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1. Introduction

In the n-dimensional Euclidean space R" (n=2), the Riesz potential of order
o of a non-negative function f in LP(R") is defined by

Ui(x) = Slx = yl*"f(y)dy,  xeRn,

where O0<a<n and 1<p<oo. Our first aim is to discuss the existence of radial
limits of UZ at a point of R”, which can be assumed to be the origin O of R"
without loss of generality. For this purpose we shall use the capacity C, ,, which
is a special case of the capacity C,,,, introduced by N. G. Meyers [4] and is
defined by

Ca,p(E) = inf "g":’ E c R~

the infimum being taken over all non-negative functions g € L?(R") such that
U4(x)=1forall x € E; in case ap=n, we assume further that g vanishes outside the
open ball with center at O and radius 2. In § 3, setting S={x € R"; |x| =1}, we shall

show that for a non-negative function fe LP(R")satisfying SI yl*P~r f(y)Pdy < o0,
(i) lim Ui(ré) = UL(0)

holds for ¢ € S except those in a Borel set with C, ,-capacity zero. Incase Ui(0)=
0, lim,_, U{(x)=UZ(0) by the lower semi-continuity of UZ, and hence (i)
holds for all £€ S. In this case, we shall investigate the order of infinity; in fact,
we shall show that if ap<n and f is a non-negative function in LP(R") with UZ #
00, then we have

lim r(»=eP)/pUL(ré) = 0 in case ap < n,
rio

1/p-1
ﬁ{% (103 ’,l._> ’ Ul(r&)=0 incase ap=n

for £€ S except those in a Borel set with C, ,-capacity zero. These results can
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be considered as an improvement of the following fact (cf. [2; Theorem IX, 7]):
Let U%# oo be the Riesz potential of order o of a non-negative (Radon) measure
p. Then there is a Borel set Ec S such that C,(E)=0,

lim U5(ré) = U3(0)
rio

and
lrig)n rmeUL(rd) = u({0})

for all £ € S\E, where C, denotes the Riesz capacity of order a.

As an application of the results obtained above, we shall study the existence
of radial limits of p-precise functions (see [9]) defined on a neighborhood G of
the origin. Since all p-precise functions on G are continuous if p>n, we are
interested in the case p<n. We shall show that if u is a p-precise function on
G satisfying

Salgradul-lxll‘"dx <o and SGlgrad ulP|x[P-"dx < oo,

then lim,,, u(ré) exists for £ e S except those in a Borel set with C, ,-capacity
zero. It will also be shown that for a p-precise function u on G, we have

lim r(=p)/py(ré) = 0 in case p <n,
rio

. 1 \1/p-1 .
11{% <log 7) u@ré =0 incase p=n

for £ € S except those in a Borel set with C, ,-capacity zero.

In the final section we shall be concerned with harmonic functions on a cone
of the form I'(a)={(x', x,)€ R"1xR'; |x'|<ax,, |x'|2+x2<1}, where a>0.
Our aim is to prove that if h is a harmonic function on I'(a) satisfying

(ii) Sr Igrad h|?g(|x])|x|?~"dx < oo,
(a)

then lim,_, o reray (%) exists and is finite for any a’ with 0<a’<a, where g is
a positive and non-increasing function on the interval (0, 1) such that

t dt
(iii) : goW‘T’— < 0.

Moreover we shall show that (iii) is necessary in the following sense: If g is a
positive and non-increasing function on (0, 1) such that ¢t~%g(f)~! is non-increas-

ing on (0, 1) for some & with 0<dé< p/2 and Slg(t)“llfl’“”t"ldt:oo, then we
0
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can find a harmonic function h on I'(a) satisfying (ii) such that lim,_,q h(0,...,
0, x,) does not exist. These are an extension of a result obtained by T. Murai [7].

The author wishes to express his thanks to Professor N. G. Meyers for his
valuable comments.

2. Preliminaries
Throughout this paper, let 0<a<n and 1<p<o. We define the capacity
C,,p as follows:

Cop(B) = inf|fl3,  Ec<R"

where the infimum is taken over all non-negative functions f in LP(R") such that
Uf(x)21for all xe E and | f||, denotes the LP-norm. We need another capacity:
Let G be a bounded open set in R* and define

Caz,p(E; G) = inf "f”; E c R~

where the infimum is taken over all non-negative functions f in LP(R"*) such that
f =0 outside G and U =1 on E.
Let us begin with

LeEmMMA 1. Assume ap<n. Let F be a compact set in a bounded open
set GeR". Then there is a positive constant M such that C, (E; G)<MC, ,(E)
whenever EcF.

ProoF. Let f be a non-negative function in LP(R") such that U{>1 on E. By
Holder’s inequality, we have

[ o= otemrondy < {f = sireman} g1,

where 1/p+1/p’=1. Hence there is £¢>0 such that | f||5 <e implies

sup {  [x — yl=nf0)dy < 112,
so that S |x — y|*~"f(y)dy=1/2 for xe E. From this it follows that C, (E;
G)= 2PC¢,:(E) whenever EcF and C, ,(E)<e. On the other hand, considering
the potential U(x)=SG|x— y|*~"dy, we easily see that C, (F; G)<co. Thus the
inequality of our lemma is satisfied with M =max {27, ¢"1C, (F; G)}.

