
HIROSHIMA MATH. J.
9 (1979), 163-177

Stochastic Differential Equations with Reflecting
Boundary Condition in Convex Regions

Hiroshi TANAKA

(Received September 16, 1978)

§1. Introduction

A. V. Skorohod [4] considered a stochastic differential equation for a reflect-
ing diffusion process on 5 = [0, oo) (see also McKean [2] [3]). This is the

simplest case among stochastic differential equations subject to boundary con-

ditions and can be solved easily. The purpose of this paper is to show that the

multi-dimensional version of Skorohod's equation is still easy to solve if we assume

that the domain D is convex.
Skorohod's equation describing a reflecting Brownian path ξ on 5 = [0, oo)

is

(1.1) £ = w + φ,

where w is a standard Brownian path and ξ is to be found as a Z)-valued con-
tinuous function under the condition that φ(f) increases only when £(f)=0. The

equation (1.1) has a unique solution not only for almost all Brownian paths but
also for all continuous functions w with w(0) e J5, and the solution is given by

ί w(ί) for 0 < t < T,
(1.2) ξ(f) =

[ w(ί) - inf{w(s): T< s <, t} for t > T9

where T=inf{ί>0: w(ί)<0}. Our first problem is to consider a multi-dimen-

sional version of the equation (1.1) assuming that D is a convex domain. Al-

though we can not obtain an explicit formula for the solution like (1.2), we are

able to construct the unique solution ξ for any Revalued continuous function

w with w(0) E D and to prove that ξ depends continuously on w, if D is a convex
domain in Rd satisfying certain condition (Theorem 2.1). This additional con-

dition is automatically satisfied if D is bounded or d = 2. This result will lead to
a simple solution to our second problem which is concerned with a stochastic

differential equation with (normal) reflection having variable coefficients similar

to Skorohod's. The following may be stressed,
(i) The boundary does not need to be smooth as far as the domain is assumed

to be convex,
(ii) The diffusion coefficients may degenerate (however, in this case the path of
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the solution might not behave like an ordinary reflection).
Our results are roughly stated as follows. The convexity assumption for the
domain makes the situation quite similar to that in the whole space; in fact, the
existence of solutions will be obtained assuming only the bounded continuity of
the coefficients (Theorem 4.2), and the pathwise uniqueness of solutions will be
proved under the same regularity assumption on the coefficients as found in the
work of Watanabe and Yamada [9] for the case of whole space (Theorem 4.3).

However, it is noted that our methods and results are restricted to the case of
reflecting boundary condition; the convexity assumption will not simplify the
situation in the case of general boundary conditions such as discussed by Ikeda
[1], Watanabe [8], Stroock and Varadhan [6] and Tsuchiya [7].

§ 2. A deterministic problem

An Revalued function φ(t) = (φ1(t)9...9 φd(i)) defined on R+ = [0, oo) is
said to be of bounded variation for simplicity if the component functions are of
bounded variation on each finite ί-interval. Given such a function φ(f) which is
right continuous and <p(0) = 0, we put

\φ\ (f) = the total variation of φ on [0, t]

where the supremum is taken over all partitions: Q = t0<tί< <tn = t. φ(i)
can be expressed as

(2. 1) φ(ί) = Vn(s)d\φ\ (s) = \ n(s) \φ\ (ds)
JO J[0,ί]

with a unit vector valued function n(f) n(f) is uniquely determined almost every-
where with respect to the measure d\φ\.

Let D be a convex domain in Rd and D its closure D will be fixed through-
out. For x e dD we denote by J^X(D) the set of all supporting hyperplanes of D
at x. By (an inward) normal vector at xedD we mean any inward unit vector
perpendicular to some H e «#%(D), and denote by Λ*X(D) the set of all inward
normal vectors at xedD. Of course, it can happen that %Λ*x(D)=ao unless dD
is smooth near x. We shall also consider the following spaces of functions.

C(R+, Rd) (resp. C(R+, J5))= the space of Revalued (resp. 5-valued)
continuous functions on R+.

D(R+, Rd) (resp. D(R+, D)) = the space of Revalued (resp. D- valued)
right continuous functions on R+ with left limits.
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On C(R+, Rd) and C(R+, D) we consider the compact uniform topology.
Given a function ξ in D(R+, 5), a function φ is. said to be associated with ξ if
the following three conditions are satisfied.

