Pseudo-coalescent and Locally Pseudo-coalescent Classes of Lie Algebras

Osamu MARUO (Received September 20, 1976)

Introduction

In the recent study of infinite-dimensional Lie algebras, an important role has been played by the concepts of coalescent and locally coalescent classes of Lie algebras introduced in [7, 9]. These classes have been investigated by R. K. Amayo [1-4], R. K. Amayo and I. Stewart [5], S. Tôgô [10, 11], and S. Tôgô and N. Kawamoto [12]. Corresponding to the concept of coalescency, we have introduced that of pseudo-coalescency and shown several analogous results in [8]. We furthermore introduce the new concept, local pseudo-coalescency, which corresponds to local coalescency. We say that a class $\mathfrak X$ is locally pseudo-coalescent if and only if whenever H is an $\mathfrak X$ -subideal and K is an $\mathfrak X$ -weak ideal of a Lie algebra L, then for every finite subset F of the join $J = \langle H, K \rangle$ there exists an $\mathfrak X$ -weak ideal K of K such that $K \subseteq K \subseteq K$. Any pseudo-coalescent class of Lie algebras is obviously locally pseudo-coalescent. We ask whether the results for local coalescency hold analogously for local pseudo-coalescency. The purpose of this paper is to investigate the properties of locally pseudo-coalescent classes and to show that several classes of Lie algebras are pseudo-coalescent.

In Section 2, we shall ask whether the join of a subideal and a weak ideal is a weak ideal. In Section 3, we shall show the pseudo-coalescency of \mathfrak{C} , \mathfrak{G} and other classes, which are coalescent [1]. We shall also show that the join of a solvable (resp. nilpotent) subideal and a solvable (resp. nilpotent) weak ideal is a solvable (resp. nilpotent) weak ideal if these are permutable. In Section 4, we shall show that if \mathfrak{X} is a q-closed and locally pseudo-coalescent subclass of $(\mathfrak{E}\mathfrak{A})_{(\omega)}$, then the class $\mathfrak{X}_{(\omega)}$ is locally pseudo-coalescent. We shall also show that for any classes \mathfrak{X} and \mathfrak{Y} such that $\mathfrak{X} \leq \mathfrak{Y} \leq \mathsf{M}\mathfrak{X}$, \mathfrak{X} is locally pseudo-coalescent if and only if so is \mathfrak{Y} , which is analogous to Theorem 3.2 in [12]. Using these results we shall show that the following classes are locally pseudo-coalescent over a field of characteristic 0: the class \mathfrak{N} of nilpotent Lie algebras, the class $\mathfrak{N}_{(\omega)}$, the class \mathfrak{D} of Lie algebras L such that every subalgebra of L is a subideal, the class \mathfrak{F}_t of Fitting algebras, the class \mathfrak{B} of Baer algebras.

The author would like to thank Professor S. Tôgô for his helpful suggestions.

§1. Preliminaries

We shall be concerned with Lie algebras over a field Φ which are not necessarily finite-dimensional. Throughout this paper, L will be an arbitrary Lie algebra over a field Φ and $\mathfrak X$ will be an arbitrary class of Lie algebras over Φ , that is, an arbitrary collection of Lie algebras over Φ such that $(0) \in \mathfrak X$ and if $H \in \mathfrak X$ and $H \simeq K$, then $K \in \mathfrak X$, unless otherwise specified.

We employ the notation and terminology in [5, 8, 12]. By $H \le L$, $H \bowtie L$, $H \bowtie L$ and $H \bowtie^m L$ we mean respectively that H is a subalgebra, an ideal, a subideal and an m-step subideal of L. H is a weak ideal of L provided that H is a subalgebra of L and $L(\operatorname{ad} H)^n \subseteq H$ for some $n \ge 0$, and we write H wi L, more precisely H n-wi L [8]. A Lie algebra (resp. a subalgebra, an ideal, a subideal, a weak ideal of L) belonging to $\mathfrak X$ is called an $\mathfrak X$ -algebra (resp. an $\mathfrak X$ -subalgebra, an $\mathfrak X$ -subideal, an $\mathfrak X$ -weak ideal of L). $\mathfrak X$ is pseudo-coalescent provided for any $\mathfrak X$ -subideal H and $\mathfrak X$ -weak ideal K of $L \bowtie H$, $K \bowtie H$ is an $\mathfrak X$ -weak ideal of L [8]. For any class $\mathfrak X$, $\mathfrak X_{(\omega)}$ (resp. $\mathfrak X_{\omega}$) denotes the class of Lie algebras L such that $L/L^{(\omega)} \in \mathfrak X$ (resp. $L/L^{\omega} \in \mathfrak X$), where $L^{(\omega)} = \bigcap_{i=0}^{\infty} L^{(i)}$, $L^{\omega} = \bigcap_{i=1}^{\infty} L^i$ [10].

 \mathfrak{F} , \mathfrak{A} , \mathfrak{N} , $\mathfrak{E}\mathfrak{A}$ and \mathfrak{G} denote respectively the classes of finite-dimensional, abelian, nilpotent, solvable and finitely generated Lie algebras.

