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It is well known as Weierstrass theorem that for each point P on an algebraic
curve C of genus g ̂  1 defined over a field of characteristic 0, there are exactly
g natural numbers (gaps) nu n29...,ng such that there is no function on C whose
pole divisor is precisely one of nfP, and moreover, these gaps are 1, 2,..., g for all
but a finite number of points. The exceptional points are called Weierstrass
points. In his paper [8], F. K. Schmidt tried to generalize the notion of
Weierstrass points to the case of characteristic p>0. Noting that Weierstrass
points are closely related to the ramification divisor of the canonical system of C,
he first introduced the notion of Wronskian determinants by means of iterative
higher derivations and succeeded in constructing a general theory of Weierstrass
points for an algebraic curve defined over a field of characteristic p>0. His
theory presents a striking contrast to the classical case; namely there appear special
curves whose ordinary points may have non-classical types of gap sequences.
As an illustration of the general theory, he determined distributions of gaps
at ordinary points in case of genus 3 or 4, and gave examples of algebraic curves
with non-classical types of gap sequences ([8] § 6).

The purpose of this paper is to determine precisely the family of algebraic
curves of genus 3 or 4 whose ordinary points have gaps different from the classical
ones.

In § 1, for the later use, we shall summarize some results on iterative higher
derivations and Wronskian determinants of the canonical system on C. It was
proved in [8] that if ordinary points on C of genus 3 defined over an algebraically
closed field k have non-classical types of gap sequences, then the characteristic of
k must be 3. In §2, we shall show that moreover C is birationally equivalent to
the plane curve

y3 + y - x4 = 0.

This example was given originally in [8]. In § 3, we shall give a classical fact
that every non-hyperelliptic curve of genus 4 has a trigonal linear system, i.e.
a linear system of dimension 1 and of degree 3 (Th. 2 and its Cor.). Moreover
we shall analyze equations of curves of genus 4 having trigonal linear systems and
non-classical types of gap sequences. It was proved in [8] that if ordinary points
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on C of genus 4 defined over an algebraically closed field k have non-classical types
of gap sequences, then the characteristic p of k must be 2 or 5. In §4 and § 5,
we shall show that moreover (i) in the case of p = 29 C is birationally equivalent
to one of the plane curves

x V + x 3 + y 3 + λ = 0, λek9λφ0,l9

and the converse is also true, and (ii) in the case of p = 59 C is birationally equiva-
lent to the plane curve

y5 + y - x3 = 0.

The last example was given originally in [8].
The author expresses his sincere thanks to Professor M. Nishi for his advise

to write this paper and other much encouragement, and to Professor H.
Yanagihara for his kindly criticism. By them, the present paper could be im-
proved in many parts.

§ 1. Preliminaries

We generally follow terminologies and notations of Schmidt [8] and Weil
[10], [11]. We denote by C a complete non-singular algebraic curve of genus
g^2 defined over an algebraically closed field k of characteristic p, and we denote
by fe(C) the function field of C over k. In the sequel, we understand that points
and divisors are always rational over k unless otherwise specified.

In this section, we summarize some results given in [2], [3], [7] and [8]
for the sake of later sections. For a point P of C, a positive integer n is called
a gap (number) at P, if there is no function x of C such that the pole divisor of x
is nP. The gaps of C are related closely with the Hermitian P-invariants of the
canonical system of C as follows. Let D be a canonical divisor of C whose com-
ponents are different from P, and let t be a local parameter of C at P. Then there
exists a base {xί9 x2> > χ

g) °f the function space L{D) over k such that

x t = at + atlt + al2t
2 +•••

^ x x2 = a2t
hί + a2ίt

hί+ί

where α f #0 for ΐ = l, 2,...,#, and 0<hί<h2< <hg_ί. We call this base a
Hermitian F-base of L(D). If we put

(2) ^ = ^ - 1 + 1 , i = l, 2,...,0,
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where ho = 09 then {nί9 n2,. » ng} is the set of the gaps at P which we call the gap

sequence at P ([3], p. 492 and [8], p. 82). This can be verified by Riemann-Roch

theorem. From this fact, we know that {h0, hί9...9 /ιg_i} is independent of a

canonical divisor D and a local parameter t, and it depends only on P. We call

hθ9 ftl9..., \ιg-\ the Hermitian P-invariants ([8], p. 81). For every point P on a

non-hyperelliptic curve, as easily seen, we have

(3) K = l

Moreover these numbers have the following geometric meaning ([3], Ch. 26).

Let A be the canonical system of C. Then there exist g divisors D o , Dl9...9 ΐ>g-\

with components different from P such that

(4) D o , htV + Dl9 h2P + D 2,..., fc^P + Dg_t

are contained in Λ. This follows easily from the definition of ht. Conversely,

suppose there exists a divisor Df with components different from P such that

hP + D' is a positive canonical divisor. Then h is equal to one of ht as easily seen.

Therefore the Hermitian P-invariants are characterized in terms of canonical di-

visors using (4).

Next we shall give a brief account of an iterative higher derivation of K = k(C)

and a Wronskian determinant of the canonical system of C. Doing so, another

interpretation of the Hermitian P-invariants, and hence of a gap sequence would

be possible. Let x be an element of K such that K is separably algebraic over

fc(jc). We define maps Dx

y: K-^K, v = 0, 1, 2,..., as follows. Let P and Q be

independent generic points of C over k. Then the function field /c(P) (C) of C

over Jc(P) may be identified with fc(P, Q). For feK, represent /(Q) e/c(P) (C)

as a power series of a local parameter x(Q) — x(P) at P:

/(Q) = no + *i(*(Q) - *(P» + fh(*(Q) - *(P))2 +•••

where ηv, v = 0, 1, 2,..., are elements in /c(P)c*fc(C). Hence we can put ηv =

/<V>(P) for some /<v> e K. Define

^ ί / = / ( v ) , v = 0,1,2,....

Then {Dv

x\ v = 0, 1, 2,...} is called an iterative higher derivation of K over k

([2], p. 217). It satisfies the following formulas: putting yW = D$y9

(5) (y + z)<v> = y<v> + z<v>,

(6)
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(8) 3>(0) = y,

(9) c<v> = 0, for cek, v ^ 1.

Further it satisfies

(10) xr = 1, χ(v> = 0 for v ^ 2.

It is known that D% is the unique iterative higher derivation of K over k satisfying

(10) ([2], p. 231). From these, we have ([2], p. 232), for a power series expan-

sion y= Σj?=μOcμx
μ of y e K where μ0 may be negative

(11) (v) =

Now the definition of a Weierstrass point depends on the fact that except a

finite number of points, gap sequences of points on C coincide with each other.

This fact is proved by using a Wronskian determinant as follows ([3], p. 490 and

[8], p. 77). Let {xl9 x2,...9 xgeK = k(C)} be a base of a function space L(D)

of a canonical divisor D, and let t be a function in K such that K is separably

algebraic over k(t). Put

{ίZ) Δt;vi,v2 vσ_Λ ^l» * 2 , . . } Xg) =

where 0 < v 1 < v 2 < <v^_1 and We call vo = 0, vx,..., vg_x the

orders of this determinant. Then the Hermitian P-invariants are also charac-

terized as the minimum system of orders h0, hί,...,hg_ι in lexicographic order

among such systems of orders vo = 0, vl9...9 vg^1 that, for a local parameter t at

P and a canonical divisor D without P as a component, At;vι Vβ-i(*i> > χ

g)(P)

ΦO. We define a Wronskian determinant At(xL,..., xg) of C as such a determinant

(12) that it has the minimum system of orders μo = O, μu..., μg-t in lexicographic

order among all non zero determinants (12). We note the minimum system of

orders μt is independent of a canonical divisor D, a base {xj of L(D), and a local

parameter t, and is determined only by C. Here we have the following formula:

for each Hermitian P-invariants hθ9 hl9...9 hg-ί9

(13) h0 = μ 0 = 0, hx ^ μl9 h2 ^

In fact, if we assume hs<μs9 then by the definition of orders of a Wronskian

determinant
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rank x[2)

χ'2 ••

xψ -

• χ

β

• A

' X02)
= rank

XX -•

x\ •••

x[2) -

x«

χ(2) = s.

On the other hand, rank(xy )) i = 0 > f t l Λ s. y=i,2,...,^ = s + 1 This is a contradiction.