(2.2) φ is a function in D(R+, Rd) with bounded variation and φ(0) = 0.

(2.3) The set {t e R+ : ξ(t) e £>} has d|φ|-measure zero.

(2.4) The function n(i) appearing in the expression (2.1) is a normal vector at
ξ(t) for almost all t with respect to the measure d\φ\.

REMARK 2.1. The condition (2.4) can be replaced by the following one.

(2.4') For any η e C(R + , D), fo(ί) - ξ(t), φ(dt)) > 0.

EXAMPLE. Let dD be smooth, n(x) the inward normal vector at xedD
and ξeΌ(R + 9D). Then, for any right continuous non-decreasing function
p(t) on R+ with p(0) = 0

= leD(ξ(sJ)n(ξ(s))dp(S)Jo

is clearly an associated function of ξ.
Our first problem stated in the introduction can now be formulated as

follows.

PROBLEM. Given w e D(R + , Rd) with w(0) e D, find a solution ξ of

(2.5) ξ = w + φ.

When we speak of the equation (2.5), it is always understood that £eD(R + , D)
and φ is associated with ξ.

As stated in the introduction, in the simplest case 15 =[0, oo) the solution of
(2.5) is given by (1.2). However, in the general multi-dimensional case the
existence of a solution of (2.5) is not trivial. An example in which a solution of
(2.5) can easily be found is the case when w is a step function as will be seen in the
lemma below. For a given point xeR d — D we denote by [x]e the (unique)
point on dD which gives the minimum distance between x and D.

LEMMA 2.1. // w is a step function with w(0)eJ5, then a solution of (2.5)
exists.

PROOF. Put T1=inf{ί>0: w(t)&D} and define ξ(t)9 0<i<T l5 by ξ(t)
= w(f) for t<Tt and ξ(Γ1) = [w(Γ1)]δ. Then, T^O and ξ(t) solves (2.5) for
0< t< TV Next, suppose a solution ξ(t) of (2.5) is obtained for 0< t< Tn_ ί and
put
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Tn = inf {* >Tn.t: w(ί) + φ(Tn-ι) £ D} ,

for Γ B . 1 <ί<Γ l | f

OL for t=Tn.

Then, ξ(ί) solves (2.5) for 0<f<T M . Repeating this argument, we can obtain
a solution of (2.5) for 0< t< oo because Tn t oo as n t oo.

LEMMA 2.2. (i) Lei w, VveD(R + , Rd) wΐ ί f t w(0), w(0) e D, αnJ ξ, ξ be
any solutions of

ξ = w + φ, I = w + φ,

respectively. Then we have

|«0 - KOI2 < WO - w(ί)|2

+ 2ί'(w(ί) - w(ί) -
Jo

(ii) If ξ is a solution of (2.5), then

lί(0 - «5)|2 ^ WO -

(w(0 - w(τ), (̂rfτ)), 0 < s < ί.
(s,«]

PROOF, (i) We have

\φ(t) -
oJo

o

- φ(dtl), φ(dt2) -

- Σ \φ(s) - Φ(s) - φ(s -) + φ(s -)|2

- φ(s), φ(ds) - φ(dsj),

(w(0 - w(ί), φ(t) - φ(0) = ('(w(0 - w(0, φ(ds) - φ(ds))
JO

= ί'(w(0 - w(0 - w(s) + w(s), φ(ds) - φ(ds))
Jo

- w(s), φ(ds) - φ(ds)).

Therefore
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lί(0 - £(OI2 = WO - tf(OI2 + 2(w(0 -

<; WO - *>(

+ 2ί'(w(0 - w(0 - w(s) + w(s), φ(ds) - φ(ds)).
Jo

But the second term is non-positive by (2.4') of Remark 2.1.
(ii) By a method similar to the case (i), we have

\ξ(t) - ξ(s)\2 = KO - w(s)|2 + \φ(i) - φ(s)\2

+ 2(w(0 - w(s), φ(i) - φ(s))

(ξ(τ) -

-f
J(s,f]

But the second term is non-positive by (2.4'); the proof is finished.