We recall a construction of Hartley [7] p. 265-266. Let L be a Lie algebra over a field Φ of characteristic 0. Let Φ_0 be the field of formal power series

$$a = \sum_{i=m}^{\infty} a_i t^i, \quad a_i \in \Phi, \quad m \in \mathbf{Z},$$

and L^{\dagger} be the Lie algebra over Φ_0 consisting of all formal power series

$$x = \sum_{i=m}^{\infty} x_i t^i, \quad x_i \in L, \quad m \in \mathbf{Z}.$$

For $H \le L$ H^{\uparrow} is the set of all elements $x \in L^{\uparrow}$ with $x_i \in H$ for all i. Then $H^{\uparrow} \le L^{\uparrow}$. For $M \le L^{\uparrow}$ M^{\downarrow} is the set of first coefficients of elements of M, together with 0. Then $M^{\downarrow} \le L$. We have several properties:

Lemma 1.1. Let Φ be a field of characteristic 0.

- (a) If $H \triangleleft^m L$, then $H^{\uparrow} \triangleleft^m L^{\uparrow}$.
- (b) If H m-wi L, then H^{\uparrow} m-wi L^{\uparrow} .
- (c) $L \in \mathfrak{N}$ (resp. $E\mathfrak{A}$) if and only if $L^{\uparrow} \in \mathfrak{N}$ (resp. $E\mathfrak{A}$).
- (d) If H is finite-dimensional over Φ , then H^{\uparrow} is finite-dimensional over Φ_0 .
 - (e) If $M \triangleleft^n L^{\uparrow}$, then $M^{\downarrow} \triangleleft^n L$.
 - (f) If M n-wi L^{\uparrow} , then M^{\downarrow} n-wi L.

- (g) If $M \in \mathfrak{N}$ (resp. EM), then $M^{\downarrow} \in \mathfrak{N}$ (resp. EM). PROOF. (a), (c), (d), (e) and (g) have been proved in [3, 5].
- (b) Let H m-wi L. Let $x = \sum_{i=n}^{\infty} x_i t^i \in L^{\uparrow}$ and $y_r = \sum_{i(r)=n(r)}^{\infty} y_{i(r)} t^{i(r)} \in H^{\uparrow}$, where r = 1, 2, ..., m. Then we have

$$[x, y_1, ..., y_m] = \sum z_i t^i, \quad z_i = \sum_{j+j(1)+\cdots+j(m)=i} [x_j, y_{j(1)}, ..., y_{j(m)}].$$

Since H m-wi L, $z_i \in H$ and so $[x, y_1, ..., y_m] \in H^{\uparrow}$. Therefore $L^{\uparrow}(\operatorname{ad} H^{\uparrow})^m \subseteq H^{\uparrow}$, i.e., H^{\uparrow} m-wi L^{\uparrow} .

(f) Let M n-wi L^{\uparrow} . Let x_0 be a non-zero element of L and y_0^i be a non-zero element of M^{\downarrow} , where i=1,2,...,n. Then there exist $x \in L^{\uparrow}$ and $y^1, y^2,...,y^n \in M$ such that x_0 is the first coefficient of $x=t^r\sum_{i=0}^{\infty}x_it^i\in L^{\uparrow}$ and y_0^j is the first coefficient of $y^j=t^{r(j)}\sum_{i=0}^{\infty}y_i^it^i\in M$, where j=1,2,...,n. Since M n-wi L^{\uparrow} , $z=[x,y^1,y^2,...,y^n]\in M$. Therefore $[x_0,y_0^1,...,y_0^n]$ is zero or the first coefficient of z and then it is in M^{\downarrow} . Thus M^{\downarrow} n-wi L. The proof is complete.

Let d be a derivation of L. Define a mapping $\exp(td)$ of L^{\dagger} as follows: for $x = \sum x_i t^i \in L^{\dagger}$,

$$x^{\exp(td)} = \sum u_r t^r$$
, where $u_r = \sum_{i+j=r} x_i d^j / j!$.

Then $\exp(tA)$ is a Lie automorphism of L^{\uparrow} . If A is a subspace of L, we denote by $\exp(tA)$ the group of automorphisms of L^{\uparrow} generated by the elements $\exp(t \operatorname{ad}(x))$ with $x \in A$.

$\S 2$. The join of a subideal and a weak ideal

In this section, we shall discuss by what conditions the join of a pair of a subideal and a weak ideal is a weak ideal.

We begin with the following

LEMMA 2.1. If H m-wi L, K n-wi L and $H \triangleleft J = \langle H, K \rangle$, then J l-wi L, where l = mn.

This is Lemma 2.3 in $\lceil 8 \rceil$.

Let $H, K \le L$. H and K are said to be permutable (or H permutes with K) [1] if < H, K > = H + K, i.e., the subalgebra generated by H and K equals their vector space sum. Trivially if $H \triangleleft L$, then H permutes with every subalgebra K of L. An ordered pair (H, K) is a modular pair under L whenever $H \le M$ si L then $M \cap < H, K > = < H, M \cap K >$.