CorOLLARY. Let E be a bounded set in R". Then C,,(E)=0 implies
C..,(E; G)=0 for any bounded open set G which contains E (the closure of E).
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Conversely, if C, (E; G)=0 for some bounded open set G such that EcG, then
C,.,(E)=0.

In the general case we have the following lemma, which can be proved in a
way similar to the above proof.

LeEMMA 2. Let G and G’ be bounded open sets in R*. Let F be a compact
subset of GNG'. Then there is a positive constant M such that C, (E; G)<
MC, (E; G') for any EcF.

CorOLLARY. If EcGnG’, then C,,(E; G)=0 is equivalent to C,(E;
G')=0.

Let G and G’ be open sets in R*. A mapping T: G—G’ is said to be Lip-
schitzian if there exists a positive constant M such that

Mlx — y| = |Tx — Ty| = M|x — y|

for all x and y in G; one refers to M as a Lipschitz constant for T.
We shall show

LeMMA 3. Let G be a bounded open set in R* and T: G-TG be a Lip-
schitzian mapping with Lipschitz constant M>0. Then for EcG,

N71C, )(E; G) = C, (TE; TG) = NC, ,(E; G)
with N=Mn+r@n=a),

ProoF. Let f be a non-negative function in LP(R") such that f vanishes
outside G and Uf>1 on E. Define the function

[ (T 12) for ze TG,

9(2) = )
otherwise.

Then we have for x€E,

fimx = zlerg@az 2 Me-{jx = yleng)ay 2 Moo
This gives

CooTE; TG) 5 Mrero{g(aydz < Mramom~{ fyypdy,

which implies that C, (TE; TG)SM*rZ»-o)C, (E; G). Thus the inequalities
in our lemma are satisfied with N =Mn"*p(2n-a)

For r>0 and EcR", we set rE={rx; xe E}. When T is the Lipschitzian
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mapping defined by Tx=rx for x € R, we obtain
LemmA 4. For r>0 and EcR", we have
Co,f(rE) = r"=2PC, (E) .
This follows with a slight modification of the above proof.

For a set Ec R", we denote by E the set of all points £ € S={xeR"; |x|=1}
such that ré e E for some r>0. For a>0 and x € R*, we denote by B(x, a) the
open ball with center at x and radius a. We shall write simply B(a) for B(O, a).

We are now ready to show our main lemma.

LEMMA 5. There exists a positive constant M such that for E < B(2)\B(1),
Cop(E; BG) S MC,(E; B(3).
Especially, in case ap<n, C, (E)<MC, (E) for E< B(2)\B(1).
ProOF. Set
G={x=((,x,)eR! x R; |x'| < x,, 1/2 < |x| < 3},
F={x=(,x)eR" ! x R || £x,/2,1 = |x| = 2}.

On account of the subadditivity of C, ,(:; G) (cf. [4]) and Lemmas 1, 2, it suffices
to show that

(1) C,(EnF;G =MC,(EnF;G)  withsome constant M > 0.
Consider the mapping T: G—TG defined by

x X
Tx = _I—xll—""’l_';fll—’ le), X = (Xg5ee0y Xp).

Note that TG={()’, y,) €R"1xR!; |y'|<1/{/2, 1/2<y,<3} and that T is
Lipschitzian. By Lemma 3, there is a constant M'>0 such that C, (T(En F);
TG) S M'C,(EnF; G). In the same way as in the proof of Lemma 1 in [6],
we can show that

C.{T(E 0 F)*; C) < C,(T(E n F); O),

where T(E n F)* is the projection of T(E n F) to the hyperplane {(x’, x,) € R*~1 x
RY; x,=1} and C={(x, x,); |x'|</2, —1<x,<3}. Noting that T(En F)*=
T(E n F) and using Lemmas 2 and 3, we have the required inequality (1).

CoroLLARY. Let r>1. If C,,(E; B(r))=0 for EcB(r|2), then C,E;
B(r))=0.
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Proor. Set E,=En (BQ2"r)\B(2™*'r)). Evidently C, ,(E,; B(r))=0. On
account of the subadditivity it suffices to show CM,(E‘,,; B(r))=0 for each n. Fix-
ing n we have C, ((2"*/r)E,; B(2"*!))=0 by Lemma 3 and hence C, (2"
r)E,; B(3))=0 by Lemma2. Lemma 5 yields C,,(E,; B(3))=0 and C,,(E,;
B(r))=0 follows from Lemma 2.

RemMARK 1. (i) If ap=n, then C, (R")=0.
(ii)) If ap>n and x° € R", then C, ,({x°}; B(2))>0.
@iii) If C, (E; B(2))=0, then E is of (n-dimensional) measure zero.
(iv) If ap=n, then C, (E; B(2))=0 implies that
[ C,)(E) =0 in case p < 2,
Cop-o(E) =0  for any ¢ with 0 < & < ap in case p > 2.
Here C, denotes the Riesz capacity of order f.

