83,(@)+{ f3dm =0,

and hence f, =0 g.e. on w by Theorem 6.1.

§ 7. - Locally Dirichlet-finite functions

7.1. Preliminary lemmas

LemMMA 7.1. Let w be a PB-domain and o' be a PC-domain such that @’
cw. Then, for any o € 4 g () such that Ulg! is locally bounded on e,

I1,(0) £ (2B, —1)*1,(0).

Proor. Put p=UZ, p'=U?, and u=p|w' —p’. By Lemma 2.8, u € 5 gx(®’).
By Lemmas 4.3 and 4.5,

@.1) 6,@) = p2dn =1.0),
12) 5[u,,,,](w')+g upldn = 0.
Hence

1,.(6) = 6 pi(@0")+ Sw,pp'dn

§{5p(w’)+g Pzdn+}1/2{5p,(w")+g p"dn.+}1/2

o’ o’

ol e

s{r@+( pan} 1@+ prant’

o’

+ {gwpzdn‘} llz{Sw’p'zdn“}”z .

Since S p'2dn" <(By— 1y (o) and S p*dn<(B,—1)I(6) (Theorem 1.2), we
deduce that ;

I,(0) £ Bulo(0) /21, (0) /2 + (B, — 1)1, (0)! /21, () /2
= (2AB(0_ 1)10(0)1/21(0’(6)1/2 ’

from which the required inequality follows.

/2
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LEMMA 7.2. Let w, w and o be as in the previous lemma. Then, for
u=UZlw' - Ug¢,,

éu(w')+§ u2din] < 2B, —1)*1,(0).

o’

ProoF. With the same notation as in the above proof, (7.1) and (7.2) imply

5,,((0’)+S uzdn=6p(co’)+g p2dn—1,.(c).

o’ o’

Hence, using Lemma 4.3, we have

5u(w’)+g w?d| x|

o’

§5p(w’)+g p2d7T+—S Ipzdn‘+25 u?dn—1, (o)

o’ ] o’

< 1,@+{ prar—| par+2| p-prar -1,
< Iw(a)+2g pzdn‘—4g ’pp’dn'+28 ‘p’zdn‘—Iw,(a').

If 77| =0, then the required inequality is now obvious. If 7~ |w#0, then f,>1.
Noting that

—2pp’ = 2(Bo—Dp*+[2(B,— D] 'p"?

and using Theorem 1.2, we have

5u(w’)+g w?d|z|

o’

< 1)+ @, =2 pran+( g +2)| pdn -1,

= {1+(Bo—D(@Bu—D}H ,(0) + {1+ (2B, — 1)~ 1}1,(0)
S (2B0—1)21(0)+2(Bo— DI (o).
Then the required inequality follows from the previous lemma.

LEMMA 7.3. Let w be a PB-domain and o' be a PC-domain such that
@' cw. Then, for any fe 9(w), flo'€# (@) +Do(') (= 2(w")) and 6%,
=0%|w'.

ProoF. Let f=u+f, with ue s#p(w) and f, € Do(w). Choose f, € 2 gzc(w)



Dirichlet Integrals of Functions on a Self-adjoint Harmonic Space 735

such that f,—f, q.e. on w and | f,—f.l;,—0 (n,m> o). Put o,=0; , g,=
Uer and u,=f,|0'—g, (e #pp(w’)). By the previous two lemmas, we have

"gn_gm”I,w’ é (2ﬁw_1)”fn_fm” Lo 0 (n’ m- CD)
and
“un—um”E,w' é (2ﬁw_1)3/2“fn—'fm“ ILo ™ 0 (n, m— w)

First assume |7]|jw’#0. Then s#g(w’) is complete by *Theorem 5.3. Hence,
u* =lim,_, ,u, exists, u* € # y(w’) and ||u,—u*| g, =0 (n—>0). Then g,—»g*=
folo'—u* qe. on . By definition, g*e 2, w’). Therefore, f|w =u|w’+
u*+g* e # (@) + 24(w"). If |n|jw’ =0, then we first choose g* € 24(w’) such
that |lg,—g*|;,o-—0 (n—>0), which exists by Theorem 6.1 (or [9, Theorem
5.1]). By the same theorem, we see that there is a subsequence {g,, } of {g,}
such that g, —g* q.e. on @' (k= o). It follows that {u,,(x,)} is convergent for
some xpew’. Hence, by [9, Theorem 3.3], there is u* e #g(w’) such that
4, —u*||g 0 =0 (k—>c0) and u,, —u (locally uniformly) on w’. Hence,

flo' =ulo' +u*+g* e # (w)+ 24(w').
From Theorem 6.2, it follows that

0% (A) = }'i_{g‘suﬂwg,.(A) = }li_?}o‘s<u+f..)+(u'—u..)(A)

for any Borel set A in ’. Since
16+ £+ - (A 12 =B,y 1 (A2
S 0p—u, (A2 S u*—uyllgr >0 (> 00),
we see that

6% (A) = lim 3, ,(4) = 3(A)..