Then we have the following

LEMMA 2.2. Let $H ext{ si } L$, $K ext{ wi } L$ and $J = \langle H, K \rangle$. If

- (1) H and K are permutable, or
- (2) (H, K) forms a modular pair under L, then J wi L.

The proof may be a slight modification of those of Lemma 2.3 in [1] and Lemma 2.34 in [2].

Let $\mathfrak X$ be a class of Lie algebras and $H \le L$. We say that H is an $\mathfrak X$ -acceptable subalgebra of L [5] if there is an ideal H_0 of H such that $H/H_0 \in \mathfrak X$ and $[H_0, L] \subseteq H$. Evidently if $H \le K \le L$ and H is an $\mathfrak X$ -acceptable subalgebra of L, then H is an $\mathfrak X$ -acceptable subalgebra of K.

Replacing subideals by weak ideals in Lemma 4.3.1 in [5], we have the following

- Lemma 2.3. (a) If H is an \mathfrak{X} -acceptable weak ideal of L and \mathfrak{X} is q-closed, then H is an $\mathfrak{X} \cap \mathfrak{R}$ -acceptable weak ideal of L.
- (b) If L is a Lie algebra over a field of characteristic 0 and H is a \mathfrak{G} -acceptable weak ideal of L, then H^{\dagger} is a \mathfrak{G} -acceptable weak ideal of L^{\dagger} .

By the above lemma, we can show the following

Lemma 2.4. Let L be a Lie algebra over a field of characteristic 0. Let K be a G-acceptable weak ideal of L and H be a subspace of L. Then there exist finitely many automorphisms $\alpha_1, \alpha_2, ..., \alpha_r \in \exp(tK)$ such that $\langle H, K \rangle = M^{\downarrow} + K$, where $M = \langle H^{\uparrow \alpha_1}, ..., H^{\uparrow \alpha_r} \rangle$.

The proof of this lemma is similar to that of the statement before Theorem 4.3.3 in [5].

Then we can prove the analogous results of Theorem 4.3.3 in [5].

Theorem 2.5. Let L be a Lie algebra over a field of characteristic 0. If $H ext{ si } L$, $K ext{ wi } L$ and H, K are G-acceptable subalgebras of L, then $J = \langle H, K \rangle$ is a G-acceptable weak ideal of L.

PROOF. Since the join of finitely many G-acceptable subalgebras of a Lie algebra is a G-acceptable subalgebra of that algebra (Lemma 4.3.2 in [5]), J is a G-acceptable subalgebra of L. So it is enough to show that J wi L. By Lemma 2.3 H and K are $\mathfrak{F} \cap \mathfrak{R}$ -acceptable subalgebras of L. Let $H \lhd^m L$. If $m \leq 1$, then J wi L by Lemma 2.1. We may assume that m > 1. Let M be the subalgebra of L^{\uparrow} as in the above lemma so that $J = M^{\downarrow} + K$. If $\alpha \in \{\alpha_1, \alpha_2, ..., \alpha_r\}$, then $H^{\uparrow \alpha}$ is a G-acceptable m-step subideal of L^{\uparrow} by Lemmas 1.1 and 2.3. From the fact that the join of finitely many G-acceptable subideals of a Lie algebra is a G-acceptable subideal of that algebra (Theorem 4.3.3 in [5]), $M = \langle H^{\uparrow \alpha_1}, ..., H^{\uparrow \alpha_r} \rangle$ is a G-acceptable subideal of L^{\uparrow} and so M^{\downarrow} si L. Therefore, by Lemma 2.2 $J = M^{\downarrow} + K$ wi L. This completes the proof.

Let $H \triangleleft^m L$, K wi L and $J = \langle H, K \rangle$. Then we can prove that J is a weak ideal of L for m = 2, but for m = 3 J is not necessarily a weak ideal (by the example in [7]).

Proposition 2.6. Let L be a Lie algebra over Φ and let $H \triangleleft^m L$. Suppose that

- (1) m = 2, or
- (2) m=3, $H=H_3 \triangleleft H_2 \triangleleft H_1 \triangleleft L$ and H_2/H_3 , H_1/H_2 are at most 1-dimensional. Then for any $K \bowtie L$, $\langle H, K \rangle \bowtie L$.

PROOF. Suppose that $H \lhd M \lhd L$. By Proposition 2.1.10 in [5], we have $< H^K > = H^K \lhd M$ and then $< H^K > \lhd K + M$. Let K n-wi L. Then (K+M) n-wi L by Lemma 2.1 and K n-wi (K+M). Therefore $< H, K > = K + < H^K > n \text{-wi } (K+M)$ and so < H, K > 2n -wi L. Thus the case (1) is proved.

