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1. Introduction

In the n-dimensional Euclidean space Rn (n^2), the Riesz potential of order
α of a non-negative function / in ί/(,Rπ) is defined by

U{(x) = [\x - y\*-»f(y)dy, xeR",

where 0<α<n and ί<p<ao. Our first aim is to discuss the existence of radial
limits of U{ at a point of Rn, which can be assumed to be the origin 0 of Rn

without loss of generality. For this purpose we shall use the capacity Cα>p, which
is a special case of the capacity Ck;μip introduced by N. G. Meyers [4] and is
defined by

Cα$p(£) = inf||0||J, Ec:R»,

the infimum being taken over all non-negative functions geU(Rn) such that
Όβ

Λ(x) ̂  1 for all x e E in case ccp ̂  n, we assume further that g vanishes outside the
open ball with center at 0 and radius 2. In § 3, setting S={x e Rn |x| = 1}, we shall

show that for a non-negative function feLp(Rn) satisfying \\y\Λp~nf(y)pdy <oo,

( i ) lim Ό{(rξ)riO

holds for ξ e S except those in a Borel set with Cα>p-capacity zero. In case Uζ(O) =
oo, limx^0 U{(x)=U{l(0) by the lower semi-continuity of Uζ9 and hence (i)
holds for all ξ e S. In this case, we shall investigate the order of infinity; in fact,
we shall show that if αp^n and/ is a non-negative function in Lp(Rn) with V{φ
oo, then we have

lim r(n-*pVPUζ(rξ) = 0 in case <xp < n,

lim (log — ) Uζ(rξ) = 0 in case ocp = n
rlθ\ r /

for ξ e S except those in a Borel set with Cα>i,-capacity zero. These results can
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be considered as an improvement of the following fact (cf. [2; Theorem IX, 7]):
Let L/£ φ oo be the Riesz potential of order α of a non-negative (Radon) measure
μ. Then there is a Borel set E <= S such that Ca(E) = 0,

lim U*(rξ) =

and

r40

for all ξ e S\E, where Ca denotes the Riesz capacity of order α.
As an application of the results obtained above, we shall study the existence

of radial limits of p-precise functions (see [9]) defined on a neighborhood G of
the origin. Since all p-precise functions on G are continuous if p>n, we are
interested in the case p^n. We shall show that if u is a p-precise function on
G satisfying

oo and \ \gmdu\p\x\p~ndx < oo,
JG

then ϊimri0 u(rξ) exists for ξeS except those in a Borel set with Clp-capacity
zero. It will also be shown that for a p-precise function u on G, we have

lim r^n~p)/pu(rξ) = 0 in case p < n,
riO

lim (log 1
\ί/p-ί

J u(rξ) = 0 in case p = n

for ξ e S except those in a Borel set with Clp-capacity zero.
In the final section we shall be concerned with harmonic functions on a cone

of the form Γ(a) = {(x\ xn)eRn-1 xR1; \x'\<axH9 |x'|2 + x2<l}, where α>0.
Our aim is to prove that if h is a harmonic function on Γ(ά) satisfying

(ii) ( Igradft|*flr(|x|)|x|*-«dx < oo,
JΓ(a)

then Hmx->o,χeΓ(a') Kx) exists and is finite for any a' with 0<a'<a, where g is
a positive and non-increasing function on the interval (0, 1) such that

tg

Moreover we shall show that (iii) is necessary in the following sense: If g is a

positive and non-increasing function on (0, 1) such that t~δg(t)~1 is non-increas-

ing on (0, 1) for some δ with 0<δ<pβ and \ g(t)-1t<p-1)r1dt=co9 then we
Jo
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can find a harmonic function h onί(α) satisfying (ii) such that limXnioh(0,...9

0, xn) does not exist. These are an extension of a result obtained by T. Murai [7].
The author wishes to express his thanks to Professor N. G. Meyers for his

valuable comments.

2. Preliminaries

Throughout this paper, let 0<α<n and l<p<oo. We define the capacity
CΛtP as follows:

where the infimum is taken over all non-negative functions / in LP(Rn) such that
U{(x) ^ 1 for all x e E and | |/ | | p denotes the ZAnorm. We need another capacity:
Let G be a bounded open set in Rn and define

where the infimum is taken over all non-negative functions / in Lp(Rn) such that
/ = 0 outside G and U{^>1 on E.

Let us begin with

LEMMA 1. Assume ccp<n. Let F be a compact set in a bounded open
set GaRn. Then there is a positive constant M such that Cap(E; G)^MCa>p(E)
whenever EaF.