REMARK 2.2. By a method similar to the above, we can prove the follow-
ing : If w and w of (i) of Lemma 2.2 are replaced by w + a and w + α, respectively,
where a and α are Revalued right continuous functions of bounded variation
with α(0) = α(0) = 0, then

l«0 ~ ί(OI2 < KO - w(OI2 + 2\\ξ(s) - ξ(s), a(ds)- ά(dsj)
Jo

+ 2\ (w(ί) - \v(ί) - w(s) + w(s), α(ί/5) + φ(ds) - ά(ds) - φ(ds)).
Jo

By a similar replacement of w in (ii) by w + 0, the inequality in (ii) becomes

KO - w(5)|2 + 2\ ({(τ) - ξ(5),
J(s,ί]

(ί) - w(τ), a(dτ)

LEMMA 2.3. (2.5) /ια5 at most one solution.

PROOF. Let ξ and ξ be solutions of (2.5). Then, putting w = w in (i) of
Lemma 2.2 we obtain \ξ(t) - l(t)\2 < 0.

LEMMA 2.4. //w is continuous, then the solution of (2.5) is also continuous.
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PROOF. From (ii) of Lemma 2.2 we have

\ξ(t) - £(s)|2 < |w(ί) - w(s)|* 4- 2\ |w(ί) - w(τ)| |φ| (cfτ) ,
J(5,f]

from which the continuity of ξ follows.

LEMMA 2.5. Let {wj,^ be a sequence in D(R+, Rd) such that for each
n the equation ξn = wn + φn has a solution for 0^f< Γ, T being a positive constant.
If vvn converges uniformly on [0, T] to some weC(R+, Rd) as n-»oo and if

{\<Pn\(T)}n^ι l5 bounded, then ξn converges uniformly on [0, T] as n->oo to the
solution ξ ofξ^

PROOF. Let K be the bound of {IΦJCT)},,^. Then applying Lemma 2.2,
we have

(2.6a) \ξn(f) - ξm(t)\2 < >n(0 - wΛOI2 + 8K sup |wn(s) - wm(s)| ,
0£s£f

(2.6b) \ξn(ί) - ξn(s)\2 < K(0 - wn(s)|2 + 2K sup |

From the first inequality it follows that {ξrt}π^ι is uniformly convergent on [0, T]
and hence the same for {φn}n^ι. Letting n t <x> in the second inequality, we ob-
tain the inequality concerning the limit functions ξ and φ :

\ξ(t) - ξ(s)\* < NO - w(s)|2 + 2K sup |w(r2) - w(^)l

This implies the continuity of ξ. We now prove that ξ is a solution of (2.5) for
0<;*<;T. For this it is enough to prove that φ is associated with ξ. First,
|φn|(T)^^ implies \φ\(T)<K and hence φ is of bounded variation. The con-
dition (2.3) is also verified easily. To verify (2.4), let ^eC(R+, D) and notice
that for Q<ttΐ<t2<T

I
IJ

'OKO - WO, ?.(*)) - OKO ~ ί(0,

- ξ(i), φn(dt) - φ(dt))

The first is dominated by K sup \ξ(t) — ξn(i)\ and hence tends to 0 as n->oo;
tl^ί^f2

the second term also does as can be seen by approximating the integral by the
Riemann sum. Therefore

- ί(0, Φ(Λ)) = Km Γ a(ιy(0 - ξj®, φn(dt)) ϊ> 0,
n-*ooj<ι

and the proof is finished.
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We proceed to the existence problem for (2.5) assuming that weC(R+,

Rd). We begin with the special case when D satisfies the following condition.

