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1. Introduction and statement of results

Let R" (n=2) be the n-dimensional Euclidean space. A point x of R* will
be written also as (x’, x,) e R""1x R, We denote by R? the set of all points
x=(x', x,) € R" such that x,>0, and by R} its boundary dR%. For a function
u € C*(R?), we define the gradient of order k by

Vku(x) = (Dyu(x))|y|=k’ XE€ R-’l'-9

where y=(y4,..., y,) is a multi-index with length |y|=37,y; and D*=(0/0x)"!
--«(0/0x,)*». A function u e C®(R?) is said to be polyharmonic of order m in
R? if A"u=0 on R%, and to have a non-tangential limit at £ € R} if

lim  u(x)
x=+&
xel'(;a)

exists and is finite for all a>0, where 4™ is the Laplace operator iterated m times
and
r(é; a) = {x = (xl’ xn)ER-':-; I(x" 0) - 6' < axy, lx - él é 1}'

Our first aim is to show the following theorem:

THEOREM 1. Let k and m be positive integers such that k=m, 1<p<oo
and —oo<a<kp. If u is a function polyharmonic of order m in R% which
satisfies

SSGIV ku(x’, x,)|Pxedx’'dx, < oo for any bounded open set G = R},

then there exists a Borel set Ec R} such that By_,, (E)=0 and u has a non-
tangential limit at each point of R§—E.

Here By , (>0) is the Bessel capacity of index (B, p) (cf. [2]). Theorem 1
is a generalization of a result of the first author [3; Theorem 1] (k=m=1). In
case —1<a<kp—1, Theorem 1 is the best possible as to the size of the excep-
tional set in the following sense:
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THEOREM 2. Let 1<p<oo, k be a positive integer and —1<a<kp—1.
Let E be a subset of Ry with By_,, (E)=0. Then there is a harmonic function

u in R% such that SR"IV"u(x)IPx:dx<oo and lim, ;. gn u(x)=c0 for any {€E.

2. Proof of Theorem 1

To prove Theorem 1, we need the following lemmas.

LeEMMA 1. Let >0 and f be a non-negative function in LP(R"), 1<p<
00, with compact support. Then

flx = yprso)ay = o0 ifandontyif (g6 = y)f )y = 0

for x € R, where g, denotes the Bessel kernel of order B (cf. [2]).

Proor. If 0<pf<n, then for any compact set K in R", there exists a con-
stant ¢, >0 such that

crllx|fm < gg(x) £ cqlx|fm whenever xeK,

so that the lemma easily follows in this case. If f=n, then gz e L?'(R") for any
p'>1, and hence

fix = yensoddy < o and {gyx = S Gy < 0

for all xe R*. For the properties of Bessel kernels, see e.g. [2].
In what follows, c,, c,,..., are positive constants.
LEMMA 2. Let b>0, i be a positive integer and u e C*(R%).
11 (= ety < oo, then |l = yinIPu(yldy < co.
r(g:b) r(;b)
Proor. Let y be a multi-index with |[y|=i. Then
Dru(y) = — S‘(a/as) [D'u( + so)lds + D'u(é + o),
where r=|¢—y| and o=(y—&)/r. Hence it follows that
1
7)) 5 eof ({17410 + solds + 171ue + o)1}

Therefore,
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[, . &= s ug)idy
re;p)

< czgs(b){glr"‘”r”“dr}lV‘u(C + 0)|dS(o)

0o

olJr

+ czgs(b)[gl{glll"“u(é + sa)[ds}r’""r"“dr}dS(a)
< c3|:A,, + gs(b){glsfwmu(c + sa)lds}dS(a):I

= A+ [ - ypipeay |,

I (3;b)
where S(b)={xel'(0; b); |x|=1} and A,,=Ss(b)lV"u(é+a)|dS(a)<oo. The

proof of our lemma is thus complete.

Proor oF THEOREM 1. Let k, m, p, a, u be as in Theorem 1. Given

N>1, let us consider the existence of non-tangential limits of u at points of By=
{£eRE; [EI<N}. Set
|7 *ku(x)|xa/?, if x = (x’, x,) e R? and |x| < 2N,
(x) =
, otherwise.

Then fe LP(R") by our assumption. If we set

E= {xeR"; Slx = y|elrmnf(y)dy = 00},

then By_,;, ,(E)=0 on account of Lemma 1. Let {€ By—E and a>0 be fixed.
Since there is a constant ¢, >0 such that x,<|é—x|<c¢,x, for x=(x', x,) e ['(¢;
b), b>0,

[, 16 = ylmiPrueldy < e e = ypr=sen )y < oo,
r(:b) @b

Hence Lemma 2 gives

k
) >

, S 1€ = yl=Ptu(y)ldy < oo
i=1JI(§;b)

for any b>0. By (1), we have

Pu + ro)ldrtdse) = {  1E = yirriru)idy < o,
S(a) LJO a)