PROOF. Let / be a non-negative function in U(Rn) such that Uζ ^ 1 on E. By
Holder's inequality, we have

\ \x - y\'-*f(y)dy ύ{\ I* - y \ p ' { * - n )

jRn\G URn\G

where llp + llp' = l. Hence there is ε>0 such that | |/| |£<ε implies

sup ( |χ - y\<-'f(y)dy g 1/2,
xeF JRn\G

so that \ \x- y\*~nf(y)dy^lβ for xeE. From this it follows that CΛtP{E\

G)^2pCatP(E) whenever EczF and CatP(E)<ε. On the other hand, considering

the potential U(x)=\ \x-y\a~ndy, we easily see that Ca>p(F\ G)<oo. Thus the
JG

inequality of our lemma is satisfied with M=max {2p, eΓxCatP(F\ G)}.

COROLLARY. Let E be a bounded set in Rn. Then Ca%p(E)=0 implies
CXtP(E; G)=0 for any bounded open set G which contains E (the closure of E).



418 Yoshihiro MizuTA

Conversely, if CΛtP(E; G)=0 for some bounded open set G such that £ c G , then

In the general case we have the following lemma, which can be proved in a

way similar to the above proof.

LEMMA 2. Let G and G' be bounded open sets in Rn. Let F be a compact

subset of Gf\Gr. Then there is a positive constant M such that CΛJβ\ G)^

MCΛtP{E\G')foranyE<zF.

COROLLARY. // EcGnG', then CatP(E;G)=0 is equivalent to CΛtP(E\

G')=0.

Let G and G' be open sets in Rn. A mapping T: G-+G' is said to be Lip-

schitzian if there exists a positive constant M such that

M~*\x - y\ ̂  \Tx - Ty\ g M\x - y\

for all x and y in G; one refers to M as a Lipschitz constant for T.

We shall show

LEMMA 3. Let G be a bounded open set in Rn and T: G-+TG be a Lip-

schitzian mapping with Lipschitz constant M > 0 . Then for £ c G ,

N-iCatP(E; G) S CaιP(TE; TG) ^ NCΛtP(E; G)

with N

PROOF. Let / be a non-negative function in LP(Rn) such that / vanishes

outside G and U{ ^ 1 on E. Define the function

z) for z e TG,

[ otherwise.

Then we have for xeE,

[\Tx - z\*-ng(z)dz ^ Mα- 2"f|x - y\*~*f(y)dy ^ MΛ~2n.

This gives

CatP(TE; TG) ^

which implies that CΛiP(TE\ ΓG)^Mπ+*<2w-α>Cα)J,CE; G). Thus the inequalities

in our lemma are satisfied with JV=Mπ + p ( 2 n~α ).

For r > 0 and EaRn

9 we set rE={rx; xeE}. When Tis the Lipschitzian
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mapping defined by Tx = rx for x e Rn

9 we obtain

LEMMA 4. For r>0 and EaRn, we have

CΛiP(rE) = r*-'CJίE) .

This follows with a slight modification of the above proof.

For a set EcRn, we denote by E the set of all points ξeS={xeRn; \x\ = 1}

such that rξeE for some r>0. For α > 0 and xeR n , we denote by B(x, a) the

open ball with center at x and radius α. We shall write simply B(ά) for B(O, α).

We are now ready to show our main lemma.

LEMMA 5. There exists a positive constant M such that for EaB(2)\B(l)9

Especially, in case oιp<n, Ca%0)^MCΛiP{E) for EcB(2)\B(l).

PROOF. Set

G = {x = (χ\ xn)eR»-i x Ri; |x'| < *„, 1/2 < |x| < 3},

F = {x = (x\xn)6Rn^ x R1; |x'| ^ xn/2, 1 g |x| ^ 2}.

On account of the subadditivity of Cα>p( ; G) (cf. [4]) and Lemmas 1, 2, it suffices

to show that

(1) Ca>p(E n F; G) ^ MCatP(E Π F G) with some constant M > 0.

Consider the mapping T: G-+TG defined by

v

Note that ΓG = {(/, ^JejR ^ x R 1 ; | / | < l / < / 2 , 1/2<};„<3} and that T is

Lipschitzian. By Lemma 3, there is a constant M ' > 0 such that Cα t P(T(EnF);

TG) ^ M'Cα>l,(E Π F; G). In the same way as in the proof of Lemma 1 in [6],

we can show that

CΛtP(T(E n F)*; C) S CatP(T(E n F); Q ,

where T(£ n F)* is the projection of Γ(E n F) to the hyperplane {(x', xn) e R"""1 x

Λ 1 ; x n = l } and C = {(x', xn); \x'\<yfi9 - l < x π < 3 } . Noting that T(EnF)* =

T{E Π F) and using Lemmas 2 and 3, we have the required inequality (1).

