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In this paper, the notions of right p.p. rings, right CPP-rings and right
CPF-rings, introduced primarily for rings with identity, will be defined for s-
unital rings. One of the purposes of this paper is to extend the principal results
in [19] to 5-unital rings so as to improve several previous results obtained in [15-
18] (Theorems 1-5). Furthermore, we shall present a characterization of an
s-unital right CPP-ring (Theorem 6), which will deduce the main theorem in
[6].

Throughout A will represent a ring (possibly without identity). Given a

right (resp. left) ideal / of A, /* will denote the intersection of all maximal right
(resp. left) ideals of A containing /. If M is a right (resp. left) ^4-module and S
is a subset of A, then we set /M(S) = {u e M\uS = ΰ} (resp. rM(S) = {u e M\Su = 0}).
As usual, we write /(S) = /A(S) and r(S) = rA(S). As for other notations and

terminologies used in this paper, we follow the previous ones [15] and [16].

1. Preliminaries. Following [15], a non-zero right (resp. left) ^-module
M is said to be s-unital if ueuA (resp. ueAu) for each w e M . If AA (resp.

AA) is s-unital, A is called a right (resp. left) s-unital ring. In case A is right
and left s-unital, we merely say s-unital. We begin by stating a lemma which
will be used repeatedly in what follows.

LEMMA 1 ([15, Theorem 1] and [11, Lemma 1 (a)]). If F is a finite subset
of a right s-unital ring (resp. an s-unital ring) A, then there exists an element
eεA such that ae = a (resp. ea = ae = a)for all aeF.

A right yl-module M is said to be p-ίnjective if for any principal right ideal
\a) of A and /: \a)A—>MA there exists an element u eM such that f ( x ) = ux for
all x e \a). As is well known, A is a regular ring if and only if every right A-
module is p-injective.

LEMMA 2 (cf. [4, Proposition 1.7 and Corollary 1.9]). Let A be a right
s-unital ring, and MA an s-unital module. If MA is p-injective then, for each
aeA, there holds /M(r(a)) = Ma, and conversely. In particular, for a domain
A with 1, a unital module MA is p-injective if and only if MA is divisible.

PROOF. Assume that MA is p-injective. Given w e/M(r(α)), there exists
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an element e' &A such that ue' = u. Then, by Lemma 1, there exists an element
eeA such that ae = a and e'e = e'. Consider /: aAA-^MA defined by ax-*ux.
Since MA is p-injective, we can find an element i eM with ux = vax for all xeA.
We therefore obtain u = uer = ue = vae = va, which means /M(r(ά))^Ma. The
converse inclusion is evident, so that /M(r(ά)) = Ma. Conversely, assume that
/M(r(aJ) = Ma for each aeA. If g: aAA-+MA is given, then it is obvious that

g(ά) e /M(r(a)) — Ma. Hence g(ax) = vax with some υ e M.

COROLLARY 1 ([8, Theorem 1 (i)]). If A is a right s-unital ring, then the

following are equivalent:

1) AA is p-injective.
2) For each aεA, /(r(a)) = Aa.
3) A is left s-unital, and every principal left ideal of A is a left annihilator.

COROLLARY 2. Let A be a right s-unίtal ring. If aAA is p-injective then
a is von Neumann regular, and so both aA and r(ά) are direct summands of AA.

A right s-unital ring A is defined to be a right p-V-rίng (resp. p-V'-ring)
if every irreducible (resp. irreducible, singular) right ^-module is /?-injective (see
[16]). A right ^4-module M is said to be regular if for each u e M there exists
some /: MA-*AA such that uf(u) = u. It is easy to see that A is a regular ring if

and only if A is a left s-unital ring and AA is regular.
We shall conclude this section with the following which includes [1, Theorem]

and [17, Proposition 6, Theorem 7 and Corollary 8].

THEOREM 1. The following are equivalent:
1) A is Artίnian, semi-primitive.
2) A is a semi-prime, right s-unίtal, right p-injective ring with maximum

condition for right annihilators.

3) A is a semi-prime, left perfect ring.
4) A is a semi-prime ring satisfying the minimum condition and the

maximum condition for principal right ideals.
5) A is a semi-prime ring satisfying the minimum condition for principal

right ideals and the maximum condition for right annihilators.
6) A is a right p-V-ring with 1 all of whose maximal right ideals are right

annihilators.
7) A is a semi-prime ring with 1 all of whose maximal right ideals are right

annihilators.

8) A is a semi-prime right Goldie, right p-V'-ring with 1 and indecom-
posable right A-modules with the same associated prime ideal are isomorphic.