To determine exceptional points, we consider the following synthetic

ramification divisor (zusammengesetzte Verzweigungsdivisor) of the canonical

system of C ([3], Ch. 26, § 3 and [8], p. 80)

(14) Vc = gD + div(At(xu..., xg))

It is known that the divisor Vc is independent of a canonical divisor D, a base

{xf} of L(D), and a local parameter t ([8], p. 80). For a point P of C, select a

positive canonical divisor D without P as a component, a local parameter t at P,

and a Hermitian P-base xί = l, x2> » x ^ °f L(D). Let ft0

:=^ î> > n

β-ι be the

Hermitian P-invariants. Then, the order yP(Vc) in Vc is equal to ttp^X^,..., xg))

and we have, by (1) and (11),

At(xl9...9 xg) =

a2ί
hί

ft) -Cr)
μ2

a2a3- aβt
e + Be+1t

e+1

μβ-J \μg-J

where e=Σi=Khi-μι) a n d 5 vefe for v ^ e + 1 ([3], p. 456). This means

(15) yP(Vc)^(hi-μ1) + (h2-μ2)+-+(hβ.ι-μβ.1), ([8], p. 82)

where the equality holds if and only if

(16). d e t Γ ( u ) l *°
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In particular, P is a component of Vc if and only if the Hermitian P-invariants

h0) hl9...9 hg-! are different from the orders μ0, μl9...9 μg^1 of a Wronskian

determinant of C. Put

(17) mγ = μ0 + 1, m2 = μx + 1,..., mg = μ ^ 4- 1.

Then a point of C with the gap sequence ml9 m2,..., mff is called an ordinary point

of C and a non-ordinary point is called a Weierstrass point. In other words P

is a Weierstrass point if and only if P is a component of Vc.

As for the orders μo = 0, μ l9..., μg-ι of a Wronskian determinant of C, the

following facts were proved by F. K. Schmidt in [8].

THEOREM A ([8], Satz 4 and [7], Satz 6). Let μt be one of orders of a

Wronskian determinant of C. // the characteristic p = 09 all non-negative

integers μ not greater than μt are also orders of a Wronskian determinant. In

the case of characteristic p>0, if μi = a0 + aίp-\ \-asp
s with O^aj^p—1,

then all non-negative integers μ = co + cίp-\ \-csp
s with O ^ c ^ α , - are also

orders.

For later applications, we state the following Lemma used in the proof of the

above Theorem A.

LEMMA B ([7], Hilfssatz 3). For natural numbers μ and v, the binomial

coefficient ( j is not divisible by a prime number p if and only if the p-adic

coefficients of μ are respectively not greater than those of v.

By Th. A in the classical case of characteristic p = 0, the gap sequence at

ordinary points of C is 1, 2,..., g. We also know, in a hyperelliptic curve of any

characteristic, ordinary points have the classical type of gap sequence {1, 2,..., g}

([8], Satz 8). Moreover, we have, as to μί of orders of a Wronskian determinant

for any curve ([8], Satz 5),

(18) μ, = 1.

As for the existence of curves whose ordinary points have non-classical types

of gap sequences, F. K. Schmidt gave very nice examples ([8], Satz 9) and he

proved by Th. A the following

THEOREM C ([8], Satz 6). // a curve of genus g defined over an algebrai-

cally closed field of characteristic p>0 has a non-classical type of gap sequence,

then we have

From these theorems and Riemann-Roch theorem, we obtain the following
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possibility of non-classical types of gap sequences at ordinary points for curves
of genus 3 or 4 ([8], p. 95):

(19)

(20)

(21)

(22)

g = 3, p = 3: 1 ,2 ,4 ,

0 = 4 , p = 2: 1,2,3,5,

g = 49 p = 3: 1 ,2,4,5,

0 = 4, p = 5: 1,2,3,6.

But (21) does not occur by the following

THEOREM D ([8], Satz 10). On a curve of genus 4 defined over an alge-
braically closed field of characteristic 3, ordinary points have the classical type
of gap sequence {1, 2, 3, 4}.

For (19) and (22), F. K. Schmidt constructed examples defined by the
equations respectively

(23)

(24)

y* + y - x4 = 0 and

y5 + y - JC3 = 0

which are special cases of the above mentioned general examples with non-
classical types of gap sequences at ordinary points.

§ 2. The case of genus 3

In this section, we shall prove that a curve C defined over k of characteristic
3 which is birationally equivalent to the plane curve (23) is essentially the only
possible one of genus 3, whose ordinary points have a non-classical type of gap
sequence.

Let C be a non-hyperelliptic curve of genus 3 defined over an algebraically
closed field k. Suppose ordinary points of C have a non-classical type of gap
sequence. Then by (19), the characteristic of k must be 3 and this gap sequence
must be 1,2, 4, and hence the orders of a Wronskian determinant of C are 0, 1,
3 by (17). For every Weierstrass point P, the Hermitian P-invariants must be
0, 1, 4 by (3), (4) and (13). And since we have

(!) G)
(1)

= 1*0,

7 p (F c )= l by (15) and (16). On the other hand, we have deg(Fc) = 28 by (14).
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Therefore there are 28 Weierstrass points on C. Hence, let P t and P 2 be two
Weierstrass points; then Z(3Pi) = 2, Z(4Pf) = 3 for ί = l, 2 and hence 4PX and 4P2

are canonical divisors. Let P1+P2 + Q1 + Q2 be a canonical divisor. Then
there exist functions x and y in K=k(C) such that

(25) div(x) = P2 + Qi + Q2 - and div(y) = 4P2 - 4PX.

Here, since Hermitian invariants of Px and of P 2 are 0, 1, 4, we have P^Qj for
each ί = l , 2 and j = l , 2 by (4). Since IK: fc(x)]=deg3P1 = 3 and IK: /c(j )]
= deg4P!=4, we have K = k(x, y). Let/(x, y) = 0 be an irreducible equation for
x, y. Let C be the projective plane curve defined by/(x, y) = 0 and H a hyper-
plane defined by a generic equation ax + by + c = 0 over fe. Then the degree of
the intersection H C is equal to the degree of the zero divisor of ax + by + c and
hence of its pole divisor on C. Therefore /(x, y) must be of degree 4. Since x
and y are finite, and hence integral, over k\_y] and k\x~\ respectively, we can put

/(x, y) = x4 + yt(y)x3 + γ2(y)x2 + y3(y)x + yA(y) = 0

where yi(y)ek[y] for i = l , 2, 3, 4, degy3 = 2, and degy4 = 3. Here, the coeffi-
cient of yx3 must be zero because yx3 is the only term with least t;Pl(^x3).
Moreover, since x=0 must be the quadruple root of/(x, 0)=0 by (25), we have

(26) /(x, y) = x= x4
(b1y

2

where α, ί?f and c( are in fe. Replacing y by cj/3j;, we may assume co = l. It
is sufficient to show that a = bί = b2 = cί = Q because the curve x*+y3 + cy = 0
is birationally equivalent to the plane curve y3 + yι — x 4 =0 by the transformation

{1, x, y} is clearly a base of L^P^. Since, in (25), Qx and Q2 do not coincide
with P2, x is a local parameter at P2. Let Dv

x be the iterative higher derivation of
K with respect to x and put y^=D^y, Since the orders of a Wronskian de-
terminant of C are 0, 1, 3, we have

1 x y

0 1 y'

0 0 /<2>

= j/<2> = 0.

If we operate Ό2

X on the equation (26), then we have from y<2>=0

(27) α(2/x + y) + ^ ( ( Z ) 2 * + 2/j) + b2y' + c^^')2 = 0.

On the other hand we have from (25)

= 3P2 + D - 5PX
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where D is a positive divisor of degree 6 and its components are different from P x

and P 2 . If P is a component of 2), then, since dy is zero at P, we have

div(y - y(P)) = 2P + E - 4PX

where E is a positive divisor of degree 2 and its components are different from

P r . Assume that x —x(P) is not a local parameter at P. Then we have

div(x - x(P)) = 2P + P' - 3PX.

Hence 2 P + P ' + P 1 ~ 2 P + £ and so P' + P 1 ~ £ . And hence, since C is non-

hyperelliptic, we have I*' + l>ί=E. This is a contradiction. Therefore x - x ( P )

is a local parameter at P. This implies that we can write dy = y'dx, and hence

we have /(P) = 0. Specializing (27) to P, αj;(P)=0, and hence α = 0. Expressing

y as a power series of a local parameter x at P 2 , we have by (25)

y = c 4x 4 + csx
5 + . -

where c 4 ^ 0 , and hence by (11)

y' = c4x3 + 2 c 5 x 4 + .