COROLLARY. Let r>L If CΛ$p(E; B(r))=0 for EczB(r/2)9 then CΛtP(E;
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PROOF. Set En=E n (B(2-»r)\B(2-"-1r)). Evidently C α > /£ n 5(r))=0. On

account of the subadditivity it suffices to show Cap(En;B(r)) = 0 for each n. Fix-

ing n we have CatP((2n+1/r)En; B(2n+1)) = 0 by Lemma 3 and hence Cα>p((2n+1/

r)En; £(3))=0 by Lemma 2. Lemma 5 yields CΛtP(En\ 5(3))=0 and CΛtP{En\

B(r)) = 0 follows from Lemma 2.

REMARK 1. (i) If αp ̂  n, then CβtP(Λ") = 0.

(ii) I f α j p > n a n d x ° e Λ w , then Cα>p({x0}; 5(2)) >0.

(iii) If CΛtP(E\ 22(2))=0, then £ is of (n-dimensional) measure zero.

(iv) If <xp ̂  n, then CΛiP(E B(2)) = 0 implies that

f Cap(E) = 0 in case p ^ 2,

I Cαp_ε(E) = 0 for any ε with 0 < ε < cap in case /? > 2.

Here C^ denotes the Riesz capacity of order β.

For (i) we have only to show Cα>p(5(l)) = 0 on account of Lemma 4. For

α > l , define the function

ί M ( g M ) if a <\y\<a\
fa(y) =

[ 0 otherwise.

Then we can find a positive constant M independent of a such that

ί|x - y\*-»fa(y)dy > \ (2\y\)*-«fa(y)dy £

and

for all x e B(l). These imply CΛfP(B(l)) = 0.

To show (ii), we take fe Lp(Rn) such that / vanishes outside B(2) and Uζ(x°) ^

1. Holder's inequality gives

where 1/p + 1/p' = 1. Since p'(a -ή) + n=p'{a - nip) > 0, Cα>p({x0} J5(2)) > 0.

The assertion (iv) is a consequence of a result of B. Fuglede [3]. The

assertion (iii) follows immediately from (ii) and (iv).

3. Radial limits of potentials at the origin

We first show
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LEMMA 6. Let f be a non-negative measurable function such that

\\y\βf(y)pdy<ao for a number β. Then there is a Borel set EczS such that

CatP(E; B(2)) = 0 and

lim r<*-'*+»"[ \rξ - y\*~mf(y)dy = 0

for every ξ e S\E. If, in addition, ocp > n, then

lim|x|(w-α*+*>/*( \x-y\a~Hf(y)dy = 0.
x-+O J|x-y|^|x|/2

PROOF. Set

U(χ) = \ \χ - y\"-nf(y)dy.

Set also ak=\ \y\βf(y)pdy for each positive integer k, and choose

a sequence {bk} of positive numbers so that limfc_>oo bk=co and Σ

Further we set

Ek = {xeRn; 2~k ̂  \x\ < 2-*-+1, U(x) ̂

for each k. Define the function

ί /(2" fcz) if 1/2 ̂  \z\ < 4,

[ 0 otherwise.

Then we have for xeEk

U(x) ^ 2fc("-α)f \2kx - 2ky\"-»f(y)dy

so that

CatP(2kEk; B(4)) ^ ^

\y\βf(y)pdy\

This together with Lemmas 2 and 5 gives
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CatP(Ek; B(2)) = Cα,,(2%; B(2)) £ Makbk,

where M is a positive constant independent of k. Setting £=ΓΛf^i^Jΐ^jE^ we

see that CatP(E; B(2)) = 0 and lim r i 0 U(rξ)=0 for ξeS\E. If ap>n, then Ek is

empty for fe sufficiently large on account of Remark 1, (ii). Thus our lemma is

proved.

For a non-negative locally integrable function / on Rn, we also define

U{(χ) = J|χ - y\*~nf(y)dy,

THEOREM 1. Let f be a non-negatiυe measurable function such that

{\y\*p-»f(y)pdy<oo. Then there is a Borel set EcS such that CΛιP(E; B(2)) =

0 and

lim U{(rξ) = U{(0) for every ξ e S\E.
riO

//, in addition, cnp>n, then lim^^o Uζ(x)=Uί(O).

Proof. We decompose U{ as F+ U, where

I
x-y\>\x\l2

U(x) = f |x - y\—fiy)dy.
J\x-y\*\x\/2

If l/{(0)=oo, then limx^0U{(x) = oo by the lower semicontinuity of Uζ. Hence

it suffices to be concerned with the case Uζ(O) <oo. In this case we have by

Lebesgue's dominated convergence theorem

limF(x) = V{(p)

since | x - ^ | > | x | / 2 implies \x-y\>\y\β. By the aid of Lemma 6 we conclude

our theorem.