For (i) we have only to show C, ,(B(1))=0 on account of Lemma 4. For
a>1, define the function :

[yI="r(log|y)"t  if a <|y| < a?
S = [

otherwise.

Then we can find a positive constant M independent of a such that

[rordy < m{" s

and

fix = sirrpav 2 | sy 2 Mo

<yl

for all xe B(1). These imply C, ,(B(1)) =0.
To show (ii), we take fe LP(R") such that f vanishes outside B(2) and UZ(x%) =
1. Holder’s inequality gives

ts (o —yinsory s {f remay) s,
where 1/p+1/p'=1. Since p'(a—n)+n=p'(a—n/p)>0, C, ({x°}; B(2))>0.

The assertion (iv) is a consequence of a result of B. Fuglede [3]. The
assertion (iii) follows immediately from (ii) and (iv).

3. Radial limits of potentials at the origin

We first show



On the Radial Limits of Potentials 421

LEMMA 6. Let f be a non-negative measurable function such that
Slylﬁf(y)"dy<oo for a number . Then there is a Borel set EcS such that
C.(E; B(2))=0 and

lim r(»—ep+B)/p

{ IrE = y1=="f()dy = 0
rio [ré-yl=r/2

for every £Ee S\E. If, in addition, ap>n, then

lim x| o=+ Ix — Yl f()dy = 0.
x=0 [x=yl=slx1/2
ProoF. Set
e = Ix = yl=1()dy.
Ix=yls|x[/2
Set also ak=g |yl f(y)Pdy for each positive integer k, and choose
2-k-1g|y|<2-k+2

a sequence {b,} of positive numbers so that lim,_, b,=00 and 32 ,a;b,< 0.
Further we set

E, = {xeR"; 27% < |x| < 271, U(x) Z by !/p2k(n—er+p)/p}
for each k. Define the »_function
fQ27kz) if 1/2 £ |z] < 4,
9i(z) = .
otherwise.

Then we have for x € E;

U 5 2407 [24x — 2491=-"f (5)dy

2-k-1g|y|<2-k+2
= 2"‘“S|2kx — z|* g (2)dz,
so that

C.pl@By; B@) S 27*rb2ver+0) g, 2yrdz

< 2oopf( Yy}

2-k-1g|y|<2-k+2
x max {20+D8, 2(k=2)8}kn
< 4181g,b,.

This together with Lemmas 2 and 5 gives
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~~~—~
Ca,p(Ek; B(2)) = Ca,p(zkEk; B(2)) é Makav

where M is a positive constant independent of k. Setting E=N\%,\Ui,E,, we
see that C, ,(E; B(2))=0 and lim,,, U(r)=0 for £ S\E. If ap>n, then E, is
empty for k sufficiently large on account of Remark 1, (ii). Thus our lemma is
proved.

For a non-negative locally integrable function f on R", we also define

Ul) = {Ix = yienf )y, xeRe.

THEOREM 1. Let f be a non-negative measurable function such that
Slyl"’"'f(y)"dy< 00. Then there is a Borel set EcS such that C, (E; B(2))=
0 and

li:g UL(ré) = UL(0)  for every E€S\E.

If, in addition, ap>n, then lim,_, o, UL(x)=UZ(0).

Proof. We decompose U as F+ U, where

Fe) = Ix =yl 0y,

|x=y|>|x|/2

U = Ix = YOy,

Ix=yl=ix|/2

If UL(0)= oo, then lim,_,Uf(x)=co by the lower semicontinuity of UJ. Hence
it suffices to be concerned with the case UZ(0)<oo. In this case we have by
Lebesgue’s dominated convergence theorem

lim F(x) = U£(0)

x=+0
since |x—y|>|x|/2 implies |[x—y|>|y|/3. By the aid of Lemma 6 we conclude
our theorem.

COROLLARY. Let f be a non-negative function in LP(R") and set

A= {x"eR"; g [x0 — yl*P="f(y)Pdy = oo}‘

|x0-y|<1

Then to each x° € R™\ A, there corresponds a Borel set E,oc S such that C, (E,o;
B(2))=0 and

li}lg UL(x° + ré) = UL(x%)  for every &€ S\Eo.
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We remark here that 4 is empty in case ap=n and C,,(4)=0 in case ap<n;
ifap<n and p=2, then C,,(4)=0 implies C, ,(4)=0 in view of [3; Theorem 4.2].

ReEMARK 2. If we set A=\Up., E, in the proof of Lemma 6, then

lim Uf(x) = UL(0)
x’e‘;{"o\A

and

3 240m0C, (44 BR) < o, 4y = E, = A0 B2 \BR).

From this condition we can derive that lim,, C,_,(Zn\BG); B(2))=0. From this
the conclusion in Theorem 1 follows immediately.

ReEMARK 3. In case a<1 and ap<n, there is a non-negative function f
in LP(R") such that UZ(0)< oo but lim sup,,, UL(rf)= oo for every £€S.

