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Introduction

In the paper [5], T. M. Flett introduced a space of temperatures (solutions of
the heat equation) on a half space which is isomorphic to the Lipschitz space
-4(α; p9 q) of M. H. Taibleson ([16]). As a consequence, many results con-
cerning Λ(α; p, q) were proved; in particular, he showed that the topological dual
of Λ(VL\ p, 1), l:gp<oo, is isomorphic to -4( — α; p', oo).

Some time later, R. Johnson ([10]), adopting Flett's idea, defined a space of
temperatures which is isomorphic to the Lipschitz space Λ^q of C. S. Herz ([8]).
His method leaned on a theory of Riesz potentials for temperatures. As an ap-
plication of the theory developed, among other things, a characterization of
temperatures whose boundary values are in Λ*tq (α<0) was given.

In this paper, heavily influenced by [5] and [10], using an integral repre-
sentation of the Riesz potential R*f(feLp) in [14], we extend the definition of
Riesz potential to a class of harmonic functions in a half space. Our first aim is
to construct a space of harmonic functions in a half space which is isomorphic to
AΛ

p%q. For this purpose, we show that "boundary values" of harmonic functions

p-« (see § 5) satisfying

exist and are tempered distributions if α < n/p9 whereas the limits are considered
as elements of &"\& (the space of tempered distributions modulo polynomials) if
αg n/p. Then, we proceed to characterize these distributions by showing that the
mapκι-»u( , 0) = lim ί_>0w( , ί) establishes an isomorphism between the space of
those harmonic functions satisfying the above properties and A*tq\ in particular,
in case 0<α<n/p, a characterization of Poisson integrals of functions in Λ*tq

is given. Our other main result concerns the duals of some Lipschitz spaces.
As suggested in [10], by studying more specific class of functions, our spaces are
better described.

In the study of the space Λ%tq9 we use the so-called method of Hardy-
Littlewood-Taibleson-Flett. This method was intensively employed by M. H.
Taibleson ([16]), and later generalized by T. M. Flett ([5], [6]). In contrast to
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the Gauss-Weierstrass kernel used in [5] and [10], the behaviour at infinity of the
Poisson kernel used in our case is not nice; its convolution with an arbitrary
tempered distribution may not be defined, and this features the main difference
between the present case and [5] and [10]. Our approach is based on Theorem
5.2 whose proof is rather elementary, Theorem 6.1 about the existence of boundary
values in the sense of distributions of functions in 3?(u\ p, q), and Theorem 5.1
about the basic properties of the space ^(α; p, q\ of which the most important
is the fact that the topological property of the space tf?(u\ p, q) does not depend
on the (Lipschitz) index α, which is shown by using a result of Calderόn and
Zygmund [2]. These theorems are of some interest of their own. To make the
presentation self-contained, most results are proved in details.

The plan of the paper is as follows. § 1 is used to fix notation and to state
well-known results. In § 2, a semigroup formula for harmonic functions is studied.
In §3, the Riesz potential is defined and related properties are investigated.
§ 4 is devoted to the study of the equivalence of various norms. In § 5, the space
«^(α; p, q) is defined, and properties of this space are studied. Existence of
boundary values (in the sense of distributions) of functions in Jf (α; p, q) is proved
in §6. In §7, relations of Λ%tq and «^(α; p9 q) with other spaces in the litera-
ture are established. Finally, the duals of A%ti9 Altq and ^J>00 are investi-
gated in § 8 and § 9 through several lemmas.

ACKNOWLEDGMENT. The author wishes to express his deepest gratitude to
Professor M. Ohtsuka for many useful comments and questions in writing this

paper.

§ 1. Notation and preliminaries

We use Rn to denote the n-dimensional Euclidean space, and for each point

x = (x1,..., xw) we write |x|=(x? + +x£)1/2

Unless otherwise stated, all functions are supposed to be complex-valued.
As usual we use &' = &'(Rn) to denote the space of all rapidly decreasing functions
on Rn Q) stands for its subspace consisting of functions with compact supports.

For any positive integer k let Z£ be the set of all ordered fc-tuples of non-
negative integers, and for each μ = (μί9...9 μfc) let

\μ\ = μι + — +/**•
An element of Zjf is called a multi-index.

If u is a function defined on a subset of Rk

9 we use Dγu to denote the partial
derivative of u of order m with respect to the i-th coordinate. Further, for each
multi-index μ=(μl9..., μk) we write
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If/is a measurable function defined on Rn, we set

||/||P = Π \f(x)\pdx\ , 0 < p < oo,

||/IL = esssup|/(x)|,
xeRn

and we define U = Lp(Rn\ where l<Ξprgoo, as the space of those measurable
functions / for which ||/||p<oo, equipped with the norm || ||p.

The Fourier transform of a function/eL1 is given by

where x- y=
We consider the space Rn+l as the Cartesian product Rn xR, so that we can

write each zeRn+l in the form z = (x, t), where xeRn and teR. We denote by
Ω the upper half space Rn x ]0, oo[.

We use B to denote a constant, depending on the particular parameters
p, #,... concerned in the particular problem in which it appears; if we wish to
express the dependency, we write B in the form B(p, #,...)• These constants are
not necessarily the same on any two occurrences.

For measurable functions u defined on Ω, let

0 \ ι / p
ΛJιι(xs t)\'dx) , 0 < p < oo,

MOO(W; 0 = esssup|w(x, ί)Γ-
xeRn

We also let

G oo \ l/q

QMp(u;tγridt) , 0«z<oo,

||M||p f 0 0 =esssupMp(w; ί)v r>o

For each measurable function / on Rn, let λf be its distribution function, i.e.,

λf(t) = \{xeR»:\f(x)\>t}\ for t > 0,

where \E\ stands for the Lebesgue measure of the set E. The decreasing rear-
rangement of /is the function/* with domain ]0, oo[ and given by

or equivalently by

= sup{essinf |/|: |£| > s} .
E
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The average decreasing rearrangement of / is then defined to be the function
/** given by

JQ
Clearly/*^/**.

The Lorentz space L(p, q) where either 1 <p<oo, l<;<j<oo, or
q = oo can be defined as the set of all measurable functions / for which ||/||M < oo,
where

/foo \l/q

II/IU = (\ [sU'f toγi-Ws) (1< p< oo, 1 ̂  q < oo),
\JO /

Il/Loo = SUP {s1/p/**(s)} (1 < P ̂  oo).
s>0

We also define L* to be the set of all measurable functions / such that /**(s)
is finite for all s>0. It is trivial that/eL* if and only if

ιι/ιu=.

The following properties of L(jp, q), L* and the decreasing rearrangement can
be found in [4; pp. 760-761] and [9; p. 262]. Let/ and g be measurable func-
tions on Rn.

(i ) II * lljq and II II* are norms on L(p, q) and L* respectively, and L(p, q)9

L* are Banach spaces with these norms.

(«)

(iii) /**(s) = sup -f

(iv) If l<p<oo, lg<jr<oo, then

G oo
o[sι/V*

and if 1 <p^ oo, then

s>0

where l/p4 l/p' = l.
(v) If Igp^oo, then

Oo

o

sup/*(s).
f>0
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Hence if l^p^oo, then Lp = L(p9 p) and || ||p is a norm on L(p, p) equivalent
to H|pp. Also if /eL1, then feL* and ||/||̂  l l / l l i

(v i ) If 1^0! ̂ 2^oo, then \\f\\pq2^\\f\\pqι, so that

L(p, qj cL(p, q2).

(vii) IffeL(p, q), then/eL* and

l l / l l * ^ (plqY/q\\f\\pq (q < oo), H/IU ^ II/IIM (<? = oo).

(viii) If l<p<oo, l^ςf<oo, then

where L(p, ^)' stands for the topological dual of L(p, q).
It is trivial that, by (v) — (vii)

L(p, q^a L(p, p) = LP c: L(p, q2) c L(p, oo) c

whenever
We use P to denote the Poisson kernel on Ω, i.e.,

P(χ, ί) == Cnt/(\X\2 + ί2)(»+l)/2 for χ e#*

where cπ = π-(rt+1>/2Γ((n + l)/2). The following properties of the Poisson kernel
are either trivial or proved in [13; pp. 61-62]. Let x, y be in Rn

9 and s, ί be
positive numbers.

(Pi) P(*, 0 > 0.

In particular

(P3) P( , t)eLp, 1 ̂  p ̂  oo, and P( , ί) e L(p, #) for every p and q satisfying
the same conditions as in the definition of Lorentz spaces.

(P4) P( , i)*P( , s) = P( , s + ί)» where * denotes the convolution operation.
(P5) Letδ>0. Then

lim \ P(x, f)dx = 0
ί-*0 J\x\^δ

(P6) Let μ = (μ1,..., μ r t + 1)e Zj+1, and k be a positive integer. Then
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\1/P
Y Y Λl^/^v 1 < R(n ii n\t~n~\t1\+n/P 1 < n <r onI Λ , l l t*Λ I —^ J L 7 » f t , tij Ull ' , JL -̂  I/ ^ ^Λ^,

R" /

J+1P(x, t)dx = 0.

DEFINITION. Let / be a measurable function on #" such that /(x)/(l
+ |x|M+1) is integrable. The Poisson integral of /, denoted by M, is the function
defined on Ω by

κ(x, 0 = Λ|P(x - y, t)f(y)dy =

REMARK. If /eL*, then the Poisson integral of / is well defined (cf. [4;
Theorem 7]).

The following fact will be used in § 9.

LEMMA 1.1. Let l^p^oo,/eLp and u be its Poisson integral. Then
t*-+Mp(u\ t) is continuous on ]0, oo[.

PROOF. Let l^p<oo first. Fix f0e]0, oo[, and let t0/2<t<2t0. Then

P(x, t} 2t

and

|ιι(x,OI

Lebesgue's dominated convergence theorem yields

lim \\u(x, t)\Pdx = uim |ιι(x, ί)lp^
ί->fo J Jf-*fo

Thus Mp(w; i)-^Mp(w; ί0) as ί->ί0. In case p=oo

IM^ii; 0 - MJw; ί0)| ̂  sup|M(x, t) - u(x, ί0)|

^ 11/11 o o l P C y , 0 ~

which tends to 0 again by Lebesgue's dominated convergence theorem.

The following theorem is well-known (cf. [4; Theorem 6], [13; pp. 62-65]).

THEOREM 1.1. Let f be a measurable function on Rn with \
JR

+ \x\n+1)~ldx< oo, and let u be its Poisson integral.
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( i ) u is harmonic in Ω, and its partial derivatives of all orders can be

calculated by differentiation under the integral sign.
(ii) limiφc, t) = f ( x ) as t tends to 0 for almost every xe Rn. Furthermore,

if f is bounded and uniformly continuous, then the convergence is uniform on Rn.

(iii) ///elΛ l£p<oo, then ||ιι( , t)-f\\p-+0as *-><).

DEFINITION. For 0<a<n, the Riesz potential of order α of a measurable

function /, denoted by R*f, is defined by

provided that R*(\f\)Φ oo, where y(α) = πw/22αΓ(α/2)/Γ(n/2-α/2).

By combining [13; Chapter V, Theorem 1] with Marcinkiewicz interpolation

theorem [15; Chapter V, Theorem 3.15] (cf. also [9; Lemma 4.8]), one obtains

THEOREM 1.2. Let f be either in L1(p = l) or L(p9 q)(i<p<ao, l < Ξ g < ^ o

andQ«x<n/p.
( i ) The integral defining Raf converges absolutely for almost every x.

(ii) Ifl<p<ao and l/r=l/p-α/n>0, then

\\R*f\\rq ^ B(n, p, α)

(iii) If p=\ and l / r = l — α/n, then

\{x:\R*f(x)\>λ}\^iB(n,x)\\f\\i/λγ.

LEMMA 1.2. Let h be a non-negative, non-increasing function defined on
]0, oo[, α real, and 0<p<q^ao. Then

G oo \l/q /(Oo \l/p

[ί'KOPr1^) ^B(p,α)(\ [ία/ι(0]pr^ί) ,
0 / \Jθ /

where the left hand side is interpreted as supί>0 tΛh(t) when q = co.

For a proof we refer to Stein [13; Appendices, B. 3] and Johnson [10;

Lemma 2].

§ 2. A semigroup formula for harmonic functions

Hereafter we shall be concerned mostly with harmonic functions satisfying
a property which we call "semigroup formula".

THEOREM 2.1. // u is a harmonic function in Ω, then the following two
statements are equivalent:
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(i) For each positive number b, there is a positive number B, possibly

depending on b and u, such that

||w( , Oil* ^ # for every t ^ b.

