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1. Introduction

This paper is devoted to the study of some initial value-boundary value prob-

lems for the Hamilton-Jacobi equation

(1) | ^ +

It will be shown that (1) is governed by contraction semigroups on certain closed

subsets of the space of bounded uniformly continuous functions on the half-line

R+ = [0, oo) via the Crandall-Liggett generation theorem [10] for nonlinear semi-

groups.

Preparatory to these results, results concerning existence of periodic solutions,

positive solutions, and even solutions for the Cauchy problem for (1) with xe

R = (— oo, oo) will be obtained.

The Cauchy problem for the Hamilton-Jacobi equation has been studied

from a semigroup point by Aizawa [2, 3], Burch [7], and Tamburro [15, 16].

The results and techniques in [7] are refined and further developed in this paper

to gain information about some boundary value problems for (1). Results

concerning these problems complement the recent work of Feltus [11]. Feltus

studied existence and uniqueness for (1) with Dirichlet boundary condition at

the origin, but he didn't establish continuous dependence results. Some earlier

results on boundary value problems for (1) were obtained by Aizawa and Kikuchi

[1, 4] and Benton [5, 6].

Before stating the main result we introduce some notation. J denotes

either R = (-oo, oo) or R+ = [0, oo). For 1</?<OO, LP{J) denotes the usual

real Lebesgue space with norm || | |p. Wn*p(J) denotes the Sobolev space of all

feLp(J) such that the th derivative of/belongs to LP(J) for j<n. BUC(J)

denotes the bounded uniformly continuous real functions on J. For Γ(R) any

space of functions on R we define
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Fe(R) = {ue Y(R): u(x) = u( - x) for all x e R } ,

yπ(R) = {ue Ye(R): u(0) = 0, u(x) > 0 for all xeR} ,

yp(R) = {ue Y(R): «(x + p) = u(x) for all xeR} ,

where p is some nonzero real number. Thus the subscript e stands for "even",

while the subscript π stands for "positive etc." and the subscript p stands for

"periodic with period p".

For fc>0 we define

B(k) = {ueBVC(R): ||ιι|L < k; for all x,yeR,

\u(x + y) — u(x)\ <. k\y\ and u(x + y) — 2w(x) + u(x — y) ^ ky2}.

The main result of this paper is the following theorem.

THEOREM I. Let FeC2(R)t F(0)=0, F'(x)>0 and F(-x)=F(x) for all

xeR. Consider

(1) ^L + F(^L)=o a.e. for (ί,x)eR+xR+,

(2)

(3)

(4)

(5)

u(0, x) = uo(x)

| f (ί, 0) = 0

«(ί, 0) = 0

u(t, x) ^ 0

/or

/or

for

for

xεR\

ί e R + ,

ίeR+,

(ί,x)eR+ xR+.

Then:

(i) (l)-(3) is governed by a contraction semigroup on BUC(R+).

(ii) (l)-(5) is governed by a contraction semigroup on BUCπ(R+).

Preliminary to Theorem I we establish the following result concerning the

Cauchy problem.

PROPOSITION I. Let FeC2(R), F(0)=0, and F"(x)^0 for all xeR.

(a) (l)-(2) is governed by a contraction semigroup on BUCp(R), for each

peR.

(b) If also F(x)=F(-x)for all xeR, then:

(i) (l)-(2) is governed by a contraction semigroup on BUCe(R).

(ii) (l)-(2) is governed by a contraction semigroup on BUCπ(R).

It is advantageous to solve mixed problems by the theory of nonlinear semi-

groups. For instance, semigroup approximation theory shows that the solution

u of (l)-(3) (or (l)-(5)) depends continuously on both u0 and F. Perturbation
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theory allows one to add a term of the form G(u) to the right-hand side of (1).
For propaganda advocating semigroup methods, see for instance Crandall [9]
or Goldstein [12].

The proof of Theorem I proceeds by considering the pure initial value prob-
lem for (1), (2) in (f, x)eR + xR, and then showing that the associated semigroup
on BUC(R) leaves certain closed subsets invariant. These closed subsets will
have the boundary conditions (3) (and (3)-(5)) built into their definitions.