Next we assume (2). By the case (1), we have that $H_3 \lhd H_2 \lhd H_1 \cap < H_2$, $K > \lhd < H_2$, K > wi L. So it is enough to show that $< H_3$, K > wi $< H_2$, K >. Hence we may assume that $< H_2$, K > = L. Since $H_3 \leq H_2 \cap < H_3$, $K > \leq H_2$ and $\dim(H_2/H_3) \leq 1$, we have $H_2 \leq < H_3$, K > or $H_3 = H_2 \cap < H_3$, K >. In the first case, we have $< H_3$, $K > = < H_2$, K > = L. In the second case, we have $H_2 \leq < H_2$, $H_1 \cap < H_3$, $K > > \leq H_1$. Since $\dim(H_1/H_2) \leq 1$, we have $H_1 = < H_2$, $H_1 \cap < H_3$, K > > or $H_2 = < H_2$, $H_1 \cap < H_3$, K > >. If $H_1 = < H_2$, $H_1 \cap < H_3$, K > >, then $H_3 \lhd H_1$ and so $< H_3$, K > wi L from the case (1). If $H_2 = < H_2$, $H_1 \cap < H_3$, K > >, then $H_2 \geq H_1 \cap < H_3$, K > and so $H_3 \leq H_1 \cap < H_3$, $K > \leq H_2$. As $\dim(H_2/H_3) \leq 1$, we have $H_2 = H_1 \cap < H_3$, K > or $H_3 = H_1 \cap < H_3$, K >. In the first case, we have $H_2 \leq < H_3$, K > and so $L = < H_2$, $K > \leq < H_3$, K >. In the first case, we have $H_2 \leq < H_3$, K > and so $L = < H_2$, $K > \leq < H_3$, K >, i.e., $< H_3$, K > = L. In the second case, we have $[H_3, K] \subseteq H_1 \cap < H_3$, $K > = H_3$ since $H_1 \lhd L$. Since $H_3 \lhd H_2$, $H_3 \lhd < H_2$, K > = L and so $< H_3$, K > wi L by Lemma 2.1. Thus the case (2) is proved. The proof is complete.

In the above proposition, (1) is an analogue of the last statement of Proposition 2.1.10 in [5] and (2) is a modification of Theorem 3.3 in [6].

LEMMA 2.7. If $H \triangleleft^m L$ and K n-wi L, then $\langle H^m, K^n \rangle$ wi L for $0 < n \le m$.

PROOF. We can prove it in the same way as the statement before Lemma 2.31 in [2].

§3. The pseudo-coalescency of C and G

Let $\mathfrak C$ be the class of Lie algebras L such that L^2 has finite codimension in L. It easily follows that if $L \in \mathfrak C$, then every L^m of the lower central series of L has finite codimension in L. Clearly $\mathfrak C$ contains the classes $\mathfrak F$, $\mathfrak F_{\omega}$, $\mathfrak G$, Min, Min- \lhd^n $(1 \le n)$, Min-asc, Max, Max- \lhd^n $(1 \le n)$, Max-asc, perfect Lie algebras

and simple Lie algebras. Furthermore \mathfrak{C} is q-closed and $\mathfrak{C}_{\omega} = \mathfrak{C}_{(\omega)} = \mathfrak{C}$. By Lemma 2.3, we have the following

LEMMA 3.1. If K n-wiL and $K \in \mathbb{C}$, then K is a $\mathfrak{G} \cap \mathfrak{N}$ -acceptable weak ideal of L.

The class \mathfrak{C} has been defined by R. K. Amayo [2] to prove the coalescency of \mathfrak{G} , which was an open question of I. Stewart [9]. We shall show the following

THEOREM 3.2. Over fields of characteristic 0, the class & is pseudo-co-alescent.

PROOF. Let H si L, K wi L, H, $K \in \mathfrak{C}$ and $J = \langle H, K \rangle$. Then H and K are \mathfrak{G} -acceptable subalgebras of L by Lemma 3.1 and so J is a \mathfrak{G} -acceptable weak ideal of L by Theorem 2.5. We have

$$J/J^2 = (H+J^2/J^2)+(K+J^2/J^2)$$
.

Since $H, K \in \mathbb{C}$, it follows that $H + J^2/J^2$ is an \mathfrak{F} -subideal and $K + J^2/J^2$ is an \mathfrak{F} -weak ideal of J/J^2 . Therefore, by the pseudo-coalescency of \mathfrak{F} (Theorem 4.4 in [8]) $J/J^2 \in \mathfrak{F}$ and so $J \in \mathbb{C}$. This completes the proof.

We say that a class \mathfrak{X} is *p*-persistent if in any Lie algebra the join of an \mathfrak{X} -subideal and an \mathfrak{X} -weak ideal is always an \mathfrak{X} -algebra. Evidently any pseudocoalescent class is *p*-persistent and any *p*-persistent class is persistent.

By the definition we have the following

PROPOSITION 3.3. Let \mathfrak{X} be a p-persistent class. Then for any pseudo-coalescent class \mathfrak{Y} , $\mathfrak{X} \cap \mathfrak{Y}$ is pseudo-coalescent.

Corollary 3.4. Over fields of characteristic 0, the classes \mathfrak{G} , $\mathfrak{G}_{(\omega)}$ and \mathfrak{G}_{ω} are pseudo-coalescent.