COROLLARY. Let f be a non-negative function in LP(Rn) and set

A = \x°eRn; [ \xΌ - y\ap"nf(y)pdy = ool.

I J|jc°-y|<l i

Then to each x°eRn\A9 there corresponds a Borel set EχOc:S such that CΛtP(Exo;

5(2))=0 and

lim U{(x° + rξ) = Uζ(x°) for every ξ e
rlO
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We remark here that A is empty in case αp^n and CΛp(A) = 0 in case ccp<n;

if <xp<n and p^2, then CαpG4) = 0 implies Cα>p04)=0 in view of [3; Theorem 4.2].

REMARK 2. If we set A = W*°«i £ Λ in the proof of Lemma 6, then

lim Uζ(x) =
x-*O

xeRn\A

and

j ^ K ; B(2)) < oo, i k

From this condition we can derive that lim r i 0 CΛtP(A Π B(r); £(2)) = 0. From this

the conclusion in Theorem 1 follows immediately.

REMARK 3. In case α < l and ocp<n, there is a non-negative function /

in U{Rn) such that U{(0)< oo but lim suρ r i 0 Uζ(rξ)= oo for every £ e 5.

To construct a function / with these properties, we set r, = 2~i and

{ 2~αm if j = 2m and m is a positive integer,

0 otherwise

for each positive integer j9 where 1 < a < 1/α. Define the function

tjrj if(l-sj)rj<\y\<(l + sj)rj,

f(y) = {

[ 0 otherwise.

Then we see that/has the required properties.

In case Uζ(O) = oo, we shall investigate the order of infinity.

THEOREM 2. Letn — acp+β'^O and let f be a non-negative locally integrable

function such that Uζφoo and \\y\βf(y)pdy<co. Then there is a Borel set

EczS such that CΛtP(E\ B(2)) = 0 and
lim r i*-*p+β)tPU{(rξ) = 0 in case n - <xp + β > 0,

/ 1 V/P-l <•
limί log — ) U{(rξ) = 0 in case n - ocp + β = 0

/or euery ξeS\E. If, in addition, <xp>n, then

lim \x\<n-«P+WPUί(x) = 0 in case n - ocp + β > 0,
0

lim( log -j—r ) £/{(x) = 0 in case n — up 4- β = 0.
X - + 0 \ 1 ^ 1 /
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REMARK 4. In the theorem we assumed Uζφoo. This is equivalent to

PROOF OF THEOREM 2. We decompose Uζ as in the proof of Theorem 1.

In view of Lemma 6, we have only to show

lim |x|<n-α*+^,F(x) = 0 in case n - ocp + β > 0,
JC->0

lim( log -,—r-) F(x) = 0 in case n — ocp + β = 0.
x-+o\ \χ\ /

Case 1: ap — n<β<n(p — 1). Choosing y so that up — β<y < n, we have by

Holder's inequality

\x -

X i f |JC — y\P'l*-v/P)-»\y\-βpΊPdy\1/P ,
U|x-y|>|x|/2- 3

where \jp + 1/p' = 1. We can easily verify

\ 1̂  — y\p'(*-vlP)-n\y\-Pp'lPdy ^ const. |χ|ι»'(α-y/i»-A/p> •
J|x-y|>|x|/2 I

-y\>\x\/2

dividing the domain of integration into two parts, that is,

(i) |x - y\ > |x|/2, \y\ ί |x|/2, (ii) \x - y\ > \x\/29 \y\ > \X\I2.

Hence we obtain

\X\(»-*P+WPF(X) ^ const. |χ|(«-y>/^|C |χ - y\y-n\y\^f(y)Pdy\ί

U|x-χ|>|x|/2 J

t. \\const.

which tends to zero as x-»0 by Lebesgue's dominated convergence theorem.

Case 2: β Ξ> n(p — 1). In this case (n — ap + β)/p ̂  n — α. We have

|jc|
J|x-y|>|χ|/2

If | x | < l and |x- j ; |> |x |/2, then | x | . | x - y | - 1 < 5 ( l + |y |)- 1, so that |χ|0»-«i>+/0/pχ

F(x)->0 as x-^O on account of Remark 3 and Lebesgue's dominated convergence

theorem.
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Case 3: n - ocp + β = 0. Given ε such that 0 < ε < 1, we see that

\ \x — y\*~nf(y)dy tends to a finite number \ \y\a~nf(y)dy as
J\x-y\>\x\/2,\y\>ε J\y\>ε

x-*O. On the other hand Holder's inequality gives

9\y\βΛyydy\ *

lip'

It is easy to show

[ \x-y\(α"w)p' 1̂ 1 -to'tPdy < const, log-Λr

for any xeRn with |x| < 1/2, if we divide the domain of integration into two parts,

that is, (iii) |x-j;|>|x|/2, \y\Ze9 \y\<\x\β9 (iv) \x-y\>\x\/29 |y|^ε, b|^|x|/2.

