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1. Introduction

Let L be a Lie algebra over a field. It is well known that if I is a nilpotent
ideal of L and L/I? is nilpotent, then L is nilpotent. In group theory a theorem
asserting that for a normal nilpotent subgroup N of a group G a property of G/N’
passes to G is termed one of Hall’s type, and it has been shown for several proper-
ties including the nilpotency ([5], [6, p. 57]). In connection with these, it seems
interesting for us to investigate the Lie-theoretic analogue of a theorem of Hall’s
type. The aim of this paper is to show the following extension theorem in Lie
algebras: Let X be one of the classes 3, €, LN, Ft, B, Gr of Lie algebras. If
I is a nilpotent ideal of L and L/I? lies in X, then L lies in X.

2. Notations

Throughout this paper we consider Lie algebras over an arbitrary field @
which are not necessarily finite-dimensional.

Let L be a Lie algebra and H be a subalgebra of L. We use the following
notations as usual.

H si L: H is a subideal of L.

H asc L: H is an ascendant subalgebra of L, i.e., there exists an ascending
series {H,: 0<f=<a} of subalgebras of L, indexed by ordinals f<a, such that
Hy=H,H,=L, Hy<aHg,, for all f<a, and H,= EJIH, for all limit ordinals
AZa. !

{(L): the a-th term of the upper central series of L («: an ordinal). In
particular {,(L) is the center of L.

{«(L): the hypercenter of L.

We say that xe L is a right Engel element if for each ye L there exists a
non-negative integer n=n(x, y) such that [x, ,y]=0.

t(L): the set of right Engel elements of L.

Let us recall several classes of Lie algebras.
N : the class of nilpotent Lie algebras.
3 : the class of hypercentral Lie algebras.
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LIt: the class of locally nilpotent Lie algebras.

&t :  the class of Lie algebras which are the sum of nilpotent ideals.

B : the class of Lie algebras L such that x e L implies <x> si L.

®r : the class of Lie algebras L such that x € L implies <x> asc L.

€ : the class of Lie algebras L satisfying the condition that for every x,
yeL there exists a positive integer n=n(x, y) such that [x, ,y]=0.

When L € §t (resp. B, Gr, €), L is called a Fitting (resp. a Baer, a Gruenberg,
an Engel) algebra.

It is to be noted that we defined Gr for an arbitrary base field @, though it is
defined only for a field of characteristic zero in [1, Chap. 6].

Any notation not explained here may be found in [1].

3. The case of 3

This case is the Lie-theoretic analogue of a result of Betten [2].
LemMA 3.1. If Le 3 and I is a non-zero ideal of L, then I n {,(L)#0.

Proor. Let {{4(L): 0=p<a} be the upper central series of L with L=
{(L). Denote by S the set of all ordinals f<a for which I n{z(L)#0. Clearly
S#¢. Let y=minS. It is easily seen that y is neither 0 nor a limit ordinal.
Hence In{,_;(L)=0and I n{,(L)#0. So we have

[I n Cy(L)! L] g I n Cy—l(L) = 0’
which means that 0#1n{(L)<{,(L). Therefore I n{,(L)#0.

If H is a subalgebra of a Lie algebra L, then the centralizer of H in L is
C.(H)={yeL: [H, y]=0}. Evidently, if H<L then C,(H)<iL.

LeEMMA 3.2. Let L be a Lie algebra and I be an ideal of L. If 1/{,(I)#0
and L|{,(I)e 3, then 12 n {{(L)#0 and in particular {(L)#0.

Proor. By Lemma 3.1 we have I/{;(I)n{,(L/{;(I))#0. Hence we can
find x e I\{{(I) such that [x, L1={,(I). It is easy to see that {,(I)+ <x><L.
From the remark above C,({,(I)+ <x>)<aL and therefore I N C ({;(I)+ <x>)
<aL. We also have InCy(<x>)=InCy({,(I)+ <x>), whence I nCy(<x>)
<aL. Since xel, we have {;(I)SIn C,(<x>). By the assumption that L/{,(I)
€3, we have L/(InC(<x>))eQ3d=3. From the fact that xe{,(I) it follows
that InC(<x>)=1, i.e., that I/(InC,(<x>)) is a non-zero ideal of L/(IN
Ci(<x>)). By Lemma 3.1 we now obtain I/(InCy(<x>))n,(L/IN
C(<x>)))#0. Hence there exists yel\C;(<x>) such that [y, LlIn
Ci(<x>). Evidently [x, y]#0. Owing to the Jacobi identity,
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[[x, y1, L] < [[x, L1, y] + [x, [y, L]1]
s [6), y1 + [x, C(<x>)]
= 0.
Namely [x, y]e{,(L). Therefore 120 {,(L)#0. This proves the lemma.

By making use of Lemma 3.2, we shall prove the following

THeEoREM 3.1. Let L be a Lie algebra and I be an ideal of L. If I is
nilpotent and L/I? is hypercentral, then L is hypercentral.

Proor. We use induction on the nilpotency class k of I. If k=1, then
12=0 and the assertion is trivial. Let k>1 and assume that the assertion is true
for k—1. LetIe9, and I&N,. Then I/{,(I)eN,_, and

(L/S,M/A[ED)Y? ~ LI? + (D) =~ (LIIP)((I* + {,()/1H) e = 3.