(ii) There exists a sequence {ίf} tending to 0 such that ||w( , f^H* is finite

for each i, and

(**) w(x, 5 4- ί) = \ P(x — y, i)u(y, s)dy for s, t positive, xeRn.
JRn

The equation (**) is called the semigroup formula hereafter.

PROOF. The implication (ii)=>(i) is obvious by property (iii) in § 1.

Assume that (i) holds. By the subharmonicity of \u\ on Ω, we have

u(x> * ) l = ̂ WΓ'Ί ω ft/2)- \ \u(z,s)\dz\ds
ton+VVl^) J t / 2 ( ωn^fZ) J | z - x | < f / 2 J

where ws stands for the partial function ZI-»M(Z, s). Let 0<ωn^π^l. Since

w**(τ) is a non-increasing function of τ, for t ^2<5 we have

) ^ u**(ωnδ») = -

Therefore

"Ίi * for evefy x e Λ" and / ^ 2δ-
Hence, from [15; Chapter II, Lemma 2.7], we derive that the semigroup formula

holds for u.

COROLLARY 1. Let u be a harmonic function in Ω and i^p^oo. Assume

that for each positive number b, there is a positive constant B such that Mp(u\ί)^

B for every t^b. Then the semigroup formula holds for u.

PROOF. This is proved by Theorem 2.1 and property (v) in § 1.

COROLLARY 2. Let u be a harmonic function in Ω. Assume that 0<p,
^f^oo and <x^—n/p. If C= \\tau\\ptq<ao, then the semigroup formula holds

for u.
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PROOF. We shall prove the corollary only in case Q<q^p<ao, because
the other cases can be similarly treated. By [3 Lemma 2] we have

\u(z9s)\«dzds.
ί/2 |z-Jc|<f/2

Holder's inequality implies that

ΛΓ"Λ
|r-*|<f/2 J LJ|z-Jcl<f/2 J

f3f/2Γ
P\

Jί/2

2Γf η«/p
\ \s*u\*>dz s'^s^^ds g Br <«

UK" J

Hence |M(X, ί)l^^^ί~α~w/p> and the conclusion follows from Corollary 1.

REMARK. In contrast to temperatures, i.e., solutions of the heat equation
(cf. [5; Theorem 4], [10; Lemma 1]), we must take into account the behaviour of
Mp(u 0 at infinity in our case. This is due to the lack of a suitable criterion for
the uniqueness of the solutions of the Laplace equation.

§ 3. The Riesz potential

The aim of this section is to define Riesz potential for some classes of harmonic
functions and to prove related properties needed later. We adopt the method
used by Flett [5] and Johnson [10] in treating temperatures. However, as
remarked after Theorem 2.1, when studying harmonic functions, we must require
more conditions in order to obtain good results. Most results are proved in
details, although many are just the variance of their proofs for temperatures. We
begin with the following result due essentially to Stein and Weiss [14; Lemma 6.2].

THEOREM 3.1. Letf be either in L1(/? = l) or L(p, #)(l<p<oo, l<;#<^
0<α<n/p, u be the Poίsson integral of /, and Raf be the Riesz potential of
order α of /; this exists for almost all x on account of Theorem 1.2 (i).

(i) For almost all x

(ii) The Poisson integral of RΛf is the function R"u on Ω defined by

R*u(x, s) = * - "(*, s + i)t*~ldt.
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(iii) For each t positive, the function x*-+R*u(x, t) is the Riesz potential of

order α of the function x*-*u(x, O

PROOF. By splitting /, we may assume that / is non-negative. With this
restriction on /, various applications of Fubini's theorem below are justified.

We have

- y)dy
Rn (JO

- y)dy

This gives (i).
To prove (ii), we first observe that the semigroup formula holds for w, i.e.,

w(x, 5 + 0 = 1 P(x — y> t)u(y, s)dy for s, t positive.
J Rn

The Poisson integral of R*f at (x, ί) is then given by

s + t)s"~ίds

Using the semigroup formula we have

-*ds = R*u( , t).

Thus (iii) is proved, and the proof of the theorem is complete.

DEFINITION A. For any real number b, let 3^b denote the linear space of
all harmonic functions u in Ω with the property that if μeZ++1, c>0, and K is
any compact subset of jR", then there is a positive constant B such that

\D*u(x9 01 ^ BΓ<b+W for every x in K and t ^ c.

LEMMA 3.1. Let b be a non-negative number, and u be a harmonic func-
tion in Ω with the property that for any positive number c, there is a positive
constant B such that

\u(x9 01 ^ BΓb for every x in R" and t ^ c.

Then u e 3^b.
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PROOF. By Corollary 1 to Theorem 2.1, the semigroup formula holds for
u. Hence it follows from (P6) that

\D"u(x, 01 ^ B(t/2Γb\ |D*P(z, ί/2)|dz
J R n

-l"l for t ^ 2c and

EXAMPLE. Let u be the Poisson integral of a function in Lp, l^pg

Then M e .#%, where fc = n/p.

DEFINITION B. For any u in 3?b and α<fo, ,RαM is the function defined on
Ω by

(i) R°u = u;

(ii) ifα>0,

#αw(χ, 0 =

(iii) if α is a negative integer, say α = — m, then

£αw(x, ί) = Λ-»ιι(x, 0 = ( - l)" J>»+1ιι(x, i);

(iv) if α= — β<0 and /? is not an integer, then

R«u = R~βu = Rm-β(R~mu) ,

where m = [β] 4- 1 (here [7] stands for the greatest integer not exceeding γ), and
Rm~β, R~m are defined by (ii) and (iii).

REMARK. By Theorem 3.1, if M is the Poisson integral of a function / in
ί/, l^p<oo, and 0<α<n/p, then for each s>0, R*u( , s) is the Riesz potential
of order α of u( , s). This inspires us to call R*u in Definition B the Riesz
potential of order α of M.

THEOREM 3.2. Let b be a real number and ueJ^b.
(i) //α<fr, R«u is well-defined and RxuEJ^b^Λ.
(ii) Ifβ<b and a + β<b, then

R*(Rβu) = R*+βu.

PROOF. The theorem can be proved in the same way as [5 Theorem 8]
and [10; Theorem 2].

If u eJfb and if Dj+1w = 0 for some positive integer k, then #αw = 0 for any
α<fc. Harmonic functions satisfying Dj+1w = 0 for some k are easily classified by
the following proposition whose proof is easy (cf. [10; Proposition]).
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PROPOSITION A. Let u be a function defined on Ω, and m be a positive
integer. Then

(i) u is harmonic in Ω and D ̂ MΞΞO if and only if there are C°° -functions
\I/Q, \l/1 on Rn satisfying Amι//0 = Amψ1=Q and

- -
' - 0 (2k) I fctίΛ (2k+l)l

(ii) u is harmonic in Ω and Djj^sO if and only if there are C^-functions
φθ9 φl on Rn satisfying Amφ0 = Am~ίφ1=Q and

COROLLARY. //M e^fc, /?>0, αnrf D^+ίu = Qfor some m, f/ien w = 0.

DEFINITION B*. Define

f»0

The following is an immediate consequence of Theorem 3.2 and Definition B*.

THEOREM 3.2*. Lei u eJf and α, /? be real numbers.
(i) .Rαw is well-defined and R*u e tf .
(ii)

LEMMA 3.2. Let u be a harmonic function in Ω with the property that
given b>0 and c>0, there is a positive constant B such that

\u(x, t)\ ̂  Bt~b for every x in Rn and t ^ c.

Then uetf.

PROOF. This is an easy consequence of Lemma 3.1 and the definition of «#*.

Let ΘQ denote the space of infinitely diflferentiable functions with compact
support in Rn not containing the origin. It is trivial that the Fourier transform

can be defined on 00, and 00 = {/ '

LEMMA 3.3. IffeΘQ and u is its Poisson integral, then u

PROOF. It is given that

u(x9 t) = ( P(x- y, t)f(y)dy.
JRn

Keeping t fixed and taking Fourier transform of both sides, we obtain
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For any positive number α, the fact that / = 0 in a neighbourhood of 0 allows us
to write

ώ(ί, 0 = [l£lαexp( - 2π|{|0] [|«|

An easy computation shows that

while | |/i2lloo< 0° ιs a quantity that depends on / and α. Therefore, it follows
that

which implies, by Fourier inverse transform, that

and this is valid for an arbitrary α>0. Thus by Lemma 3.2 u

THEOREM 3.3. Let f be in Lp, l^p^oo, α>0, and let u be the Poisson
integral off. Then for f>0

(i) Mp(R-*u;t)^B(n,a)\\f\\pr*i
(ii) furthermore i/l^p<oo, then

Mp(R~*u\ i) = o(ΓΛ) as t - > 0-h .

PROOF. We first prove (i) in case α is an integer, say α = m. Then

R-*u(x, i) = Λ-"Ίι(x, 0 = ( -

and (i) will follow from (P6) and Minkowski's inequality (cf. [13; Appendices,
A. 1]). Suppose next that α is not an integer, and let /c==[α] + l. Then for
(x,

R βu(x, s) = p(ic_QL\ \ R~ku(x, s

Hence

Mp(R-"u;s) ^ B(α)f°°Mp(R~ku; s -f
Jo

<, B(n, α) | |/ | | p (s -f tΓ^^^dt
Jo

= B(n, α)||/|^-"(l + /)-**»— »

which implies (i), because, for k— α>0, the last integral is finite.
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We shall prove (ii) only when α = m, because the general case can be treated

in the same manner. Let (x, ί) be in Ω. Then by (P6)

Λ-»tι(x, 0 = ( - l)m Dϊ+ιP(y, 0[/(* - y) -f(*ϊ]dy,
jRn

which, together with Minkowski's inequality, implies that

t*»Mp(R-»>u 0 ̂  P f |DΓ+1P(J>, 01 ll/( - J>) - f\\Pdy
J\y\<δ

-y) - f \\Pdy (ί >

Now for an arbitrary positive number ε, there exists a <5>0 such that ||/( —y)

— f\\p<eif\y\<δ. Let I^t) and /2(0 denote the first term and the second term of
the right hand side of the above inequality. Then

/j(ί) ^ B(n, m)ε

and

2 = PJ\y\Z*

P(y,δ

by (P6). The last integral tends to 0 as t tends to 0 on account of (P5). Hence

(ii) follows.

COROLLARY. Let α>0, l^p^oo, and u be in \Jb>-^b> If u satisfies the
semigroup formula, then

Mp(R-Λuι s + 0 ^ B(n, α)rαMp(w; s) /or all s, ί > 0.

PROOF. Let s be fixed. We may assume that Mp(u s) is finite (otherwise

the conclusion would be trivial). Then for all ί>0, by the semigroup formula,

we have

w(x, s + 0 = ( P(x - y, t)u(y, s)dy
JRn

which implies the corollary by Theorem 3.3.

In the proof of the next theorem, in addition to Lemma 1.2, we shall need

the following lemma.

LEMMA 3.4. Let h be a non-negative, non-increasing function defined on

]0, oo[. If there is a <5>0 such that
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Γtδ~lh(t)dt
Jo

< 00,

then h(i) = o(Γδ) as f->0+ and f->oo.

PROOF. The lemma follows if we note that

oo > -1^)* = Σ t*-lh(t)dt
Jo k=-aoj2k-1

- 2-*) Σ h(2k)2δk.

THEOREM 3.4. Let Igp^oo, l^g<oo, β be a positive number, and u
be a harmonic function in Ω such that

Then for ί>0, Mp(u; t)<^B(q, β)Crβ, and Mp(u\ t) = o(Γβ) as ί->0+ and ί->oo.
Moreover if q<r<ao9 then

||Λι||FiΓSBC.

PROOF. By Corollary 2 to Theorem 2.1, the semigroup formula holds for
u. It follows that Mp(u; s + ί)^l|P( , ί)||ιMp(M; ί)=Mp(w; ί) so that Mp(u; ί)
is non-increasing in t. Therefore by Lemma 1.2

(u 0 ̂

Now if q<r«x>9 then, by applying again Lemma 1.2, we obtain

Finally the o-result will follow if we make use of Lemma 3.4 and the fact that
[Mp(u\ ϊ)~]q is still a non-increasing function in t.

Hereafter we shall extensively use a pair of inequalities due to Hardy which
we shall refer to as Hardy's inequality.

Hardy's inequality ([15; Chapter V, Lemma 3.14]). If g^l, r>0 and g is
a non-negative measurable function defined on ]0, oo[, then

α oo ΓΓt

o r-'U

α oo ΓΛoo -\q \ l / « // oo \l/q

- -

THEOREM 3.5. Let l^p^oo, Irgg^oo, QL be a real number, β>0, j8>α,
u be a harmonic function in Ω such that C= ||^w||
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( i ) ueJTβ+n/p and \\tt>-*R*u\\p^BC.