The relevant results from Burch [7] concerning this Cauchy problem are
collected in Section 2. In Section 3 the generator of the semigroup is studied
and its resolvent is shown to leave certain subsets invariant. This necessitates
a study of the equations

In Section 4 the main theorem will be proved. We show that (l)-(3) is governed
by a contraction semigroup on Be(k)=B(k) πBUCe(R), and (l)-(5) is governed
by a semigroup on Bπ(k)=B(k) n BUCπ(R). For the solution of (l)-(3), condition
(3) is satisfied in a generalized sense, whereas for (l)-(5), conditions (3)-(5) are
satisfied in the classical sense. Section 5 contains a discussion of related prob-
lems.

After our research was completed we learned of the interesting paper of
Tomita [17]. Tomita treated the Dirichlet problem for (1) on the interval
0 < x < l using Aizawa's results [2].

2. The semigroup associated with the Cauchy problem

The results stated in this section are proven in [7]. We assume Fe C2(R),
F ' ^ 0 , and F(0)=0. Fix fc>0. Define Ak\ 0(Λ)cBUC(R)-+BUC(R) by
@(Ak) = {ueB(k): for some λu>0, u + λuF(ux)eB(k)}9 Aku=F(ux) for ue@(Ak).
Here ux is the derivative of u. Below, &(I+λAk) denotes the range of I+λAk.

PROPOSITION 2.1. [7, §5]. Let fc>0. Ak is accretive in BUC(R), and
ror each λ>0. Thus Ak uniquely determines a contraction

semigroup {Tk(t): ίeR+} on @(Ak) via the Crandall-Liggett exponential for-
mula

Now define A^: 0 ( 4 JczBUC(R)->BUC(R) by:
= U {@(Ak): k> 0}, and A^u=F(ux) for u e 2>(A^. Let A be the closure

of^ inBUQΊR).
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PROPOSITION 2.2. [7, § 6]. A is m-accretive and densely defined on
BUC(R). A determines a contraction semigroup given by

T{t)f = lim(i + ± A)'nf (fe BUC(R), /eR+).
w-foo \ n J

3. Invariant subsets

In this section we show that the semigroup constructed in Section 2 leaves
certain subsets of BUC(R) invariant. This will allow us to consider certain
restrictions Q of the operator A and show that they satisfy the hypotheses of the

Crandall-Liggett theorem [10] (i.e. @(Q)a@(I + λQ) for λ>0 sufficiently small,
since a restriction Q of an accretive operator A is automatically accretive).

For the rest of the paper the function F: R-»R satisfies Fe C2(R), F(0) = 0,
F'(x)>0 and F(-x)=F(x) for all xeR. Fix peR. We next define three
restrictions Ak

9 Ak

9 and A\ of Ak. Fix fc>0. Define

&(Ak) = {u e&(Ak): u(x + p) = u(x) for all xeR},

§ = {we@(Ak): u(x) = u ( - x) for all x e R } ,

{M e ^ ( ^ ^ ) : u(0) = 0, w(x) ^ 0 for all x e R}.

For u e @(A$) [resp. u e ®(A% u e &(A*y], we define Ak

pu=Au=F(ux)

[tesp. Ak

iu=Au=F(ux)9 Ak

ιu=Au = F(ux)}*

Thus A\ is the restriction of Ak to the even functions in its domain, A\ is the
restriction of A\ to the nonnegative functions in its domain which vanish at the
origin, and Ak

p is the restriction of Ak to the periodic functions with period p in
its domain. The following lemma gives useful information about (the union over
k of) ®(A% @(Ak), and ®(A*).

LEMMA 3.1. (i) // ue U {B(k): fc>0} Π {υeBUC(R): v is even, nonnega-
tive, and ι;(0) = 0}, then u is continuously differentiate at the origin and ux(0)
=0.

(ii) Cl(R) n JF3 °°(R) c u {&(Ak): k > 0}.
(iii) C£(R) π JF3'°°(R) c u {^(^ϊ): k> 0}.
(iv) C3(R) Π FF3 °°(R) c: u {^(4) : fe > 0}.

PROOF, (i): Note that any function in B(k) is continuous and piecewise
C1. The one-sided bound on the second centered difference quotient (in the
definition of B(k)) implies that any jump in the first derivative of a function in
B(k) must be a downward jump. So let u e B(k) be even, nonnegative, and u(0)
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= 0 . Suppose u is not C 1 at the origin. Then since ux(0~)<0<ux(0+)9 we must

have ux(0~)<ux(0+) and thus ux has an upward jump at zero, a contradiction.

This proves (i).