CONDITION (^4). There exist a unit vector e and a constant c>0 such that

(e, ή) > c for any n e W ^y(D).
yedD

LEMMA 2.6. Assume that D satisfies the condition (A). Then, there exists

a solution ξ of (2.5) for any weC(R + , Rd), and for 0<s<f

(2.7a) \ξ(ί) -

(2.7b) \φ\(t)-\φ\(s)^KfAs>t9

where K and K' are constants depending only upon the constant c in the condition

(A);As>t= sup M*a)-w(fι)l
S£ti<t2^t

PROOF. For each integer n>\ we define wΛeD(R+, Rr f) by wn(0 = w(— )
k — l k n

for - — <ί< — , k>\. Then wn converges to w uniformly on compacts as
n n

ft-KX), and by Lemma 2.1 there exists a solution ξn of ξn = vvπ + φn. We put

4»Aι = sup

and notice that

(e, ξn(t) - ξn(s)) = (e, wn(() - WB(S)) + (e, φn(t) -

> («, w,(ί) - WB(S)) + cKB>s>t,

that is,

(2-8) XBA( ^ (\ξn(f) - ξn(s)\ + JBAt}/c.

On the other hand, (2.6b) yields

that is,

l«0 - «s)l < (l + y)̂ »,s,, + βK^M ε > °

This combined with (2.8) implies

\ξn(t) - ξn(s)\
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and therefore

(2.9) \ξn(t) - ξn(s)\ < KAntS>t, KHiStt < KΆntStt9

( 1 ε \/ ε \-1

1H 1— )(1——) as ε ranges over the intervalε c j\ c j
(0, c) and Kf = (l + K)/c. In particular, \φn\(T) ( = Kn>0j) is bounded and so by

Lemma 2.5 ξn converges uniformly on compacts to the solution ξ of (2.5) as

n-KX). This proves the existence part. The estimates (2.7a) and (2.7b) are

also immediate from (2.9). The proof is finished.

Next, we introduce the condition (B) for a convex domain D.

CONDITION (#). There exist ε>0 and (5>0 such that for any x e dD we can

find an open ball J5ε(x0) = {j;eRd: \y — x 0l<ε} satisfying Bε(x0)c=D and |x — x0|

<δ.

We can easily see that the condition (B) is always satisfied if D is bounded or if

d = 2. We now assume that D satisfies the condition (B) and for a point xεdD

put

B(x) = {yeRd: \y - x\ < ε/2},

Dx= Λ Γ\ #(/>),
yeδDΓ)B(x) He^y(D)

where H(D) denotes the open half space bounded by a supporting hyperplane H

and containing D. Then Dx is a convex domain satisfying the condition (A)

with

e = (*o - *)/l*o ~ x\> c = ε/2<5

THEOREM 2.1. (i) Assume that D satisfies the condition (B). Then there

exists a unique solution of (2.5) // weC(R+, Rd), and the solution depends

continuously upon w with respect to the compact uniform topology, (ii) Let D

be a general convex domain and {wn}n-z>i be a sequence in C(R + , Rd) such that
ξn = wn + φn has a solution for each n. Assume that WM and ζn converge to w and

ξ uniformly on compacts as n-^oo, respectively. Then ξ is a solution of (2.5).

PROOF, (i) If we put T0 = inf {t > 0: w(ί)ςέ D}, then ξ0(t) = w(ί) (0 < t < T0)

is the solution of (2.5) for 0<ί<T0. Assuming that the solution ξn^ί of (2.5) is

constructed for Q<t<Tn_i (n>l), we now extend it beyond Γ r t _ j as follows.

Put w<π>(0 = w(ΓΛ_ 1 + 0, ί>0, let ^rt) be the solution of ξ(") = w^> + φ(n) on

^n-ι(τn_ι) and again put

tn = mf{t > Γ M _ I : \ξM(t - Tn.,) - {<">(0)| = ε/2},

Tn = inf{t >tn: ξM(tH - T^,) + w(t) - w(tn)£ D},
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, o < *<?;_!,

, τn^<t<t»

w(α ίn < r < τn.

Then ξn is the solution of (2.5) on D for 0<ί<TM. Repeating this argument,
we obtain an increasing sequence {Tn} and a continuous function ξ defined for
ί<T00=limT;ι such that ξ is the solution of (2.5) for 0<ί<T00. The associated
function φ is flat on each interval (ίπ, Trt) and (2.7) holds for s, ίe[T n _ l 5 ίj.
Therefore, (2.7) holds for s, feCT^, ΓJ with constants K and £' depending
only on c = ε/2δ. But, (2.7a) with s = Tn_ 1 and f = fπ implies

ε/2K< ATn_ίttn<ATn_ltTn,

from which we can claim as follows: If /7>0 is so small that Aτ(h)<ε/2K where

Aτ(h) = max (|w(ί) - w(s)|: 0 < s, ί < T and |f - s| < h],

T being an arbitrarily fixed positive constant, then Tn<T implies Γrt— Tn_ί>h.
In other words, Tn>T for all n>T/h. This fact implies the followings:

(2.10) Tn = oo, that is, there exists a solution of (2.5) for 0 < t < oo.