Putting these expansions into (27), we have b2 = c1 = bx=0. Thus we obtain

THEOREM 1. // an algebraic curve C of genus 3 over an algebraically

closed field k has a non-classical type of gap sequence at ordinary points, then

the characteristic of k must be 3,C is birationally equivalent to the plane curve

(28) y 3 + y - x 4 = 0,

and C has the gap sequence {1, 2, 4} at ordinary points.

REMARK ([4]). The Riemann surface defined by the equation (28) together

with the Riemann surface defined by

x 4 + y4 + 1 + 3(x2)>2 + x 2 + y2) = 0

have 12 Weierstrass points. This number is least among non-hyperelliptic

Riemann surfaces of genus 3. By reduction mod 3, both surfaces coincide with

the curve in Th. 1.

§ 3. Trigonality of curves of genus 4

A non-hyperelliptic curve C of genus g ^ 3 over an algebraically closed field

k is called trigonal if C carries a fixed point free, linear system g\ of degree 3 and

of dimension 1 ([1], p. 308). Since C is non-hyperelliptic, g\ must be com-



380 Kaname KOMIYA

plete. This definition is equivalent to say that there exists a function x in K = k(C)

such that IK: k(x)~\ = 3. We call g\ a trigonal linear system. A point P such that

2P + P' is in g\ is called ^-special ([6]). Let D be a divisor in g\. If {1, x)

is a base of L(D) over k, then #|-special points are nothing but ramification points

of the covering π: C-^P 1 defined by π(Q) = (l, x(Q)) where P 1 is the projective

line over k with homogeneous coordinates (Xo, Xx).

First we state the following classical fact ([3], p. 527) and give a proof for it.

THEOREM 2. A non-hyperelliptίc curve C of genus 4 over an algebraically

closed field k of any characteristic is trigonal and C has at most two trigonal

linear systems.

PROOF. First we shall prove that C is trigonal. Let P be a point of C such

that /(3P) = 1. By Riemann-Roch theorem or (4), there exists a positive divisor

E of degree 3 such that 3P + E is canonical. If the linear system |P + £ | has a

fixed component, then C is trigonal. Hence we may assume |P + £ | is free from

fixed components. Therefore, there exists a function x in K = /c(C) such that

άiv(x) = A - ( P + £)

where A is a positive divisor whose components are different from those of P + E.

By Riemann-Roch theorem, there exist functions y and z in K such that

divCy) = A' - (2P + E) and div(z) = A" - (3P + E)

where A' and A" are positive divisors whose components are different from P

and those of E. From [X: fc(x)] = 4 and [X: /c(y)] = 5 it follows K = k(x, y).

Let/(x, y) = 0 be a defining irreducible equation of x, y and C be the afrlne plane

curve defined by this equation. We show that C must have multiple points.

In the space L(4P+2£),

1, x, y, z, x2, xy and y2

form a base over k as easily seen. Since xz e L(4P + £), we may put

(x - c)z = c0 + cxx + c2y + c 3x 2 + c4xy + c5y
2

where c5 # 0 . If z is in fc[x, y], then, since IK: /c(x)] = 4 and y is finite over fe[x],

we can write z uniquely in the form

z = A0(x) + A±(x)y + ^ 2 ( x ) ^ 2 + A3(x)y*

where ^4f(x)efc[x] for i = 0, 1, 2, 3, and hence we have (x — c)A2(x) = c5. This

contradicts c5Φ0. Therefore zφ.k\_x, y\. On the other hand, z is finite over

fe[x, y]. This implies C must be not normal and hence singular ([5], p. 122).

Let p : C->C be the birational map defined by p(Q) = (x(Q), )>(Q)), and let

Q' be a multiple point on C . Put {Q l 5 Q2,..., Qr} = p" 1(Q') -If we put
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α=x(Q'),/?=}<Q'),then

div(x - α) = Σϊ-ΛQ, + B ~ (P + E),

άiv(y - β) = ΣUirπtQi + B' - (2P + E)

where nf, m f ^ l for ί = l, 2,..., r and J3, B'^0. Since we have

(29) P + Σϊ-i(π, - l)Qf + £ - Σ ί = i K - l)Qf + B'

where P is different from Ql9 Q2,...,Q r and components of £', and deg(P +
Σ(w ί-l)Q ί + B) = 5-r, we have clearly lgr<Ξ3. If r = 3, then (29) implies C is
hyperelliptic. This is a contradiction. If r = 2, then (29) implies C is trigonal.
If r = 1, expressing x — α, y — β by power series in a local parameter t at Q t :

x - α = fl!ί + α2ί
2 +••• and y - β = bj + fc2

i2+***»

we have α1 = b 1 =0 by non-regularity of the local ring at Q' ([5], Ch. 8, 3).
Hence nl9 m±^2 and so P + (n 1 -2)Q 1 +B~(m 1 -2)Q 1 + J B

/ . Therefore C is
trigonal.

Now assume there exist three distinct trigonal systems on C:

flfi = |D|, ftJ = |D'| and k\ = \D"\.

Let {1, x} and {1, y} be bases of L{D) and L(D') respectively. Then 1, x, y9 xy
are clearly linearly independent elements of L(D + D'), and hence by Riemann-
Roch theorem D + D' is a canonical divisor. By the same reason, D + D" is
canonical, and hence D'~D". This is a contradiction. Thus Theorem 2 is
proved.

COROLLARY. Let C be a curve of genus 4. // C has two trigonal linear
systems gl = \D\ and h\ = \D'\9 then D + D' is a canonical divisor, and there is no
divisor P x + P 2 such thatPί+V2 + Fegl and P1 + P2 + Qe/ι^. If C has a unique
trigonal linear system g\ = \D\, then g\ is half canonical, namely ID is canoni-
cal.

PROOF. In former case, we know D + D' is canonical by the proof of Th. 2.
Assume P 1 + P 2 + Pe^J and P 1 + P 2 + Qe/ιJ. Then D + P 1 + P 2 + Q - P 1 + P 2

+ P + D', and hence D + Q~P + Zy. By Riemann-Roch theorem, we know l(D
+ Q) = 2, and hence l(D + Q) = l(D). This implies Q must be a fixed component of
|D + Q|. Since we can assume the components of D' are different from Q, this
leads to a contradiction. In latter case, from Riemann-Roch theorem it follows
that i(D) = /(!>) = 2, and hence there exists a positive divisor E such that D + E
is canonical. Then, also by Riemann-Roch theorem we know Z(£) = /(£)) = 2.
Hence by uniqueness of g\ it follows that E~D, and so 2D is canonical.
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Returning to our case, here we prove the following

LEMMA 1. Assume that an ordinary point of a curve C of genus 4 defined

over an algebraically closed field k has a non-classical type of gap sequence.

If C has two trigonal linear systems, then the characteristic of k must be 2.

Moreover if 2P + P' belongs to one of trigonal linear systems, P must be P'.

PROOF. Assume C has two trigonal linear systems g\ and h\. Let P be a

point such that 2P + P' eg\ and let D and D' be divisors of g\ and h\ respectively

such that their components are different from P. Then P is not /i^-special by

Cor. to Th. 2. Thus if P + P x + P 2 is a divisor in ftj, YφVγ and P # P 2 . Hence

we have 4 canonical divisors:

(30) D + D\ P + ?ί + P 2 -f D, 2P + P' + D' and 3P + F 4- ?t + P 2 .

If P ^ P ' , then Hermitian P-invariants must be 0, 1, 2, 3 by (4). This contradicts

the assumption that C has a non-classical type of gap sequence. Therefore

P = P', and hence 3Pe#J. A similar argument is valid for h\. As for charac-

teristic p of k, by Th. C and Th. D in § 1 we have p = 2 or 5. Let {1, x} be a base

of the space L(D) over k. If Q is a component of the zero divisor of dx9 then Q

is g^-special, and so by the above assertion, 3Qe#£. Hence by (30) where Q

takes the place of P, we know that the Hermitian Q-invariants are 0, 1, 3, 4.

Assume characteristic p = 5. Then by (22), the gap sequence at ordinary points

must be 1, 2, 3, 6, and hence the orders of a Wronskian determinant of C are

0, 1, 2, 5. This contradicts h3^.μ3 in (13). Therefore p = 2. Thus Lemma 1

is proved.

Now we determine curves of genus 4 with two different trigonal linear sys-

tems.

