On the Existence of Non-tangential Limits of Polyharmonic Functions

Yoshihiro MIZUTA and Bui Huy QUI (Received January 20, 1978)

1. Introduction and statement of results

Let R^n $(n \ge 2)$ be the *n*-dimensional Euclidean space. A point x of R^n will be written also as $(x', x_n) \in R^{n-1} \times R^1$. We denote by R^n_+ the set of all points $x = (x', x_n) \in R^n$ such that $x_n > 0$, and by R^n_0 its boundary ∂R^n_+ . For a function $u \in C^{\infty}(R^n_+)$, we define the gradient of order k by

$$\nabla^k u(x) = (D^{\gamma} u(x))_{|\gamma|=k}, \qquad x \in \mathbb{R}^n_+,$$

where $\gamma = (\gamma_1, ..., \gamma_n)$ is a multi-index with length $|\gamma| = \sum_{i=1}^n \gamma_i$ and $D^{\gamma} = (\partial/\partial x_1)^{\gamma_1} \cdots (\partial/\partial x_n)^{\gamma_n}$. A function $u \in C^{\infty}(R^n_+)$ is said to be polyharmonic of order m in R^n_+ if $\Delta^m u = 0$ on R^n_+ , and to have a non-tangential limit at $\xi \in R^n_0$ if

$$\lim_{\substack{x \to \xi \\ x \in \Gamma(\xi;a)}} u(x)$$

exists and is finite for all a>0, where Δ^m is the Laplace operator iterated m times and

$$\Gamma(\xi; a) = \{x = (x', x_n) \in \mathbb{R}^n_+; |(x', 0) - \xi| < ax_n, |x - \xi| \le 1\}.$$

Our first aim is to show the following theorem:

THEOREM 1. Let k and m be positive integers such that $k \ge m$, $1 and <math>-\infty < \alpha < kp$. If u is a function polyharmonic of order m in R^n_+ which satisfies

$$\iint_{G} |\nabla^{k} u(x', x_{n})|^{p} x_{n}^{\alpha} dx' dx_{n} < \infty \quad \text{for any bounded open set } G \subset \mathbb{R}_{+}^{n},$$

then there exists a Borel set $E \subset \mathbb{R}_0^n$ such that $B_{k-\alpha/p,p}(E) = 0$ and u has a non-tangential limit at each point of $\mathbb{R}_0^n - E$.

Here $B_{\beta,p}$ ($\beta > 0$) is the Bessel capacity of index (β , p) (cf. [2]). Theorem 1 is a generalization of a result of the first author [3; Theorem 1] (k=m=1). In case $-1 < \alpha < kp-1$, Theorem 1 is the best possible as to the size of the exceptional set in the following sense:

THEOREM 2. Let 1 , <math>k be a positive integer and $-1 < \alpha < kp-1$. Let E be a subset of R_0^n with $B_{k-\alpha/p,p}(E) = 0$. Then there is a harmonic function u in R_+^n such that $\int_{R_+^n} |\nabla^k u(x)|^p x_n^\alpha dx < \infty$ and $\lim_{x \to \xi, x \in R_+^n} u(x) = \infty$ for any $\xi \in E$.

2. Proof of Theorem 1

To prove Theorem 1, we need the following lemmas.

LEMMA 1. Let $\beta > 0$ and f be a non-negative function in $L^p(\mathbb{R}^n)$, 1 , with compact support. Then

$$\int |x-y|^{\beta-n}f(y)dy = \infty \quad \text{if and only if} \quad \int g_{\beta}(x-y)f(y)dy = \infty$$

for $x \in \mathbb{R}^n$, where g_{β} denotes the Bessel kernel of order β (cf. [2]).

PROOF. If $0 < \beta < n$, then for any compact set K in \mathbb{R}^n , there exists a constant $c_1 > 0$ such that

$$c_1^{-1}|x|^{\beta-n} \le g_{\beta}(x) \le c_1|x|^{\beta-n}$$
 whenever $x \in K$,

so that the lemma easily follows in this case. If $\beta \ge n$, then $g_{\beta} \in L^{p'}(\mathbb{R}^n)$ for any p' > 1, and hence

$$\int |x-y|^{\beta-n} f(y) dy < \infty \quad \text{and} \quad \int g_{\beta}(x-y) f(y) dy < \infty$$

for all $x \in \mathbb{R}^n$. For the properties of Bessel kernels, see e.g. [2].