To construct a function f with these properties, we set r;=2"/ and

‘ 2-am if j = 2™ and m is a positive integer,
N j = .
0 otherwise

for each positive integer j, where 1 <a<1/a. Define the function

jrie if (1 =spr; <yl <+ s)r;,
f(y)={ ! w !

0 otherwise.
Then we see that f has the required properties.
In case UZ(0)= oo, we shall investigate the order of infinity.

THEOREM 2. Let n—op+ B =0 and let f be a non-negative locally integrable
function such that U{# o0 and Slyl”f(y)l’dy< 0. Then there is a Borel set
EcS such that C, ,(E; B(2))=0 and

lim r (=ep+8)/2UL(rE) = 0 in casen — ap + f >0,
{0

r

. 1\1l/p-1
hf% (log 7) Uiré) =0 incasen —ap+ =0

for every Ee€ S\E. If, in addition, ap>n, then

lim |x|("=ep+B)PU(x) = O in casen — ap + B > 0,

x=0

1/p-1
lim (log T51¢T> "Uf(x) =0  incasen — ap + B = 0.

x-0
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REMARK 4. In the theorem we assumed Uf#oco. This is equivalent to
fa+ oy <eo.

Proor oF THEOREM 2. We decompose U/ as in the proof of Theorem 1.
In view of Lemma 6, we have only to show

1irr(1)|x|‘"‘“’+ﬁ)/PF(x) =0 incase n —ap + f >0,
] 1 \t/p-1 .
hng(log W) F(x)=0 incase n —ap + f =0.
Case 1: ap—n<f<n(p—1). Choosing y so that ap— f<y<n, we have by
Hoélder’s inequality

F(x) £ {g |x — yl7—"')’|ﬂf(y)”dy} 1/p

[x=pl>]x|/2
, , 1/p’
X {S |[x — y|p'@=vip)=n|y|=bp /de} s
lx=y[>[x]/2
where 1/p+1/p’=1. We can easily verify

S | |x — y|p*@=r/P)=n|y|=Fp'/P dy < const. |x|p’(¢-v/p—ﬁ/n) i
[x=y|>|x|/2 .

dividing the domain of integration into two parts, that is,
@) |x =yl > IxI/2, |yl < |xl/2, () |x = yl > Ixl/2, Iyl > [xI/2.

Hence we obtain

1/
|| r=er 7 F(x) < const. x| e {{ a0

[x=y|>|x]/2

= const. {Slx—y|>|x|/2< le il)’l) |y|ﬁf(y)de} ’

which tends to zero as x— 0 by Lebesgue’s dominated convergence theorem.

Case 2: B=n(p—1). In this case (n—ap+p)/p=n—a. We have

(n—ap+B)/p F = —n/p'+ﬁ/pg | x| ) d
I~ ) =1~ wesia sy N Tx =37 T
If |x| <1 and |x—y|>|x|/2, then |x|-|x—y| 1< 5(1+]y|)"L, so that |x|(—2r+B)/p x
F(x)—0 as x— 0 on account of Remark 3 and Lebesgue’s dominated convergence
theorem. :
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Case3: n—ap+f=0. Given ¢ such that 0 <e<1, we see that

S |x—yl*"f(y)dy tends to a finite numbers [yI=="f(y)dy as
[x=y1>x|/2,|y|>2 Iy|>e

x—0. On the other hand Hoélder’s inequality gives

1/p
S [x —yl*"f(y)dy {S IyI”f(y)"dy}
|x=y|>|x]/2,|y| se lyl=e

1/p’
< { |x =yl @7 | y|orirayl "
Ix=y|>[x|/2,|y| se

It is easy to show

[x — y|@=mp"|y|~#r'irdy < const. logL

Slx—yl>lxll2.|y|§c [x]

for any x € R* with |x| <1/2, if we divide the domain of integration into two parts,
that is, (iii) [x—y|>[xI/2, [y|=e, |yl <Ix]/2, (i) [x—y|>|x|/2, |y|=e, [y[Z]x]/2.
Hence

e 1 _llp’ a—n
h?-.%upoogm) Slx—y|>|x|/z.|y|§s1x—yl .f(y)dy

< const. {S Iyl"f(y)"dy}”p,
lylse
so that
. 1 \u/»r 1/p
lim sup (log I—) F(x) < const. {S |y18f( y)"dy} ,
x=0 x| Iylse

which implies lim,_,, (log 1/|x|)~1/?'F(x)=0. Thus the proof is now complete.