Hence

/ 1 \-I/P'Γ
lim supί log-r-r ) \ \x-y\a~nf(y)dy

x^O \ \X\/ J|*-y|> 1*1/2, | , | gβ

. {( l

1*1/2,

_i const

so that

limsupίlog-r-T-) F(x)geoBstA\ \y\>f(y)'dy\ ,
x~+o \ \χ\ / U|,|gβ )

which implies limx_>o(log l/|x|)""1/p'F(x) = 0. Thus the proof is now complete.

REMARK 5. Let a(r) be a non-increasing function on the interval (0, oo)

such that lim r 4 Oα(r)=oo. Then there is a non-negative measurable function/

such that [\y\βf(yydy< en, f = 0 on Rn\B(2) and

lim supa(r)r(n-aP+MPU{(rξ) = oo in case n - ocp + β > 0,
r40

/ 1 \l/p-l
lim sup a(r)[ log — ) Uζ(rξ) = oo in case n — <xp + β = 0

rio \ r J

for every ζeS. In case β< n(p — l),/is locally integrable because of \\y\βf(y)pdy *

oo, so that Remark 4 gives Uζφoo.
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In case n-ocp+β>O we choose {kj} so that 2kj<kj+1 and Σ*=il/ α ( 2 ~ k ' )<

oo. We set bj=2^+^kJ^a(2-kJ)"ίfp and define f(y) by &,. in 2-*;-1<|.y|<

2-fc,+i a n d by 0 elsewhere. In case n — ap + /?=0 we choose {fc,-} so that

2kj<kj+ί and Σ£*ilM2~ 2 f c '+ 1)<o° We set cy = α(2" 2 ^ + 1 ) and define

i f 2~lki <\y\< i~kj>

[ elsewhere.

In both cases it is easy to check that \\y\βf(y)pdy <oo. In case n-ocp+β>O

U{(2-kJζ) £ ί 12-«>ξ - y I *-*f{y)dy
J\2-*jξ-y\<2-*j-i

\y\"-ndy.
\y\<ί

It is immediate to see that α(2- fe02~ fc'(n~αp+Wp£/{(2- fe'ξ)->oo as ;->oo. In

case n — ocp + β=O write r, for 2~Λ^. For y with ^ < | j | < r y we observe that

\2rjξ-y\l\y\£3. Hence

= Uζ(2rjξ) ^ 3"-»[ \y\*-nf(y)dy
Jrj<\y\<rj

= const. cηι'p\ — r^-ηj = const. <

It is easy to see that a(2"2kJ+ί)(log22kJ-ίyfP-1U{(2'2kJ+ιζ)-^oo as 7-^00.

REMARK 6. Theorems 1 and 2 are the best possible as to the size of the

exceptional set.

In order to prove this fact, we let £ be a set in S with Cα>p(E; B(2))=0. If

we set Ek={k~ίx; xeE} for each positive integer k, then CΛtP(Ek\ 5(2))=0 for

each k. By Lemma 2,

CΛιP(Ek; Gk) = 0,

where Gk={xeRn; l/(fc+l)<|x|<l/(fc—1)}. Hence there is a non-negative

function fkeLP(R") such that/fc = O outside Gk, Uζk(O)<2~k, \\y\Λp~nfk(y)pdy<

2~k and l/{*(x) = 00 for all x e £ fc. Set/ = Σ?-iΛ Clearly, \\y\ap-nf(y)pdy<

00 and

) = limsup(log—)βUί(rξ) = 00
r4-0
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for any ξ e E and any number β.

4, Radial limits of functions defined on a punctured ball

We say that a function u on an open set GczRn is locally p-precise if u is
p-precise on any relatively compact open subset of G; for p-precise functions,
see [9]. Note that for a locally p-precise function u on G, grad u is defined a.e.

on G and \ | gradu\pdx<co for any relatively compact open subset ω of G.

For the details of p-precise or locally p-precise functions, see [8; Chap. IV].
In this section we are concerned with locally p-precise functions u on the

punctured ball D=B(l)\{0}, and discuss the existence of radial limits of u at the
origin.