(ii) //1^4<oo, then Mp(R*u; t) = o(Γ^-^) as ί-»0 + and ί-»oo.

(iii) Ifq = oo and Mp(u; t) = o(Γβ) as f-»0 + (resp. ί->oo), then Mp(RΛu\ f)
(r(*-β>) as ί->0+ (resp.

PROOF. First we shall prove (i). Theorem 3.4, Corollary 2 to Theorem
2.1, Holder's inequality and (P6) imply that

IΦ, 01 ̂  B(q9 β)Cr^»lP\

which, by Lemma 3.1, shows that ue3fβ+n/p. Therefore R*u is well-defined.
Suppose first that y= -α>0. Then by the corollary of Theorem 3.3 we see that

Mp(R*u 2t)^Bt*Mp(u;t)9

which implies that

Next we shall prove the result for the special case when α = l and β>\. Since

Rlu(x, s) = ( °°w(x, s + i)dt,
Jo

it follows from Minkowski's inequality and Hardy's inequality that

\ i / g
(u; f)]f ΠΛ = BC.

To prove the result for α = 5>0, let γ be the least positive number such that γ + δ
is a positive integer. Then by applying (i) in case α<0, we have

and hence after repeated applications of (i) in case α = l, we obtain

The assertion (ii) then follows from (i) and Theorem 3.4.

We shall prove the assertion (iii) only when f->0+; the other case can be
similarly treated. First, assume α<0. Then the assertion follows easily from
the estimate Mp(RΛu 9 2i)^BtΛMp(u'9 f) given above. Next, we shall prove the
result for the case when α= 1 and β> 1. It follows from Minkowski's inequality
that

lu; s) <Ξ sβ~l\Mp(u 9 s + i)dt
Jo
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Let ε be an arbitrarily positive number. By the hypothesis on Mp(u; t), Iί<ε/2
if δ is small enough and 0<s<<5. Fix such <5. Since Mp(u\ s + f)^\\tβu\\pt(X3

(s + 0~Λ it follows that

I2 ̂

Hence /2<ε/2 if Q<s<δί<δ and δ^ is properly chosen. Consequently,

s*-iMp(Rlu\ s) < ε if 0 < s < δ±.

In case α = δ > 0 choose y > 0 so that γ + δ is an integer. Applying the above result

for α<0 we see that Mp(R~?u\ 0 = 00~(/N~y)) Repeated use of the result for
α= 1 yields Mp(K>+*(R-*u)\ ί) = o(r^+y>+^+Λ>) = o(r^-*>). Thus (iii) is proved.

§4. Auxiliary lemmas

DEFINITION. Let α, b be real numbers satisfying — α — l<b. For any
harmonic function u in .#%, 1 ̂ p ^ oo, and 1 ̂  q ̂  oo, let

with infinite values being allowed.

LEMMA 4.1. Let α, fc, w, p, q be as in the above definition. Let y be a real
number such that γ<b. Then

PROOF. By Theorem 3.2,

jR-

which implies that

LEMMA 4.2. Lei l^p, ^^oo, /eί α, jS, b be real numbers such that b^ — α
/?>a, and /ef w fee in Jfb. Then #$tq(u) is equivalent to ^p\{(u) =

\\tβ~ΛR~βu^ptq in the sense that there exists a positive constant J5(a, β, p, q)
such that

PROOF. This follows immediately from Theorem 3.5 (i).
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The following lemma is an easy consequence of Lemma 4.2 and Definition B
in §3.

LEMMA 4.3. Let α, b be real numbers, b^ — α, UE J>Fb, l^p^co, l^gg goo,
and k be a non-negative integer greater than α. Then #%,q(u) is equivalent
to \\t*-*DΪ+1u\\p>q.

In view of Corollary 2 to Theorem 2.1 we have

COROLLARY. Let b, u9 p, q be as above. If b;>-α>0 and #$tq(u)<ao,
then the semigroup formula holds for u.

LEMMA 4.4. Let l^p, q^ao, α, b, β be real numbers, fc^O, b^— α, /?>α,
and u be in JFb. Then ^Ptq(u) is equivalent to

PROOF. Assume that <f£;g(tt)<oo. Since R~β commutes with differen-
tiation and the semigroup formula holds for R~βu on account of Corollary 2 to
Theorem 2.1, if follows that

R-'(Dju)(x, t) = Dj(R-*u)(x, t)

= ί DjP(x - y, t/2)R-*u(y, t/2)dy, j = 1,..., n.
JRn J

Then we have

which implies by the aid of Lemma 4.2 that

, B#*ptq(ul j = 1,..., n.

Conversely, assume tf^ ^DjU^ao for j=l,...,n. Since
the argument above shows that

and hence ^p~q'β(R~2u)^B sup l^jύn^^~^β(Dju). Therefore the remaining
part of the lemma follows from Lemma 4.2 and Lemma 4.1.

COROLLARY. Let l^p,^f^oo,0^α<l, fc^O and ueJ>ίfb. Then ^p~q

lt

^B#<ptq(u)for every j==l,..., n.

PROOF. By Lemma 4.4 ^^^(DjU^B^^^ύ) for j = l,..., n. We apply
Lemma 4.2 to obtain 1 °(Z).M)^J57 1 1(D.M) and hence f°(Du)

Let α>0, l^p^oo,/ be a measurable function, and k be the least integer
greater than α. Define
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Λ;.,(/) = (\Rβd"(h)f\\p\h\-'γ\h\-"dh)l'q, 1 g q < oo,

/!«.„(/) = ess sup |A|-«||,/*(fc)/ll,,
HeRn

where d(K)f = dl(h)f = f( + h)-f and dk(h)f is inductively defined by dk(h)f

LEMMA 4.5. Suppose 0<α<l and l^p,q^ao. Let f be a measurable
function whose Poisson integral u exists and assume ueJfbfor a b^O. Then
Λ<p,q(f) is equivalent to £*>q(u).

PROOF. The proof of this lemma is standard (cf. [10; Lemma 8], [13;
Chapter V, §§4-5], [16; Theorem 4]). However we include it here for the sake
of easy reference.

Let us show #*tq(u)ι£BΛ*tq(f) first. By Lemma 4.3, it suffices to prove
\\tl~*Dn+ ιU\\ptq£BΛ$tq(f). The Poisson kernel satisfies

\Dn+1P(x9ί)\£Br-i by (P6),

and

\Dn+1P(x, 01 g

Since ί Dn+lP(x, t)dx=0,
JRn

= ( Dn+ ,P(y9 0 [/(* + y) - f
JR"

Hence by Minkowski's inequality we obtain

Mp(Dn+ iii ί) g ( \Dn+ ,P(y9 t)\ \\f( + y)- f\\pdy = \ + \
JR" " J \ y \ £ t J\y\>t

(- + y)-f\\pdy

\y\-n-l\\f('+y)-f\\pdy.
\y\>t

In case g = oo, ||/( +y)-f\\p^\y\*A<pt(X)(f) for almost every y in Rn. We
obtain immediately Mp(Dn+1w; ί)^Λβ"M«i00(/) so that ll^- D^+iiiHp..

Next let q<co. Setting ωp(y)=\\f( +y)-f\\p = ωp(rσ) with r = |y| and
|σ| = l, we have
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; 0 ^ Λr"-1 ω/i σy-1 rf/ tfσ + tf ωp(rσ)r~* drdσ,
JoJs y Jt JS *

where S denotes the unit sphere in Rn. Hence if we set

β(r) = \ ωp(rσ)dσ,
Js y

then

tl~*Mp(Dn+iu', t) ̂  Br"- ('θ(r)r"-1dr + Bt^^Q(r)r"2dr.
Jo Jt

Now applying Minkowski's inequality and Hardy's inequality we obtain

l/q

G
o

o

Then observe by Holder's inequality that

Ω(r)« ^ B( ωp(rσ)«dσ.

Hence it follows that

\ι/«
fΓ-i drdσ) =

To prove the converse part, write simply Sj for £%~q °(Djύ)9 7 = !,..., n.
By the corollary to Lemma 4.4 we have Sj^B#*tq(u). Next let /ι = sσ with
|/ι|=5 and |σ| = l. Assume 0<s^ί. Then for almost every x and h

f(x + h) -f(x) = u(x + Λ, 0 - "(x, ί) + [/(* + Λ) - u(x + Λ f 0]

- [/(x) - u(x, 0] = "(̂  + λσ>

-h Λ,
Jo

By Minkowski's inequality

JI/( +"Λ) -/||F g Λ M / D ii; ί)

Set ωiίί, p)=supo<,h|<f||/(-H-/ι)~/||p. In case 4 = 00 tf/D^w; r)dr

<Bt*£pt00(u) so that
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, p) ^ Bti-*ΣMp(DjU', t) + B^n(u)

^ BΣSj + ̂  .ooίtt) ^ B*«foo(κ).

Thus

In case 1 ̂  # < oo, Minkowski's inequality and Hardy's inequality give

l / q

?.,(/) 3 Qjcr ωΛ

•ju; opr'df)1

g BΣS, + Bf(C°[ί1-<'M.(OB+1u; OPrMfY"
y \Jo /

gB/«ιί(ιι) + B||ί1-«D.+ 1u||M.

The last quantity is equivalent to <?£,,(«) by Lemma 4.3, and thus

§ 5. Some spaces of harmonic functions

In this section, we shall define several spaces of harmonic functions and study
their basic properties.

DEFINITION. Let α be a real number, l^p^oo, l^q^oo. Define

(*', P, «) = {« e ̂ */p-α s r\ yeb: /;.,(«) < 00}
ίKπ/p-α

^(α; p, oo) = {u e JT(α; p, oo): M^jR- -1!!; ί)

= o(r λ) as ί - > 0 + and t - > 00} .

Then for α<n/p, ^*ίβ is a norm on ^(α; p, g) on account of Lemma 4.3 and
the corollary to Proposition A in §3. For αg n/p, if we identify harmonic
functions u satisfying Dj+1w = 0 for some non-negative integer k with the zero
element, we still obtain a norm (we shall always assume this identification).

First we give

LEMMA 5.1. Let l^p, ggjoo, α & e . α reα/ number and κeZn+ί with
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|κ| = fc>α. Then \\tk-*D«v\\ptq<>B£*ptq(υ) for ί;e^(α; p, q).

PROOF. This is nothing but Lemma 4.3 in case κ = (0,..., 0, /c). So assume
D« = D*+1D

K' with <+1=0 and |κ'| = /c-/ι>0. Since Dκι?e^rί/p_α+λ, Theorem
3.2 gives

Dκv = Rk~h(Rh-kDκv) = ( - iγ-hRk-h(Dκ'Dk

+ίv)

and hence

, s

By Corollary 2 to Theorem 2.1 and Lemma 4.3 the semigroup formula holds for
Dk

+1v. Using this fact, (P6) and Minkowski's inequality, we have

M£D«Ό\ 0 ̂

Therefore, we derive from Minkowski's inequality and Hardy's inequality that

LEMMA 5.2. Lei l5*p, ^^oo, αnJ α and y fee rβa/ numbers such that y<
n/p — <x. Then Ry is an isometric isomorphism of «^(a; p, ^f) (X(a; p, oo)

resp.) onfo Jf(a + y; p, ^f) (/(a + y; p, oo) resp.). Moreover, if a<n/p, then
its inverse is R~γ.

PROOF. It follows from Lemma 4.1 that Rv is an isometric homomorphism
and that it is an isometric isomorphism with inverse R~y if α<n/p. Hence, it is
sufficient to prove that Ry is onto in case α^n/p. Let m be the smallest non-
negative integer such that α — n/p — ra<0. Since Rv = Rv+moR-m by Theorem

3.2, and since Ry+m is an isomorphism of (̂α — m; p, q)(4(a — m'9 p, oo) resp.)
onto ^f(a + y; p, g)(X(a + y; p, oo) resp.) by what has been just proved, the
desired result follows if we can show that the mapping D^+1=(— l)mR~m from
«^(α; p, g)(X(α; p, oo) resp.) into 3?(μ — m; p, g)(X(α — m; p, oo) resp.)) is onto.

For this purpose, let ι;e«^(α — m; p, g). For each κ:eZJ+1 with |/c| = ra, set

vκ(x9 0 = ( - l)m#mDκt;(x, ί)

= (~ r

1->m \ "D ̂ JC, s + Osm-1ds for (x, ί) e Ω.