Therefore 6%, =6%| w’.

7.2. Locally Dirichlet-finite functions and their gradient measures

For an open set w, we define
D,0.(w) = {f; for any PC-domain «’ such that @' c o, flo' e 2(v’)}.

By virtue of Lemma 7.3, the space 2(w’) in the above definition may be replaced
by # g(w')+ 2o(@’). Thus, in case 1 is superharmonic on w, 2,,.(w) coincides
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with the space &,,.(w) introduced in [9, §6.2]. Also, Lemma 7.3 asserts that
2(w) < D,,.(0) in case w is a PB-domain, and furthermore it implies the follow-
ing

THEOREM 7.1. For any fe 2,,.(w), there is a unique non-negative measure
O, such that é |’ =069 for any PC-domain o’ such that ®' c w.

The measure 6, may be called the gradient measure of fe 9,,,(w). For
[, 9 € 2,,.(w), their mutual gradient measure is defined by

1
Ots,e1 = 2 (074g=07=9,),

which is a signed measue on w. Obviously, Z,,.(w) < 2,,.(w) and the above
definitions of &, and J;,,; are compatible with those for f, g€ %&,,.(w). We
can easily verify that the mapping (f, g)—9;,, is symmetric and bilinear on
D10c(®) X Dy,.(w) and the same inequalities as in the corollary to Theorem 4.1

hold for f, g € 2,,.(wy).
From Theorem 6.3, we obtain

ProPosITION 7.1.  Every f€ 9 ,,.(®) is locally |n|-square-integrable on w.

Next we prove

PRoposxnoN 7.2. If w is a PB-domain, then
{ F& Drou(@); 6,(w)+ Sw F2din) < + oo} = # 5(@)+ Do(®).
ProOOF. Let
25©) = {f€ D1oe(@); 8@+ | _r2dinl < +o0).

By Lemma 7.3 and Theorem 6.3, we see that s g(w)+ 2,(w) = 2g(w). Now,
let fe 2 g(w) be given. Consider the linear form

Ig) = biy.pi)+ | fgdr

defined on 24(w). Itiscontinuous in view of Theorem 6.4. Hence, by Theorem
6.1 (d), there is f, € 2(w) such that

Kg) = btroa(@)+ | fog dn

for all ge 2o(w). Then
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Ot ro.ai(@)+ Sw(f —fo)gdn =0

for all g € 24(w). Now, using Lemma 6.7, we see that for any PC-domain o’
such that @ —w and for any g € 2 (")

Ots - ro.a (@) + Sm,(f —fo)g dn = 0.

By Lemma 7.3, (f—fo)lw' € #g(w)+ 2o(w’). Hence Theorem 6.4 asserts that
f—fo=u q.e. on ' for some u € # g(w’). It follows that there is u € 5#°(w) such
that f—f,=u q.e. on w. By modifying the values of f, on a polar set, we have
f=u+f, on w. Since 6,<2(5,+0,,) and u?=2(f>+f3), we see that J,(w)+

S u?d|n| < + o0, i.e., u € # g(w). Thus fe # (w)+ P y(w), and hence 2 (w)c
# () + D o(w).

REMARK 7.1. It is clear that 2(w)c{fe 2 ,.(w);d(w)<+00}; but it
is not clear if these spaces coincide.

ProrosITION 7.3. If w is a P-domain and o is a signed measure on @ such
that Ule! is a potential and o|w’ € # x(0') for each PC-domain ' with ® cw,
then U% € D,,.(w).

Proor. By Proposition 6.1, U¢. € 2 (') for any PC-domain o’ such that
@' cw. Hence U%e 9y(w)+#(0)= D, (w') for such w’. It then follows
that U2 € 2,.(w).