THEOREM 3. Let D = {xeRn; 0<\x\<l} and let u be a locally p-precise
function on D satisfying

(2) [ \gmdu\P\x\P~ndx< oo,
JD

(3) { IgradMl lx l 1 -"^ < oo.
JD

Then there are a (finite) constant c and aBorel set EaSsuch thatCUp(E;B(2)) =
0 and lim r i 0 u(rξ) = cfor all ξeS\E. In case p>n, u has a finite limit at the
origin.

PROOF. First we consider the case p^n. In this case, u is p-precise on
J5(l). Let φ be a function in C^(B(1)) which equals one on a neighborhood of
the origin. Then φu is p-precise on Rn and satisfies conditions (2) and (3). Hence
we may assume that u is p-precise on #" and has compact support in B(l). By
[8; Theorem 9.11] or [5; Theorem 3.1], we have the following integral representa-
tion of u: For some constants ai9 i = l, 2,..., n,

holds except on a Borel set Ex c5( l) with CUp(Eί J3(2))=0. Set

Then c is finite by (3). By Lebesgue's dominated convergence theorem, we see
that

n Γ

»=i ι)\χ-y\>\

du
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and by Lemma 6 that

d \

\rξ-y\1-n\gmάu\dy >0 as r I 0
\rξ-y\£r/2

for ξeS except those in a Borel set E2 with CίtP(E2; J3(2)) = 0. Since CίιP(Eί;

B(2))=0 by the Corollary to Lemma 5, our theorem for p^n is shown.

We next consider the case p>n. In this case u is continuous on D. Let

1 < q < n. Then we have by Holder's inequality

C (C )q/p(C q(p-n) )i-q/p
\ I gmdu\«dx ^ ^\ \ gmd u\P\x\P~ndx> <\ \x\ v-<ι dx\ < o o ,

which implies that u can be considered to be g-precise on 5(1). As above we

may assume that u is ^-precise on Rn and (4) holds on B(l) except for a set E3

with C 1 ) 9 (£ 3 ) = 0. Set for i = l, 2,..., n,

Let x°eD and consider B(x°, ro)czD. We note that | g r a d « | p is locally

integrable, and hence that \ |x° — ^l1"71! gradw^y is finite by Holder's
JB(x°,ro)

inequality. Thus vt is finite-valued in D. To see that v( is continuous in D,

denote by g(x, y) the integrand of the integral for vt. Set It(x)= \
J\χ-y\<\x°-χ\/2

g(x, y)dy and /2(x) = \ g(x9 y)dy. Since {y e Rn |x - y\ < |x° -
J\x-y\>\x°-x\l2

X\I2}CZB(X°,2\X-X<>\)9

7 l = Γ o

as x->x°. We see also that I2{x)-*vi(x0) by Lebesgue's dominated convergence

theorem. Thus vi(x)=I1(x) + I2(x)-*vi(x°) as x->x°. Hence (4) holds on D

with no exceptional set. Since \ |x — y\ι~n\ grad«|d^->0 as x-^O

by Lemma 6, ̂  is continuous at the origin. These imply that u has a finite

limit at the origin.

THEOREM 4. Let p — n^β<n(p—ΐ) andletu be a locally p-precise function

on D such that \ \ grad M|^|x|^dx< oo. Then there is a Borel set EcS such that

CίtP(E; B(2))=0Dand



On the Radial Limits of Potentials 429

lim r(n-P+MPu(rξ) = 0 in case n - p + β > 0,
i IO

( 1 \i/p-i
log — ) u(rξ) = 0 m case n - p + β = 0

/or every ξ e S\£.

PROOF. Choose q such that l<q<min {p, npftn + β)}. Then βq/(p — q)<

n. By Holder's inequality we have \ | gradu | 9 dx<oo. As in the previous
JD

proof, we may suppose that u is a ^-precise function on Rn with compact support,

and hence (4) holds a.e. on JR". Since | grad u\p is locally integrable on D, (4)

holds on D except for E with ClfP(E'; B(2)) = 0(cf. [8; Theorem 9.10]). We

can now apply Theorem 2 to obtain the desired result.

REMARK 7. Condition (3) is necessary in Theorem 3. In fact, the function

u(χ) = (log(2/|x|))β satisfies (2) if ε is chosen so that 0 < ε < l — l/p, but w(x)-»oo

as x->0. We shall show below, however, that if u is a harmonic function on D

satisfying (2), then u has a finite limit at the origin.

THEOREM 5. Let h be a function harmonic on D. Then h can be extended

to a harmonic function on B(ΐ) if one of the following conditions is fulfilled:

(2)' ί I grad h\P\x\^nlPf-^dx < oo,
JD

(3)'

where l/p+l/p'^l.