REMARK 5. Let a(r) be a non-increasing function on the interval (0, o)
such that lim,,o a(r)=00. Then there is a non-negative measurable function f

such that Slyl"f(y)"dy< o0, f=0 on R"\B(2) and

lim‘sup a(r)rr=er+BpUL(rf) = o0 in case n —ap + f > 0,
rio
1/p—-1
limlsup a(r)(log %) ? Ul(ré) = © incase n —ap+ B =0
rio

forevery £€S. In case f<n(p—1), fislocally integrable because of S| v f(y)rdy <
0, so that Remark 4 gives UL # co. '
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In case n—ap+p>0 we choose {k;} so that 2k;<k;,; and X 7,1/a(27*%) <
. We set b;=2*Akiirg(2-ks)~1/P and define f(y) by b; in 27k-1<|y|<
27%*1 and by O elsewhere. In case n—ap+f=0 we choose {k;} so that
2k;<k;,; and ¥ % 1/a(22%*)<o0. We set ¢;=a(272*1) and define

c;l/plyl-u(log |Jl;_|>_l/p if 2720 < |y| < 2%,
f(y)=
0 elsewhere.

In both cases it is easy to check that glylf’f(y)de< 0. In case n—ap+p>0

vl < |24 =y () dy

127kyg—y| <27kt

. bjz—(k;+1)¢§ lyla—ndy'

Iyl<1

It is immediate to see that a(2-%)2-ki(n=ep+P)/pUSL(2-*k1f)>00 as j—oo. In
case n—ap+f=0 write r; for 27%. For y with ri<|y|<r; we observe that
[2r3¢—yl/lyl<3. Hence

vl =vido 23] oo

ri<iyl
S'J dr

_ = ~1/pf1-1/p
o T~i/7 = const. cj!/Pk;=1Ip,
J log—r—

= const. cj!/?
It is easy to see that a(2-2ks+1)(log 22ks~1)1/P-1UL(2-2ks+1E) >0 as j— 0.

REMARK 6. Theorems 1 and 2 are the best possible as to the size of the
exceptional set.

In order to prove this fact, we let E be a set in S with C, ,(E; B(2))=0. If
we set Ey={k™!x; x € E} for each positive integer k, then C, ,(E,; B(2))=0 for
each k. By Lemma 2,

Cep(Ex; G =0,

where G,={xeR"; 1/(k+1)<|x|<1/(k—1)}. Hence there is a non-negative
function f, € LP(R") such that f,=0 outside G,, U{x(0)<27%, Sl yler-rf(y)Pdy <

2% and Ul«(x)=o0 for all xeE,. Setf=3Y2,f,. Clearly, Slyl’l""f(y)?dy<
oo and

lim sup AUL(#¢) = lim sup(log L)’U{(rf) =
rio rio r
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for any ¢ € E and any number f.

4, Radial limits of functions defined on a punctured ball

We say that a function u on an open set G=R” is locally p-precise if u is
p-precise on any relatively compact open subset of G; for p-precise functions,
see [9]. Note that for a locally p-precise function u on G, grad u is defined a.e.

on G and S | grad u|Pdx < oo for any relatively compact open subset w of G.

For the detaﬁs of p-precise or locally p-precise functions, see [8; Chap. IV].

In this section we are concerned with locally p-precise functions ¥ on the
punctured ball D=B(1)\{0}, and discuss the existence of radial limits of u at the
origin.

THEOREM 3. Let D={xeR"; 0<|x|<1} and let u be a locally p-precise
function on D satisfying

@) S | grad ul?|x[P~"dx < oo,
D

3) Sn | grad u|-|x|*~"dx < oo.

Then there are a (finite) constant ¢ and a Borel set Ec S such that Cy (E; B(2))=
0 and lim, ;o u(ré)=c for all £ S\E. In case p>n, u has a finite limit at the
origin.

Proor. First we consider the case p<n. In this case, u is p-precise on
B(1). Let ¢ be a function in CJ(B(1)) which equals one on a neighborhood of
the origin. Then @u is p-precise on R" and satisfies conditions (2) and (3). Hence
we may assume that u is p-precise on R” and has compact support in B(1). By
[8; Theorem 9.11] or [5; Theorem 3.1], we have the following integral representa-
tion of u: For some constants a;, i=1, 2,..., n,

— ¥ Xi—yi Ou
@ “) = £l 5t
holds except on a Borel set E; = B(1) with C, (E,; B(2))=0. Set

C"_ZaiS yi Ou

1™ 3y, V-

Then c is finite by (3). By Lebesgue’s dominated convergence theorem, we see
that '

'M=

S — )i Ou

—‘—n‘ =—d o,
myl> 2 1X =y Oy T ¢ X

i=1
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and by Lemma 6 that

2 réi—y; Ou
; =t
i=21 a'S|rg—y|§r/z|’f—J’|" ay; VY

IIA

z"|a,|§ |ré — p|i-n| gradu|dy — O asri0
i=1 Ir§=ylsr/2
for £ €S except those in a Borel set E, with C, ,(E,; B(2))=0. Since C,,p(El;
B(2))=0 by the Corollary to Lemma 5, our theorem for p<n is shown.