PROOF. Obviously, \mathfrak{G} is p-persistent and $\mathfrak{G} < \mathfrak{C}$. Therefore \mathfrak{G} is pseudo-coalescent by the above proposition and so are $\mathfrak{G}_{(\omega)}$, \mathfrak{G}_{ω} by Theorem 4.1 in [8].

Let \mathfrak{X} be $\{I, Q, E\}$ -closed. Then \mathfrak{X} is coalescent if and only if $\mathfrak{X} \cap E\mathfrak{A}$ is coalescent (Theorem E in [4]). We shall consider a necessary condition for $\mathfrak{X} \cap E\mathfrak{A}$ to be pseudo-coalescent. First we show the following lemma which is an analogue of Theorem (3) in [4].

Lemma 3.5. Let \mathfrak{X} be $\{I, Q, E\}$ -closed. Let H be an \mathfrak{X} -subideal and K be an \mathfrak{X} -weak ideal of L. If H, K are permutable or the ordered pair (H, K) forms a modular pair under L, then $J = \langle H, K \rangle$ is an \mathfrak{X} -weak ideal of L.

PROOF. By Lemma 2.2, for both cases J is a weak ideal of L and so it is enough to show that $J \in \mathfrak{X}$.

The case which (H, K) forms a modular pair under L is similarly proved. The following classes are $\{I, Q, E\}$ -closed:

F, EU, Min, Min-si, Min-asc, Max, Max-si, Max-asc.

It follows that the join of an EU-subideal and an EU-weak ideal, which are permutable, is an EU-weak ideal. The class $\mathfrak N$ is $\{I, Q\}$ -closed but not E-closed. However we can prove the statement similar to Lemma 3.5 by using Lemma 3.3 in [8]: If an $\mathfrak N$ -subideal H and an $\mathfrak N$ -weak ideal K of L are permutable, then the join $\{I, K\}$ is an $\mathfrak N$ -weak ideal of I.

Theorem 3.6. Let Φ be of characteristic 0. If \mathfrak{X} is a p-persistent subclass of \mathfrak{C} , then $\mathfrak{X} \cap E\mathfrak{A}$ is pseudo-coalescent.

PROOF. Let H si L, K wi L and H, $K \in \mathfrak{X} \cap E\mathfrak{A}$. Put $J = \langle H, K \rangle$. Since \mathfrak{X} is p-persistent, $J \in \mathfrak{X}$ and so it is enough to show that J is a solvable weak ideal of L. Since $\mathfrak{X} \leq \mathfrak{C}$, H and K are \mathfrak{G} -acceptable subalgebras of L by Lemma 3.1. By Lemma 2.4, there exist finitely many automorphisms $\alpha_1, \alpha_2, ..., \alpha_r \in \exp(tK)$ such that $J = M^{\downarrow} + K$, where $M = \langle H^{\uparrow \alpha_1}, ..., H^{\uparrow \alpha_r} \rangle$. By Lemmas 1.1 and 2.3, H^{\uparrow} is a solvable \mathfrak{G} -acceptable subideal of L^{\uparrow} and so is $H^{\uparrow \alpha_i}$ for any i. By the derived join theorem (Theorem 3.3 in [1]) and Theorem 4.3.3 in [5], M is a solvable \mathfrak{G} -acceptable subideal of L^{\uparrow} and hence M^{\downarrow} is a solvable subideal of L by Lemma 1.1. Now M^{\downarrow} and K are permutable. Put $\mathfrak{X} = E\mathfrak{A}$ in Lemma 3.5. Then $J = M^{\downarrow} + K$ is a solvable weak ideal of L. Therefore $\mathfrak{X} \cap E\mathfrak{A}$ is pseudocoalescent. Thus the proof is completed.

Applying Theorem 3.6 for & and &, we have the following

COROLLARY 3.7. Over fields of characteristic 0 the following classes are pseudo-coalescent:

$$\mathbf{E}\mathfrak{A}\cap\mathfrak{F}=\mathbf{E}\mathfrak{A}\cap\mathfrak{F}_{(\omega)},\ \mathbf{E}\mathfrak{A}\cap\mathfrak{F}_{\omega},\ \mathbf{E}\mathfrak{A}\cap\mathfrak{G}=\mathbf{E}\mathfrak{A}\cap\mathfrak{G}_{(\omega)},\ \mathbf{E}\mathfrak{A}\cap\mathfrak{G}_{\omega},\ \mathbf{E}\mathfrak{A}\cap\mathfrak{C}.$$

REMARK. Let the basic field Φ be of characteristic p>0. By the Hartley's example in [7], any class containing $\mathfrak{A} \cap \mathfrak{F}$ is not pseudo-coalescent (see [8]). Thus all the classes in Theorem 3.2, Corollaries 3.4 and 3.7 are not pseudo-coalescent.