In what follows, c_2 , c_3 ,..., are positive constants.

LEMMA 2. Let b>0, i be a positive integer and $u \in C^{\infty}(\mathbb{R}^n_+)$.

$$If \quad \int_{\Gamma(\xi;b)} |\xi-y|^{i+1-n} |\mathcal{F}^{i+1}u(y)| dy < \infty, \ then \int_{\Gamma(\xi;b)} |\xi-y|^{i-n} |\mathcal{F}^{i}u(y)| dy < \infty.$$

PROOF. Let y be a multi-index with |y| = i. Then

$$D^{\gamma}u(y) = -\int_{r}^{1} (\partial/\partial s) \left[D^{\gamma}u(\xi + s\sigma)\right] ds + D^{\gamma}u(\xi + \sigma),$$

where $r = |\xi - y|$ and $\sigma = (y - \xi)/r$. Hence it follows that

$$|\mathcal{F}^{i}u(y)| \leq c_{2} \left\{ \int_{r}^{1} |\mathcal{F}^{i+1}u(\xi + s\sigma)| ds + |\mathcal{F}^{i}u(\xi + \sigma)| \right\}.$$

Therefore,

$$\begin{split} \int_{\Gamma(\xi;b)} &|\xi - y|^{i-n} |\mathcal{F}^{i} u(y)| dy \\ &\leq c_{2} \int_{S(b)} \left\{ \int_{0}^{1} r^{i-n} r^{n-1} dr \right\} |\mathcal{F}^{i} u(\xi + \sigma)| dS(\sigma) \\ &+ c_{2} \int_{S(b)} \left[\int_{0}^{1} \left\{ \int_{r}^{1} |\mathcal{F}^{i+1} u(\xi + s\sigma)| ds \right\} r^{i-n} r^{n-1} dr \right] dS(\sigma) \\ &\leq c_{3} \left[A_{u} + \int_{S(b)} \left\{ \int_{0}^{1} s^{i} |\mathcal{F}^{i+1} u(\xi + s\sigma)| ds \right\} dS(\sigma) \right] \\ &= c_{3} \left[A_{u} + \int_{\Gamma(\xi;b)} |\xi - y|^{i+1-n} |\mathcal{F}^{i+1} u(y)| dy \right], \end{split}$$

where $S(b) = \{x \in \Gamma(O; b); |x| = 1\}$ and $A_u = \int_{S(b)} |\nabla^i u(\xi + \sigma)| dS(\sigma) < \infty$. The

proof of our lemma is thus complete.

PROOF OF THEOREM 1. Let k, m, p, α , u be as in Theorem 1. Given N > 1, let us consider the existence of non-tangential limits of u at points of $B_N = \{\xi \in R_0^n; |\xi| < N\}$. Set

$$f(x) = \begin{cases} |\mathcal{F}^k u(x)| x_n^{\alpha/p}, & \text{if } x = (x', x_n) \in \mathbb{R}_+^n \text{ and } |x| < 2N, \\ 0, & \text{otherwise.} \end{cases}$$

Then $f \in L^p(\mathbb{R}^n)$ by our assumption. If we set

$$E = \left\{ x \in \mathbb{R}^n; \int |x - y|^{k-\alpha/p-n} f(y) dy = \infty \right\},\,$$

then $B_{k-\alpha/p,p}(E)=0$ on account of Lemma 1. Let $\xi \in B_N - E$ and a>0 be fixed. Since there is a constant $c_4>0$ such that $x_n \le |\xi-x| < c_4 x_n$ for $x=(x', x_n) \in \Gamma(\xi; b)$, b>0,

$$\int_{\Gamma(\xi;b)} |\xi - y|^{k-n} |\nabla^k u(y)| dy \le c_4^{\lfloor \alpha \rfloor/p} \int_{\Gamma(\xi;b)} |\xi - y|^{k-\alpha/p-n} f(y) dy < \infty.$$

Hence Lemma 2 gives

(1)
$$\sum_{i=1}^{k} \int_{\Gamma(\xi;b)} |\xi - y|^{i-n} |\mathcal{F}^{i} u(y)| dy < \infty$$

for any b>0. By (1), we have

$$\int_{S(a)} \left\{ \int_0^1 |\nabla u(\xi + r\sigma)| dr \right\} dS(\sigma) = \int_{\Gamma(\xi;a)} |\xi - y|^{1-n} |\nabla u(y)| dy < \infty,$$

so that there is $\sigma^* \in S(a)$ with $A_{\sigma^*} = \int_0^1 |\nabla u(\xi + r\sigma^*)| dr < \infty$. Since $\int_0^1 |(\partial/\partial r)u(\xi + r\sigma^*)| dr \le A_{\sigma^*}$, $\lim_{r \to 0} u(\xi + r\sigma^*)$ exists and is finite.