PROPOSITION 1. Let C be a curve of genus 4 defined over an algebraically

closed field k of characteristic pΦ3 which has two trigonal linear systems g\

and h\. If3Peglfor each g\-special point P, then C is birationally equivalent

to a plane curve defined by an equation

f(χ, y) = yo(*)y3 + y±(χ) = o

where y o( χ) and yi(x) are polynomials in x of degree 3.
In particular, if we have also 3Q e hi for each h^-special point Q, then C

is birationally equivalent to a plane curve

(31) f(x, y) = x3y3 4- x3 + }>3 + λ = 0, λ Φ 0, 1.

Conversely, a curve over an algebraically closed field k of characteristic

pφ3 which is birationally equivalent to a plane curve (31) is of genus 4 and has
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two trigonal linear systems such that ί/2P + P' belongs to one of them, P = P'.

PROOF. Let

D = Qj + Q 2 + Q 3 and D' = Qi + Q 2 + Q 3 ,

where Q 1 ? Q 2, Q 3 , Qi, Q 2, Q 3 are distinct each other, be divisors in g\ and h\

respectively. Let x and y be non constant functions in K = k(C) such that

(32) div(x) = P x + P 2 + P 3 - D and div(y) = Pi + P 2 + P 3 - D'

where P f, PJ, Q f, QJ for all i = l, 2, 3 are distinct each other. Then, by assump-

tions for gJ-special points and D, we have

where {Sί9 S2,..., S6} is the set of all g^-special points. It is clear that {Sί9 S2,...,

S6} is disjoint from {Q l 5 Q 2, Q3}. Now we may assume Pi = Si and Qi = S 4

by Cor. to Th. 2. As k(x)Φk(y), we have K=fe(x, y). 16 functions xly* for

i , ; = 0 , l , 2 , 3 clearly belong to the space L(3(D + D')). As /(3(D + Z)/)) = 15,

these functions are linearly dependent over fc. Hence C is birationally equivalent

to a plane curve

(33) fix, y) = yo(x)y* + yi(x)y2 + y2(x)y + y3(x) = 0

where γ^x) for i = 0 , 1, 2, 3 are polynomials of degree at most 3. Put a^

and βi^yiβi) for i = l, 2,..., 6. Then we have

(34) div(x - αf) = 3Sf - D, i = 1, 2,..., 6.

If βi is finite, then by (34), y=βt is a common root of/(α, )>)=0,

V ( α » y) = 3yo(α)^2 + 2y!(α)); + y2(α) = 0 and

d2yf(*> y) = 3yo(α)y + )Ί(α) = 0

where α = αf and dy. k\x, y]-+k[x, y~\ for v = 0, 1, 2,... are the partial derivatives

defined by

(35)

Hence βt is also a common root of

dyf(«9 y) - yd2

yf(oc, y) = ^(α)}; + y2(α) = 0 and

3/(α, y) - 2 H / ( α , y) + y2d2

yf(a, y) = y2(α)); + 3y3(α) = 0.

Therefore, x = αf must be a common root of
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(36) yi(x)y2(x) - 9yo(x)γ3(x) = 0 and y2

2(x) - 3yί(x)y3(x) = 0.

If βi is infinite, then by (34), y~ί = 0 is a triple root of

and hence

yo(αf) = yi(αf) = y2(oti) = 0,

and so x = αf is also a common root of (36). Since S x = P i and S 4 = Qi, /?i=0

and )34 is infinite, and hence γ^x) for ί = l, 2, 3 are divisible by x — ocί9 and yt(x)

for i = 0, 1, 2 are divisible by x — α4. Hence we can put

where y(x) is a polynomial of degree at most 3. But the equation y(x) = 0 must

have four distinct roots α2, α3, α5 and α6. Hence the polynomial y(x) must be

equal to zero. Therefore

(37) Vl(x) = 3yi(x}γ3(x).

On the other hand, y3(x) must be squarefree and of degree 3. In fact, put

α' = x(Pi) and ar/ = x(P3). Then y3(x) is divisible by x-ocu x-af and x - α "

by (32). If α 1 = α / , then d iv(x-a 1 ) = Pi + P2 + P ' - D for some point P', and

hence ¥[ + Pf

2 + ̂ f egl On the other hand, by (32) Pi + P2 + P 3e/i^. But

by Cor. to Th. 2, this is impossible. Therefore oc1φa'. Similarly we have OL^ΦOL"

and α' Φ α". Therefore by (37),

γ±(x) = by3(x) and y 2 W = σ 3 W

Since yo(
α4) = yi(α4)=='3;2(α4)==0, we have y3(a4)7^0 by (33), and hence b = c = 0.

Hence the polynomials γ^x) and y2(x) are equal to zero. Therefore

Here we note that the covering π: C-^P 1 defined by π(Q) = (l, x(Q)) is ramified

over x = 0Ci for i = l, 2,..., 6 which are roots of yo(x)y3W= :0 by (36). Therefore

degyo(x) = degy3(x) = 3. We also note that Kjk{x) is a cyclic extension of degree

3 and y3 e k(x).

Moreover assume that 3P e hi for each ΛJ-special point P. Then if we re-

place x by (x — oc)l(x — β) for some α and β in k, we may put

/(x, y) = (x3 + a)y3 + c(x3 + 6) = x3.y3 + ex3 + ay3 + cb

as seen in the same way as the above. Here, since (x3-hα)(x3 + i?)=0 must have

six distinct roots, abΦO and aφb. Therefore replacing x by α 1 / 3 x and y by
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c1/3y9 C is birationally equivalent to a plane curve defined by an equation (31).

Conversely, let C be a curve over k of characteristic pΦZ which is birationally

equivalent to a plane curve defined by (31). Since [fc(C): fc(x)] = [/c(Q: fc(.y)] = 3

and fc(C) = /c(x, y), C has two distinct trigonal linear systems and we can put

div(x) = Σ ? - Λ - Σ?-iQι and div(y) = Σ?-iP'ι - Σf-iQί

Here since /(0, y) = y3+λ=09 we know that P f # P j for iφj. And from the

equation y3 + l + x~3y3+λx~3=0, we know that QiΦQj for iΦj. This implies

also that the covering π: C-+P 1 defined by π(P) = (l, x(P)) is not ramified over

x = oo. Let C be the affine plane curve defined by (31). From

fx(x, y) = 3x2(y> + 1) and fjx, y) = 3y\x* + 1)

it follows that C is non-singular. Therefore π: C-^P 1 is ramified exactly over

the values of x such that/ y(x, y) = 09 namely over the roots of (x3 + λ)(x3 + l) = 0.

Hence from (31), we know that π is completely ramified exactly at Pi, P2, P3,

Qi, Q2 and Q3. Therefore we have

div(rfx) = 2Σ?=iPί + 2Σ?=iQί - 2Σ?«iQ,

From deg(rfx) = 6, it follows that the genus of C is 4. By symmetry of the equa-

tion (31) with respect to x and y, we know that the covering π ' : C-+P 1 defined

by π'(P)=(l, y(?)) is also completely ramified at P ί5 Qf for i = l, 2, 3. Thus our

Proposition is proved.

REMARK 1. Let Cλ be a curve over an algebraically closed field k of

characteristic p # 3 which is birationally equivalent to a plane curve (31).

Then C A ^C λ / if and only if λ' = λ or ΛΓ1. In fact, we may suppose Cλ> is bira-

tionally equivalent to the plane curve x3y3-\- x3 + y\ + λ'=O. Suppose C λ ^ C λ / .

Let z, w in k(Cλ) be images of xί9 yx in k{Cλ) by an isomorphism k(Cλ,)-+k(C^).

Then we have

z3w3 + z3 + w3 + λ' = 0.

Since [fe(Cλ): fc(z)] = [fc(Cλ): fc(w)] = 3, we have k(z) = k(x) and k(w) = k(y), and

hence we can put

z = a*x + bJ and w =
+d

From the proof of Prop. 1, we know that the coverings π: Cλ->>P1 and π ' : C λ

-^•P1 defined by π(P) = (l, x(P)) and π'(P) = (l, z(P)) are completely ramified over

the roots of (x3 + A)(x3 + l ) = 0 and over the roots of (z 3 +A / ) ( z 3 + l) = 0 respec-

tively, and that the set of ramification points of π is equal to that of π'. Hence,
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if P is a ramification point of π, then (x(P)3+Λ.)(x(P)3 + l ) = 0 and (z(P)3

+Γ)(z(P) 3 + l ) = 0 . If x(P)3 + λ = 0 and z(P) 3 +λ'=0, then j;(P)=w(P)=0 and

hence b2=0. In this case, since there exists another ramification point Q of π

such that x(Q)3 + l = 0 and z(Q)3 + l = 0 , we have y(Q)=w(Q) = oo, and hence

c 2 = 0 . Therefore we may put w~by. By the same way, in conclusion, we may

assume that

z = ax, w = by or z = ax, w = by"1.