412 Yoshihiro MizuTtA and Bui Huy Qui

so that there is o* € S(a) with A,.=$:IV u(é+ro*)|dr<oo. Since S;l(a/ar)u(6+

ro*)|dr < A, lim, o u(é+ro*) exists and is finite.
We shall show that x,|Pu(x)|—0 as x—¢&, xeI'(€; a). In view of [1; (15)],

@) o(x) ='"§(—‘.1—)'p2‘—1—5 ( 0 )‘v(x + po)dS(o)
=1 i! ,Js apz

for any v polyharmonic of order m in R%, where B(x, p)={y € R"; |x—y|<p}

<R?, S=0B(0, 1) and w, is the area of S. Since p2i(d/dp?)' is of the form

X %-0a;p’(0/0p)’, a; being constants depending only on i and j, (2) can be

written as

v(x) =T§a;p'gs<—£’—>iv(x + po)dS(o)

with constants a; depending only on m and n. Multiplying both sides by p»~!
and integrating them with respect to p over the interval (0, x,/2) then yield

_m—l - i— i _ {
®) o) =Gaimr| (DY e)lx -yl

where x=(x’, x,) € R% and a} are constants depending only on m and n. Apply-
ing (3) with v=0u/0x;, j=1,..., n, we obtain

xalPu(a) < e 3 3t 1P iu(y)ldy
i=1 |x=y|<xn/2

i=1 S lx—y] <xn/2

A

& = "7 tu(y)ldy

—0 asx— & x=(x', x)el'(£; a)
on account of (1), because we can find b>0 such that B(x, x,/2)cI'(¢; b) when-
ever xeI'(¢; a).

For x=(x', x,) e I'(¢; a), denote by x,. the point on the half line {£+ro*;
r>0} whose n-th coordinate is equal to x,, and by 4(x) the line segment between
x and x,. It follows that

lu(x) - u(xc‘)' =< |x - xa‘l sup !l(x)qul é 2axn sup l(x)IVul

tends to zero as x—¢, x=(x', x,)e I'(¢; a). Therefore lim,_,; ver(;q) U(x) exists
and is finite. This implies that u has a non-tangential limit at £ e By—E. Since
N is arbitrary, our theorem is proved.
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3. Proof of Theorem 2

By our assumption that By_,, (E)=0, there is a non-negative function
feLp(R") such that g . /(6— Nf()dy=oo for every Ee E. We denote by
—a/p

F the restriction of S (x=y»)f(y)dy to R*"1,i.e.,
Gk—alp

Fo) =, @ 0= 0oy XeR.

Gk-

We note that the function F belongs to the Lipschitz space A5-?(R*"!) with
p=k—(ax+1)/p>0 (cf. [5; Chap. VI, §4.3]). Let u be the Poisson integral of
F with respect to R%. By the fact in [5; p. 152] we have

S:["ﬁ"_p{gm-. K ain )kou(X', X5)

ko being the smallest integer greater than f. This implies

({0 o | () e 2

for any positive integer k' greater than B, which is equivalent to

r 1/p7p
dx’} :| x;ldx, < oo,

p 1/p7p
dx'} ] x;ldx, < o

S |7% u(x) | P20 -D1dx < oo,
x;

by the observation given after Lemma 4’ in [5; Chap. V]. In particular, taking
k'=k (> p), we obtain

SRnIV"u(x)IPx:dx < .

Moreover we see from the property of the Poisson integral and the lower semi-
continuity of F that lim,_, ; ,.g» u(x)=co for every { € E. Thus u satisfies all the
conditions in the theorem.

4. Remark
In this section, we shall write a point x € R* as
x = (x’, x")eR" x R,

where n’ and n” are positive integers such that n”>2 and n=n'+n". We shall
consider functions # polyharmonic of order m in R*—R" x {O} satisfying the
condition of the form:
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4) gSGIV kulp|x"|*dx'dx" < oo

for any bounded open set G = R* — R* x {0}.
The following theorem can be proved in the same way as Theorem 1:

THEOREM 1'. Let k, m, p and o be as in Theorem 1. Let u be a function
polyharmonic of order m in R"—R"™ x {0} which satisfies (4). Then we can
find a Borel set ECcR™ x {0} such that B,_,, (E)=0 and if £e R" x {O}—E,
then

lim u(x’, x")
x"=0
(x',x")el*(¢;a)

exists and is finite for any a>0, where
r#¢;a)={x= (' x")eR";|(x,0) = ¢ <alx"|, |x — ¢ £ 1}.

In case kp—a<n", our theorem does not give any new information since
By _4/p.,(R™ x {0})=0; however, under the additional assumption that «=0 and
(2m—k)p/(p—1)<n", any function polyharmonic of order m in R*"—R" x {0}
and satisfying (4) can be extended to a function polyharmonic of order m in R®
(cf. [4]).

In case kp—a>n", we do not know whether Theorem 1’ is the best possible
as to the size of the exceptional set or not.
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