9) A is an s-unital ring such that AA is finitely generated and every s-unital
right A-module is regular.
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10) A is an s-unital ring such that AA is finitely generated and every
irreducible right A-module is regular.

PROOF. 1) implies 2) through 8), and 9) implies 10). Moreover, 6)=>7)=>1)
by [15, Propositions 6 and 7] and [9, Corollary 2]. Now, let A be a semi-prime
ring with minimum condition for principal right (or left) ideals. Then, from the
proof of [14, Satz 2], one can easily see that A coincides with its socle, and there-
fore, A is a regular ring. Hence, each of 3) and 4) implies 1). Noting that
r(/(eA)) = eA for any idempotent e, we obtain 5)=>1). (The implication 3)=>1)
is also evident from the fact that any right T-nilpotent ideal of A is contained in
its prime radical.)

2)=>1) By Corollary 1, every principal left ideal of A is a left annihilator.
Since A satisfies the minimum condition for left annihilators, A does the minimum
condition for principal left ideals. Hence, A coincides with its socle, and then
A is a regular ring. Since r(/(eA)) = eA for any idempotent e, A is Artinian.

8)=>1) According to [16, Corollary 3], the proof proceeds in the same way
as in [17, Proposition 6].

1)=>9) Let M be an arbitrary unital right yl-module. Given u e M, uA
is a direct summand of the projective module MA. Since uA is v4-homomorphic
to A by a-*ua, it is almost evident that uf(ύ) = u with some /: MA-+AA.

10)=>1) Since A is (left) s-unital and AA is finitely generated, A contains a
left identity e (Lemma 1). Let R be an arbitrary maximal right ideal of A, and
M the irreducible right yl-module A/R = eA, where e = e + R. By hypothesis,
there exists /: MA-+AA such that ef(e) = e. If g: AA-+MA is defined by a-*ea
then Ker g = r(e) = R. For each a e A we have then gf(ea) = gf(e)a = ef(e)a = ea.
Hence, >l==/(M)®Ker0 =/(M)φR, which means that A is a completely reducible
module (of finite length). Recalling that A contains a left identity e, we readily
see that A is Artinian, semi-primitive.

2. Regular rings. A right s-unital ring A is called a right p. p. ring if
every r(a) is a direct summand of AA. A right s-unital ring A is called a right
CPP-ring (resp. CPF-ring) if for each non-zero right ideal .R of A either R is a
direct summand of AA (resp. R is a left s-unital ring) or A/RA is p-injective (see
[19]). As was noted in [15, Proposition 1], it is well known that a non-zero right
ideal R of A with 1 is a left s-unital ring if and only if A/RA is flat. It is easy to
see that every regular ring is a right CPP-ring and every s-unital, right CPP-ring
is a right CPF-ring. Moreover, every homomorphic image of a right CPP-ring
(resp. CPF-ring) is also a right CPP-ring (resp. CPF-ring).

LEMMA 3. Let Rί and R2 be right ideals of a ring A such that R{ Π R2 = Q
(1) ϊ f R ί + R2 is a left s-unital ring then non-zero one ofR^s is a left s-unital

ring.



140 Yasuyuki HIRANO and Hisao TOMINAGA

(2) Assume that A is right s-unital and AA is p-ίnjective. If the right

A-module AI(R^ + R2) is p-injectiυe then each A/Rt is p-injective.

PROOF. (1) According to [15, Proposition 1], it suffices to prove that
#i Γ\(a\=Ri(a\ for each a e A. Let b be an arbitrary element of Ri n (a\. Since
RlΓ\(a\^(Rl+R2)Γι(a\=(Rl+R2)a, we have b = (rί + r2)a with some r^R^
Then b — rίa = r2aeRί fl R2 = Q. Namely, beR^a. This means R ί { ] ( a \ =
R,(a\.

(2) According to Lemma 2, it suffices to prove that /A/Rί(r(a))^(A/Rί)a

for each aεA. Let b + R1 be an arbitrary element of /A/Rι(r(a)) Since

^κ/(/?1+Λ2)(r(α))==(^/(^ι+^2))fl

J

 we nave b = xa + rί-\-r2 with some xeA
and r^Ri. Then r2r(a) = (b-xa-rl)r(a)^R2 Π (br(a) + rlr(ά))^R2 n Rί=Q,
whence it follows that r2 E /(r(ά)) = Aa (Corollary 1). Hence, b is in

LEMMA 4. Let a be an element of a ring A.
(1) // r(a) is a direct summand of AA and A/aAA is p-injective, then a A

is idempotent.