We shall show that $x_n | \mathcal{F}u(x) | \to 0$ as $x \to \xi$, $x \in \Gamma(\xi; a)$. In view of [1; (15)],

(2)
$$v(x) = \sum_{i=1}^{m-1} \frac{(-1)^i}{i!} \rho^{2i} \frac{1}{\omega_n} \int_{S} \left(\frac{\partial}{\partial \rho^2}\right)^i v(x + \rho \sigma) dS(\sigma)$$

for any v polyharmonic of order m in R_+^n , where $B(x, \rho) = \{y \in R^n; |x-y| \le \rho\}$ $\subset R_+^n$, $S = \partial B(0, 1)$ and ω_n is the area of S. Since $\rho^{2i}(\partial/\partial \rho^2)^i$ is of the form $\sum_{j=0}^i a_j \rho^j (\partial/\partial \rho)^j$, a_j being constants depending only on i and j, (2) can be written as

$$v(x) = \sum_{i=0}^{m-1} a_i' \rho^i \int_{S} \left(\frac{\partial}{\partial \rho} \right)^i v(x + \rho \sigma) dS(\sigma)$$

with constants a_i' depending only on m and n. Multiplying both sides by ρ^{n-1} and integrating them with respect to ρ over the interval $(0, x_n/2)$ then yield

(3)
$$v(x) = \sum_{i=0}^{m-1} a_i'' x_n^{-n} \int_{|x-y| < x_n/2} \left(\frac{\partial}{\partial \rho} \right)^i v(y) |x-y|^i dy,$$

where $x=(x', x_n) \in R_+^n$ and a_i'' are constants depending only on m and n. Applying (3) with $v=\partial u/\partial x_j$, j=1,...,n, we obtain

$$\begin{aligned} x_n | \mathcal{V}u(x) | &\leq c_5 \sum_{i=1}^m x_n^{i-n} \int_{|x-y| < x_n/2} | \mathcal{V}^i u(y) | dy \\ &\leq c_6 \sum_{i=1}^m \int_{|x-y| < x_n/2} |\xi - y|^{i-n} | \mathcal{V}^i u(y) | dy \\ &\longrightarrow 0 \quad \text{as } x \longrightarrow \xi, \ x = (x', x_n) \in \Gamma(\xi; a) \end{aligned}$$

on account of (1), because we can find b>0 such that $B(x, x_n/2) \subset \Gamma(\xi; b)$ whenever $x \in \Gamma(\xi; a)$.

For $x=(x', x_n) \in \Gamma(\xi; a)$, denote by x_{σ^*} the point on the half line $\{\xi + r\sigma^*; r>0\}$ whose *n*-th coordinate is equal to x_n , and by $\ell(x)$ the line segment between x and x_{σ^*} . It follows that

$$|u(x) - u(x_{\sigma^*})| \le |x - x_{\sigma^*}| \sup_{\ell(x)} |\mathcal{V}u| \le 2ax_n \sup_{\ell(x)} |\mathcal{V}u|$$

tends to zero as $x \to \xi$, $x = (x', x_n) \in \Gamma(\xi; a)$. Therefore $\lim_{x \to \xi, x \in \Gamma(\xi; a)} u(x)$ exists and is finite. This implies that u has a non-tangential limit at $\xi \in B_N - E$. Since N is arbitrary, our theorem is proved.