Since t; e «^J/p_α+m, Theorem 3.2 implies that uκ e «^*/p_α+m and ϋ(0,..., 0, m) = ι;

Before proceeding on with the proof, we need some more notation. For any
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polynomial β(*» 0=Σμcμ*ϊ1 x;»ί't» M, we denote by Q(D) the "differential

operator defined by Σμ

c

μ^
μ with μ = (μι> > μM> μ/»+ι) For each /ceZ++1 with

|fc| = m, let βκ be a homogeneous polynomial in (x, ί) such that ΣiK^m**1"*

x«n»t«»"QK(x, 0 is divisible by xl + . .+x2

n + t2, i.e., Σ|κ|=m*ϊ l *S"F"+1β,c(*. 0

= (xι + +xί + ί2)β'(x, ί) and (X is a polynomial in (x, f) Then, it follows

from the definition of vκ(\κ\ = m) and the assumption on {Qκ}\κ\=m that

Σ\κ\-mQκ(D)vκ(x,t)

(°°[β'(Dyiφc, s + O]*"1"1^ = 0 for all (x, ί) e Ω.
Joί (in)

Hence, it follows from a result of Calderόn and Zygmund [2; Chapter II, Theo-

rem 2] that there is a function u harmonic in Ω such that Dκu = t>κ for every K

with |κ| = m. If |μ| = m — 1, then

9 t) = D^D'Ίφc, s)ds + ^w(x, c)
Jc

for ί^c>0. Let K be a compact set in Rn and b<n/p — α + m — 1. Since

Dn+1D'tw6Jr;/l,_α+m andα-n/p-m + lgO, we have

|D"u(x, 01 ^ Br b for all x e K and ί ̂  c.

Thus Dμu€J^*/p-Λ+m-ί if |μ| = w— 1. By continuing such computations, we

derive that u e JF*/p-Λ. Further, if k is a positive integer greater than max(α, m),

then Dk

n+ίu = D*;Γ(D?+1ιι) = Dj Γ^o,... o.m> = DΪ7ev Therefore, \\tk-*Dk

n+ίu\\p,q

= ||ί(k~m)~(α~m)Dj+7ι?||p$g< oo by Lemma 4.3. This lemma again implies that u E

je(ui p, q). Moreover, if ue^(α-w; p, oo), then Mp(Dj+1w; t) =Mp(D^v\ t)

= o(r(k~α)) as f-»0+ and ί->oo,and we/(α; p, oo) by Theorem 3.5 (iii). The

proof of the lemma is thus complete.

REMARK. If en — nip is not a non-negative integer, then we can replace

^nip-Λ by ^,,/p-α in the definition of «^(α; p, g). In fact, let m be the smallest

non-negative integer such that α — n/p — w<0, M6^(α; /?, ^f) and κeZ++1 with

|fc |^m. In case |κ| = /c>α, U^- D^iill^^B^ ^ίii) by Lemma 5.1 so that

DκM6^n / p_α + f c by Theorem 3.5 (i). In case α^|κ|^m, take an integer l>

max(|κ|, α) and set μ = κ + (0,..., 0, I). Since |μ|>α, DμueJ^n/p-Λ+^ as observed

above. From Theorem 3.2 follows DκM = (~iyjRί(D'tM)e«^w/p_α+, l(,. Thus

Dκuejί?n/p-Λ+\κ\ in all cases. From this and the fact that α — n/p— m-f l>0

if m^l, we easily conclude that uejί?n/p_Λ. However, the following example

suggests that we may not expect this in the other cases: Let n = l, α— 1/p, 1
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^p^oo and iφc, 0 = log((x2 + ί2)1/2). Then w^^f0 but w e^l/p; p, oo).

The basic properties of the spaces Jf(α; p, q) lie in the following theorem.

THEOREM 5.1. Let l^p, q^oo and a be a real number.
(i) «?f(α; p, g)(^(α; p, oo) resp.) is a Banach space with norm &*tq

(f tn resp.).
(ii) If I^qί^q2<ao, then

^(α; p, qj c .̂ (α; p, q2) cz /(α; p, oo) c ^(α; p, oo),

and each inclusion mapping is continuous.
(iii) If β is a real number such that β>a, then &*\β

q is an equivalent norm
on 3?(μ\p,(ί)\ moreover we^(a;p, oo) if and only if U6^f(a;p, oo) and
Mp(R-βu; 0 = 0(r(*~a)) as f->0+ and ί-*oo.

(iv) If k is a non-negative integer greater than a, then sup\κ\ssk\\tk~ΛDκu\\ptq

is an equivalent norm on «#*(a; p, q).
( v) The spaces ^(a; p, q), where p, q are fixed and a varies, are isomorphίc

to one another. The same conclusion holds for the spaces Λ(μ\ p, oo).

PROOF, (ii) follows easily from Theorem 3.4.
(iii) is an easy consequence of Lemma 4.2 and Theorem 3.5.
(iv) is derived from Lemmas 4.3 and 5.1.
To prove (v), let δ be another real number and let k be a non-negative integer

greater than δ. It then follows from Lemma 5.2 that R~k is an isometric iso-
morphism of 3?(b\ p, q)(4(δ\ p, oo) resp.) onto J^(δ — fe; p, q)(4(δ — k\ p, oo)
resp.); denote its inverse by (R~k)~l. This lemma again implies that Rd-*~k

is an isometric isomorphism of Jf (α; p, <?)(^(α; p, oo) resp.) onto Jj?(δ — k\ p, q)
(Λ(δ — k'9p9ao) resp.). Consequently, (R~k)~ίoRδ~*~'k is an isometric iso-
morphism of «^(α; p, #)(^(α; p, oo) resp.) onto J^(δ\ p, q)(4(δ\ p, oo) resp.).

Finally, we turn to the proof of (i). On account of part (v), it is no loss of
generality to assume that α<n/p. Let {Uj} be a Cauchy sequence in ^f(α; p, q)
and set vj = R~*~1uj. Then lUC^ — ̂ llp.^O as j, k-+ao. Since the semigroup
formula holds for Vj — vk by Corollary 2 to Theorem 2.1, it follows from Lemma
1.2 that

\Vj(x9 i) - vk(x9 01 ^ Sr^^IKi;; - vk)\\p>q.

Hence, limj^(X)Vj = v exists and is harmonic in Ω, and repeated applications of
Fatou's lemma imply that | |failp f ( Z<oo and \\t(Vj — v)\\ptq-+Q as 7-^00. Then it
follows from Theorem 3.5 that veJί?1+n/p. Let w=jRα+1ί; (which has a sense
because α<n/p). Then we conclude that we^(α;p, g) and #%tq(Uj— u) =
\\tR~a~1(uj — u)\\pίq-+Q as j-^oo. Moreover, if g=oo and {Mjjcz^α; p, oo),
then ||^-α-Kw;~w)llp,« = supί>0/M,(Λ-α-1M^Λ'-β--1u; 0^0 as 7-^00, and
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Mp(R-*~lUj\ ί) = o(r1) as ί->0+ and t-+ao for each ; = 1, 2,.... From these
facts, we easily see that Mp(R~Λ~1uι ί) = ί>(ί~1) as ί->0+ and ί->oo, and hence
u e /(α; p, oo). The proof of the theorem is now complete.

REMARK. The mapping (R~k)~1oRδ-«~k in the proof of part (v) does not

depend on k>δ. For if h is a non-negative integer, then repeated applications
of Theorem 3.2 and Lemma 5.2 give

Further, if u e «^(α; p, q) and u e 30* b with a b>δ — α (in particular, if w e 3F or
(5<n/p), then (Λ-k)-1oJR

δ-«-Λ(w) = JR
fc(Λί-α-kM) = JR

ί-αM by Theorem 3.2, where

/^""w is defined by Definition B in § 3. Therefore, it is reasonable and consistent
to denote the isomorphism (£-*)-i0jR

<5-a-fc by Rδ~Λ. There should be no

ambiguity in using this notation as we shall always state explicitly when it is used
otherwise, Riesz potential (for harmonic functions) is understood in the sense of
Definition B in § 3. With this newly adopted notation, the proof of part (v)
implies that R* is an isometric isomorphism of 3?(μ\ p, q) onto (̂α + y; p, q)
for all real α and y, and R~y is the inverse of Ry. To prove the latter statement,
let k be a non-negative integer greater than max(α, α + y). Then Ry = (R~k)~1o
Ry-k = (R-k)~1oRyQR-k by Theorem 3.2 and Lemma 5.2. Therefore, it follows
that (Ry)-1=(R-k)-1o(Ry)-^R-k = (R-k)-^R-y0R-k = (R-k)-ioR-y-k by

a similar argument.

Next, we shall give a characterization of Poisson integrals of L(p, ^-func-
tions, which is a natural extension of a result of Stein and Weiss [14; Lemma 3.6].

PROPOSITION B. Let l<p^oo, l^q^oo. Then, a harmonic function u

defined in Ω is the Poisson integral ofanfeL(p9 q) if and only ί/sup f > 0 | | uf||M
<oo. Furthermore, under this condition, one has

PROOF. Let / be in L(p, q) and u be its Poisson integral. It follows from
property (iii) in §1 that w**(s)^/**(s) for all s, f>0. Consequently,

Conversely, suppose that supί>0||wί||pq<oo. If p=oo9 then q = oo and the
proposition is just the above quoted result of Stein and Weiss therefore, we may
consider only the case p<co. Assume first that q>l. Since {ut}t>0 is bounded
in L(p, q) and L(p, q) = L(pf, q1)' by property (viii) of Lorentz spaces, Alaoglu's

theorem implies that {Mjί>0 is relatively w*-compact in L(p, q). Hence there
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are a sequence {ίj tending to 0 and an /eL(p, q) such that uti-+f in the w*-

topology as i-»oo, which means that

\ u(y> *i)g(y)dy —> \ f(y)g(y)dy
JRn JRn

as i > oo for every g e L(p', q').

Now let 5 > 0, let x be in Rn, and define g(y) = P(x - y9 s) to be a function of y e Rn

then, g e L(p'9 q') by (P3), so that

\ u(y9 ti)P(x - y, s)dy > \ f(y)P(x - y, s)dy as i > oo.
JRn JRn

On the other hand, property (vii) in § 1 and Theorem 2.1 imply that the semigroup

formula holds for u. Therefore, it follows that u(x9 s)=\ P(x — y, s)f(y)dy.
JRn

To prove the equality in norms, let {ίj be a decreasing sequence of positive

numbers tending to 0. Then u(x9 ίt )-»/(x) for almost every xeRn as ί-»co by
Theorem 1.1 (ii). Set fί(x) = mfj^i\u(x9tj)\. Then /f(x) t |/(x)| for almost

every xeR", so that /f(0 ΐ/*(0 as ί-»oo for every ί>0 (cf. [15; Chapter V,
Lemma 3.5]). Hence, it follows that

To prove the result in case q = 1 , let k be a fixed positive number greater than

1. Then, by property (vi) in § 1, supί>0||Mί||pk< oo. Therefore, by what has been

proved, u is the Poisson integral of an /eL(p, k). The fact that feL(p9 1) and

the equality in norms holds follows in the same way as for q> 1.
Motivated by Stein and Weiss [14; p. 30] and the above proposition we give

the following definition.

DEFINITION. For l<p<^oo, 1 gggoo, let H(p9 q) be the linear space of all

functions u harmonic in Ω such that ||t/||H(p>g) = supί>0||Mί||M<oo with norm

II * \\H(p,q)- In accordance with [14; p. 30], for l<p<oo we shall write Hp for
H(p9 p).

From the above proposition, it follows that H(p9 q) is isometrically iso-

morphic to L(p9 q).

REMARK. If l<p<oo, then, by using the above proposition and Mar-
cinkiewicz interpolation theorem [15; Chapter V, Theorem 3.15], one can derive

that H(p9 q) will not change if one uses (n + l)-tuple of harmonic functions satis-
fying the system of generalized Cauchy-Riemann equations in its definition.

THEOREM 5.2. Let α>0, !<^<oo, l/r = l/p-α/n>0, and l^q^co. If u
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is a harmonic function in JFb(b>Q) with #%tq(u)<co, then u is the Poisson
integral of a unique /eL(r, q). Furthermore, there exists a positive constant
B = B(<x, p, q) such that

ll/ll,,£w;».