By induction hypothesis it follows that L/{,(I)e 3. Since I&R,, I/{,(I) is a
non-zero ideal of L/{,(I). Hence by Lemma 3.2 we have {(,(L)#0. Now,
suppose that L#{(L). Since I is an N-ideal of L, (I +(L))/{(L) is also an
N,-ideal of L/{,(L) and

(LIG DN + C(L)/C(L))? = (L/IH)((I2 + {(L)/P) €@F = 3.

Since L/{ (L)E3, ([+{(L))/C«(L)&NR,. By the fact shown above, we have
{(L[¢4(L))#0, which contradicts the definition of {,(L). Therefore we conclude
that L={,(L). Thus the proof is complete.

4. The cases of € and LN

THEOREM 4.1. Let L be a Lie algebra and I be an ideal of L. If I is nil-
potent and L[I? is Engel, then L is Engel.

Proor. We use induction on the nilpotency class k of I. If k=1, then the
assertion is trivial. Let k>1 and suppose that the assertion is true for k—1.
Let IeN,. Then I/{;(I)eN,_, and

(LI IN/A[C(D)? ~ (LU + {(D)[1*) e Q€ = €.

By induction hypothesis we have L/{,(I) e €.

Now we claim that I2cy(L). In fact, let x, yel and ze L. Since L{{,(I)
€ €, we can find positive integers m and n such that [x, ,z]e{,(I) and [y, ,z]
€ {,(I). By the Jacobi identity,
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[0 3] el = 2 (") 0x 2 Do el =0,

Hence [x, y]Jet(L). Therefore I2< (L), as claimed.

Let v, weL. Since L/I[?e €, there exists a positive integer p such that
[v, ;w]eI?. Since I?cx(L), we can find a positive integer g such that [[v, W],
»1=0. It follows that [v, ,,,w]=0. Hence Le €. This completes the proof.

Although LM is not e-closed in general, it is known [1, p. 336] that with
respect to € L9 is E-closed. Namely, we have

LeMMA 4.1. Let Le € and I be an ideal of L. If I and L[I are locally
nilpotent, then L is locally nilpotent.

Now we have the following theorem as a consequence of Theorem 4.1:

THEOREM 4.2. Let L be a Lie algebra and I be an ideal of L. If I is nil-
potent and L|I? is locally nilpotent, then L is locally nilpotent.

Proor. Since LR ZE, it follows from Theorem 4.1 that Le €. Hence by
Lemma 4.1 we have LeLN.

5. The cases of §t, B and Gr

LemMMA S.1. Let L be a Lie algebra and I be an ideal of L. If I and
L/I? are nilpotent, then L is nilpotent.

Proor. See [3, Theorem 2] (or [1, Proposition 7.1.1 (c)]).

LEMMA 5.2. Let L be a Lie algebra.

(1) If I is a nilpotent ideal of L and H is a nilpotent subideal of L, then
I+ H is a nilpotent subideal of L.

(2) If I is a hypercentral ideal of L and H is an ascendant hypercentral
subalgebra of L, then I+ H is an ascendant hypercentral subalgebra of L.

Proor. (1) Obviously I+H si L. Let Iet, HeN, and H<"L. Put
m=d+c(n+d)+1. Then (I+H)" is the sum of all [W,, W,,..., W,,] with W;=1I
or H. Since I<<L and I € ., we may suppose that I appears in [W;, W,,..., W,,]
at most ¢ times. Noting that

[L’ n+dH] = [[L’ nH]a dH] = [H’ dH] =0,

we see that [W,,..., W,,]=0. Hence (I+ H)"=0.
(2) See [4, Proposition 3].

THEOREM 5.1. Let L be a Lie algebra and I be a nilpotent ideal of L.
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(1) If L/I? is Fitting, then L is Fitting.
(2) If L/I? is Baer, then L is Baer.
(3) If L/I? is Gruenberg, then L is Gruenberg.

ProoF. (1) By the definition of Ft,
LiI?=Y{J/I*>"J< L, J[I?eN}.
By Fitting’s Theorem (see [1, Theorem 1.2.5])
J+DIP=JI2+1PeNn.
By Lemma 5.1 we have J+1 € 9 and therefore J e M. Consequently
L=Y{H:H< L, He%N}.

Therefore L e §t.
(2) LetxeL. Then

(<x> +I¥)/I*si L/I* and (<x> + D/I? =(<x> + I»)/I? + I/I2,

By Lemma 5.2 (1) we have (<x> +I)/I?e®t and <x>+Isi L. Using Lemma
5.1 we obtain <x>+IeMN, and hence <x> si <x> +I1. Therefore we have
<x> si L. Thus LeB.

(3) LetxeL. Then

(<x> 4+ I1?)/I? asc L/I* and (<x> + DfI? =(<x> + I})/I? + I/I2.

By Lemma 5.2 (2) we have (<x> +1)/I?€ 3 and <x> +1I asc L. Using Theo-
rem 3.1 we obtain <x>+Ie3. It follows that <x> asc <x> +1I, and there-
fore <x> asc L. Thus L e Gr.

6. Remarks

All classes observed in the above theorems are subclasses of €. Let P be a
vector space over @ with basis ey, e, e,,... and regard P as an abelian Lie algebra.
Let z be the identity transformation of P and let L be a split extension of P by
<z>. Let X be any class in the theorems. Then clearly Pe X, P<<L and
L/Pe X. But since [e;, ,z]=¢; for any positive integer n, L& €, and therefore
L& X. This tells us that any class in the above theorems is not B-closed.
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