For (ii) and (iii), and (iv), it suffices to establish that

(6) C3(R) n JF3 °°(R) c U {&(AJ: k > 0}.

Let u e C3(R) Π W3>00(R), and let K b e a common bound for the absolute value

of u and its derivatives up to order three. Then w, F(ux)eB(L) where, L=K

+ max{|(JF(ί)|: \t\<K}. Thus u+F(ux)eB(2L) and (6) follows.

Now we want to show that

&(A*) c 0t(l

for λ>0. For this we consider the equation

(7) u + λF(ux) = h

for h e @(A*) and seek a solution u in @(A*). To establish the existence of a

solution we proceed as in [7] and [2]. Consider the regularized elliptic equation

(8) u + λF(ux) - εuxx = h.

We will need the following known result.

PROPOSITION 3.2 [7]. Let fc>0, heB(k\ and λ>0. Then there is a u

e @(Ak) such that (7) holds.

For β>0 let uB be the unique solution in C2(R) n W^^R) of

u° + λF(ux) - εuxx = h;

u* exists. Then for some sequence ε I 0, uε-»u uniformly on compact subsets

o/R, and ux-*u a.e. in R.

The existence proof for uε can be found in both Aizawa [2] and Burch [7].

The full statement is proved in [7].

We next study uε further in order to see how uε and u inherit properties from

h. The main tool we require is the following version of the maximum principle

for elliptic equations.

LEMMA 3.3. Let a e L°°(R) and β>0. If υe C2(R) is bounded from above

and

Lυ = υ + avx — ευxx < 0 for all x e R ,

then v(x)<0 for all xeR.
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For a proof see [2], [7], or [13].

PROPOSITION 3.4. Let ε>0, λ>0, FeC2(R), i7(0)=0, F"(x)>0 and F(-x)

= F(x) for all xeR. Let u e C2(R) Π W^(R) satisfy

u 4- λF(ux) - euxx = h, heBUC(R).

Then the following conclusions hold:

( i ) Ifhis an even function, then so is «.

(ii) Ifh>0, thenW^O.

(iii) // heB(k\ h is even and /ι(0) = 0, then u(0)<εk.

(iv) Ifh(x+p) = h(x)for allxeR, then u(x + p) = u(x)for allxeR.

PROOF, (i): Define w(x) = u(x)—w(—x). Since F and h are even we have,

for all x e R,

0 = w(x) + λlF(ux(x)) - F(ux(- x))] - εwxx(x)

= w(x) + A[F(Mjc(x)) - F ( - « , ( - x))] - εwXJC(x)

= w(x)

Define

Lv(x) Ξ t; + λ\^F\τux(x) + (1 - τ)(- W j c(- x ) ) ^ ] ^ ) - ει;xx(x).

The above calculation shows that L(±w)=0, and so Lemma 3.3 implies ± w < 0 .

Thus w = 0 and consequently u is even,

(ii): Define

Lov(x) = ι (x) + ̂ [JV'ίτM^x))^]^) - εvxx(x).

Then if Λ^O,

^ o ( ~ w) = - A < 0,

whence w^>0 by Lemma 3.3.
(iii): Let h be as in the statement of (iii). u satisfies

(9) u(0) + λF(ux(0)) - εuxx(0) = h(0) = 0.

u is even since h is (by (i)), thus ux is odd and so «x(0)=0. Also, F(0)=0, whence

(9) reduces to M(0)=εMxx(0). Furthermore, heB(k) implies ueB(k). (For a

proof see [7].) Thus MXX(X) < k for all x e R as u e C2(R) fl B(k). Consequently
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M(0) = εuxx(0) < εfe.

(iv): (Note that the assumption F(x) = F(—x) is not needed here.) Let

w(x)=u(x+p) — u(x) and proceed as in (i) above.

We can now interpret the above proposition in terms of the operators Ak

9

Ak

9 and Ak.

PROPOSITION 3.5. @(Ak)c@(I + λAk)9 @(Ak)a@(I+λAk)f and

(I + λAk)forallλ>0.

PROOF. Let he@(Ak) and λ>0. Proposition 3.2 provides a ue@(Ak)

satisfying u + λF(ux) = h and u = limue, uniformly on compacta, etc. Since h is
e->0

even each u8 is even by Proposition 3.4 (i), whence so is the limit function u.