PROOF. We shall prove only that h can be extended to a harmonic function

on B(ϊ) if (2); is satisfied; the case when (3)' is satisfied can be proved similarly.

Assume that (2)' is satisfied. Since dh/dxi9 i = l,..., n, are harmonic on D,

dh , . . f dh
x) = Mt\x\ n\

JB(x, x\J2) o x i

where Mt is a constant independent of x e 2?(l/2)\{0}. From Holder's inequality

it follows that

where M2 is a positive constant independent of x and
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Setting X(x)=log(l/|x|) in case n=2 and =|x|2""Λ in case n ^ 3 , we note that for
ε, 0<ε<l/2,

which implies that limx^oK(x)~1h(x)=0. Now our theorem follows from a
result in [1; p. 204].

5. Radial limits of functions defined on a cone

For positive numbers a and b, we set

Γ(a, b) = {(x\ xn)eRn-1 x Λ1; |x'| < αxπ, |x'|2 + x2 < b2}.

We shall write simply Γ(a) for Γ(α, 1).

LEMMA 7. Let g be a positive and non-increasing function on the interval
(0, 1) such that

(5) I *nί*\riw < °°»

where l/p+l/p'^l. If f is a non-negative measurable function on B(l) satis-
fying

fW0(\x\)\x\'-*dx < oo,

then { f(x)\x\ι~ndx<oo.
JB(ί)

This follows immediately from (5) and Holder's inequality.

THEOREM 6. Let g be as in Lemma 7. Let u be a locally p-precise func-
tion on Γ(a) such that

(6)

Then there are a constant c and a Borel set EczS such that CltP(E; JB(2))=0
and limΓjou(rξ) = cfor all ξeSf] Γ(a9 2)\£.

PROOF. It is convenient to adopt the polar coordinates (r, Θ)=(r, θu...9
θn-i) s o t h a t r^>0, Ogfli^π,..., O^0n_2<;π, 0gθ J I _ 1 ^2π and
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xx = rsin0 1 sin0n_2sin0n_1,

x2 = rsin0 1 sin0Λ_2cos0 l l_1,

3cπ_ i = rsinθί cos02,

xn = rcosθi.

Regard u as the function of (r, θί9..., 0Λ-i) and note

<1, tan 9ι<

IP/2

1 . <iθn>1 < oo.

Let α'=π/(2 tan"1 α) and define the function

v(x) = v(r9 θί9 Θ29...9 0,-χ) = iι(r, ΘJα', fl2,..., fl^O

for 0 < r < l , 0<θ 1 <π/2, O^Θ2^π,..., O^ΘΠ_2^π and 0^θ l l _ 1 ^2π. Since

M " 1 s i n ( θ 1 / α / ) ^ s i n ^ i ^ ^ s i n ( ^ i / α / ) if Oκθi^κπ/2 for some positive constant

o, where J5(l)+ = {x=(x', x Λ ) e B(l); xΠ>0}.

This and Holder's inequality give \ |gradt;| ίdx<oo for l<^<min{p, n}
JB(b) +

and 0 < b < l . According to [8; Theorem 5.6], the function

f v(x) for x e

1 t;(x',-xΛ) for (x',

can be extended to a ^-precise function on B(b)9 where ΰ(fc)~ = {x = (x', xΠ)e

B(b); xΠ<0}. The resulting function satisfies condition (6) with Γ(a) replaced

by B(b). Therefore, by Lemma 7 and Theorem 3 we can find a constant c and

a Borel set £ c 5 such that CltP(E; J3(2))=0 and limri0v(rξ) = c for all ξ e S n

J5(2)+\£. Denoting by E' the set of all points x such that (r, a'θu θ2,..., θn-x)

is the polar coordinates of a point in E if (r, 01}..., 0Λ-i) is the polar coordinates

of x, we see by Lemma 3 that Clp(E'\ 5(2))=0. Thus our theorem is proved.

6. Angular limits of harmonic functions

In this section we shall study the existence of angular limits at the origin of

harmonic functions defined on the cone Γ(a).

THBORBM 7. Let g be as in Lemma 7. Let h be a harmonic function on
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Γ(a) with a>0 satisfying (6). Then for any a' with 0<a'<a9 limx-+o,xeΓ(a') Kx)
exists and is finite.