We next consider the case p>n. In this case u is continuous on D. Let
1<g<n. Then we have by Holder’s inequality

/ _4a(p—n) 1—-q/
{S lgradull’lxlp‘”dx}”{g | x| qp-q dx} qp<oo,
D D

S | grad u|9dx
D

IIA

which implies that u can be considered to be g-precise on B(1). As above we
may assume that u is g-precise on R" and (4) holds on B(1) except for a set E,
with C; ((E;)=0. Set for i=1,2,..., n,

( x;—y; Ou
) = S5 -

Let x°eD and consider B(x° ro)cD. We note that [gradu|P is locally
integrable, and hence that S . |x0—y|t~"| grad u|dy is finite by Holder’s
B(x%,ro)

inequality. Thus v; is finite-valued in D. To see that v; is continuous in D,

denote by g(x, y) the integrand of the integral for v;. Set I 1(x)=S

Ix=y|<|x°-x]/2
gx, y)dy and L=} 4 ydy. Sioce {yeR"; Ix—yl<[x°—
x|/} < B0, 2x—x0), |

I, = rlgraduldy — 0

1
S;!(xo,le—xol) [x0—y|m
as x—x% We see also that I,(x)—v,(x°) by Lebesgue’s dominated convergence
theorem. Thus vy(x)=1I,(x)+I,(x)-v(x°) as x—»x° Hence (4) holds on D
with no exceptional set. Since S |x—y|t~"| grad ul|dy—0 as x—0

Ix=yl=|x]/2
by Lemma 6, v; is continuous at the origin. These imply that u has a finite

limit at the origin.

THEOREM 4. Let p—n<pB<n(p—1) and let u be a locally p-precise function

on D such that S | grad u|?|x|fdx < oco. Then there is a Borel set EcS such that
D
Cy,(E; B(2))=0 and
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lim re=p*B)py(rE) = 0 incasen—p+ >0,
rio

. 1\1/p-1 ,
113:11 log 7) u(ré) =0 incasen—p+ =0
rio

for every Ee S\E.

Proor. Choose g such that 1<q<min {p, np/(n+B)}. Then Bq/(p—q)<
n. By Hélder’s inequality we have S |grad u|’dx<o0. As in the previous
proof, we may suppose that u is a q-precils)e function on R* with compact support,
and hence (4) holds a.e. on R*. Since | grad u|? is locally integrable on D, (4)

holds on D except for E' with C, ,(E’; B(2))=0 (cf. [8; Theorem 9.10]). We
can now apply Theorem 2 to obtain the desired result.

REMARK 7. Condition (3) is necessary in Theorem 3. In fact, the function
u(x)=(log (2/|x])) satisfies (2) if ¢ is chosen so that 0<e<1—1/p, but u(x)— oo
as x—0. We shall show below, however, that if 4 is a harmonic function on D
satisfying (2), then u has a finite limit at the origin.

THEOREM 5. Let h be a function harmonic on D. Then h can be extended
to a harmonic function on B(1) if one of the following conditions is fulfilled:

(2)1 S |grad hIPIxIP(”/P'-I)dx < o0,
D

3)’ S | grad h|-|x|"tdx < oo,
D

where 1/p+1/p'=1.

Proor. We shall prove only that h can be extended to a harmonic function
on B(1) if (2)' is satisfied; the case when (3)’ is satisfied can be proved similarly.
Assume that (2)’ is satisfied. Since 0h/0x;, i=1,..., n, are harmonic on D,

oh

———(y)dy,
B(x,|x1/2) 0%i ()dy

Oh
3 (0 = Milx|=

where M, is a constant independent of x € B(1/2)\{0}. From Hoélder’s inequality
it follows that :

oh
|2, ()| = Malx11mah; ),
where M, is a positive constant independent of x and

ah; » = {{ | grad hle |y |eir =0y},

0<|y|<2|x]|
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Setting K(x)=1log (1/|x|) in case n=2 and =|x|?>~" in case n=3, we note that for
g, 0<e<1/2,

" |grad h(rl—;—|>l dr}

lil:l_’soup K(x) ' |h(x)]| £ 1i1:1‘1_’soup K(x)'l{lh(aT;C_])l + S

< 3M,A(h; ¢),

which implies that lim,_,, K(x)"'h(x)=0. Now our theorem follows from a
result in [1; p. 204].

5. Radial limits of functions defined on a cone

For positive numbers a and b, we set
I'(a, b) = {(x', x,) e R""1 x RY; [x'| < ax,, |x'|*> + x2 < b?}.
We shall write simply I'(a) for I'(a, 1).

LeEMMA 7. Let g be a positive and non-increasing function on the interval
(0, 1) such that

1 dt
®) J gt < .

where 1/p+1/p'=1. If f is a non-negative measurable function on B(1) satis-
fying

[, . PaxDixle=rdx < e,
B(1)

then S J(x)|x|~rdx < c0.
B(1)

This follows immediately from (5) and Hélder’s inequality.

THEOREM 6. Let g be as in Lemma 7. Let u be a locally p-precise func-
tion on I'(a) such that

© f.  leadulrg(xixle—ndx < oo.
I'(a)

Then there are a constant ¢ and a Borel set EcS such that C, (E; B(2))=0
and lim, ;o u(ré)=c for all ¢ e S nI'(a, 2)\E.

