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Nonoscillation Criteria for Fourth
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The problem of oscillation and nonoscillation of solutions of elliptic partial
differential equations has been the subject of numerous investigations. For
nonoscillation results we refer to Headley [2], Headley and Swanson [3], Kreith
[4], Kuks [5], Piepenbrink [6], Skorobogat’ko [7], Swanson [8] and Yoshida
[9]. All of these papers deal with second order elliptic equations or systems,
and the author knows of no nonoscillation criteria which are applicable to equa-
tions of higher order.

Our purpose here is to develop nonoscillation criteria for the fourth order
elliptic equation with real coefficients

M Lu= 3 Dy ()(x)Dyt)+25(2)

ik, = k

lZ= . ol(X) Dy

+ ,‘-L:I Dy(a;,(x)D,u) +2i_il b{(x)Du +c(x)u = 0
defined in an unbounded domain R of Euclidean n-space E". As usual, points
in E® will be denoted by x =(x,,..., x,), differentiation with respect to x; by D,,
i=1,..., n, and successive differentiation with respect to x; and x; by D;;, i,j=
1,...,n. The following assumptions will be made throughout:

(@) The coefficients «;;e C%(R), pe C(R), a;;€ C'(R), b;e C}(R) and ce

C(R).

(b) The matrix (;;) is symmetric and positive definite in R.

(c) The matrix (a;;) is symmetric and negative semidefinite in R.
These assumptions will be placed without further mention on the coefficients of
elliptic operators of the same form as L which will be considered in the sequel.

The domain D(L; G) of L relative to any subdomain G of R is defined as the
set C*(G) n C2(G). The notation

R, =R n {xeE":|x| >r}, O0<r<om,
will be used throughout.

DEerINITION 1. A bounded subdomain G of R is called a nodal domain of
(1) if there exists a nontrivial solution u e ®D(L; G) of (1) such that u=D;u=0
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on dG, i=1,...,n. Equation (1) is said to be nonoscillatory in R if there is a
number r>0 such that there are no nodal domains of (1) in R,.
Associated with the operator L in (1) is the following elliptic operator

@ L= 3 Di()ou(IDy) +26(x) 3 au(x)Dyu

+ (c(x)—p-b(x)u.

DErINITION 2. The elliptic operator L; defined by

n

€)) Lyu = Zl= . D; (A;(x)A(x)Dyyu) +2B(x)

i,J,k,

) IZ= . Ap(x)Dqu + C(x)u
is said to belong to M[L,; R,] for some r>0, if for every bounded subdomain
G of R, the functional

viu; 61 = 1 &

k,

n
o Dyu)? —( Y AyDyu)?
1 k=1

+ 2uk li_l (ﬂak,—-BAkl)D“u +(C— V'b - C)uzjdx

is nonnegative for all real-valued u € C2(G) such that u=Du =0 on 0G, i=1,..., n.
Our first result is the following

TaeoREM 1. Equation (1) is nonoscillatory in R if for somer>0 there exist
an elliptic operator L € B[L,; R,] and a function ¢ € C*(R,) such that
(i) ¢>0 [resp.=0] in R,;
(ii) _ilu,.j(A,.qu)+¢2+2B¢+Bz—c <0 [resp. <0] in R,.
L,J=
ProoF. Suppose to the contrary that equation (1) is not nonoscillatory in
R. Then, there are a bounded domain G =R, and a nontrivial function u € D(L;

G) such that Lu=0 in G and u=Du=0 on 0G, i=1,...,n. Applying Green’s
formula, we obtain

@ 0= XG i'jz';l [D;(2uDuA;;¢)— Dy(u>D (A;j$))]dx
- S Gi i: 1 [2¢u;;Dyju—u?D;(A;j¢) +2¢A;;DuDjuldx .

By the hypothesis L, e M[Ly; R,] and Green’s formula we have

) 0= gGuLu dx
=S [( i a;;D;;u)? +2pu ; o;;Diju — i a;;DuDju
G i,j=1 i,7=1 i,j=1
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+ (c—p-bu?]dx

> S [( 3 AyDyu)?+2Bu 3 A,Dyu+Culdx.
G i,j= i,j=
In view of (4) it holds that

> AyDiu+Cu?ldx

©6) SG [, 3, AuDy)*+2Bu 3

- XG [(| 3 AyDyu)*+2B+du 3 AyDyu+(C— 3 DifAyg)u?ldx

+ 25 ¢ > ADuDudx=1I,+I,.
G i,j=1

Since u=0 on dG and u is nontrivial, we see that pu=0 in G. Hence, if
¢>0in R,, then the integral I, is positive. From the hypothesis (ii) the integral
I, is nonnegative. This contradicts the inequality (5). If ¢=0 in R,, then I,
is nonnegative. The hypothesis (ii) implies that I, is positive. This again con-
tradicts (5). Thus the proof is complete.