7.3. The space ¥ ,.(®) and its lattice structure

For a PB-domain w, we consider the spaces
Pg(w) ={f;f = U? q.e. on w with ¢ € .# (w)}
and
L (@) = # g(w)+ 2 g(w)

(cf. [9, §6.4], where 2y is denoted by Q). Pg(w) is a subspace of Zy(w)
(Proposition 6.1), and hence & g(w) is a subspace of 2(w). For an open set w
in Q, let

for any PC-domain w’ such that @' c ,
yE,loc(w) - {f; flwreyE(w/) }

Obviously, #,.(®) € F g, 10.(0) =D ,c(w). Furthermore, by using Proposition
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6.1 and Lemma 7.3, we can show that & p(w)c P, ..(w) for a PB-domain w
(cf. the proof of Proposition 7.3).

THEOREM 7.2 (cf. [9, Theorem 6.3 and its corollary]). The spaces 2 g(w)
and & g(w) for a PB-domain @ and ¥ ,.(w) for an open set w are vector
lattices with respect to the max. and min. operations and

d15) =9y
fOl‘ any fE 'spE,lnc(w)-

ProOF. Let w be a PB-domain and fe &g (w). By definition, f=u+f,
with u € 5# g(w) and fy € #g(w). By Theorem 5.1, u;=uV ,0and u,=(-u)Vv 0
exist and belong to #p(w). Let T=0, _maxw,0)r By Lemma 5.1, we see
that te #f(w). Note that u,=max(u,0)+U: and u,=max(—u,0)+ Us.
Put

p = min(US" +u,, U3 +u,),

where o=0,,=0,. Then, p is non-negative superharmonic on w and p=
Ulsl+ Uz, so that p is a potential on w. Since |o|, T € #%(w), it follows that
pe€ Pg(w). Hence

Ifl =u,+u,+ U —2p € Fp(w).

If, in particular, fe 2 (w), then u=0, so that |f|=Uls'—2pe 2 (w). Thus,
2 (w) and Zg(w) are vector lattices.

Now, for the above f and o =0/, choose {,} and {v,} in #§c(w) such that
Ut tUs" and Ul tUS (cf. Lemma 1.5). Put f,=u+U“""» and p,=
min(U4"+uy, Ulr+u,), n=1,2,.... As above, each p, is a potential and
p, 1 p. Since

Lfal = ug+u+ UG,
we have
Ifl=1ful = UG =UM+ UG —Uk)=2(p— pn)
and
f=fu=Wg Uy - Uy =Ul).

By Corollary 2 to Theorem 1.1, I (6" —pu,)—0, I, (6~ —v,)—0 and I,(0,—0,)—>
0 (n—o0). Thus, Proposition 6.1 and Theorem 6.3 imply that 6, /(@)—0
and d0,_; (w)—-0 (n—> o). Since f,e€ & ,.(w) and f, is continuous, J,;, =0,
by the corollary to Lemma 4.2, Hence we conclude that 6, =6, on w.
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Now the assertions for fe & j,.(w) are easily verified.

REMARK 7.2. The above proof shows that o#p.(w)+ 2 g(w) is also a vector
lattice for a PB-domain w.

COROLLARY. Iff, g€ &L, 1,.(), then

Omax(f.9) T Omin(rg) = Op+0;

in particular, if c is a constant, then

Omax(f.e) T Omin(r,c) = O -

As an application of Theorem 7.2 (or its corollary), we here prove

THEOREM 7.3. Let w be any domain in Q. For fe2,.(w), 6,=0 if
and only if f=const. q.e. on w.

Proor. The ‘“if” part is trivial (cf. Theorem 4.1). We shall show the
“only if” part. Let w’ be any PC-domain such that @’ cw. By Proposition 7.1,
f is |n|-square-integrable on w’. Hence, Lemma 1.10 implies that fr e .# g(w"),
so that p,= UZ* belongs to 2 (w') = 24(w’). It follows from Theorem 6.3 that

Sepom(@)+ Sm' pop dn = Sw' pf dr
for any pe 24(w’). Since §,=0 by assumption, J; ,,(w)=0. Hence we have

Stpo-r@)+ | (Po—Ppdn =0

for all pe 2(w’). Then, Theorem 6.4 implies that f—p,=u q.e. on @’ with
u e Hgw)ie., flo' e Fyw). Therefore fe L o(w). For a>0, put
fi=min(max(f,a),0) and f;=min(max(—f, «),0). By the above corollary,
we see that 6, +=0and 6, - =0 for each a>0. Since fe L 1,.(w), we see that
f¥ and f, are equal g.e. to functions in %#,,.(w). Hence, Theorem 4.1 implies
that f}=const. q.e. and f,;=const. gq.e. on » for each a>0. This is possible
only when f=const. q.e. on w.