(2.11) For 0 < s < t < T the solution satisfies

(a) |{(0 - ξ(s)\ £

(b)

Next, let {wn}n^>i be a sequence in C(R+, Rd) converging to w uniformly
on compacts and let ξn = wn + φn. Then (b) of (2.11) applied to φn yields

Here hn depends upon wπ, but it can be chosen to be independent of wn for all
sufficiently large n because wn-»w. Therefore the above inequality on \φn\ implies
that {\φn\(T}} is bounded and hence by Lemma 2.5 ξn-+ξ uniformly on [0, T].

(ii) Let T>0 be any fixed constant. Then there exists N such that

sup max \ξn(t)\ < N.

For such an N both ξn and ξ are the solutions of ζn=wn + φn and ξ = w + φ, 0<ί
<:T, for the domain DN = D { ] { \ x \ < N } ; ' Since DN satisfies the condition (B),
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we can apply the result of (i) to conclude that ξ is the solution of (2.5) (0< t < T)

for DN and hence for D. The proof is finished.

REMARK 2.3. Even if D does not satisfy the condition (B) (so d>3 and

D is unbounded), for each xedD we can find an open ball Bε(x0) = {y e Rd :

\y — x0l
< ε) inside D (but now ε or |x — XoΓ 1 is not bounded away from zero as

x moves on dD). Therefore, in a manner similar to the proof of Theorem 2.1,

(i), we can construct the solution of (2.5) for t < T^ =lim Tn. I can neither prove

that TOO = oo m general nor give an example in which T^ < oo.

§ 3. A stochastic version of (2.5)

The purpose of this section is to remove the condition (B) in the existence of

global solutions of (2.5) by taking w from sample paths of a continuous semi-

martingale.

Let (β, &, P) be a complete probability space with an increasing family

{•^ίlrtso °f sub-σ-fields of & it is assumed that each &t contains all P-negligible
sets and ̂ = A ^",+ε. Let D be a convex domain as before.

e>0

THEOREM 3.1. Let {M(t)} be an Rd-valued process with M(0)e5 such that

each component is a continuous local ^f-mar ting ale and {^4(0} be an Rd-
valued, continuous and ^t-adapted process of bounded variation with .4(0) = 0.

Then there exists a unique ^t-adapted solution {X(f)} of

(3.1) X(f) = M(t) + A(t)

Moreover, for /eC2(R) with /'>0 on R+ andQ<s<t we have

(3.2) f ( \ X ( t ) - X(s)\*)

< /(O) +

where /',/" are evaluated at ^(τ) — X(s)\2 and [M£, M 7'] denotes the quadratic
variation process.

REMARK 3.1. By a solution of (3.1), we mean a D- valued process (X(i)}

which satisfies (3.1) almost surely, under the condition that almost all sample paths

of {Φ(t)} are associated with those of (X(t)}.



Stochastic Differential Equations with Reflecting Boundary Condition 173

PROOF. Let τ(t) be the inverse function of

0(0 = t + Σ[M',M«]
ί = l

and put

*+ = ̂ t(ί), M*(0 = M(τ(0),

Then {M*(f)} is a continuous J^f-martingale and {v4*(ί)} is a continuous ^"*-
adapted process of bounded variation, satisfying

(3.3a) 0< Σ c'x^CM*', M*' ] < \x\2dt9 xeRd,
i,7 = l

(3.3b) A*(t) = (V(s)ds, |α*(ί)| < 1.
Jo

Moreover, once we obtain the ^f -adapted solution of X*(t) = M*(i) + A*(t)

fΦ*(0, the ^Γadapted solution of (3.1) can be obtained by X(0 = X*(Θ(0)
Therefore, in proving the theorem we may assume that (M(f)} and {A(t)} them-
selves satisfy (3.3) (without the symbol *).