PROOF. Assume first that q<ao. Let δ be the positive number given by
l/<5 = n/r = n/p-α. Note that by Theorem 3.2, RΛ+1(R-*-lu) = u, so that we
have the following integral representation of u :

u(x, η) = Γ(α+ 1) \"0

tΛR~Λ~ίu(x> n + OΛ for (x, ij) e Ω,

which, by property (iii) in § 1, implies that

** > o.

Therefore

O oo
[s1'X

l/q

1

Γ(α

= II + /2

Since \\tR~*~1u\\p)q = #%iq(u)<ao9 the semigroup formula holds for R~*~*u by
Corollary 2 to Theorem 2.1. Hence

r i r
dx

The semigroup formula then implies that

(/r«-ιw)**(Λ η + f) ^ ||/?-«-ιw(.s OIL ^ B^r^/^M^-*-^; ί/2),

which, together with Hardy's inequality, gives the estimation I2^B#* q(u).
On the other hand, by Holder's inequality

χx, η + Old* ^ lEr/'M//*-'-^; fy + ί)

-lu\η + t)

-lu\ i)
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if |E|^s". Hence (/rα-1u)**(s'1, η + ί)^s-nl*Mp(R-*-*u\ t). By using Hardy's
inequality again, we conclude that /4 ^β^«/β(u). Combining the above estimates,
we derive that suρη>0\\uη\\rq^B#$tq(u), which, by Proposition B, implies that u
is the Poisson integral of a unique /eL(r, q) and \\f\\fq£B£*tq(u). Finally, we
observe that trivial modification works for the case g = oo.

COROLLARY. ^(a; p, q)aH(r, q), and the inclusion mapping is continuous.

REMARK 1. As we shall see in §7 (cf. Corollary (ii) to Theorem 7.4), our
theorem provides an easy proof of a theorem of Herz (cf. [8; Theorem 5]).
Herz's proof leans on an important inversion formula which allows one to recover

/e ΘQ from its difference. In fact, our proof is to some extent modelled after his.

REMARK 2. The above method can be used to treat temperatures (solutions
of the heat equation) and one can obtain similar results.

THEOREM 5.3. Lef α>0, l<p<co, l/r=l/p-α/n>0, and l<q^co. Then

H(p9 q)<=:je(- α r, q),

and the inclusion mapping is continuous.

PROOF. Let u be the Poisson integral of an feL(p, q). Then by [4;
Theorems 8, 9] ue^Λ+n{r9 and \\t"u\\riq^B\\f\\pq = B\\u\\H(p>q). Hence, the theo-
rem follows from Lemma 4.3.

THEOREM 5.4. Let l^p<r^oo, Irgggoo, α be a real number and δ =
(1/p-l/φ. Then

J^(α;p, 4)c:^(α--<5;r, 4),

and the inclusion mapping is continuous.

PROOF. First observe that nip — α = n/r — (α — δ). Let u be in J^(μ\ p, q).
Let β be a real number greater than α. Theorem 5.1 (iii) implies that &p\{(u) is
equivalent to &*tq(u). Consequently, the semigroup formula holds for R~βu
by Corollary 2 to Theorem 2.1. Using Young's inequality (see [13; Appendices,
A. 2]), we have

u; r) ^ M^R-'u; ί/2)MΛ(P; ί/2) (1/Λ = 1 - δ/n).

Property (P6) in § 1 yields MΛ(P; t/2)^Brδ. Hence Mr(R^u\ t)^
ί/2). Therefore

G α>
ίte

°° "u ί)]f r ldt = Bt jfμ) ,
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from which we obtain the desired result after making use of Theorem 5.1 (iii) again.

§6. Boundary values

In this section, we shall study boundary values (in the sense of distributions)
of functions in the space «^(α; p, q) defined in the preceding section.

First, we prepare some lemmas.

LEMMA 6.1. Let l^p, 4^00, α be a real number and u be in 3F(vi\ p, q).
For 5>0, let w(s)(x, t) = u(x, s + t)for all (x, t)eΩ.

(i) ιι< ) e Jf(α; p, q) and **.i(uM)£**tq(u).
(ii) If q<co or g = oo and Mp(R~Λ~lu\ t) = o(Γi) as f->0 + and ί->oo,

then u(s)-+u in tf(&\ p, q) as s->0 + .

PROOF. Since we^(α;p, q), £ϊ,q(u)=\\tR~Λ~lu\\ptq<vz. Hence the
semigroup formula holds for R~Λ~1u by Corollary 2 to Theorem 2.1. Therefore,
Minkowski's inequality gives

Mp(R-«-ιUω i) ^ Mp(R-*-ιU ί) ,

which implies that £Λ

ptq(u^)^g"ptq(u).
We turn to the proof of (ii). For q<ao,

α oo

o

For each fixed ί>0, (x, 5)^Λ~α~1w(x, 5 -hi) is the Poisson integral of the function

x*-+R-*-lu(x, t). Therefore, Mp(/rβ-1(ι<<s>--ιι); ί)-+0 as s-»0+ by Theorem
1.1 (ii), (iii) (the uniform continuity of R~Λ~lu( , i) in case p = vo follows from
the relation R-*~lu(-9 i) = P( , ί/2)*^-α-χ., ί/2) with P( , ί/2)eLx and
Λ"""1^', ί/2)eL°°). Hence (ii) is concluded by Lebesgue's dominated con-
vergence theorem (g < oo) or the hypothesis on the order of Mp(R~"~lu t) (q = oo)
if one notes that Mp(JR~α~1(M(s>-M); ί)^2Mp(R-α"1M; ί) for every s>0.

LEMMA 6.2. Let l^p^oo, / be a function in U and u be its Poisson
integral.

(i) // α>0, then u& e &(<*; p, q) and ^tq(u^)^Bs~Λ\\f\\p for all
s>0 and l^q^oo.

(ϋ) // α = 0, then u^eJF(Q\ p, oo) and ^°pt00(u^)^B\\f\\p for all s>0.
(iii) If k is a positive integer with 2fc>α>0, and f is a C^-function whose

derivatives of all orders vanish at infinity and belong to U, then we«^(α; p, q)
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PROOF, (i) and (ii) follow easily from Theorem 3.3. Next we have by
Theorem 3.4 and Lemma 4.3

f 1 Γ°°Split the integral into \ and \ and denote them by 1^ and I2 respectively. By

Theorem 3.3 Mp(D2k

+iu] t)^B\\f\\pΓ
2k so that I2£B\\f\\p. Next

D2k

+ίu(x9 f) = ( D2k

+ίP(x - y, ί)f(y}dy = ( - 1)Λ (nkP(x - y, ί)f(y)dy

so that Mp(D2k+ιU\ t)^\\Akf\\p. Hence /^Bp*/^. Now (iii) follows.

LEMMA 6.3. Let l^p, q^ao, a be a positive number and k be a positive
integer such that 2k>a. Define

< ιι, υ > k = < u, v > = ί2*-χ*, t/2)R-2kv(x,t/2)dxdt

for all u in Jf(-a; p', q') and all v in Jf(a; p, q).
(i) < , •> is a continuous bilinear form on 3ί?( — α; p', q')χj^(μ\ p, q).
(ii) //Me^( — a; p', q') and v is the Poisson integral of a φe&, then

M, v > = lim \ u(y, s)φ(y)dy.
s-*0+ JRn

Moreover, if <u, vv> =0/0r every w which is the Poisson integral of a function
in c ,̂ then u = Q.

PROOF. It follows from Holder's inequality that

Γ(2fc)| < u, v > I ̂  Γ° t2kMp,(u\ tl2)Mp(R~2kv;

Therefore, Lemma 4.3 and Holder's inequality imply that

The bilinearity of < , > is obvious. Hence (i) follows.
We turn to the proof of (ii). Let φ be in ̂  and v be its Poisson integral.

Lemmas 6.2 (iii) and 6.1 imply that υ and ι;(s) are in Jf(α; p9 q) for every s>0.
Further, by the semigroup formula and Fubini's theorem we have
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s

~ 1 M θ ' ' s/2

Denote the last integral on Rn by /. Since v is harmonic in Ω,

/ = ( u(y, s/2 + f)02*if<y, s/2)dy = ( - 1)* ( u(y, s/2 + t)Akv(y, s/2)dy.
JRn JR» y

Integration by parts and the harmonicity of u imply

/ = ( - 1)* ( Ak

yu(y, s/2 + t)v(y, s/2)dy = ( R~2ku(y, s/2 + t)v(y, s/2)dy.
R

Hence, by using Fubini's theorem and theorem 3.2 (ii) we obtain

ku(y> 5/2

= f u(y, s/2)v(y9 s/2)dy
JRn

- x, s/2)ψ(x)dxdy = u(x, s)φ(x)dx.

Note that various applications of Fubini's theorem above are easily justified.
Lemma 6.1 (ii) and the continuity of the bilinear form < , > then give

<M, v> = lim <w, v(s)> = l im\ u(x, s)φ(x)dx.

Before proving the remaining part of (ii), we observe that, for any s>0
there is a sequence {Uj} in JίFSf, the set of all Poisson integrals of functions in
,̂ such that w7 -»P(s) in «^(α; p, ^f). To prove this observation, take a sequence

{φj} in 0 with the property that φy.->P( , s) and Δkφj^ΔkP( 9 s) in IA If
Uj is the Poisson integral of φj9 then it follows from Lemma 6.2 (iii) that HJ- »P(s)

in «^(α; p, ^). Now assume that <M, w>=0 for every wej^y. For (x, s)
eΩ let t; = P(* s). Then the above observation implies that <u9 υ>=0. Fur-
ther, repeated applications of integration by parts and Theorem 3.2 give

' υ> =

, .5
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so that M = 0. The proof of (ii) is thus completed.

REMARK. It follows from (ii) that < , > does not depend on k.

Before stating the main result in this section, we give some definitions. Let

^o be the linear space of all functions φ in y such that Dκφ(ΰ) = ΰ for all K e Z+.
It is obvious that 5% is a closed subspace of 3" and hence a locally convex Frechet
space; < 0̂ is also a Montel space so that it is reflexive. Therefore, it follows that
y0 is dense in its dual &fQ = 3P'/&9 the space of tempered distributions modulo
polynomials. For a real number α, the Riesz potential of order α (cf. § 1) can be

generalized as follows :

(R*φ)-(ξ) = (2π\ξ\Γ*Φ(ξ) for 0e^0 and ξεR».

~ΛIt is then obvious that R* is an isomorphism of < 0̂ onto < 0̂ with inverse R
and R«oRβ = R*+β for all real numbers α and β. We note that R-2φ=-Aφ

for φ 6^05 because (Aφ)*(ξ)= -(2π\ξ\)2φ(ξ).
For TeST{> define KαΓ by (R*T)(φ) = T(R*φ\ where 0e.*V Then R*

has the same properties as RΛ defined on «$%. Let us see that the definition
coincides with the above one for ψe&Ό. Let Raψ be the one defined above.
If we regard ψ as Te ,9%, then

(R"T)(Φ) = f ψR*φdx = f ^(x)dx f
Jκ« JR« JR M

= (
JR Rn

= R*ψ(y)φ(y)dy
JRn

by ParsevaΓs formula. Thus R*T=R*ψ if T=^.

THEOREM 6.1. Let 1 ̂ p, q^co, a be a real number and u be in 3^(μ\ p, q).

(i) If a<n/p, then lim^oMί , ί) = w( , 0) ^xzsίs in the sense of tempered
distributions, and u*-+u(>, 0) is a continuous linear map o/«^(α; p, q) into &" .

(ii) //α^n/p, then lim^otίί , ί) = u( , 0) exists in &"0, and MH->M( , 0) is
a continuous linear map of J^(ct'9 p, q) into <P"0.

PROOF. First, we shall prove (i) in case α<0. Since &* is a (locally convex)
Frέchet space, to see the existence of u( - , 0), by the Banach-Steinhaus theorem

it is sufficient to show that lim^o \ u(x9 i)φ(χ)dx = u( , Q)(φ) exists for any
J Λ Π

Let v be the Pόisson integral of φe^. Then, it follows from Lemma
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6.3 (i) and (ii) that w( , 0) (φ) = <u9 v>. To verify the continuity of the map
wι-»w( , 0), let us take a sequence {Uj} in 3F (α; p9 q) such that u^u in «^(α; p, q)
asj->oo. Then

In/-, 0)(0) - ιι( , 0)(40I = |<ιι, - K, ι;>| .

The last term tends to 0 as j tends to oo by Lemma 6.3 (i). This completes the
proof of (i) in case α<0. Assume next that 0^α<τt/p. Let r be a positive
number such that p<rgoo and <5 = (l/p— l/r)n>α. It then follows from Theo-
rem 5.4 that «^(α; p9 q)^J^(cc — δ'9 r, g), which implies (i) in this case after
making use of the corresponding result in case α<0.

Now we turn to the proof of (ii). Let k be a positive integer such that 2/c>α.