Thus putting these in (31), we obtain λ'=λ and λf=λ~ί respectively. Conversely

if λf=λ~ί

9 then by the transformation xt=z'1 and yΛ=λ~ιl3w, we get z3w3

+ z3 + w 3 + λ = 0 , and hence Cλ c* C r .

REMARK 2. The curves which are birationally equivalent to the plane curves

(31) for limiting values λ=l and λ = 0 become respectively reducible and elliptic.

Next we seek an equation of a curve of genus 4 with a unique trigonal linear

system.

PROPOSITION 2. Let C be a curve of genus 4 over an algebraically closed

field of characteristic pΦ?> which has a unique trigonal linear system g\. Let

D = 2P + P'

be a divisor in g\. Then C is birationally equivalent to a plane curve

f(χ, y) = y3 + y(χ)y + (χ- oLX)
m(χ - α2)

m*...(x - α5)
m = o

satisfying the following conditions:

(i) oCiΦocj for iΦj, and degy(x)<4.

(ii) there exist Pi5 PJ and P? such that

divc(x - αf) = Pf + P; + P? - D, i = 1, 2,..., s,

dϊvc(y) = mP' + Σϊ=ι™P'i - ^

vv/zere 4P<Ξis^2Z> and m is a non-negative integer which is 0 unless £ = 4 P .

Moreover, if'Pj = Pί /or some i, ί/zen mf = l, y(x) is divisible by x — aci and

PROOF. Since Z(2D)=4, there exist functions x and z on C, rational over fc,

such that

(38) div(x) = A-D and div(z) = B - 22)

where 4̂ and B are positive divisors whose components are different from P, P',

and such that 1, x, x2, z are a base of L(2D). Then fc(C) = fc(x, z). Indeed, if

we assume k(C)Φk(x, z), then, since [fe(Q: fc(x)] = 3, k(x, z) = /c(x), and hence

zefc[x] by integrality of z over fc[x] by (38). So we may put z
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because the pole divisor of the right side must be equal to ID. This contradicts
linear independence of 1, x, x2, z. Let/^x, z) = 0 be an irreducible equation for
x and z. Since intersection number of the plane curve/x(x, z)=0 and a generic
line ax -f bz + c = 0 over k is equal to the degree of the zero divisor of the function
ax + bz + c on C, we know that deg/^x, z)=deg2D = 6. Hence, by integrality
of z over fc[x], we can write

/i(x, z) = z* + Vl(x)z2 + y2(x)z + y3(x)

where degγt(x)^49 degy2(x)^5 and degy3(x) = 6. Here the coefficient of x4z2

is zero because x4z2 is the only term with the least ι;P(x4z2). Also the respective
coefficients a and b of x5z and x3z2 are zero. In fact, if we assume a or b are not
zero, then we must have div(αx5z + fcx3z2)^ — 6D, and hence div(αx2 + bz)
^ — D , so it contradicts independence of 1, x, x2, z. Therefore d e g y ^ x ) ^
and degy2(x)^4. Put y = z + 3~1γί(x). Then we know clearly that {1, x, x2, y}
is a base of L(2D) and C is birationally equivalent to a plane curve

(39) /(x, y) = y* + y(x)y + δ(x) = 0

where degγ(x)^4 and degδ(x)^6. Replacing x by kx if necessary, we may
assume

δ(x) = (x - ocj^ix

where m f ^ 1 and OLIΦOLJ for iφj. We can put

(40) div(x - αf) = Pe + P'f + P? - D, i = 1, 2,..., 5.

Now we shall show that, if we put

div()0 = B' - E

where Bf and E are zero and pole divisors of y respectively, then 4P^E^2D.
From (38) and degy1(x)^2, it follows that E^2D. Since C is non-hyperelliptic,
we know deg£^3. If deg£=3 then [fe(Q: k(y)'] = 3, and hence k(x) = k(y)
by uniqueness of the trigonal linear system. It contradicts fe(C) = k(x, y). There-
fore E must be one of the following divisors;

2P + 2P', 3P + P', 4P, 3P + 2P', 4P + P' and 4P + 2P'.

Here, |E| has no fixed component. But |2P-f 2P'| has a fixed component because
J(2P+2P') = 2 by Riemann-Roch theorem and hence Z(2P + 2P') = Z(2P + P/).
Therefore £^2P+2P'. Similarly we have £ # 3 P + P ' . Moreover, we have
E^3P + 2P'. Indeed, if we assume £=3P+2P\ then [fe(x, y): k(yy] = 5, and
hence deg<5(x) = 5. Then the coefficient of x*y must be zero because x4y in (39)
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is the only term with the least vP(x4y) = — 11. Then we know similarly the co-

efficient of x 5 must be zero. This is a contradiction. Therefore we have 4P

Next we seek components of B'. If XQ) = 0 and Q # P ' , then by (39),

<5(x(Q)) = 0 and hence x(Q) = αf for some i = 1, 2,..., s. Therefore Q must coincide

with one of Pί5PJ and P". But two of P, , PJ and P" must not be components of

B'. To see this, if we assume that div(<y) = P i + P /

ί + B / / - 2 D where B">0, then

by Cor. to Th. 2, P f+P'i + P?+D and Pf+P + 5 " are canonical, and hence

?i+D~B". By Riemann-Roch theorem, we have /(PJ/ + D ) = l + /(Pi + Pi)=2,

and hence /(P? + D) = /(/>). This implies PjT is a fixed component of |PJ.+D|

= \B"\. Hence ?'( is a component of B". Therefore div(yKx-ocJ)^ -Zλ

Since {1, x} is a base of L(D), we have y = (χ — oc^ax + b). This is impossible.

Therefore we have

div()0 = mP' -f Σ ? = Λ Pί - E

where m is a non-negative integer which is equal to 0 unless E=4P. Lastly we

show that ni = mi for ΐ = l, 2,..., s. If P|#P5, then Kα^^O by (39), and hence

we have vP't(x - αf) = 1. Therefore mf=ι?P'.(5(x)) = yP;( y3 + y(x)y) = vP'.(y) +

vP'i(y2 + y(x)) = Vp>i(y) = ni. If P|=PJ, then y(αf) = 0, and hence we know that

y(x) is divisible by x — αf and that y(PJ') = O. Since it is impossible that -B'^PJ

+ P;\ we know that P ^ P ^ p j r and nt=ί. Hence t;P ' i(x-a i) = 3 and vP>i(y) = l,

and so t;Pί(y(x))^3. Therefore from vPi(δ(x)) = Vpj(y3 + γ(x)y), we have 3m|=3,

and hence m^X^ni. Thus Proposition is proved.

Applying Prop. 2 to the case of characteristic 2, we obtain the following

COROLLARY 1. Let notations and assumptions be as in Prop. 2. // the

defining field k of C is of characteristic 2 and P ^ P ' , then E=4T> or 4P + P',

degy(x) = 4, div(x-α ί) = 2Pi + P' i-D/or all i, and {P, P^..., PJ is the set of all
ramification points of the covering π: C-+P 1 defined by π(Q) = (l, x(Q)).

PROOF. Assume E—2Ώ and then we can put

/(*, y) = y* + (ΣUbrfy + ΣUctx'

where cβΦ0. Represent x and y by power series of a local parameter t at P;

x = r 2 + α ^ r 1 + α 0 +•••

We put these in/(x, y) = 0. From coefficients of r 1 2 and r 1 1 , we obtain j8i4

+ M - 4 + c 6 = 0 and jS£4j8_3 + fc4j8_3 + 6c6α_1=(i?i44-b4)j8-3=0. Since

β-4(βΪ4+b4)=c6^0, we have )S_ 3=0. Therefore
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/U*M/ϊ-2--/ϊ-4^i)*) £ - (P + 2P%

This implies ί(P + 2P')^2 and hence we have a contradiction P + 2P' e#£. EΦlD

implies E = 4P or 4P + P' and hence degy(x) = 4. If Pf^Pf', then since f(oci9 y)

= y(y2 + y(<*i))=y(y+ JΦd)\ we have div(y + >/y50)=P l+P?+jr-£ where
B" is a positive divisor whose components are different from those of E. This is

impossible by the similar argument as in the proof of Prop. 2. Therefore we have

div(x — αί) = 2P i + PJ — D. As for the last assertion, P, P l 9 . . . and P s are clearly

ramification points of π. Let R be a ramification point other than P and put

α = x(R) and β = j(R). Then we have fy(oc9 β) = 0. Since we have

f(x> y) - yfy(x> y) = (x- αi)W l(* - α2)
m*—(x - αs)

m%

x(R) = αf for some i = 1, 2,..., s. Therefore R must be one of P f. Thereby Cor. 1

is proved.