Thus u e

Now suppose h e @(Ak). We just proved that u e @(Ak), since h e

c@(Ak). Furthermore, h even, ft>0, and /i(0) = 0 implies u ε >0 and wε(0)<εfc

by Proposition 3.4 (ii), (iii). Thus u > 0 and w(0) = 0. In other words, u e

and so ®(A§ c 0t{} + Ak). Similarly, @(A*) a 0t{l + λAk).

We could now apply the Crandall-Liggett theorem to the closures of A*,

Ak

e9 and Ak to get contraction semigroups. Instead we proceed as in [7] and

define extensions of Ak

f Ak, Ak, and then apply Crandall-Liggett to their closures.

Define Ae in BUC(R) by:

&(Ae) = U {®(Ak): k > 0}, Ae(u) = F(ux) for u e @(Ae).

D e f i n e ^ in BUC(R) by:

0(AJ = U {9(A*) . k > 0}, Ap{ύ) = F(ux) for u e ®(Ap).

D e f i n e ^ in BUC(R) by:

&(An) = U {@(Ak): k > 0}, Aπ(u) = F(ux) for u e @(Aπ).

First note that @(Aa)cz@(I+λAa) for a e {p, e9 π} and for all λ>0 by Propo-

sition 3.5. Secondly, Ap9 Ae9 and ylπ are accretive, being restrictions of A^.

Thus their closures in BUC(R) are accretive. These remarks allow us to con-

clude

PROPOSITION I. Άp [resp. Άe9 Ά^\ determines a contraction semigroup

on ^(I^=BUCp(R) {resp. ^Q = BUCe(R), ^ ( 3 j = BUCπ(R)] via the
Crandall-Liggett exponential formula.

The assertions concerning the closures of the domains of Άp9 Άe9 Άπ are
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routine to check once Lemma 3.1 is noted. See [7].

4. The boundary problem

The four generators (Άp9 Ae9 Άπ9 A) that we have discussed satisfy

Aπ c= Ae c A and Άp c A.

Thus the corresponding semigroups satisfy the same restriction (or extension)
inequalities. In particular, we can consider the semigroup T = {T(t): ίeR + }
determined by A and treat the other semigroups are restrictions of this semigroup
T to appropriate domains. Recall that for v e BUC(R), t e R+,

T(t)v = lim(l + — A)"Ό e B U C ( R ) .

PROPOSITION 4.1. Let u(t) = T(t)υ for v e BUC(R), t e R+. Let u(t, x)
= u(t)(x)forxeR.

( i ) Ifve J5(/c), then u(t) e B(k) for each t > 0.
(ii) If ve U {B(k): k>0}9 then κ( , •) is Lipschitz continuous on [0, T]

xR for each T>0.
(iii) Ifve U {B(k): fc>0}, then ut+F(ux) = 0 a.e. in R+xR.
(iv) IfveB£k)9 then u(t)eBe(k)for all ί>0.
( v ) If ve [){B(k): k>0} and v>0, then u(t)>0 for each t>0.
(vi) IfveBκ(k), then u(t) e Bπ(k) for each ί>0.
(vii) Ifve Bp(k)9 then u(t) e Bp(k) for each t > 0.

PROOF, (i), (ii), and (iii) are proved in Burch [7].
To prove (iv), let veBe(k) and let f>0. Define u1 by u1 + ίi?(wi) = t;, i.e.

M1 = (/+ίv4)""1t;. Then u1 e Be(k) by Proposition 3.4 (i) and a limiting argument.

(Cf. the proof of Proposition 3.5.) Defining un to be (IΛ A j v, the above

argument plus induction gives uneBe(k). Since M(ί)=limuπ and since Be(k) is
n- oo

closed in BUC(R), u(t)eBe(k) follows.
The proofs of (v), (vi), and (vii) are similar and are omitted.

COROLLARY 4.2. Let u,v be as in Proposition 4.1. // veBn(k)> then

u{t, 0) = ux(t9 0) = 0 for each t>0.

PROOF. Proposition 4.1 (vi) and Lemma 3.1 (i).
For u e C(R+) we define u e C(R) by

ί u(x), x ^ 0,
u(x) -

[u(-x)9 x < 0 .
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Thus ύ is the even extension of u.

Define

X(k) = {«eC(R+): ύeB(k)}

for fc>0.