Before stating the second result we prove a lemma regarding the positivity
of the quadratic form

M orel= 3

i,j=1

A (X)) (%) + 284 1(x) i___il Pi(X)E(xX) +Y(x)E24 ((x),

where the functions A4;;(x), ¢i(x), Y(x), {(x) are all continuous in a subdomain
G of R and the matrix (4;;(x)) is positive definite in G.

LeEMMA. If we have
Yy—¢A7¢*20 in G,

then Q[ ] is nonnegative in G for each & and positive at some point of G for each
& such that

(8) €’+€n+l¢A_l = 0 in G’

where ¢ =(¢y,..., b,), A=(4;)), E=(&, &4 1), &' =(¢y,..., &) and @* denotes the
transpose of ¢.

ProOOF. The matrix Q associated with Q[£] has the block form

Y ¢*} [1,, 0r4 0 I, A 1¢*
Q‘[q& v | L4t 1][0 ./,_¢A—:¢*Mo 1 ]
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I, 0

¢A“1 l} and n=£’+én+l

where I, is the n x n identity matrix. Letting P= {

$pA~1, we have {P=(n, &, ) and

A 0
©) orel = a{ } prex
0 Y—gaig

= nAn*+ @ — AT $*)24 1 .
From the hypothesis (8) we see that #=0 in G, hence Q[&] is positive at some

point of G. This completes the proof.
The following theorem is the main result of this paper.

THEOREM 2. Equation (1) is nonoscillatory in R if for some r>0Q there
exist an elliptic operator L, e M[L,; R,] and functions ¢, Y € C2(R,) such that

(i) ¢ >0 [resp.=0] in R,;
(i) Z”:lDij(A,-jd))+2. Z"‘,lDi(Aij¢)Djx//—q52+2B¢—C+B2 <0

i,j= i,j=

[resp. < 0] in R,;
Gi) 3 ADy+ 3 ADYDY+$ S0 in Ry

i,j= i,j=
(iv) For any bounded subdomain G of R, the condition

pu—upy x0 in G

holds for all nontrivial ue®(L;G) such that u=Du=0 on 0G,
i=1,...,n.

ProOF. Suppose to the contrary that equation (1) is not nonoscillatory in
R. Then, there are a bounded domain G =R, and a nontrivial function u € D(L;
G) such that Lu=0 in G and u=Du=0 on 0G, i=1,...,n. Applying Green’s

formula, we have
(10) 0= ZS i Di(¢u2Aiij¢) dx
Gi,j=1
- SG 1,_,2 1 [2u2D’(AU¢)D l//+2¢u2AuDul// +4¢UAUD uD l//]dx

By the hypothesis L, e M[L,; R,] and Green’s formula we obtain

(11) 0= SGuLu dx

gg I z AyDiu)+2Bu z Ay Diju+Cu?ldx.
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In view of (4) and (10) it holds that

S }": Dyju)?+2Bu 3, A,Diu+Cu?ldx

i,j=1

=03, ”Diju)2+2(B+¢)u..Z"_;lAijD,-ju
= (£, Dy(Ayd)+2 3. DAY =297~ Chutldx

+ gcqu[. Z"‘,IAijD,-uDju—2ui ﬁlA,.,.D,.niju—(. Z"‘,lAijD,-jt//+¢)u2]dx
= s J= 1, J=
=I1,+1,.

If $>0 in R,, then the hypotheses (iii), (iv) and Lemma imply that the integral
I, is positive. From the hypothesis (ii) the integral I, is nonnegative. If ¢p=0
in R,, then I, is nonnegative. Since u is nontrivial, the hypothesis (ii) implies
that I, is positive. This contradicts (11) and completes the proof.

CoRrOLLARY 1. Equation (1) is nonoscillatory in R if for some r>0 there
exist an elliptic operator L, e M[Ly; R,] and a function we D(L,; R,) such that
(i) w>0 in R,;
(i) 3 AuDyw <O [resp. <0] in R,;
k=1
(iii) L,w = B?w [resp. > B?w] in R,.

Proor. Define the functions ¢ and y by

(12) ¢ = % > AuDyw, Y=logw.
k=1

’

It is easy to verify that

(13) i:élp,.,(A,.,@grz i’jz':lDi(Aij¢)Djn/1-—¢2+2B¢—C+B2
=~ Lw+B?;

(14) ,Z= AyDir+ ,22 AyDYD+ ¢ = 0;

(15) Vu—upy = wv(%).

Hence, the conclusion follows from Theorem 2.
Let us consider the following special case of (1):
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(16)  Lu=A@@dw+ 3 Diay(x)Du)+2 3. b(x)Dw-+c(x)u =0,

where a(x) is a positive function of class C2(R). Define the functions « and g by

a(r) = min a(x),

xeSy

g(r) = min [c(x)—p-b(x)],

where S,=Rn {xeE":|x|=r}, 0<r<oo. In this case the elliptic operator de-
fined by (2) is

Lou = A(a(x)4u)+(c(x)— 7 +b(x))u .

COROLLARY 2. Let a(r)=0>0 and assume that

an liminfg(r) >0 for n=1,2 3,4,
2(pn—4)2
(18) lim inf r4g(r)> —”—(”164_)a for n25.