7.4. Lattice structure of 2,,.(®)

Finally, we study the lattice structure of 2,,.(®).

THEOREM 7.4 (cf. [9, Theorem 6.4 and its corollary]). The spaces 2y(w)
and # g(w)+ 2(w) for a PB-domain w and 2,,.(w) for an open set w are vector
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lattices with respect to the max. and min. operations and
o1 =9

for any fe 2, ().

Proor. Let w be a PB-domain and f=u +f, with u € 5 () and f, € 2 o(w).
There is a sequence {f,} in 2 gc(w) such that f,—f; q.e. on w and | f,—fol1,.—0
(n—o0). If uis a measure in #%(w) and S(u) is compact in @, then by Lemma
6.6,

{1fo=fldn S 1fi=follro L) 12 >0 (1> 0).

Hence, u being p-integrable,

Hm{lfl —|u+f£,}du ' < Swlf—(“ +A)ldu

={ fo=fldu >0 @ ).
Therefore,
a3 (tslde = 111w > e0).

Put v=uV,(—u) and g,=lu+f,|—v(rn=1,2,..). Since u+f,€Lg(w), |u+
fol € #p(w) and 6y, 4, =0, , by Theorem 7.2. Hence

04,(@) = 2{8 4+ s, (@) + ()}
= 2{6u+fn(w) + 60(60)}
< 40, (w)+40,(0)+ 26 (w).

On the other hand,
[ gzaint <2{f @+rdini+( vain}
< 4Sm 24| x| +4Swu2d‘|nl +2Sw02d|nl .
Hence, using Lemma 4.3 (or Thebrem 6.3) and Theorem 5.1, we obtain

T4 Sy (@)+{ g3dIn] S4QB— D0+ 6Bululda-
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Since g,e Lg(w) and |g,|=I|f,l+(v—]u]), we see that g,e 2 (w) (= Dy(w)).

{lg.ll1,o} is bounded by virtue of (7.4). Hence, we can choose a subsequence
{9} of {g,} converging to a g € 2(w) weakly in 2,(w) as a Hilbert space. By

Lemma 6.6, the linear functional f—»g fdu is continuous on 24(w). Therefore

Swg,kdu - Swgdu (k— 00).
This, together with (7.3), implies that
[ 171dn = { (g+ordn.

Both |f] and g+v are quasi-continuous on w. Therefore, applying Lemma 6.4,
we conclude that

|fl=9g+v q.e.onow,

which means that |f| € 52 z(w)+ 2¢(w). If in particular |f| € 2(w), then v=0,
and hence |f|e Do(w). Thus, 24(w) and # z(w)+ 24(w) are vector lattices
with respect to the max. and min. operations.

Furthermore, since g,, —g weakly in 2,(w),

19110 S tim inf [ guy 1,0

Then, it follows from Theorem 6.3 that
5|f|(w)+gmf2dn - ||g]|,2,w+5,,(w)+ngzd7z
< tim inf {Igu, 7.0+ 3u(w) + | v7dn}
= lim inf {5,,,+,,‘|(w) + Sw(u + pk)zdn}

= lim inf {5“+pk(w)+g (u+ pk)zdﬂ:} ,
k-0 o

where p,=f, . Theorem 6.3 also implies that J,, , (0)—0,, s,(w)=0(w) and
S (u+ pk)zdn*g (u+fo)2dn =S f2dn. Therefore,

6|,|(w)+gwf2a’7r < 5,(w0)+ Swfza'n,

that is 6|, (w)<d(w). Now the last assertion of the theorem is easily verified
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(cf. the last part of the proof of Proposition 3.7).

REMARK 7.3.

The above proof and Remark 7.2 show that o5 (w)+ 2 o(w)

is also a vector lattice for a PB-domain w.

REMARK 7.4. In the classical case, d,, =0, holds for every fe€ 2, (w).
We fail to verify it in our general situation.

COROLLARY. Iff, ge 2,,.(w), then

(1]
(2]

[3]
[4]

[5]
[6]
(7]
(8]
[9]

[10]
[11]

[12]

Omax(f.g)t Omin(r.g) S 07+ 0.
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