Since R~2ku e .^(α-2/c; p, q) by Lemma 5.2, (i) implies that limf_0 \ R~2ku(x, ί)

ψ(x)dx = (R~2ku)(', 0)0/0 exists for any ψey. Given φe^Qί there is
such that Akψ = φ9 because (-l)kAk = R~2k (recall R~2φ=-Aφ for
and jR"2fe is an isomorphism of < 0̂ onto ^0 as stated before Theorem 6.1.
Then

u(x, t)φ(x)dx = ( u(x9 t)Akφ(x)dx = (- 1)* ( R-2ku(x, t)φ(x)dx.
Rn JRn JRn

This shows that lim^o \ u(x9 t)φ(x)dx exists for any φe^Q9 and w( , 0)(Akψ)

= (-l)k(R-2ku)(.,G)(ψ*. We have also

ιι(

Hence ^-2k(w( , 0)) = CR-2fcw)( , 0). On account of Lemma 5.2 u^R~2ku is
continuous, and since — 2/c + α<0, JR~2fcw^(JR~2fcM)( , 0) is continuous so that
u^(R~2ku)('i 0) = £-2*(w( , 0)) is continuous. Finally R~2k(u(- , O))H->M(., 0)
is continuous because #2fe is an isomorphism of «^ό onto e^ό as observed before
Theorem 6.1. Thus WH-»M( , 0) is continuous.

REMARK 1. The map w-+u( , 0) in both (i) and (ii) of Theorem 6.1 is one
to one. The assertion for (i) follows easily from Lemma 6.3 (ii). To prove the
result for (ii), assume that w( , 0)(φ) = 0 for all ΦE&*O. It then follows from
the proof of (ii) that (R~2ku) ( - , 0) (φ) = 0 for all φe&>0. On account of Lemma
5.2 and Theorem 5.4, we may assume that R~2kue3ί?(β\ r, oo) for a β<0 and

l<r^oo. Since 0Qc:^09 0 = OR-2*w)( , 0)(ψ)= <R~2ku9 υ> for every φe

$09 where v is the Poisson integral of φ. Lemma 6.3 .(i) and Theorem 7.2 then
imply that <R~2ku9 υ> =0 for every veje(-β; r', 1). Hence R~2ku = Q by
Lemma 6.3 (ii), and by our identification in case αΞ>n//> (see § 5) u is the zero ele-
ment in Jf(α; p, q).
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REMARK 2. Let l^p<oo, l<Ξg<;oo, 0<α<n/p and u be in ^T(α; jp, q).
Theorem 5.2 implies that u is the Poisson integral of an /eL(r, g) with l/r =

1/p-α/n. We shall show w( ,0)=/. Let φ(x, ί) be the Poisson integral of
φe&, and set ψt(x) = φ(x, t) — φ(x). Then, from Fubini's theorem, it follows
that

K κ(x, 0#*)Λc - ί /(x)#x)Λί = K
1 JΛ" ^K" I J

First observe that, for every s>0, φf*(s)^ ll^llco-^O as ί->0 by Theorem 1.1 (ii).

Since ψ**£ψ**(., f) 4-0** ̂ 2(/>** and 0eL(r', 1), ||^f|U-^0 as ί->0 by

Lebesgue's dominated convergence theorem. Hence \ w(x, t)φ(x)dx tends to

REMARKS. Assume 0<jp^l and α<0. Let u be a harmonic function

in β such that |w(x, 01 ̂ Λ~* (6>0) for every xeRn and ί>0, and suppose that
supί>0Γ

αMp(w; 0<°o Then, by imitating the method used in [3; Lemma 4],

we shall show that lim^0"( > 0== ^(ώo)» where ύ0(ξ) = ύ(ξ, δ)e2n\*\δ (δ>0)
and & denotes the inverse Fourier transform.

To prove it we may assume p = l, because if Mp(u\ t)^Bt* with 0<p<l,
then

Mi(ii; 0 = ( |H(Λ, W-'\u(x, ί)\pdx ^
J Rn

where — 6(1 — p) + αp < 0. By taking Fourier transforms of

U(x9 t + δ)=( P(x - y, t)u(y9 δ)dy = ( P(x -
JRn JRn

we have β-2πl^l^(ξ, δ) = e-2*W'ύ(ξ, f). Hence

, 01 ̂  ί |u(χ, Old* ̂  Bt«.
JRn

If, in particular, ί=l/|ξ|(£^0), then ^0(OI^J5|ίΓβ follows. For

u(x, t)φ(x)dx = ( &(ξ, t)$(ς)dξ = (
JR» JR*
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where φ(x) = φ(-x). Since ώ0 is continuous and \ύ0(ξ)\<^B\ξ\-*(ξ^O),
Lebesgue's dominated convergence theorem can be applied and shows that the

Γ °last integral tends to \ ύ0φdξ as f-»0. Thus
JR"

u(x, t)φ(x)dx = U 0 > d ξ =
f->0 JR» JR»

and hence u( , 0) =

§7. Lipschitz spaces

Following Herz ([8]), we define the spaces Jί?Λ*tq as follows.

DEFINITION C. (a) &* is the set of Poisson integrals of functions in 00.

(b) tfΛ*tq is the closure of tf* in 3ίf(u\ p, q).

If g = oo, then one needs only to take the closure in /^(α; p, oo) on account
of Theorem 5.1 (i), (ii).

In [8; §1], Herz defined the space Λ*tq as the completion of S0 for the
norm Λ*ιqin case α>0, and showed that it is continuously injected in c£% = «^7
.̂ He also proved that Ry is an isomorphism of A^q onto Λ<£$ if α>0 and

α + y>0 [8; Proposition 6.1], and he then defined Λ^q for α^O so that Ry is
an isomorphism of Λ*tq onto Λ<£q for all real α and γ [8; p. 316], where Ry

is the generalized Riesz potential (on &"/&) defined before Theorem 6.1. (Similar
spaces have been studied by Peetre [12] in which interpolation properties are
investigated.)

Before establishing the relation between Λ*tq and 3? Λ*tq, we need

LEMMA 7.1. Let a be a real number, /e^Ό and u be its Poisson integral.
Then

R"u(', f) = Pt*RΛf (t >0).

PROOF. By an argument similar to the proof of Lemma 3.3 we can see
that u e 3? . Hence RΛu makes sense for every real α. First we consider the case
0<α<n. It is easy to check that /eLQ?, q) for any p, l<p<oo, and q, l^q
<oo. Hence by Theorem 3.1 (ii) #αw( , t) = Pt*R*f. If αΞ>n, then take an
integer fc>0 so that cc/k<n. We apply k times the result in the case 0<α<n
and obtain the required relation. If α= — 2m <0, an even integer, then

R~2mu(.9 t) = (- \}mPt*Δmf= Pt*R~2mf

(recall that R~2φ--Aφ for φe&Ό). Finally, let 0>a^-2m and take an
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integer / so that 2/ + α>0. Since R*u = R2l+«(R-2lu), the desired result follows
from the two cases already considered.

REMARK. For any real number y, Ry is a linear bijection of Jf* onto
This follows easily from Lemma 7.1 and the fact that Ry is an isomorphism of

ΘQ onto ΘQ. Next, observe that, for we^f*, Ryu defined by Definition B in
§3 coincides with the one defined in Remark to Theorem 5.1. Therefore, Ry in
the sense of Remark to Theorem 5.1 is an isometric isomorphism of
onto 3?A£y for all real α and y, and 1 :gp, q^co.

LEMMA 7.2. Let l^p, g^oo, α be real, and u be the Poisson integral
Then #%>q(u) is equivalent to Λ%tq(ψ).

PROOF. The assertion is true if 0<α<l by Lemma 4.5. In the general
case, take y so that 0<α + y<l. It follows from Lemma 7.1 that Ryu is the
Poisson integral of Ryψ. Hence, the lemma in case 0<α<l implies that
££y(Ryu) is equivalent to ΛΛ^y(Ry^. Since g*p>q(u) = g*p+

y(Ryu) by Lemma
4.1, andΛ£+/ (Ryφ) is equivalent to Λ<ptq(ψ), £$>q(u) is equivalent to Λ^^ψ).

Now we give

THEOREM 7.1. Ifl^p,q^ao and α is real, then 3FΛ*ptq is ίsomorphic to
A*tq (and also isomorphic to the space &Άp)q of Johnson [10; p. 310]).
Moreover, an isomorphism is given by the operation of taking boundary values

of functions in JtfΆpιq.

PROOF. Let u be in 3fΆ*fq, and {wy} be in jf* such that <?%}q(Uj-u)-+Q
as 7'->oo. On account of Lemma 7.2 {w/ , 0)} is a Cauchy sequence in Λ*^.
Therefore there is an feA^q such that w/ ,0)->/ in Λ*)q. Hence MH->/ is
a bounded linear map of 3tfΆΛ

ptq into Λ.Λ

ptq. Similarly we see that f*-*u is also
a bounded linear map of Λ.ptq into J^Ap>q and we conclude that it is an iso-
morphism. On the other hand, Theorem 7.1 implies that w( ,0) exists and
Uj(-, 0)->w( , 0) in &"Q. Since w/ , 0)-»/ in <$%, w( , 0)=/ and the proof of

the theorem is complete.

Next we prove

THEOREM 7.2. Let i^p<co, and a be a real number.
(i) Ifl^q<co, then 3rΛ*p>q = 3?>(a', p, q).
(ii) 7/0<α<n/p and l^q^ao,then a harmonic function u is the Poisson

integral of an /e A*tq if and only ifue

PROOF. First, assume that 0<α<min(l, n/p) and u e«^(α; p, q). Theo-
rem 5.2 and Lemma 4.5 imply that u is the Poisson integral of an /e L(r, q)
(l/r=l/]7--α/n), and / ί * f ( / ) ^ 5 > ( w ) < o o . Therefore, it follows from
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Theorem 0 of [8] that feA*tq. By Remark 2 to Theorem 6.1 /=w( ,0).
Thus u eJfA*tq. To prove the result for general α, let y be a real number such
that 0<α + y<min(l, n/p), and let u be in je (α; p, q). Then #yM e ^α + y;
p, q) by Lemma 5.2. Since Jf (α + y p, g) = 3fA%+v by what has been just proved,

there is a sequence {Vj} in <#"* such that £%+?(υj — R7ύ)->Q. Setting Uj = R~yVj
eJ?*, we obtain by Lemma 4.1 ̂ fq(Uj-u) = ^y(Ry(Uj-u))==(ί^(υj-Rvu)

-»0. Hence M e Jί*Λtj§r The proof of (i) thus complete.
To prove (ii), assume that 0<α<n/p and l^^^oo. Theorem 7.1 implies

that u e ̂ -4p,q if and only if u( , 0) e A%tq. It then follows from Theorem 5.2
that u is the Poisson integral of u(- , 0). The proof of the theorem is now com-
plete.

In a manner similar to that in [10; §6], we shall use the space 3ί?A*tq to
give new proofs to many inclusion relations of Lipschitz spaces of Herz.

THEOREM 7.3. Let Irgp^oo, and α be a real number.

(i) Iflίq^qt^nithenJrA ^cjrAl^cijrAl*.
(ii) //p<r^oo, <5 = (l/p— l/r)n, and l^g^Ξoo, then

In each case the inclusion mapping is continuous.

COROLLARY (cf. [8; Theorem 3], [10; Theorem 8]). The same results hold
for the spaces A*tq.

PROOF OF THEOREM 7.3. (i) follows immediately from Theorem 5.1 (ii),
whereas (ii) follows from Theorem 5.4.

THEOREM 7.4. Let α>0 and l/r=l/p — α/n>0.
(i) //l<p<oo, then

H(p, q)

(ii) 7/l^/?<oo, then

In each case the inclusion mapping is continuous.

By taking boundary values of functions of the above families, we obtain

COROLLARY, (i) Let p, r, q, and α be as in (i) of Theorem 7.4. Then
L(p, q)cA-«q(cf. [8; Theorem 5 and Proposition 7.1], [10; Theorem 9]).

(ii) Let p9 r, q and α be as in (ii) of Theorem 7.4. Then A*>qcιL(r9 q)
(cf. [8; Theorem 5]).
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PROOF OF THEOREM 7.4. (i) is a consequence of Theorems 5.3 and 7.2,
whereas (ii) follows from Corollary to Theorem 5.2.

THEOREM 7.5. (i) Ifl<p£2, then HP
(ii) If2^p<oo9then^A°pt2c:Hp.

In each case the inclusion mapping is continuous.

COROLLARY, (i) // l< jp^2, then LPaΛ^t2 (cf. [8; Lemma 8.2], [7;
Theorem 6]).

(ii) If2^p<ao, then A°pi2cιLp (cf. [7; Theorem 6]).

PROOF OF THEOREM 7.5. Letw be in Hp. Note that ^Pt2(u) is equivalent
to \\tDn+lu\\pt2. For p g 2, Minkowski's inequality gives

where |Fw(x, OI2=Σιiι |£X*» OI2 Then, by [3; Theorem 9, Corrllary 3], we
derive that ^t2(u)^B\\u\\HP.