First we prove (3.2) assuming the existence of the J^-adapted solution {X(t)}.
An application of Itό's formula yields

f(\X(t) - X(s)|2) = the right hand side of (3.2)

But the last term is non-positive by (2.4').
In order to prove the existence of the solution, we first consider the equation

for Dn = D{] {|x|<n}. Taking a point x* in Dn (we may consider only those n
for which Dn Φ 0), we put

Mn(t) = lDn(Λf(0))Λf(f) + lR,_

Since Dn is bounded and hence satisfies the condition (B), by Theorem 2.1 there
exists a unique J^-adapted solution { π̂(0} of Xn(t) = Mn(t) + An(i) + Φn(t) for
Dπ. If we put

then {Xn(tΛTn)} is again the solution of Xn(tΛ Γn) = Mn(ίΛ Tw)-f ^n(ίΛ Tπ)-f
Φn(ίΛ TJ for Dπ, and so (3.2) can be applied to \Xn(t Λ TJ-X^O)!2. Thus, by
taking the expectation we have
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E{\Xn(t Λ TΛ) - Xjp)\*} £ 2\Έ{\Xn(S Λ Tn) - Xn(ϋ)\}ds + t
Jo

and hence

E{\Xn(t Λ TJ - Xn(Q)\2} < 2t#,

that is, E{\Xn(tΛ Tn)\2} is bounded in n for each fixed t. Therefore, for each t

(3.4) P{Tn <t}< E{\Xn(t Λ Tn)\2}ln2 ^ 0 as n -» oo.

On the other hand, the uniqueness lemma in § 2 implies that

Tn<Tm and Xn(t) = Xm(t) for t < Tn

hold on the set {M(0)eDn} if n<m. This fact combined with (3.4) enables us

to define {X(t)} almost surely by

X(t) = Xn(t) on {M(0) e Dn] n {t < Tn} .

Thus defined {X(t)} is clearly the ^Γadapted solution of (3.1).

§ 4. Stochastic differential equation with reflection

Let D be a convex domain in Rd and {Ω, ^, P; ^"J satisfy the same con-
dition as in § 3. We suppose that an ^-adapted r-dimensional Brownian motion

B(t) = (B1(i),...,Br(t)) with 5(0) = 0 is given; that is, {B(t)} is an ^-adapted

continuous process and for 0<s<ί, ξeRd

Given an Rd® Revalued function σ(ί, x) = {σi(ί, x)} and an Revalued function

b(t, x) = {ftf(i, x)}, both being defined on R + x D , we consider the stochastic

differential equation with reflection

(4.1) dX = σ(ί, X)dB + b(t, X)dt + dΦ, JSf(0) = x,

or equivalently

(4.Γ) X'(t) = x* + Σ
Λ = l J θ

where x = (x1,..., xd)e/λ Our problem is to find an ^-adapted D-process

{Jί(ί)} under the condition that {Φ(i)} is an associated process of (X(t)}. It is
always assumed that σ(t, x) and b(t, x) are Borel measurable in (ί, x).
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THEOREM 4.1. If there exists a constant K>0 such that

(4.2) \\σ(t, x) - σ(t, y)\\ <Ξ K\x - y\, \b(t, x) - b(t, y)\ < K\x - y\ ,

(4.3) \\σ(t, x)|| < X(l + |x|2)'/2, \\b(t, x)|| < X(l + |x|2)'/2,

then there exists a (pathwise) unique ^t-adapted solution of(4.ϊ)for any xeD.

PROOF. First we prove the pathwise uniqueness of the solution. Let {X(t)}
and {7(ί)} be J^-adapted solutions of (4.1). Then by the first inequality in
Remark 2.2

\X(t) - Ύ(i)\2 < I Γσ(s, X)dB - Γ<τ(5, Y)dB *
I Jo Jo

+ 2('(X(s) - 7(5), 6(5, X) - b(s9 Y))ds
JO

+ the remainder.