3. Proof of Theorem 2

By our assumption that $B_{k-\alpha/p,p}(E)=0$, there is a non-negative function $f \in L^p(\mathbb{R}^n)$ such that $\int_{\mathcal{G}_{k-\alpha/p}} (\xi-y)f(y)dy = \infty$ for every $\xi \in E$. We denote by F the restriction of $\int_{\mathcal{G}_{k-\alpha/p}} (x-y)f(y)dy$ to \mathbb{R}^{n-1} , i.e.,

$$F(x') = \int_{g_{k-\alpha/p}} ((x', 0) - y) f(y) dy, \qquad x' \in \mathbb{R}^{n-1}.$$

We note that the function F belongs to the Lipschitz space $\Lambda_{\beta}^{p,p}(R^{n-1})$ with $\beta = k - (\alpha + 1)/p > 0$ (cf. [5; Chap. VI, §4.3]). Let u be the Poisson integral of F with respect to R_{+}^{n} . By the fact in [5; p. 152] we have

$$\int_0^\infty \left[x_n^{k_0-\beta} \left\{ \int_{\mathbb{R}^{n-1}} \left| \left(\frac{\partial}{\partial x_n} \right)^{k_0} u(x', x_n) \right|^p dx' \right\}^{1/p} \right]^p x_n^{-1} dx_n < \infty,$$

 k_0 being the smallest integer greater than β . This implies

$$\int_0^\infty \left[x_n^{k'-\beta} \left\{ \int_{\mathbb{R}^{n-1}} \left| \left(\frac{\partial}{\partial x_n} \right)^{k'} u(x', x_n) \right|^p dx' \right\}^{1/p} \right]^p x_n^{-1} dx_n < \infty$$

for any positive integer k' greater than β , which is equivalent to

$$\int_{\mathbb{R}^n_+} |\nabla^{k'} u(x)|^p x_n^{p(k'-\beta)-1} dx < \infty,$$

by the observation given after Lemma 4' in [5; Chap. V]. In particular, taking k' = k (> β), we obtain

$$\int_{R_+^n} |\nabla^k u(x)|^p x_n^\alpha dx < \infty.$$

Moreover we see from the property of the Poisson integral and the lower semicontinuity of F that $\lim_{x\to\xi,x\in R_+^n}u(x)=\infty$ for every $\xi\in E$. Thus u satisfies all the conditions in the theorem.

4. Remark

In this section, we shall write a point $x \in \mathbb{R}^n$ as

$$x=(x', x'')\in R^{n'}\times R^{n''},$$

where n' and n'' are positive integers such that $n'' \ge 2$ and n = n' + n''. We shall consider functions u polyharmonic of order m in $R^n - R^{n'} \times \{O\}$ satisfying the condition of the form:

$$\iint_{G} |\vec{r}^{k}u|^{p} |x''|^{\alpha} dx' dx'' < \infty$$

for any bounded open set $G \subset \mathbb{R}^n - \mathbb{R}^{n'} \times \{0\}$.

The following theorem can be proved in the same way as Theorem 1:

THEOREM 1'. Let k, m, p and α be as in Theorem 1. Let u be a function polyharmonic of order m in $R^n - R^{n'} \times \{0\}$ which satisfies (4). Then we can find a Borel set $E \subset R^{n'} \times \{0\}$ such that $B_{k-\alpha/p,p}(E) = 0$ and if $\xi \in R^{n'} \times \{0\} - E$, then

$$\lim_{\substack{x'' \to 0 \\ (x', x'') \in \Gamma^*(\xi; a)}} u(x', x'')$$

exists and is finite for any a>0, where

$$\Gamma^*(\xi; a) = \{x = (x', x'') \in \mathbb{R}^n; |(x', 0) - \xi| < a|x''|, |x - \xi| \le 1\}.$$

In case $kp-\alpha \le n''$, our theorem does not give any new information since $B_{k-\alpha/p,p}(R^{n'} \times \{0\}) = 0$; however, under the additional assumption that $\alpha = 0$ and $(2m-k)p/(p-1) \le n''$, any function polyharmonic of order m in $R^n - R^{n'} \times \{0\}$ and satisfying (4) can be extended to a function polyharmonic of order m in R^n (cf. [4]).

In case $kp-\alpha > n''$, we do not know whether Theorem 1' is the best possible as to the size of the exceptional set or not.

References

- [1] J. Edenhofer, Integraldarstellung einer *m*-polyharmonischen Funktion, deren Funktionswerte und erste *m*-1 Normalableitungen auf einer Hypersphäre gegeben sind, Math. Nachr. **68** (1975), 105-113.
- [2] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- [3] Y. Mizuta, On the existence of non-tangential limits of harmonic functions, Hiroshima Math. J. 7 (1977), 161-164.
- [4] Y. Mizuta, On removable singularities for polyharmonic distributions, Hiroshima Math. J. 7 (1977), 827-832.
- [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Department of Mathematics, Faculty of Science, Hiroshima University