Another application of Prop. 2 is the following

COROLLARY 2. Under the same notations and assumptions as Prop, 2,

if the covering π: C-^P 1 defined by π(Q) = (l, x(Q)) is completely ramified

at each ramification point, then C is birationally equivalent to a plane curve

(41)

where cCiΦocj for

Conversely, if a curve C over an algebraically closed field k of characteristic

pφΊ> is birationally equivalent to a plane curve (41), then C is of genus 4 and

has a unique trigonal linear system g\. Moreover we have 3Qeg\ for every

gl-special point Q.

PROOF. Let R be a ramification point other than P, and put α = x(R) and

β = y(R). Then β is a triple root of

/(α, y) = y* + tfa)y + <5(α) = 0,

and so JS = O. Therefore R is one of P'i? i = l, 2,..., 5, in Prop. 2 and y(α) = 0.

Let {P, R l 5..., RJ be the set of all ramification points of π: C-+P 1. Then since

div(x-x(R f)) = 3 R ί - 3 P for i = l, 2,...,ί, we have div(Λc) = 2 Σ ί = i R ί - 4 P .

Hence from deg(dx) = 2t — 4, we have ί = 5. Since degy(x)^4 by Prop. 2 and

y(x(Rί)) = 0, we have y(x) = 0, and hence Pi, P2,..., Pi in Prop. 2 are ramification

points of π. Therefore by Prop. 2, we obtain (41).

As for the converse part, since k{C)jk{x) is a cyclic extension of degree 3,

the covering π: C-^P 1 defined by π(Q) = (l, x(Q)) is completely ramified at each

ramification point. Put div (x) = D' — D where D and D' are positive divisors of

degree 3, and put M = X" 1 , v=x~2y, then
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v3 + u(l - (XiU)(l - α2w) (l - α5w) = 0.

Hence we can put D = 3P. By (41), we can also put div(x-α ί) = 3P ί~3P for
i = l, 2,..., 5. If R is a ramification point of π other than P, then by the same
argument as in the first part of this proof, R is one of Pf. Therefore we have
div(dx)=2Σf= 1P ί-4P. Since deg(dx) = 6, we know C is of genus 4. Since
div(j;3)=Σf=idiv(x-α/) = 3(Σf=iPf-5P), we have div(y)=Σf=iPi"~5P, and
hence yeL(2D). 1, x, x2, y are clearly independent elements in L(2D) over fc.
Hence we know l(2D)=4 and hence ID is a canonical divisor by Riemann-Roch
theorem. Therefore by Cor. to Th. 2, C must have a unique trigonal linear sys-
tem.

§4. The case of genus 4 and of characteristic 2

First we prove the existence of curves with non-classical types of gap
sequences.

THEOREM 3. // a curve C over an algebraically closed field k of charac-
teristic 2 is birationally equivalent to a plane curve

(42) /(x, j>) = x3y3 + x3 + y3 + λ = 0, λ Φ 0, 1,

then C is a curve of genus 4 whose gap sequence at ordinary points is {1, 2, 3,
5}.

PROOF. Put div(x)=Σ?^P ί -Σ?=iQ ί and div(3;)=Σf=iP/

i-Σf=iQ/

i.
By Prop. 1, C is of genus 4, and it is easily seen that {1, x, y, xy} is a base of the
space L(Σ3=iQi+Σ3=iQΌ for the canonical divisor Σ?=iQi+Σ?=iQS-
Since fc(C) is separable over k(x)9 there exists an iterative higher derivation Dy

x

with respect to x. We denote Dy

xy by y(v). Operating Dx to (42), we have

y' = χ2(y* + l)ly*(χ* + l).

Since, by (6), D*y3 = yWy2 + y'2y and D3y3 = y™y2 + y'3, operating D2 and D3

to (42), we have

x(j;3 + 1) + x2y2y' + (x3 + ί)yy'2 + (x3 + l)y2y™ = 0 and

y3 + 1 + xy2/ + x2yyf2 + (x3 + I ) / 3 + x2y2y™ + (X3 + 1)^(3) = 0

Hence we have

y(2) = χ(y3 + ϊ)(χ3y3 + X3 + y*)ly5(χ3 + 1)2

+ ί)/y5(x3 + I)2
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and so we have

= (y3 + l)(x 3 y 3 + x3 + );3)2/;μ8(x3 + I ) 3

= λ2(y* + l)ly*(x3 + I) 3 .

Therefore we know

1 x y xy

0 1 y' y+xyf

0 0 yW y'+xy

0 0 yW

1)3

= 0.

This means C has a non-classical type of gap sequence at ordinary points. By

(20), we know that this gap sequence is {1, 2, 3, 5}. Thus our Theorem 3 is

proved.

REMARK. By the same manner as above, we have

yw = χ\y* + l ) ( χ y + ^ 3 + λ)ly*(x3 + I) 4 .

Hence, we obtain the following Wronskian determinant of C:

l» x9 y, xy)

l) 2 (x 3 ^ 3 + λ){x*y6 + (λ + l)x3y3 + λ2}/y™(x* + I) 5 .

We give one more lemma for the proof of non-existence of a curve with non-

classical type of gap sequence other than curves which are birationally equivalent

to a plane curve (42) in Th. 3.

LEMMA 2. Let C be a curve of genus 4 over an algebraically closed

field k of characteristic 2, which has a unique trigonal linear system g\. Assume

the gap sequence at ordinary points on C is of non-classical type. Then there

does not exist such a point P that 3PegfJ, and the number of g\-special points

is equal to 2 or 3.

PROOF. Assume 3J*egl. Let D be a divisor in g\ other than 3P. Then

by Cor. to Th. 2, ID is canonical. By (3) and (4) there exist functions x and y

rational over k such that

div(x) = 3P - D and div(j ) = P + D' - 2Ό

where D' is a positive divisor whose components are different from P. Then
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{1, x, x2, y} is a base of L(2D) over k as easily seen. Since vP(y) = l9 fe(C) is

separable over k(y) and hence there exists an iterative higher derivation DJ with

respect to y. Since the gap sequence at ordinary points is of non-classical type,

we have

(43) χ2,y) =

1 x x2

Ox' 0

'2

0 0

C'2 = 0.

From [/c(C): /c(x)] = 3, it follows that /c(C) is separable over /c(x), and hence x'ΦO.

Therefore we have x(3> = 0. On the other hand, from div (x) = 3P - Z>, using y

as a local parameter at P, we have x^3\F)Φ0. This is a contradiction, therefore

As for the second assertion, let x be a non-constant function such that

div(x) = D - (Qi 4- Q 2 + Q 3)

where D and Qt + Q 2 + Q 3 belong to g\ and Q f ^ Q 7 for i Φj. We can put

div(rfx) = Σί-iΛ|Pι - 2(QX + Q 2 + Q 3 )

where w£^l and {Px, P 2,..., P J is the set of all ramification points of the covering

π: C-+P 1 defined by π(Q) = (l, x(Q)). Let P be one of these ramification points.

By (3) and (4) there exists a function y rational over k such that

where D' is a positive divisor whose components are different from P. Then

putting α = x(P), we can represent x by the power series of the local parameter y

at P in the following form;

x - α = oc3y
3

where αv = (D]Jx)(P) for v = 2, 3,.... By the same argument as the first assertion,

we have J y ; l f 2 f 3 ( l , x, x2, >0 = x ( 3 )x' 2 = O and hence x(3> = 0. Since k is of

characteristic 2 and α3 = x ( 3 )(P) = 0,

dx = (a5y
4 + ocΊy

6 )dy.

Therefore we obtain ni = 7P<(div(rfx))^4 for i = l, 2,..., t. By Riemann-Roch

theorem, Σi=i w i = l 2 and so l g ί ^ 3 . On the other hand, by Cor. 1 to Prop. 2,

we know the number of all ramification points of π is greater than 1. Thus

Lemma is proved.
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REMARK. Since x ( 7 ) = D J x ( 3 ) = 0, n{ = 8 unless n f = 4 .