Next we shall show that $\mathfrak C$ is different from both $\mathfrak F_\omega$ and $\mathfrak N_\omega$. Let L=A

 $+\Phi x$ be the Lie algebra over a field Φ of characteristic 0 defined in [7] as follows: A is an abelian subalgebra with basis e_0, e_1, e_2, \ldots and $[e_i, x] = e_{i+1}$ for all i. Obviously we have $A = L^2 + \Phi e_0$ and then $L \in \mathfrak{C}$. Let $A_n = \sum_{i \geq n} \Phi e_i$. Then $[A_n, x] = A_{n+1}$ and $L^n = A_{n-1}$ $(n \geq 2)$ by induction. Therefore we have $L^\omega = \bigcap_{n=1}^\infty L^n = \bigcap_{n=1}^\infty A_n = (0)$. Since $L^n = A_{n-1} \neq (0)$ for any $n, L \in \mathfrak{N}$. Thus L does not belong to both \mathfrak{F}_ω and \mathfrak{N}_ω .

§4. Locally pseudo-coalescent classes

In this section we shall investigate the concept corresponding to local coalescency.

Let $\mathfrak X$ be a class of Lie algebras. L $\mathfrak X$ is the class of Lie algebras L such that any finite subset of L lies inside an $\mathfrak X$ -subalgebra of L. M $\mathfrak X$ is the class of Lie algebras L such that any finite subset of L lies inside an $\mathfrak X$ -subideal of L. L and M are closure operations. Furthermore, we denote by $\widetilde{M}\mathfrak X$ the class of Lie algebras L such that any finite subset of L lies inside an $\mathfrak X$ -weak ideal of L. Then it is easy to verify that \widetilde{M} is a closure operation and $\mathfrak X \leq M\mathfrak X \leq \widetilde{M}\mathfrak X \leq L\mathfrak X$. We say that a class $\mathfrak X$ is locally pseudo-coalescent if and only if whenever H is an $\mathfrak X$ -subideal and K is an $\mathfrak X$ -weak ideal of a Lie algebra L, then every finite subset K of K > 1 is contained in some K > 1 weak ideal K > 1 and K > 1 such that K > 1. Evidently any pseudo-coalescent class is locally pseudo-coalescent.

We begin with the following

PROPOSITION 4.1. (a) If $\mathfrak X$ is locally pseudo-coalescent, then $\mathfrak X \cap \mathfrak G$ is pseudo-coalescent.

- (b) If $\mathfrak X$ and $\mathfrak Y$ are s-closed and locally pseudo-coalescent, then $\mathfrak X\cap \mathfrak Y$ is locally pseudo-coalescent.
- (c) If \mathfrak{X} is $\widetilde{\mathbf{M}}$ -closed and locally pseudo-coalescent and \mathfrak{Y} is pseudo-coalescent, then $\mathfrak{X} \cap \mathfrak{Y}$ is pseudo-coalescent.

PROOF. (a) The proof is immediate.

- (b) Let H (resp. K) be an $\mathfrak{X} \cap \mathfrak{Y}$ -subideal (resp. an $\mathfrak{X} \cap \mathfrak{Y}$ -weak ideal) of a Lie algebra L. Put $J = \langle H, K \rangle$ and let F be any finite subset of J. Then there exist an \mathfrak{X} -weak ideal X and a \mathfrak{Y} -weak ideal Y of L such that $F \subseteq X \leq J$ and $F \subseteq Y \leq J$. Since \mathfrak{X} and \mathfrak{Y} are s-closed, it follows that $X \cap Y$ is an $\mathfrak{X} \cap \mathfrak{Y}$ -weak ideal of L. Hence $\mathfrak{X} \cap \mathfrak{Y}$ is locally pseudo-coalescent.
- (c) Let H (resp. K) be an $\mathfrak{X} \cap \mathfrak{Y}$ -subideal (resp. an $\mathfrak{X} \cap \mathfrak{Y}$ -weak ideal) of a Lie algebra L and put $J = \langle H, K \rangle$. Since \mathfrak{Y} is pseudo-coalescent, J is a \mathfrak{Y} -weak ideal of L. For any finite subset F of J, there exists an \mathfrak{X} -weak ideal X of L such that $F \subseteq X \le J$. Since X is an \mathfrak{X} -weak ideal of J, this implies that $J \in \widetilde{M}\mathfrak{X} = \mathfrak{X}$. Therefore $\mathfrak{X} \cap \mathfrak{Y}$ is pseudo-coalescent.

We shall show the following statements which are analogous to Theorems 4.1 and 4.2 in [8].