Then, equation (16) is nonoscillatory in R.
Proor. As an elliptic operator defined by (3) we take
Lu = ad?u+g(|x|)u.
It is clear that L; e M[L,; R,] for some r>0. The function w=|x|™ satisfies
Aw = m(m+n—2)|x|m"2,
Lyw = [oof(m)+|x|*g(IxD]lx|""*,

where f(m)=m(m—2)(m+n—2)(m+n—4). Observing that

max{f(m):0=m=<2-n} =0 for n=1,2,

max {f(m):2—-n <m0} =0 for n=3,4,

max{f(m): 2—n < m < 0} =f<4'2—n)= n2(nlg4)2 for nZ=5,

and using (17) and (18), we see that there is a number r>0 such that Aw<0
[resp. =0] and L,w=0 [resp. >0] in R,. Now the conclusion follows from
Corollary 1.

COROLLARY 3. Assume there exists a positive function y(r) € C2[rq, ©0)
such that
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y(PHa(r) = 1 for r=rg,
(N+g(r) 20  for r=r,.

If the ordinary differential equation

d n—1 dW n—1 —_
(19) ﬁr dw >+r 2()w=0

is nonoscillatory at r=+ oo, then equation (16) is nonoscillatory in R.
ProoF. Let
Lyu = A(y~*(IxDdu)+g(|x))u .

Clearly, L, e M[L,y; R,] for any r>r,. The nonoscillation of (19) ensures the
existence of a positive function w=w(|x|) such that for some r>r,

Aw+y(xPpw =0 in R,,
which implies that Aw<0 in R,. Moreover, we find
Liw =@(xD+g(xw =20 in R,.
Therefore, the conclusion follows from Corollary 1.

APPENDIX. One of the main tools in the study of comparison and oscillation
theory of elliptic partial differential equations is the identity of Picone type. A
Picone identity for fourth order elliptic operators was obtained by Dunninger
[1]. Here, we present an extension of the identity due to Dunninger to a class
of formally non-self-adjoint fourth order elliptic operators. Our derivation is
based on some of the relations that were used above to produce nonoscillation
criteria.

Consider the following two elliptic operators:

Lyu = "y §’1= . D, (A;j(x) A (x)Dygut) + 2B(x)k E . A(X)Dyu+ C(x)u

n

Lo = 3 Dy (0au()Dun)+2B(x) > ou(x)Dyv+e(x)o.
i,j b l=1 k,1=1

From (4) and (10) we have the following:

(20) XG[(‘_Zn:lAijD,ju)2+ZBu ,2 AyDyju+(C+B2u?]dx
»J= =

i,j=1

A,-]-Diju

=S [( S ADiju)?+2¢+Bu 3
G i,j=1 j=1

i,
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—( 3 DifAy$)+2 3 D(Ay$)D—29?— C—B2u?ldx

+ 5029’5[,-,,-2’; AyDauDu-2u st ADYDu—( jizl A D+ dyu?)dx
—{, .3, [DADW) Ay$)~ DD Ayp)ldx
+2 SG z_ D{(¢u?4,,D ) dx.

Put ¢=‘“»17 12= AuDyw and y =logw (w>0 on G) in (20).

k,

In view of (9),
(13), (14), (15) we obtain the integral identity:

Q1) S [ z AyDiyu)*+2Bu_ z A,;D,ju+(C+B2u?ldx

i,j=1

— n s . Llw 2
SIR RYCTR R, s L
2 & "
_SG__W kélAlekl Z= U( u——DW>< u——D w)dx
- S ¥ D4, A, Dw)n, d
061, 5=1 w S THTR uwn; ds

n 2
A..D A,--D.(u—) ds,
+SaGi,j,:L-,:l=l kBW A BN Sy e 48

where n=(n;) is the unit exterior normal to the boundary 0G. Applying Green'’s
formula, we easily obtain the identity:

n n
(22) S [“, Z Dj(aijaleklu)ni—‘ _Z aijalekluDiunj]ds
G i,j.k1=1 i,k 1=1
=SG[‘(.Zn:1°‘iiDii“)2 2/)’u Z oc,J iU cu2]dx+SGuL2udx
i,j=

From (21) and (22) we get the following Picone identity:

Sac—w_ [w » k21=1 Dj(“ij“lektu) n— “i ; kZH Dj(AijAktDktW)ni]dS

n 2
+S I: > AktDkIWAiij(L)”i:lds S L Z
o6Li,j, =1 w

ocijock,Dk,uDjun,] ds
oG i,j,

=X [( i A;iDjju)? —( i iDiju)? +2u Z": (BAij"‘ﬂ“ij)Dtj”
G i,5=1 =1 21
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+ (C+B2%2—c)u?]dx

+S 2 % AuDuw z A,,(D u— DwXD u—-p, w>dx

G W k,i=

n u 2 y
'—SGL,Z A Dij“—TDuW>+Bu:l dx+SGT[wL2u—uL1w]dx.

=1
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