To prove (ii), let u e J>ίfΛ^t2. Then, u e J^n/p and by the corollary to Lemma
4.4 one has

*Xi°(Dju) ^ Bd?0

pt2(u) for j = 1,..., n.

It follows that
2/p \ l / 2G

which, together with Minkowski's inequality, implies that

(LΰΓ |FM(X' * 2 ί Λ ' / 2 ί ί χ 1 / ' =
Hence, by applying again the above quoted result of Feίferman and Stein, one
concludes that \\u\\

Before stating the next theorem, we need one more definition. Let u be a
harmonic function in Ω. The function u is said to be in H 1 if there exist n + 1

harmonic functions (in Ω) uί9..., un, un + ί=u which satisfy

n+l
Σ DiUi = 0,
i=l

Dtuj = DjUi9 i, j = 1,..., n + 1,

sup \ \F(x, t)\dx < oo,
ί>0 Ji?M



Harmonic Functions, Riesz Potentials, and the Lipschitz Spaces of Herz 283

where \F(x, OI2=Σ?ίίltti(*> OI2 It is well-known that ueH1 if and only if it
is the Poisson integral of an ίΛfunction / whose n Riesz transforms R1f,...9 Rnf
belong to L1, where

Rjf(x) = limc.ί f(x - y)yj\y\'Λ^dy9 j = 1,..., n. and xeR*
£-»0 J \ y \ > ε

with cn = π~(n+1)/2Γ((n + l)/2); it is a common practice to denote also by H1

the set of boundary values of functions in H1. (For properties of the space H1

and related matters, see e.g., [13; Chap. VII, §3]).

Finally we shall prove two results of some interest mentioned by Johnson.

THEOREM 7.6. (i)
(ii) H*cjrA%t2.

In each case the inclusion mapping is continuous.

COROLLARY, (i) A^cH1 (cf. [10; p. 314]).
(iϊ)H^A°ίt2(cf. [11; p. 135]).

PROOF OF THEOREM 7.6. Let u be in 3?Λ\Λ. Note that <sf?tl(u) is then

equivalent to ||ί£n+ιMllι,ι by Lemma 4.3. Since u 6^n, one has

foo

u(x, i) = - \ Dn+lu(x, s)ds for (x, i)eΩ.

Hence it follows that w+(x) = supf>0|w(x, ί)l^\ \Dn+ιu(x> s)\ds. Then, by using
Jo

[3 Theorem 9, Corollary 2] and the above estimate, one derives that ||M||HI^
B£$tί(u). Thus (i) is proved.

To prove (ii), let u be in H1. Then, by using the same method as in the proof
of Theorem 7.5 (i), one obtains ^t2(u)^B\\u\\H1.

Before going to the next section, we remark that in case p or q is oo and
/ is a measurable function with A*tq(f)<co, f belongs to the corresponding
Lipschitz space of Herz provided some o-order at 0 and infinity is satisfied (cf.
[8; Theorem 0]). Hence, it is reasonable to denote these spaces by i^%q\ so we
have Λ*t<30 and Λ£,>9, and we shall adopt these notations hereafter (cf. also
[10; p. 311]). The spaces Λ«>00 and A*>fq are defined as follows:

For 1 ̂  p ̂  oo and real α, define

with the same norm as for u. It then follows from Remark 1 to Theorem 6.1 and
this definition that -4*t00 is isomorphic to Jf(α; p, oo). Hence, Theorem 5.1 (v)
implies that the spaces Λ*f00, where p is fixed and α varies, are isomorphic to one
another.
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The spaces A^tq (l^g^oo) are similarly defined.

§8. The dual of Aptl

In [8; Proposition 7.1] Herz proved that the dual of A^q (l<p, q<co) is
(isomorphίc to) A~?tq,. The extreme cases, i.e., when either p or q is 1 or oo,
seem to be not completely solved. On the other hand, Johnson also made a
remark in [10; p. 315] about some uncertainty at these critical indexes. In this
section and the next one, we shall be concerned with the duals of A%tί (1 :gp< oo),
Altq (l<q<co) and ̂ j00 (l^p<oo). We shall work instead with the spaces
«^(α; p, q) and Jf?A%fq. Our main result in this section is the next theorem
whose proof is modelled after [5; §§12-14]; however, in various computations
we must take into account the behaviour of t at infinity. Hereafter E' stands
for the topological dual of the normed vector space E.

THEOREM 8.1. // α is a real number and l^p<oo, then 3?(u.\ p, I)7 is
ίsomorphic to J^( — oc; p'9 oo).

We shall prove the theorem through several lemmas.

LEMMA 8.1. Let l^p, g^oo, α be a real number and u be a harmonic
function in Ω such that w(s)e«5f(α; p, q) for every s>0. For each (y,
let u ( y s) and D ίM

(y s)(/ = l,..., n + 1) be the functions with domain Ω given by

tι(*»>(x, ί) = u(y - x, s + t),

DtuO-'^Xity^Drty-XiS + f),

and let

u(y+helts) __ u(y,s)

Φi,h = ~ - ~ DiU(y>* (i = 1,..., n).

where h is real (and s + h>Q in the case of ψh) and {el9..., en} is the natural
basis of Rn. Then φith and \j/h tend to 0 in ^(α; p, q) as h tends to 0.

PROOF. Let (x, ί) be in Ω. Then

Φι,h(x, 0 = y J* U>P(y + TO, - Jc, s + 0 - Dμ(y - x9 s + t)~\dσ

= X \* {Γ^f"Cκ + τei ~ x> s + t)dτldσ

* x, s + ί)dτ.
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Hence, it follows from Minkowski's inequality that

Mp(φίιh; ί) g jjL I J*(Λ - τ)Mp(β?u; s + t)dτ

= (|Λ|/2)Af/Df«; s + ί) = (|/ι|/2)Mp(£>?U<s>; /).

Similarly, if k is any positive integer, then

Mp(J>*+1<£M; t) iS (|Λ|/2)Af/D;+1Df«; s + ί)

We shall treat the case <? < oo only, because the case q = oo can be similarly treated.
Let k be a positive integer greater than α. Then by Lemma 4.3 we have

= B + B g B|Λ|« ί«<*-«)M-(D*+1D?M; s)«r»Λ

$00

1

= Λ + /2

Clearly /1=β|/ι|«Mp(DS+1D
:?M; s)«. Note that D?u<s> e^f(α-2; p, g) for every

s>0 (see the proof of Lemma 4.4). Since Jf(α — 2; p, g)c^f(α — 2; p, oo) by
Theorem 5.1 (ii),

Mp(Dk

n+1Dlu; s) = Mp(DΪ+1D?W<*/2>; 5/2) g

so that /i-^0 as Λ-»0. Moreover, /i^Blhlβ^-^Dfu^-^O as ft-*0. The
desired result for φith is thus proved. The proof for ψh can be carried over in the
same manner.

LEMMA 8.2. Let u, p, q and α be as in Lemma 8.1. Let F be a continuous
linear functional on «^(α; /?, q) and let w(y, s) = F(u(y>s)) for (y, s)eΩ. Then

w is a harmonic function in Ω and is bounded on R" x]c, oo[/or each c>0, and
w( , s) is uniformly continuous on Rn for each s>0.

PROOF. An induction argument based on Lemma 8.1 shows that, for each

multi-index fceZJ+ 1, />κw(y, s) = F(DKu(y>s^). Hence w is harmonic in Ω by
the linearity of F. Furthermore, the continuity of F and Lemma 6.1 (i) imply that

for all y e Rn and s ^ c > 0.
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Finally, w( , s) = P( , s/2)*w( , s/2), and, since P( , sβ)eLl and w( , s/2)eLm

9

w( , s) is uniformly continuous on Rn for each s > 0.

LEMMA 8.3. Let l^p, q^oo and a. be a positive real number. Let F be
a continuous linear functional on 3^(μ\ p, q) and let u(y, s) = .F(P(y's)) for all

(y, s)eί2. Then for each bounded measurable function g on Rn with compact
support and s>0

ί u(y9
JRn

where v is the Poisson integral of g. (Note that P<?>s) and ϋ(s) belong to

JT(α; p9 q) by Lemma 6.2 (i).)

PROOF. Let K be the compact support of g. For each positive integer m,
let {Kf} be a finite family of mutually disjoint Borel sets Kf = Kt whose union
equals K9 each Xf having diameter less than 1/m. Let yt e Kt and

t - x, s + 0 g(y)dy for (x, f) 6 O.
i JKί

Then Sm is a finite linear combination of P<y« 5> and hence belongs to ^(α; p, q).
We assert that

4) Sm - > t;(s> in je(μ\ p, q) as m - » oo.

To prove the assertion (A), set

I7m(x, i) = Sm(x, t) - ι;( )(χ, i) = Sm(χ, 0 - v(x, s + ί)

- Λ, s + t)-P(x-y9s + f)~\g(y)dy for(x, ί) e Ω.

It follows from Minkowski's inequality that

Σ(ί jKi

Mp(t/m; 0 ^ Σ I|P( -Λ, s + 0 - P( -y, s + O
i J KI

Since (x, t)*-+P(x — yi9 s + t) — P(x — y, s + t) is the Poisson integral of χι-»P(x — yi9

s)-P(x-y, 5), we have

If l^/?<oo, then ||P( +y — yh s) — P( , 5)11^-^0 as m-»oo, while if ι?=oo, the
same statement follows from the uniform continuity of P( , s) on R". Con-
sequently, Mp(l/m; 0 tends to 0 uniformly in t as m tends to oo. Now, let k be a
positive integer greater than α. Since
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D*+lum(x, 0 = Σ ί [/>5+ιP(* - Λ, 5 + 0
i JKi

- Dk

n+1P(x - y, s

an argument similar to the above shows that

(1) Λfp(D*+1l/m; t) - > 0 uniformly in ί as m - > oo.

Moreover, it follows from (P6) and Minkowski's inequality that

(2) Mp(Dj+1l7m; r) ^ B^H^ + f)-"-*+"/*.

If #<oo, then

Γλ foo

= + */ l
Jo Jλ

Inequality (2) now implies that /i^^BHflfl^λ""'8-11^' so that I2 is small if A is
large enough. On the other hand, it follows from (1) that 7X is small if m is suffi-

ciently large. Hence <^p,β(t/m)-»0 as m->oo on account of Lemma 4.3. Ob-
serve that trivial modification works for the case q = ao. The proof of the assertion

(A) is thus complete.

Next, the continuity of F and (4) imply that

F(v^) = limίXSJ = lim Σ
m-»oo m-^cjo t

= lim Σ u(yt9 s)( g(y)dy.
m-»oo i JKi

Furthermore,

Σ u(yi9 s)( g(y)dy - \ u(y9
I J K i J K

• ^ Σ Iκ(y* ^) ~ u(y, s)\ \g(y)\dy — > 0 as m — > oo,
i JKi

because u( - , s) is uniformly continuous on Rn by Lemma 8.2. The proof of the

lemma is now complete.

PROOF OF THEOREM 8.1. Since isomorphic spaces have isomorphic duals,
Theorem 5.1 (v) enables us to consider only the case α>0. Let u be in ^(~α;

p'9 oo) and k be a positive integer such that 2/c>α. Then it follows from Lemma
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6.3 (i), (ii) that FM= <w, > is a continuous linear functional on Jf (α; p, 1) with

||fj|^5«f~/*>00(tt), and Fu = 0 implies w = 0. Conversely, assume that F
belongs to jT(α; p, 1)'. Let w(y, s) = F(P^ s>) for every (y, s)eΩ. It is
harmonic ih β on account of Lemma 8.2. Denote by υ the Poisson integral of a
function φ in .̂ Then by Lemmas 8.3 and 6.2 (i), we have

ll»<*

Hence

M,,(u;s)= sup If «0>, sWytfy £ B||F||s-,
ψe& I JΛ n

IWIp=i

which, together with Theorem 3.5 (i) (# = oo), implies uEJ^nfp'+Λ and together

with Lemma 4.3, implies £-Fm(u)^B\\F\\. It follows that we^-α p', oo).
We observe that v e Jf (α; p, 1) by Lemma 6.2 (iii), and that v^-*v in ^f(α; p, 1)

by Lemma 6.1 (ii). The continuity of F and Lemma 6.3 (ii) then give

s-+0+
= lim u(y, s)\l/(y)dy = Fu(υ).

By definition jf* is dense in jf?Λ%tl which is equal to f̂ (α; p, 1) by Theorem 7.2.

Given ψe(P0 there exists a sequence {ψj} in ^ which converges to ψ in the
topology of &*. Then P,*^- converges to Pt*ψ in «^(α; p, 1) by Lemma 6.2
(iii). This shows that the set of all Poisson integrals of functions in 2 is dense in
^(α; p, 1). We conclude that F=FU. Combining the above results, we derive
that the mapping u^>Fu is an isomorphism of «#*(-- α; p', oo) onto «^(α; p, 1)'.
Our theorem is now proved.