- THEOREM 4.2. (a) Let \mathfrak{X} be a Q-closed subclass of $(\mathfrak{E}\mathfrak{A})_{(\omega)}$. If \mathfrak{X} is locally pseudo-coalescent, then so is $\mathfrak{X}_{(\omega)}$.
- (b) Let $\mathfrak X$ be an $\{s, Q\}$ -closed subclass of $\mathfrak N_\omega$. If $\mathfrak X$ and $\mathfrak N \cap \mathfrak X$ are locally pseudo-coalescent, then so is $\mathtt E\mathfrak U \cap \mathfrak X$.
- PROOF. (a) Let H (resp. K) be an $\mathfrak{X}_{(\omega)}$ -subideal (resp. an $\mathfrak{X}_{(\omega)}$ -weak ideal) of a Lie algebra L. Put $I=H^{(\omega)}+K^{(\omega)}$. Then $I \lhd L$. Therefore H+I/I (resp. K+I/I) is an \mathfrak{X} -subideal (resp. an \mathfrak{X} -weak ideal) of L/I since \mathfrak{X} is Q-closed. Put $J=\langle H,K\rangle$ and let F be any finite subset of J. If we denote \overline{F} the image of F under the natural homomorphism of L onto L/I, \overline{F} is a finite subset of J/I. Since \mathfrak{X} is locally pseudo-coalescent, there exists a subalgebra X of L such that $\overline{F} \subseteq X/I \le J/I$ and X/I is an \mathfrak{X} -weak ideal of L/I. Therefore $F \subseteq X \le J$ and X wi L. Now we have $\mathfrak{X}_{(\omega)} \le (\mathbb{E}\mathfrak{A})_{(\omega)}$ since $\mathfrak{X} \le (\mathbb{E}\mathfrak{A})_{(\omega)}$. Hence $H/H^{(\omega)}$ and $K/K^{(\omega)}$ are solvable and therefore $H^{(\omega)} = H^{(n)}$ and $K^{(\omega)} = K^{(n)}$ for some integer n. It follows that $I^{(\omega)} = I$ and so $I^{(\omega)} \ge I$. Therefore $I^{(\omega)} = I^{(\omega)} = I$ and hence $I^{(\omega)} = I^{(\omega)} = I^{(\omega)} = I$ is locally pseudo-coalescent.
- (b) Let H (resp. K) be an EN $\cap \mathfrak{X}$ -subideal (resp. an EN $\cap \mathfrak{X}$ -weak ideal) of a Lie algebra L. Put $J = \langle H, K \rangle$ and let F be any finite subset of J. Since \mathfrak{X} is locally pseudo-coalescent, there exists an \mathfrak{X} -weak ideal X of L such that $F \subseteq X \leq J$. If we put $I = H^{\omega} + K^{\omega}$, then I is an ideal of L. Since $\mathfrak{X} = \mathfrak{Q}\mathfrak{X}$ and $\mathfrak{X} \leq \mathfrak{N}_{\omega}$, H + I/I (resp. K + I/I) is an $\mathfrak{N} \cap \mathfrak{X}$ -subideal (resp. an $\mathfrak{N} \cap \mathfrak{X}$ -weak ideal) of L/I. If we denote by \overline{F} the image of F under the natural homomorphism of L onto L/I, \overline{F} is a finite subset of J/I. Since $\mathfrak{N} \cap \mathfrak{X}$ is locally pseudo-coalescent, there exists a subalgebra Y of L such that $\overline{F} \subseteq Y/I \leq J/I$ and Y/I is an $\mathfrak{N} \cap \mathfrak{X}$ -weak ideal of L/I. Therefore $F \subseteq Y \leq J$ and Y wi L. Now I is solvable and so is Y. Since $\mathfrak{X} = s\mathfrak{X}$, $X \cap Y$ is an $\mathfrak{L} \cap \mathfrak{X}$ -weak ideal of L and $F \subseteq X \cap Y \leq J$. Thus $\mathfrak{L} \cap \mathfrak{X}$ is locally pseudo-coalescent. The proof is complete.

Furthermore, we can show the following theorem which corresponds to Theorem 3.2 in [12].

Theorem 4.3. Let \mathfrak{X} and \mathfrak{Y} be classes such that $\mathfrak{X} \leq \mathfrak{Y} \leq M\mathfrak{X}$. Then \mathfrak{X} is locally pseudo-coalescent if and only if \mathfrak{Y} is locally pseudo-coalescent.

PROOF. Assume that \mathfrak{X} is locally pseudo-coalescent. Let H (resp. K) be a \mathfrak{Y} -subideal (resp. a \mathfrak{Y} -weak ideal) of a Lie algebra L. If F is a finite subset of $J = \langle H, K \rangle$, then there exist finite sets $A \subseteq H$ and $B \subseteq K$ such that $F \subseteq \langle A, B \rangle \leq J$. Since H is an $M\mathfrak{X}$ -subalgebra, there exists an \mathfrak{X} -subideal M of H containing H. Similarly there exists an H-subideal H of H containing H. Now H (resp. H) is an H-subideal (resp. an H-weak ideal)

of L and $\mathfrak X$ is locally pseudo-coalescent. Therefore there exists an $\mathfrak X$ -weak ideal X of L such that $F \subseteq X \le < M$, N >. Clearly X belongs to $\mathfrak Y$ and $F \subseteq X \le J$. Therefore $\mathfrak Y$ is locally pseudo-coalescent.

Conversely, assume that $\mathfrak Y$ is locally pseudo-coalescent. Let H (resp. K) be an $\mathfrak X$ -subideal (resp. an $\mathfrak X$ -weak ideal) of a Lie algebra L. Then H (resp. K) is a $\mathfrak Y$ -subideal (resp. a $\mathfrak Y$ -weak ideal) of L. Put $J=\langle H,K\rangle$ and let F be any finite subset of J. Then there exists a $\mathfrak Y$ -weak ideal Y of L such that $F\subseteq Y\leq J$. Since $\mathfrak Y\leq M\mathfrak X$, there exists an $\mathfrak X$ -subideal X of Y such that $F\subseteq X\leq Y$. Clearly X is an $\mathfrak X$ -weak ideal of L and $F\subseteq X\leq J$. Therefore $\mathfrak X$ is locally pseudo-coalescent. This proof is complete.