ProoF. It is convenient to adopt the polar coordinates (r, ®)=(r, 0,,...,
0,-,) so that r=0,0<6,=<m=,...,0=0,_,=<7n,0=6,_,<2rn and
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X, =rsinf;---sinf,_,sinf,_,,

X, =rsinf;---sinf,_,cosb,_,,
X,-1 = rsinf; cos6,,

X, = rcos 0.

Regard u as the function of (r, 6,,..., 6,_,) and note

St i L0 OF 4 i 0f -

1 2( du 2712
+ (rsin 0,---sin 0,,_2) { 50, (s 3)} ]

x g(r)r*~1sin*~20,.--sin 0,_,drd0,---d6,_, < oo.

Let a’=nr/(2 tan~! a) and define the function
v(x) = o(r, 04, 0,,..., 0,-1) = u(r, 0,/a’, 6,,..., 0,_,)
for 0<r<l1, 0<6,<n/2, 0£60,=<m,..., 050,_,<n and 0<6,_,<2rn. Since
M~1sin (0,/a")<sin 0; M sin (0,/a’) if 0<0,<n/2 for some positive constant
M, S | grad v|Pg(|x|)|x|?~*dx < 00, where B(1)*={x=(x', x,) € B(1); x,>0}.
B(1)*

This and Hélder’s inequality give SB(b | grad v|?%dx <o for 1<gq<min {p, n}
)+
and 0<b<1. According to [8; Theorem 5.6], the function

v(x) for x e B(b)*

#(x) = [
u(x', —x,) for (x, x,) e B(b)~

can be extended to a g-precise function on B(b), where B(b)~={x=(x’, x,) €
B(b); x,<0}. The resulting function satisfies condition (6) with I'(a) replaced
by B(b). Therefore, by Lemma 7 and Theorem 3 we can find a constant ¢ and
a Borel set EcS such that C, ,(E; B(2))=0 and lim,,, v(ré)=c for all £eSn
B(2)*\E. Denoting by E’ the set of all points x such that (r, a’0,, 6,,..., 6,_,)
is the polar coordinates of a point in E if (r, 0,,..., 6,_,) is the polar coordinates
of x, we see by Lemma 3 that C, ,(E’; B(2))=0. Thus our theorem is proved.

6. Angular limits of harmonic functions

In this section we shall study the existence of angular limits at the origin of
harmonic functions defined on the cone I'(a).

THEORBM 7. Let g be as in Lemma 7. Let h be a harmonic function on
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I'(a) with a>0 satisfying (6). Then for any a’ with 0<a’<a, lim,_,¢ xcr() h(x)
exists and is finite.

ProoF. By Theorem 6, there is o*eSnI(a;2) such that lim,,, h(ro*)
exists and is finite. We denote the limit by ¢. For a number a’ such that0<a’<
a and {re*; r>0} nI'(a’)#@, we shall show that lim,_, ¢ .oy h(x) exists and
equals ¢. Choose d>0 such that B(x, d|x])=I(a) for xeI'(a’, 1/2). Then for
xel(a', 1/2)

()| = My(dl )

oh
——d.
SB(x.d|x|) aJ’j

s aaix{{  lgradallylerayl”

B(x,d|[x|)

% {S Iyl "'(""’)/"dy} 1/p’ ,
B(x,d|x|)

where M, is a constant independent of x. Note that

|y|P=p)Pgy < M2|x|p‘(n-P)/pS dx = M| x|? =D

SB(x.dlxl) B(x,d|x])

for some constants M, and M, independent of x. For xeI'(a’), set x*=|x|c*
and denote by L, the line segment between x and x*. If xeI'(a’, 1/2), then

[A(x) — A(x*)| S |x — x*lsgplgradhl s 2les§plgradhl

, — 1/
s 24,57 a7 { |grad hlo[y|7-rdy} "

I'(a,(1+d)|x])
—0 asx — 0.
Therefore lim,_, ¢ yry H(x)=c. Thus the theorem is proved.

Finally we shall discuss the sharpness of Theorem 7. For simplicity we
shall write I instead of I'(a).

THEOREM 8. Let g be a positive and non-increasing function on the interval
(0, 1) such that

di
@ Joaat =

and that t=%g(t)~! is non-increasing on (0, 1) for some 6 with 0<d&<p/2, where
1/p+1/p’=1. Then there is a harmonic function h on I" such that h satisfies
(6) but lim,_,, h(0,..., 0, x,)=c0.
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Proor. First we deal with the case n=2. Define the functions a, b and
f as follows:

: di
atr) = g + 1
b(r) = log a(r),

b(r)z—l

i , 0<e<1/p.
rzg(r)l"“’a(r)<log-r— + 1)

fir) =

We see that a(0)=o0 by (7). We set = {—x; xeI'} and consider the function

hx) = | log I f(IyDdy,  xel.

Note that h is harmonic on I' and limx2 10 B(0, x,)=00. We shall show that h
satisfies (6).