PROOF. By Theorem 6, there is σ*eSf)Γ(a;2) such that l im r i 0 h(rσ*)

exists and is finite. We denote the limit by c. For a number a' such that 0 < a! <

a and {rσ*; r>0} (\Γ{a')Φ&9 we shall show that limx_>OxeΓ(aΊh(x) exists and

equals c. Choose d>0 such that B(x, d\x\)aΓ(a) for xeΓ(a'9 1/2). Then for

xeΓ(α', 1/2)

- Mx(d\x\rA\ ft x

B(x,d\x\)

jB(xtd\x\)

where M t is a constant independent of x. Note that

2\x\P'^-pyp{ dx = Afal^^'ί"-1)
jB(x,d\x\)

for some constants M2 and M3 independent of x. For xeΓ(a'\ set x* = |x|σ*

and denote by Lx the line segment between x and x*. If xeΓ{a\ 1/2), then

|A(x)-Λ(x*)| ^ |x~x*|sup|gradΛ| g 2|x|sup|gradA|

> 0 as x • O.

Therefore \^ax^OxenaΊ Λ(x) = c. Thus the theorem is proved.

Finally we shall discuss the sharpness of Theorem 7. For simplicity we

shall write Γ instead of Γ(a).

THEOREM 8. Let g be a positive and non-increasing function on the interval

(0, 1) such that

dt
T- = 00

and that t"δg(f) 1 is non-increasing on (0, 1) for some δ with 0<δ<p/2y where

1/jp-f l/p' = l. Then there is a harmonic function h on Γ such that h satisfies

(6) but limΛn4o h(0,..., 0, x n)=oo.
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PROOF. First we deal with the case n = 2. Define the functions α, b and

/ as follows:

b(r) = log a(r),

We see that α(0)=oo by (7). We set Γ = {—x; xeΓ} and consider the function

h(χ) = 5>g j~yγf( I y I ) ^ * e Γ.

Note that h is harmonic on Γ and lim,. l 0 h(0, x2)=<x>. We shall show that h

satisfies (6).

Since inf {\x--y\(\x\ + \y\)''i; xeΓ, yeΓ}>09 there is a positive constant

Mγ such that for xeΓ,

|grad/z(*)| ^ M

Letting /i(s)= \ f(r)(s + r)~ιrdr and /2(5)= \ f(r)(s + r)~1rdr, we estimate them
Jo Js

separately. Hereafter M2, M3,..., will stand for constants. By Holder's in-

equality, we have for l/p'<β<l

Hence
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+ l)™«' .(log]-

< oo.

For I2, we have

< if1 dr

~ 1), / <2-I/P-2

Consequently,

Thus we obtain the theorem for n = 2.

Next we are concerned with the case n^3. Let α and b be as above. Set

0 < ε

and consider the function

, xeΓ.

Note that h is harmonic on Γ and limXnιoh(09...,0, xn) = ao. For x e Γ and

j = l,..., n,
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-§(x)\ 3 (» - 2 ) ^ I* -y\ι-»f(\y\)dy

As above we write

and estimate them separately. Take a number β such that l<βp'<n — l. Then

/ (s) <
o

* M*S ' ''Wo r^gίrYairy \ '

Hence

In a way similar to the case n=2, we also obtain

The proof is now complete.

REMARK 8. Let g be as in the theorem. Then by modifying the harmonic
function h in the proof of the theorem, we can construct a harmonic function
S on Γ such that /t satisfies (6) but lim^ o Λ(0,..., 0, xn) does not exist.

For this purpose, let ά, b, f be as in the proof and set
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log-T—T- incase n = 2,

|x|2~π in case n Φ 2.

We write £+ = {(x\ xn) e R""1 x Rι x' = 0 and xn>0}. Let x(ί)e£+ and
0 < α ί < l be arbitrary. We can find x<2> 6 £+ Π B(l/2) and α ,̂ α£>0 such that

JfnB(α'2)

and

m K(χW - y)/(|y|)dy + 2.

We proceed inductively and obtain {x(i)}, {αj} and {αί'} such that

x<'> e ̂ + Π B(l/0, 0 < α? < αj < α?. l s

and

J f n ,B(«")X ( χ ( i ) " y)f(M)dy - \tXB β"
 κ(χ(i)"" ^)/(l3Ί)^ + 2

for any i and j such that i ̂  2 and 1 ̂  j < i.
Define the function

( ( ~ 1)7(1 Ji) if y 6 Γ and α? < |y| < αj,

t 0 otherwise

and set /ϊ(x)= \ K(x — y)J{y)dy for xeΓ. It is clear that h satisfies (6). Fur-

thermore K(x^2J))^l and h{x(2j-^)<* - 1 for each j . This implies that fi has

the desired properties.

REMARK 9. In case p = 2, Theorem 7 has been shown by T. Murai [7].
He has also obtained a harmonic function as in Remark 8 in case p = n = 2.
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