Next we obtain

THEOREM 8.2. //α is a real number and l^p<oo, then the dual of Λ*tq

is isomorphic to -4~/α

f00.

PROOF. Since the space A%tί (Λ~>Λ

t00 resp.) is isomorphic to «^(α; p, 1)
(-α; p;, oo) resp.) by Theorems 7.1 and 7.2 (the definition of Λ~?%<x> resp.), the

desired result follows easily from Theorem 8.1.

§9. The duals of Λ}tq and Λ*pt00

In this section we shall consider the many important cases left out in the
preceding section. Namely, we shall investigate the duals of Λ^tq(l
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and >ίj>00(lgp<oo). An essential tool in our proof is an operator Γα which is
similar to a class of operators developed by Herz [8] although our case is basi-
cally simpler. Our main result is the following theorem :

THEOREM 9.1. Let a. be a real number.

(i) Ifl<q<co, then the dual of Λ*tq is isomorphic to A3*q>.
(ii) //l^p<oo, then the dual of λ*t(30 is isomorphic to Λ~?tl.

As in the preceding section, we shall work instead with the spaces «^(α; p, q)

and 3?ΛΛ

ptπ respectively. In fact, Theorem 9.1 follows from the following theo-
rem in the same way as Theorem 8.2 was derived from Theorem 8.1.

THEOREM 9.2. Let a be a real number.
(i) J/l <q<oo9 then <#?(<%', 1, q)' is isomorphic to «#*( — α; oo, q').

(ii) //lgp<oo, then jtfΛ*^' is isomorphic to 3ί?( — α; p', 1).

First, we shall prepare some lemmas. For α>0 and w e Cκ, the space of all
continuous functions with compact supports in Ω, define

T«(w)(x, s) = t«~lP(x - y, s + t)w(y, f)dydt
JO JRn

for every (x, 5) e Ω. Note that Γα(w) is the Poisson integral of the function

y*-*\ \ t*~lP(y-z,f)w(z,t)dzdt, which belongs to U for every l^pgoo.
Jo JRn

LEMMA 9.1. Let Igpgoo, l^ggoo and α>0. For weQ, let Γα(w)
be defined as above. Then Tα(w) e «^(α; p, q) and there is a constant B, possibly
depending on α, n, p and q, such that

PROOF. Let k be a positive integer greater than α. As observed above
Γα(w) is the Poisson integral of an L^function, and hence Tα(w) e 3fn which is
contained in 3F */p-Λ. Since

Dk

n+lT*(w)(x, s) = Γ ( t*-lDk

n+1P(y9 s + ί)w(x - y, t)dydt,
Jθ JR"

it follows from Minkowski's inequality and (P6) that

Mp(£>!5+1T"(w); s) g B £ ι-(s + ί

Hence
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where

( C°°Γ Cs Ί«
\ \sk~*\ t"(s + 0~*Mp(w; t)rldt

and

/Γ°° Γ , Γ°°MlM/°(s

α oo Γ~ /*oo
p- *"-*,

o L Js

by Hardy's inequality. Note that
Therefore, the lemma follows from

Mp(w\ t)t ldt s ld

trivial modification
Lemma 4.3.

]€ \l/4s~lds)

works for the case q = co

REMARK. Note that, at least in the case l^p<oo and 0<α<n/p, Tα is a
bounded linear operator from L(p>q\ the Banach space of all measurable func-
tions w on Ω with ||w||p)ή<oo, into 3? (α; p, q); the proof is similar to the above
lemma. (We refer to [1] for properties of the spaces L(p'q\) Also in this case,
if we define

, 0 = ~ **"gflϋ+ι"(*> 0

for all u ejf? (α; p, q), where fc is a positive integer greater than α, then 71 α is a
bounded linear operator from .̂ (α; p, #) into L(p g) by Lemma 4.3, and TαT_α

=/, the identity operator on L(p'q). Each of the operators Tα and T_α is a
modified version of some class of operators constructed by Herz [8 Propositions
5.1 and 5.2].

LEMMA 9.2. Let l^p<oo and cube a positive number. If v is the Poisson
integral ofanfeLP and ue^f( — α; p', oo), then

< u(5\ ι;(ί> > =\ u(y, s)υ(y, t)dy
JRn

for all positive numbers s and t.

PROOF. Let {ψj} be a sequence in & which converges to / in U. Then
vW-*v(t) in 3? (α; p, 1) for each *>0 by Lemma 6.2 (i), where vj is the Poisson
integral of ψj. However, an easy application of Fubini's theorem, the semigroup
formula and Theorem 3.2 imply as in the proof of Lemma 6.3 (ii) that

< u^s\ Ό<f> > = \ u(y, s)Vj(y, t)dy,
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which yields the required formula after making use of the continuity of < , >
and the fact that ι?/ , f)->ι< , 0 in If.

LEMMA 9.3. Let l^p, q^co, a. be a real number and u be a harmonic
function in Ω such that w(s) e Jf(α; p9 q) for every positive real s and sup0<j:S1

<^,4(w(s))<oo. Then u e^(α; p, q) and ^«iβ(fi) = Um^oX5.«("(β))

PROOF. It is obvious that u e^T*/p_α and t^Mp(R~Λ""lu^ 9 t)s=Mp(R-*~lu;
s + 0 is non-increasing on ]0, oo[for each s>0. It is continuous in virtue of
Lemma 1.1. If q<co9 then the lemma follows from Lebesgue's monotone
convergence theorem. If q = oo, then

oo(w(5)) = limίsupfM-ίir -1!*; s + t)}
s->0+ s->0+ ί>0

= sup (sup tMp(R~Λ~lu s + t)}
s>0 ί>0

= sup {sup ίMJR- -1!! s +• t)}
ί>0 s>0

= sup ίM/R-'-'u 0 = /«.„(«) .
ί>0

LEMMA 9.4. Let l^p<ao, l<q^ao and α>0. If u is a function in
«#*( — α; p'9 oo) such that

sup I < u(s\ v > I ̂  C < oo for all 5 > 0,
υe^r*

/;§,(»)^ι

where < , > is defined as in Lemma 6.3, ί/ien M6Jf( — α; p', g') αnrf ^p'%'(w)

PROOF. Let 5 be a positive number. First, we prove that

Pα"(s)IU' = sup
i. MiιeCκ<l l w l l p , β ^

Denote by N(u) the right hand side of the above equality. On account of [1
§2, Theorem 1] we need only to see that ||fαM<s) | |pWgΛΓ(w). For each
set Eλ = {\x\<λ}x~]l/λ, A[and

ίαw(x, s + t) if (x,

0 otherwise.

Since liίαu^||J,%^ = supΛ>1||u(A)||pW, it is sufficient to show that \\u(λ)\\p>tq.
^N(u) for every λ> 1. Fix a λ> 1. For any e>0, by [1 § 2, Theorem 1] there
exists a measurable function w such that | | w | | g l and
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ίαw(x, s + i)w(x, *J~ + ε.

Furthermore, we may assume that the support of w is a compact set CaEλ.
For each 0<<5<1, let ψ(δ) be a non-negative C°°-function with compact support

in {|x|<<5}x]l-<5, l+5[and||ψ(δ)||1§1 = l, and define

w(<5)(x, 0 = n w(x - y, t

= Γ ( vv(j, τ)^(5) (x - y, t/τ)dy ^L (x, ,) 6 β.
Jo JR* τ

Then w(<5) is a C°° -function with compact support in Eλ for small δ. Further,

IN<5)IU<^ IMIP,J*K<5)llι,ι ^1 by Minkowski's inequality. On the other hand, if
δ is small enough, we have

, s + /)w(5)(jc, t)dx^- = Γ ( u(λ)(x,
^ Jo J/?"

C

The last term tends to

as <5->0, because

\ \ u(λ) (x, i)ψ(δ) (* — y> t/τ)dx — » w(7) (y, τ)

uniformly in (j, τ) e C as ^-^0 by the uniform continuity of u(λ) on any compact
set of Eλ. Consequently,

i /*QO f Jj.

\-2e
I Γ°° Γ dι

l lwWIL'β' ^ \ \ /αw(x, 5 + t)w(δ)(x, t)dx —
I Jo JR M t

for sufficiently small <5. Hence \\u(λ)\\p>tq>^N(u\ and the required equality

follows.
Now, for each w e Cκ the semigroup formula, Fubini's theorem and Lemma

9.2 imply that

\ t*u(x, s + t)w(x, t)dx -^j- = V u(y, s/2)TΛ(w)(y,
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By applying Fubini's theorem and the semigroup formula we see that the last
quantity is equal to <M(S), Tα(w)>. Hence it follows that

l|fe" (' )W= sup I < ιι< >, T*(w) > I .
llfei

Fix a weCK such that ||w||p>q^l and let {υj} be a sequence in «^* which con-
verges to Tα(w) in j^ Λ*pΛ\ note that this is equal to «^(α; p, 1) by Theorem 7.2.
Then <w(s), Vj>-+<u(s\ Tα(w)> by the continuity of <•,•>. Since

ι( ) for any q^l by Theorem 3.4, Lemma 9.1 implies that

^ B for large .

Therefore, we derive that \<u(s\ T*(w)\> <^Bsup υe#,*tf« q(v^1\<u(s\ v>\.

Since w is arbitrary, we obtain

||ίαM<%, q,^B sup I < w<*>, v>\^BC.
v

Hence, the desired result follows from Lemmas 4.3 and 9.3.

PROOF OF THEOREM 9.2. By a similar reason to that in the proof of

Theorem 8.1, we may assume that α>0. We shall prove (ii) first. For ue

•#*( — «; p'9 1) and vε3t?Λ%t0ΰ define <w, v> as in Lemma 6.3. Then < , >
is a continuous bilinear form on jf(-α; p'9 l)x«^-4*|00, and <w, y> =0 for all
vεJί?A*ιQO implies that w = 0 by Lemma 6.3 (ii). Conversely, let F be a bounded
linear functional on jeA^t00. Set u(y, s) = F(P^ β>) for all 0, s)eΩ. By
Theorem 7.2 ^yl*fl = ̂ (α; p, 1) and by Theorem 7.3 (i) JfA*Λc:jfA wao

so that «^(α; p, l)c:j>ί?A*t00. Hence F may be considered as a bounded linear
functional on 3? (α; p, 1). Therefore, Lemma 8.3 and the proof of Theorem 8.1
imply that u e 3tf( — α; p', oo) and

for every v which is the Poisson of a ψe& and s>0. By Lemma 6.3 (ii) the

right hand side is equal to <M(S), v>. Given φeS0 there exists a sequence
{φj} in Q> which converges to φ in « .̂ Then Pt*φj-+Pt*φ in f̂ (α; p, 1) by
Lemma 6.2 (iii). Lemma 6.1 (i) implies that (Pί*φJ)(s)->(Pf*φ)(s) in ^T(α; p, 1),

and P((Pt*0;)
(s))^F((Pf*ψ)(s)) on account of the continuity of F. Since

F(t;(s))= <M(S), t;> for all vejf* and s>0. Consequently,
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I < n< >, υ > I ̂

by Lemma 6.1 (i) and

sup I < w<5>, t» I g ||F|| < oo for all 5 > 0,
t e^*

/J ί β β (ι>)£l

which, by Lemma 9.4, implies that uejf( — α; p', 1) and ^p*
Note that t?'e jr*cjr^ljf00, and v<s\ , t) = Pt*(Ps*f). BY taking the Fourier

transform of Ps*/ we see that Ps*feS0. Hence t;(s)ejf*. By Lemma 6.1
(ii) W (S>-»M in JT(-α; p, 1) and ϋ<β>-n; in jfΛ tao. Hence F(t;)=<w, u> for
every v e jf *. Since jf* is dense in j#Ά%t009 F(v) = <u, v> for every v e 3?Λ*ptn
Thus we have shown that u*-*Fu= <w, > is an isomorphism of Jf ( — α; p', 1)

onto JTΛ .oo'.
Finally, the assertion (i) follows if we replace jf 45f00 and 3t?( — α; pr, 1)

in the above proof by ^f(α; 1, q) and «^(--α; oo, q') respectively.

REMARK. We have removed some restriction on p and q imposed by Flett
[5]; Flett considered only the duals of Λ(VL\ p, l)(l^p<oo) and Λ(α; p, oo)
(l<p<oo). Further, he also noted that his mothod does not permit to say any-
thing about the dual of Λ(α; 1, q) (i<q<ao). The method used in this section
can be adopted to treat the spaces Λ(a\ 1, q) and Jl(α; 1, oo) as well.
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