Since inf {|x—y|(|x|+]|yD)~t; xe T, yef}>0, there is a positive constant
M, such that for xe T,

AL
Igrad h(x) | =< Mlgo—m_"—rdr'
Letting I,(s)= S; f@ (s+r)"trdr and I,(s)= Sl f(@) (s+r)"'rdr, we estimate them

separately. Hereafter M,, M,,..., will stancsi for constants. By Hélder’s in-
equality, we have for 1/p’'<f<1

s 1/p’ ((s (e—1) 1/
I(s) < S—I{S 1a'r - } p {So b(r)? 1a'r (1—p)p} 4
°(tog 5 + 1) rg ()" a((log 5 + 1)
-Bp")p" (s (-1 1/
- Mzs“(log”;‘ + 1)(1 ol {S R dr (l—ﬂ)P} "

0 rg(r)"'a(r)P(log—i— + 1)
Hence

[ 1.0xbraQxixir—2ax

= MaS:{SZ rg(,)p'a(f)(pr():;::{_d; 1)(1-ﬂ)p }
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(1-8p")/p’
X g(s)s‘(log% + 1)’ i ds

= | 1 b(r)pe-1) 1 g(s)ds
_M3S ] {S - }dr
® rg(r)? a(r)® log% + 1)(1 Br |), s(log—i— + 1)p(ﬂ 175

1 (1-8)p
log— +1
a-p» g(’){ (r1~ﬁ)2, }d’

1 B(r)pCe-1)
0 rg(r)"'a(r)”(log —1— + 1)

= Msg

1 p(rypte-1) - "
S M o iwragy 4 = MO

= M b(1)pe=DH1 < oo,

For I,, we have

1 dr yp (L b(r)Pe—Vdr r
I(s) £ {Ss S @=17p=23]p)p’ } {Ss ri*28g(r)P a(r)? }

§M5s—1+26/p{ 1 S‘ b(r)*¢~Vdr }“F

s°g(s) ) r**og(r)?r’/ra(r)?
Consequently,

NN . S

1
0

(e—1) r
= M7Sl by {Sos""ds}dr

o r'*2g(r)?"Pa(r)?

1 p(r)ple—D)

o 79(r)7 Tragr) 9" < ®-

< M76‘1S

Thus we obtain the theorem for n=2.
Next we are concerned with the case n=3. Let a and b be as above. Set

b e—1 ,
fr)= r g(f;g'/pa(r) , 0<e<l1/p,

and consider the function
W) = { 1% =y f(yDdy, xer.

Note that h is harmonic on I' and lim, ;4 h(0,..., 0, x,)=00. For xeI and
j=L..,n,
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)| s =D 1x =y 17y Day

1
< M8S0(|x| + 1) () rAdr,
As above we write

10 = [0 + ryrriar,

I(s) = S:f(r) (s + HI=mrr-1qr,

and estimate them separately. Take a number § such that 1<fp’<n—1. Then

0% n=2-8)p’ 1/p’ ((s b(r)p(z—l)dr 1/p
Il(s) < st {gor( 2-p)p dr} {So ,(1—ﬂ)pg(,.)p'a(,.)p }

- s p(rype-Lgr 1/p
< Mos~t il ar

Hence

AN

1((s  B(r)pe-Ddy o
= M. {{\ 7aFg et 905 s

1 b(r)r-1) 1 —pp-2
= Muo| saetmgmagyr ||, 00T tds}dr

1 p(r)re-1)
=M “So—“rgw Tra(ryp 9 < -

In a way similar to the case n=2, we also obtain

[ 1:0xrgQxDIxtr=rdx < co.
The proof is now complete.

REMARK 8. Let g be as in the theorem. Then by modifying the harmonic
function h in the proof of the theorem, we can construct a harmonic function
h on I such that h satisfies (6) but lim,_y, #(0,..., 0, x,) does not exist.

For this purpose, let a, b, f be as in the proof and set
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log—l—iT, in case n = 2,

|x|2-n in case n # 2.

We write 4*={(x, x,)eR"!xR!; x’=0 and x,>0}. Let xNed* and
O<aj<1 be arbitrary. We can find x® e ¢+ n B(1/2) and «}, «3>0 such that
oy <oy <of,

(. KO- piidy st
faB(a))

2

and

(s nur KD = fUDdy 2 | KGx® = y)f(yDdy + 2
FnB(ay\B(ay) FB(a))

We proceed inductively and obtain {x()}, {«;} and {a}} such that

xWe g+ n BAfi), 0 < af <o) <oy,
(... KO- pidy s1
rnB(a)

and

Ke® = pfhdy 2 [, KO = »f(iyddy +2

gfna(a;)\n(a;’) o«

for any i and j such that i=2 and 1< j<i.
Define the function

fo) =

[ (= Dif(y)  if yef and o < |yl < o},
otherwise

and set ﬁ(x)=SfK(x— ) J(»)dy for xeI'. 1t is clear that i satisfies (6). Fur-
thermore A(x(2))=1 and A(x2i-D)< —1 for each j. This implies that i has
the desired properties.

REMARK 9. In case p=2, Theorem 7 has been shown by T. Murai [7].
He has also obtained a harmonic function as in Remark 8 in case p=n=2.
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