Now, we shall prove the converse of Theorem 3.

THEOREM 4. If a curve C of genus 4 over an algebraically closed field

k of characteristic 2 has a non-classical type of gap sequence at ordinary points,

then C is birationally equivalent to a plane curve

χ3y3 + χ3 + y3 + λ = 0 > A # 0, 1.

PROOF. It is sufficient to prove that a curve C of genus 4 over k of charac-

teristic 2 with a unique trigonal linear system g\ has the classical type of gap

sequence at ordinary points by Lemma 1 and Prop. 1. If the gap sequence at

ordinary points on C is of non-classical type, this sequence must be 1, 2, 3, 5 by

(20) and hence the orders of a Wronskian determinant of C are 0, 1,2, 4.

According to Lemma 2, Prop. 2 and its Cor. 1, our proof is divided in four

cases. We use the same notations as in Prop. 2. We note there is no point P

such that 7>Yeg\ by Lemma 2 and hence P # P \

(i) The case; the number s of finite ramification points of π: C-+Fί defined

by π(Q) = (l, x(Q)) is equal to 1 and the pole divisor of y is £ = 4P + P'. Since,

by some translation of x9 we may assumes aί=0 in Prop. 2, C is birationally

equivalent to a plane curve

(44) y3+ (Σt=obiχ
ί)y + χ5 = 0.

Therefore, by Cor. 1 to Prop. 2, we can put

(45) div (x) = 2Pj + Pi - (2P + P') and div (y) = 5P; - (4P + P').

Replacing x and y by b^l2x and bi5ily respectively, we may assume f? 4 =l.

We note that boφ0 since P ^ P i . First we show that fc^O. Assume b 1 = 0 .

Then

f(χ, y) = y(y + V ^ ) 2 + χ2Kb2 + M + χ2)y + *3} = o.

Hence, since ι;Pl(x) = 2 and t;Pl(y) = O by (45), we have vPι(y+ y/~bό)^2. There-

fore we can put div(}>+ x/b^) = 2P 1 +2* / -(4P + P/) where B' is a positive divisor

whose components are different from P and P\ and hence 2 P 1 + £ ' + P ' ~ 4 P + 2P'

~ 2 P 1 + P /

1 + 2P + P/ by (45), and so β ' ~ P i + 2P. This contradicts uniqueness

of g\. Hence b^O. Next we shall prove b2 = 0 and b3Φ1. In fact, represent

x and y by power series of a local parameter t at P;

x = r 2 + oc-iΓ1 + α0 +••• and y = J?_ 4 r 4 + β-3t~
3 4- β-2r

2 +•••

and put these in (44). From coefficients of t~ί2 and ί"10, we obtain /?_ 4 =1

and so j82

3 + ί>3 + l = 0. If we assume /?_ 3 =0, then
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diγ(y _ χ2 _ ( β 2 _ α 2 i ) χ ) ^ _ ( p + 2 P ' ) ,

and hence we have Z(P+2P')^2. By uniqueness of g\, we have a contradiction
P + 2P'~2P + P'. Therefore β-3φ0 and bzφ\. Hence from (45) and dy
= (-3β-3r

4-β-ίΓ
2+>--)dt9 we can put

div (dy) = 4Pi + D' - (4P + 2P')

where Z)' is a positive divisor of degree 8 whose components are different from
P1 ? P and P'. If Q is a component of D'9 then x — x(Q) is a local parameter at Q
because the zero divisor of x — x(Q) belongs to g\ and there is no t^-special point
other than P and P2 by the assumption s = 1. If we represent y by power series of
u = x - x ( Q ) a t Q ;

y - y(Q) =

then

^ = OM

By the assumption on gap sequence, we have Δu;li2i3(l, x, x2, ^) = ̂ ( 3 ) = 0 for
the base {1, x, x2, j;} of L(4P+2P/) and hence js3 = 3;(3)(Q) = 0. Therefore
dy=(β5u

4+βΊu
6+~ )du. This implies D' = 8Q or 4Q + 4Q'. Hence the num-

ber of ramification points other than Pi and P of the covering π': C->PX defined
by π'(R)=(l, y(R)) is equal to 1 or 2. Since we have

/*(*, y) = (*i + b3x
2)y + x4 and

/(x, y) - x/Λ(x, y) = Xy2 + fc0 + fc2x
2 + x4),

x-coordinates of these ramification points other than Pi and P must consist of all
roots of the equation

(46) g(x) = (bt + b3x
2)( Jbo + V5^x + x2) + x4

= (63 + l)x4 + b3 Λ/F^X3 + (bί + b3

= 0

where f̂  + l^O. Hence ^(x)=0 must have at most two roots. If g(x) = (b3

+ l)(x-α) 4 or (ί?3 + l)(x-α)2(x-jS)2, then we have obviously &2=0. If g(x)
=(fc3 + l)(x-α)3(x—β), then α must be a common root of (46),

(47) gx(x) = b3y/V2x
2 + blyfb~2 = 0 and

dlg(x) = b3 JT2x + (bt + fc3 >/δi) = 0.

Assume b2φ0. If ft3^0, then x2 = b1b3

1. Putting this in g(x) = 0, we have a
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contradiction bι = 0. If 2>3=O, then by (47), we also have ί?1=0. Thus we
know b2 = 0.

Now, represent x and y by power series of a local parameter u at P'

x = u~i + α0 + ociU H— and

y = fi^U'1 + βo+ βt1l +-.; β-t*09

and put these in/(x, y) = 0. Then from coefficients of u~5, M~4 and w~3, we know

1 = 0 . Hence

ί> 3 ) 2 .ft = 1 + b\ =

On the other hand, {u2, u2x, U2X2, U ^ } is clearly a base of L(4P + 2P'-div(u2)).
Hence from the assumption on gap sequence and (13), it follows that

0

0

1

0

0

1

α 0

α

1

0

αg

0

0

1

βo

Therefore we have a contradiction 63 = 1. Thus this case does not occur.
(ii) The case; s = 2 and £ = 4P + P'. Since, by a suitable linear transfor-

mation of x and y, we may assume α x =0 and α2 = l in Prop. 2, we can see that,
by Prop. 2 and its Cor. 1, C is birationally equivalent to a plane curve

i + m2Pi - (4P + F ) ,

To see this,

f(x, y) = y3 + (Σ

so that we can put

div(x) = 2PX + Pi - (2P + P;) and div(y) =

whence m1 + m2 = 5. Here we may put m
assume div (y) = 3Pi + 2P2 - (4P + P'). Then

4P + 2P', P; + 2PX + 2P + P', 2P; + 4Pj and 3Pi 4- 2P2 4- Pr

are all canonical divisors by Cor. to Th. 2 and so Hermitian Pi-invariants are
0, 1, 2, 3 by (4). This contradicts the assumption on the gap sequence. Hence
we may assume

(48)

Since vPί(y+

f(x, y) = y3 + (Σ

= ! by the same argument as btφ0 in (i), y+ is a local
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parameter at Pi. Expand x by a power series of t — y + JΊ^> at P x :

Putting these in (48), from coefficients of t2 and t3 we know

= 0 and l + ft1c2H-
the gap sequence, we have

==0. On the other hand, by the assumption on

1 x X 2 y

Ox' 0 1

0 x<2> x'2 0

0 x<3> 0 0

= 0.

Since [k(C)\ /c(x)] = 3, /c(C) is separable over /c(x), and hence x'ΦO. Hence we

have x ( 3 ) = 0, and so c3 = x ( 3 )(P 1) = 0, whence l + fc1c2 = 0. Therefore we have a

contradiction c2 = 0.

(iii) The case; s = l and E = 4P. Since we may assume α x = 0 in Prop. 2,

we may put by Prop. 2 and its Cor. 1,

div(x) = 2Pt + Pi - (2P + Pr) and divOO = mPr + m ^ i - 4P

where ^ ^

(a) m = 0, hence m 1 = 4 . C is birationally equivalent to a plane curve

(49) *, y) = = o

where &47*0 by Cor. 1 to Prop. 2. Represent x and j ; by power series of a local

parameter t at P' :

x = ί"1 + α0 + OLxt Λ— and

By the assumption on the gap sequence, we have

0 0 1 0

0 1 0 0

β0

0 0

= 0i = 0.