If u e C1(R+) and ux(0+) >0, then ύx has an upward jump at the origin, and

s o u ί U {B(k): k>0}. Hence if u eX(k), then 1^(0+)<0. We also note that an

argument using mollifiers shows that [) {X(k): k>0} is dense in BUC/R).

(Here we identify u e X(k) with ύ e Be(k).)

PROPOSITION 4.3. Let uoe Ό {X(k): k>0} and let u(t9 -) = T(t)u0. Then

(1), (2), and (3) hold. If, in addition, uo>0 and MO(O) = O, then (4) and (5)

hold as well.

PROOF. For M o 6 U { I ( k ) : b 0 } , (1) and (2) hold by Proposition 4.1.

(3) holds in a generalized sense. More precisely, u(t, ) is an even function and

is the uniform limit of C00 functions whose first derivatives vanish at the origin.

If also MO(0) = 0 and M O > 0 , then u(t, -)eBπ(k) for all ί>0 by Proposition 4.1 and

(3), (4) and (5) hold by Corollary 4.2. Note that (3) holds in the usual sense in

this case.

Theorem 1 is an immediate consequence of Proposition 4.3. For the

problem (l)-(3), the initial data u0 should be in the set U {X(k): fc>0}, which is

dense in BUC(R+). (Cf. the sentence preceding the statement of Proposition

4.3). For the problem (l)-(5), u0 should be in U {X(k): k>0} n {v: f(0) = 0,

v>0}. This set is dense in BUCπ(R+).

5. Remarks

1. It is obvious that if a semigroup leaves a set invariant, then the solution

of the associated differential equation takes values in that set for all times ί > 0

if it does initially. This gives us a method for finding solutions satisfying bounda-

ry conditions, positivity conditions, etc., and this method actually works in some

cases, as the present paper illustrates. This method underscores the importance

of the Crandall-Liggett condition

(10) &(A) a@(I + λA).

If A is a proper restriction of an accretive operator, then A is not maximal accretive,

hence A is not m-accretive. Nevertheless, (10) can be verified in some cases, and

(10) is precisely what is used to construct the semigroup governing A.

2. The method of this paper can be used to treat the Neumann problem
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(l)-(3) for the Hamilton-Jacobi equation assuming only that F: R-*R is con-

tinuous, even, and F(0) = 0. Such a proof is based on Aizawa's paper [2]. Our

method for (l)-(5), however, seems to be based in a crucial way on the convexity

of F and the sets B(k).

3. The method of this paper can be used to treat the Dirichlet problem for

the Hamilton-Jacobi equation (i.e. (1), (2), and (3') u(t, 0) = 0 for t e R + ) assuming

F is continuous, odd, and F(0) = 0. As was the case in the previous remark, the

proof is based on [2].

4. As is well-known, the one-dimensional Hamilton-Jacobi equation (1)

and the one-dimensional conservation law

(ii) t + ί;(F(v» = 0

are connected via the formula v = ux. The Neumann condition (3) for u becomes

the Dirichlet condition

(12) ι;(ί,0) = 0 ( ί ^ O )

for v. This suggests that using the results of Crandall [8], the mixed problem for

(11) [i.e. (11), (12) plus v(0, x) = vo(xy] is governed by a semigroup in L^R4")

if F is continuous and even. We are confident that this is so, although we haven't

worked out the details. For a treatment of (11), (12) with F strictly monotone

increasing see [9].

5. If ut + F(ux) = 0, then utt= -(F(ux))t= -F'(ux)utx={F'(μx)yuxx, thus

any solution u of (1) is a (generalized) solution of the hyperbolic equation

(13) «„ - (F'(μx))>uxx = 0.

This nonlinear wave equation is of substantial interest and has been studied by

MacCamy and Mizel [14] among others. Our results give insight into the study

of (13). For instance the formation of shocks for (11) leads to discontinuities

in the first derivative of w, and thus we cannot expect to get classical solutions,

in general, for (13), when F is strictly convex. However, Theorem I provides us

with many nonnegative solutions of (13). More precisely, equation (13) together

with the boundary conditions

u(t, 0) = 0 = ux(t, 0) (ί > 0)

and the initial conditions

u(0, x) = uo(x) > 0, ut(0, x) = - F(-£-uo(xή (x > 0)

has a (generalized) nonnegative solution according to Theorem I.
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Our results further suggest that in a semigroup approach to the Cauchy
problem for (13) one should work in a space with the supremum norm.
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