Writing the remainder term explicitly, we can see that it has zero expectation1*
and hence

(4.4) E{\X(t) - 7(OI2} <: i II φ, X) - Φ, Y)\\*ds
JO

\X(s) - Y(s)\2ds + E(' \b(s, X) - b(s, Y)\2ds
JO

< (2K2 + l)('E{\X(s) - Y(S)\2}ds.
JO

Therefore, E{\X(i)~ Y(t)\2} =0.
We give the existence proof, first assuming that D is bounded. By Theorem

2.1, we can define a sequence (X(n\t)} of D-processes by

= X

JO JO ~

Then, as in (4.4) we have

1) Because we do not know beforehand that | X(t)— 7(012 and the remainder term are integra-
ble, we must employ the following truncation argument. Let Tn be the infimum of />0
at which

X(s) - Y(s) \Φ\(ί) + \Ψ\(ί) = n,
Jo

and derive (4.4) for X( /\Tn) and Y( ΛΓn); it then follows that E{ \ X(t/\Tn)-Y(t/\Tn) \ *}
=0; now let w t oo.
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£{|*<"+1>(f) - X(n\i)\2} < (2K2 + 1 ) *
Jo

Therefore, by a routine argument we see that

is convergent uniformly on compacts as w-»oo (a. s.). Consequently, from The-
orem 2.1, (i), it follows that {XW(i)} is also convergent uniformly on compacts
as n-»oo (a. s.) and the limit process {X(t)} is an .^-adapted solution of (4.1).
When D is unbounded, we put Dn = D n {|x| <«} and consider the solution {Xn(t)}
of (4.1) on Z)π. Let Tn be the infimum of ί>0 at which \Xn(t)\ = n. Then, apply-
ing (3.2) to \Xn(t Λ Tπ) — x|2 and taking the expectation, we have

Λ r-
ΓtΛTn

< 2E\ (Xn(s) - x, b(s,
Jo

JO i,k

and hence by making use of (4.3)

E{\Xn(t Λ TJ - x|2} < (ΈttX^s Λ Tn) - x\2}ds

Therefore, by GronwalΓs inequality we see that E{\Xn(t/\ Tn)\2} is bounded in n
for each fixed t and hence P{Tn<t}<E{\Xn(t Λ Tn)|2}/n2->0 as n->oo. On the
other hand, by the uniqueness already proved we have Tn<Tm and Xn(i) = Xm(f)
for t<Tm (a. s.) provided n<m, and therefore we can construct an ^-adapted

solution (X(t)} of (4. 1) for D by X(t) = Xn(t\ 0<t<Tn. This completes the proof.

THEOREM 4.2. // σ(ί, x) and b(t, x) are bounded continuous on R+ xD,
ί/ien on some probability space (Ω, ̂ , P) we can find an r-dimensional Brownian
motion {B(t)} in such a way that (4.1) has a solution.

PROOF. We choose sequences {σn(t, x)} and {bn(t, x)} such that (i) σn-+σ
and bn-*b boundedly and uniformly on compacts as n->oo, and (ii) σn and bn sat-
isfy the Lipschitz condition. Then there exists a solution {Xn(t)} of (4.1) with
coefficients σn and bn, for each n. Making use of (3.2) with f(u) = up, p>l,

E{\Xn(t) - Xn(s)\2p} <
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where cp is some constant depending on p but not on n. Therefore E{\Xn(t)
-Xn(s)\4}<c\t-s\2 for 0<s, t<T, where c is some constant depending on T
but not on n, T being an arbitrary positive constant. This implies that the family
of probability measures on C(R+, 5)xC(R+, Rd) induced by {(Xn(t), B(t))}
is tight. Therefore, noticing the result (ii) of Theorem 2.1 we can fill the rest of
our proof exactly in the same way as in the case of the whole space Rd (see [5]).
The proof is finished.

The following theorem, due to O. Tanbara (unpublished), can be proved in
the same way as in [9] making use of the estimate (3.2).

THEOREM 4.3. Let p and p satisfy

(4.5) ( {p\u)u-ι + p(u)Γldu = oo,
Jo+

(4.6) p\u)u~^ -f p(u) is concave.

Then, for any σ(t, x) and b(t, x) satisfying

||σ(ί, x) - σ(ί, jO|| < P(\x ~ y\), \b(t, x) - b(t, y)\ <, p(\x - y\),

the pathwise uniqueness of solutions holds for (4.1).
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