Putting the above series in (49), from the coefficient of ί"3, we know b3β0Λ-b4βί

= b3βo = 09 and hence b3 = 0. This implies Vp(y3 + b4x
4y) = υP(y(y+y/Έlx2)2)

^ - 8 , and hence υF(y+ ^fiux2)^ - 2 , and so div(y+ V M 2 ) ^ - 2 ( P + P ;).
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Since /(2P + 2P') = 2=Z(2P + P') by Riemann-Roch theorem, P' is a fixed point of
I2P + 2PΊ, and hence div(y + Jb^x2)^ -(2P + F). Therefore y + ^ e
L(2P + P'). This contradicts linear independence of 1, x, x2, y.

(b) m = l. We have

div(x) = 2PX + Pi - (2P 4- P') and div(y) = F + 3PJ - 4P.

Hence the following divisors

4Pt + 2Pi, P' + 2P + 2Pi + Pi, 2P' + 4P and 3P' + 3P;

are all canonical by Cor. to Th. 2. Therefore Hermitian P'-invariants are 0, 1, 2,
3. This is a contradiction.

(c) m = 2. In this case, we have divO0 = 2P' + 2Pi — 4P, and hence by
Prop. 2, C is birationally equivalent to a plane curve

f(χ, y) = y3 + (ΣUbiXι)y + χ2 = o.

If we put u = x~ί and w = yx~2

9 then we have

div(w) = 2P + F - (2Pt + Pi), div(w) = 4P' - 4P1?

and

w3 + (Σ?=oM4"0w + M4 = o.

Therefore this case is reduced to the case (iii)-(a).
(d) m = 3. By the same manner as (c), this case is reduced to the case (i).
(iv) The case; s = 2 and £ = 4P. In this case, putting ac1=O and α 2 = l

in Prop. 2, by Prop. 2 and its Cor. 1 we may assume that C is birationally equiva-
lent to a plane curve

f(x, y) = y3 + (Σf-oMOy + * m i ( * - l)m 2 = 0,

and that

div(x) = 2PX + Pi - (2P + P') and div (y) = mV + mxPi + m2V2 - 4P

(e) m = 0. If we assume div(» = 3Pi + Pi-4P, then 4P + 2F,
+ 2P + P', 2Pi + 4PX and 3Pi + V2 + 2P' are canonical divisors, and hence
Hermitian Pi-invariants are 0, 1, 2, 3. This is a contradiction. Therefore we
may have div(y) = 2Pi + 2P2 — 4P and C is birationally equivalent to

f(χ, y) = y3 + (Σf-oMOy + ** + * 2 = o.

Exactly by the same way as (iii)-(a), we know this case is impossible.
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(f) m = l. We may have div(»=P' + 2P'1-{-P2-4P. Hence, putting u
= x~1 and w = yx~2

9 this case is reduced to the case (e).
(g) m = 2. By the same transformation of x and y as (f), this case is reduced

to the case (ii). Thus our Theorem is proved.

§ 5. The case of genus 4 and of characteristic 5

By Th. C and Th. D in § 1, a curve of genus 4 whose gap sequence at ordinary
points is of non-classical type must be defined over a field of characteristic 2 or 5.
In this final section, we shall prove the uniqueness of such a curve over a field of
characteristic 5.

LEMMA 3. Let C be a curve of genus 4 over an algebraically closed field
k of characteristic 5. // the gap sequence at ordinary points on C is of non-
classical type, then C has a unique trigonal linear system g\, and 3Peglfor
every g\-special point P.

PROOF. By Lemma 1, we know C has a unique g\. If we assume 2P+P'
egl for a ^-special point P, and P^P', then by Cor. to Th. 2, 2P + P' + D and
4P + 2P' are canonical divisors where D is a divisor in g\ without P as a component.
Since C is non-hyperelliptic, this implies the Hermitian P-invariants are 0, 1, 2, 4
by (3) and (4). On the other hand by (22), the orders of a Wronskian determinant
of C are 0, 1, 2, 5. This contradicts the formula (13). Therefore 3P e g\.

THEOREM 5. // a curve C of genus 4 over an algebraically closed field k
of characteristic 5 has a non-classical type of gap sequence at ordinary points,
then C is biratίonally equivalent to the plane curve

y5 + y - x3 = 0.

The gap sequence at ordinary points on the curve C is {1, 2, 3, 6}.

PROOF. By Lemma 3, C has a unique trigonal linear system g\. Lemma
3, Prop. 2, and its Cor. 2 mean that C may be birationally equivalent to a plane
curve

(50) /(x, y) = y3 + x5 + α t x
4 + a2x

3 + a3x
2 + α4x = 0

where <5(x) = x5 + axx
4 + α2x

3 + a3x
2 + α4x is squarefree, and that we have

div(x - αf) = 3Pf - 3P for i = 1, 2,..., 5 and

where α^..., α5 are the roots of <5(x)=0. We shall show α1 = α2 = α 3 =0. Since
{1, x, x2, y} is a base of L(6P) for the canonical divisor 6P and fe(C) is separable
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over k(x) as easily seen, and since the orders of a Wronskian determinant of C are

0, 1, 2, 5 by (22), we have

Λx;ί,2,3(l>x>x2,y) = y(3) = 0 and

Operating Dv

x for v = 1, 2, 3, 4 on /(x, y)=0, we have

(51) 3 y 2 / + Λaxx
3 + 3a 2x 2 + 2a3x + a4 = 0,

(52) 3(3;2.y(2> + j ; / 2 ) + axx
2 + 3α2x + α 3 = 0,

(53) yy'yW + / 3 + 4 ^ + ^ = Q,

(54) 3y(3^(2))2 + 3/2)> ( 2 ) + ax = 0.

Assume α t # 0 . Let /?l5 ^ 2 , β3 be the roots of

δ'(χ) = 4αiX3 + 3α 2x 2 + 2a3x + α 4 = 0,

and let Q l f Q 2 , Q 3 be the points of C such that χ(Q.) = β.. Since δ(x) is square-

free, δ(βi)ΦO for i = l , 2, 3, and hence by (50), y(QdΦ0, and so by (51), /(Q.) = 0.

Hence by (53), 4a 1 0 i + a 2 = O for i = l , 2, 3. Therefore βί^β2 = β3, say, =β.

This implies δ/(x) = 4aί(x-β)3, and hence j5 is also a root of dlδ(x) = aγx
2 + 3a2x

+ α 3 = 0 . Hence by (52), >;(2)(Q1)=0. Therefore by (54), we get a contradic-

tion. Hence we have α 1 = 0 . Now, by (54), we have y(2\yy(2) + y'2)=0. If

y(2)=0, then by (53), we know yf is a constant. This is impossible by (51). If

—fy then by (52) we have α 2 = α 3 = 0 . Therefore we have

y3 + x5 + a4x = 0.

Replacing x and y by a\IAry and -a%ll2x respectively, we have

y5 + y - x3 = 0.

The last assertion follows from (22). Thus our proof is completed.

References

[ 1 ] J. L. Coolidge, A treatise on algebraic plane curves, Dover, 1931.
[2] H. Hasse and F. K. Schmidt, Noch eine Begrϋndung der Theorie der hδheren Dif-

ferentialquotienten, J. Reine Angew. Math. 177 (1937), 215-237.
[ 3 ] K. Hensel and G. Landsberg, Theorie der algebraischen Funktionen einer Variablen,

Leipzig, 1902 (Repr. New York, 1965).
[ 4 ] A. Kuribayashi and K. Komiya, On Weierstrass points of non-hyperelliptic compact

Riemann surfaces of genus three, Hiroshima Math. J. 7 (1977) 743-768.



400 Kaname KOMIYA

[ 5 ] S. Lang, Introduction to algebraic geometry, Interscience Tracts n° 5, New York,
1958.

[ 6 ] B. A. Olson, On higher order Weierstrass points, Ann. of Math. 95 (1972), 357-364.
[ 7 ] F. K. Schmidt, Die Wronskische Determinante in beliebigen differenzierbaren Funk-

tionenkorpern, Math. Z. 45 (1939), 62-74.
[ 8 ] , Zur arithmetishen Theorie der algebraischen Funktionen II. Allgemeinen

Theorie der Weierstrasspunkte, Math. Z. 45 (1939), 75-96.
[ 9 ] R. J. Walker, Algebraic curves, Princeton Univ. Press, 1950.
[10] A. Weil, Foundations of algebraic geometry, A.M.S.Coll.Publ., New York, 1946

(Revised ed. 1962).
[11] f Sur les courbes algebriques et les varietes qui s'en deduisent, Hermann,

Paris, 1948.

Department of Mathematics,

Faculty of Liberal Arts & Education,

Yamanashί University