We recall the following classes:

 \mathfrak{D} : The class of Lie algebras L such that every subalgebra of L is a subideal of L.

 \mathfrak{D}^* : The class of Lie algebras L such that each element of L generates a subideal of L.

Then it is known that $\mathfrak{N} \leq \mathfrak{D} \leq \mathfrak{D}^* \leq L\mathfrak{N}$ [2, 9].

Let a field Φ be of characteristic 0.

 \mathfrak{F}_t : The class of Fitting algebras, that is, the class of Lie algebras which are generated by their nilpotent ideals.

B: The class of Baer algebras, that is, the class of Lie algebras which are generated by their nilpotent subideals.

By the coealescency of $\mathfrak{N} \cap \mathfrak{F}$ and Theorem 6.2.1 in [5], we have

$$\mathfrak{D}^* = \mathfrak{B} = M(\mathfrak{N} \cap \mathfrak{F}), \mathfrak{N} \leq \mathfrak{F}, \leq \mathfrak{B}, \mathfrak{N} \leq \mathfrak{D} \leq \mathfrak{B}.$$

Applying the above theorem for $\mathfrak{N}\cap\mathfrak{F}$ and other pseudo-coalescent classes, we have the following

COROLLARY 4.4. Over fields of characteristic 0 the following classes are locally pseudo-coalescent:

- (1) $\mathfrak{N}, \mathfrak{D}, \mathfrak{F}_t, \mathfrak{B}, \mathfrak{N}_{(\omega)},$
- (2) $M(E\mathfrak{A} \cap \mathfrak{F})$, $M(E\mathfrak{A} \cap \mathfrak{G})$, $M\mathfrak{F}$, $M\mathfrak{G}$, $M\mathfrak{G}$, $M\mathfrak{G}$, $M\mathfrak{F}_{(\omega)}$, $M\mathfrak{F}_{(\omega)}$, $M\mathfrak{G}_{(\omega)}$, $M\mathfrak{G}_{(\omega)}$, $M\mathfrak{G}_{(\omega)}$,

We generalize the 'only if' part in Theorem 4.3 in the following

Proposition 4.5. Let \mathfrak{X} and \mathfrak{Y} be classes such that $\mathfrak{X} \leq \mathfrak{Y} \leq \widetilde{\mathfrak{M}} \mathfrak{X}$. If \mathfrak{Y} is locally pseudo-coalescent, then so is \mathfrak{X} .

PROOF. Let H (resp. K) be an \mathfrak{X} -subideal (resp. an \mathfrak{X} -weak ideal) of a Lie algebra L. Put $J = \langle H, K \rangle$ and let F be any finite subset of J. Then there exists a \mathfrak{Y} -weak ideal Y of L such that $F \subseteq Y \subseteq J$. Since $\mathfrak{Y} \subseteq \widetilde{\mathfrak{M}}\mathfrak{X}$, there exists an \mathfrak{X} -weak ideal X of Y such that $F \subseteq X \subseteq Y$. Therefore X is an \mathfrak{X} -weak ideal of

L and $F \subseteq X \le J$. Thus \mathfrak{X} is locally pseudo-coalescent.

References

- [1] R. K. Amayo, Soluble subideals of Lie algebras, Compositio Math., 25 (1972), 221-232.
- [2] R. K. Amayo, Infinite-dimensional Lie algebras, Ph. D. Thesis, University of Warwick, 1972.
- [3] R. K. Amayo, Locally coalescent classes of Lie algebras, Compositio Math., 27 (1973), 107-117.
- [4] R. K. Amayo, The derived join theorem and coalescence in Lie algebras, Compositio Math., 27 (1973), 119-133.
- [5] R. K. Amayo and I. Stewart, Infinite-dimentional Lie Algebras, Noordhoff, Leyden, 1974.
- [6] R. A. Dean and R. L. Kruse, A normality relation for lattices, J. Algebra, 3 (1966), 277-290.
- [7] B. Hartley, Locally nilpotent ideals of Lie algebras, Proc. Camb. Phil. Soc., 63 (1967), 257–272.
- [8] O. Maruo, Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J., 2 (1972), 205-214.
- [9] I. Stewart, Lie Algebras, Lecture Notes in Mathematics 127, Springer, Berlin, 1970.
- [10] S. Tôgô, Radicals of infinite dimensional Lie algebras, Hiroshima Math. J., 2 (1972), 179-203.
- [11] S. Tôgô, Characterizations of radicals of infinite dimentional Lie algebras, Hiroshima Math. J., 3 (1973), 25-36.
- [12] S. Tôgô and N. Kawamoto, Locally coalescent classes of Lie algebras, Hiroshima Math. J., 4 (1974), 509-520.

Fukuyama Campus, Faculty of Education, Hiroshima University