(2) If \a) is idempotent and (a\ is a direct summand of an ideal I of A as
a left A-module, then a is von Neumann regular.

PROOF. (1) There exists an element be A such that ab = a and r(a) = r(b).
Consider the >4-homomorphisms /: aA-*A/aA defined by ax-+bx + aA and
g: A/aA—>A/(aA)2 defined by y + aA^>ay + (aA)2. Since A/aAA is p-injective,
there exists an element cεA such that bx + aA = cax + aA. Then ax-}- (a A)2

= g(bx + aA) = g(cax + aA) = acax + (aA)2 = (aA)2, which implies aA = (aA)2.

(2) Let I = (a\@L with a left ideal L. Since aE\ά)4^a(AaA)^aAI9*vte
have a — a(ba + / ) with some be A and /eL. Then a — aba = a/e(a\Γ\L = Q.
Namely, a = aba.

COROLLARY 3. (1) If A is a right CPP-ring then A is a right p.p. ring.
(2) If A is an s-unital, right CPP-ring then A is a fully right idempotent,

right p.p. ring.

PROOF. Let a be an arbitrary element of A. First, r(a) is a direct summand
of AA. In fact, if A/r(a)A( ~ aAA) is p-injective then a is von Neumann regular by
Corollary 2, and so a A is idempotent. If a A is a direct summand of AA and A is
s-unital, then a is von Neumann regular by [16, Lemma 1 (3)]. Finally, if
A/aAA is p-injective then a A is idempotent by Lemma 4 (1).

COROLLARY 4. Let A be a right CPF-ring all of whose essential left ideals

are two-sided, and a an element of A. If r(a) is a direct summand of AA then
a is von Neumann regular.

PROOF. If a A is a left s-unital ring then a is evidently von Neumann regular.
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If A/aAA is p-injective then (aA)2 = aA by Lemma 4 (1). Choose a left ideal
L such that I = (a\@L is essential in AA. Since / is an ideal, a is von
Neumann regular by Lemma 4 (2).

Now, we shall prove the principal theorem of this section.

THEOREM 2. The following are equivalent:
1) A is a regular ring.

2) A is a right CPP-ring and AA is p-injective.
3) A is a right p.p. ring and AA is p-injective.
4) A is a right s-unital ring such that AA and every singular homomorphίc

image of AA are p-injective.
5) Every essential right ideal of A is a left s-unital ring.
6) A is an s-unital, right CPF-ring such that every principal right ideal

is either a direct summand of AA or the right annihilator of an element.
7) A is an s-unital ring such that for each essential right ideal R either R

is a left s-unital ring or A/RA is p-injectiυe, and that every principal right Ideal
is either a direct summand of AA or the right annihilator of an element.

2')-7') The left-right analogues o/2)-7).

PROOF. Evidently, 1) implies 2) through 6), and 6) does 7). Now, let a
be an arbitrary non-zero element of A.

2)=>3)=>1) By Corollary 3 (1), 2) implies 3). Now, assume 3). Let A =
r(a)®R with a right ideal R. Since aAA~RA, there exists an element b εR such
that R — bA and r(a) = r(b). Recalling that AA is p-injective, we see that bAA

(= RA) is p-injective. Hence, by Corollary 2, b = bcb with some c. Setting e = cb,

Corollary 1 enables us to see that (a\=Aa = /(r(a)) = /(r(b)) = /(r(e)) = Ae, which
means that A is a regular ring.

4)=>1) There exists a right ideal R such that r(a) n R = Q and r(a) + R is an
essential right ideal. Since A/(r(a) + R)A is p-injective by 4), aAA~A/r(a)A is
p-injective (Lemma 3 (2)). Hence, A is a regular ring by [16, Theorem 2].

5)=>1) There exists a right ideal R such that \a)(}R = Q and \ά) + R is an

essential right ideal. Since \a) + R is a left s-unital ring by 5), \ά) is a left s-unital
ring (Lemma 3 (1)). Then, by [15, Proposition 1], \a) n (a\ = \a)(a\, whence it
follows that a is von Neumann regular.

7)=>1) If a A is a direct summand of AA then a is von Neumann regular by
[16, Lemma 1 (3)]. Henceforth we assume that aA = r(f) with some tεA.
There exists a right ideal K such that R = aA®K is essential in AA. If R is a left
s-unital ring then aA is a left s-unital ring by Lemma 3 (1), and therefore a is von
Neumann regular. In what follows, we consider the case A/RA is p-injective.
We can define /: tA-+A/RA by tx-+x + R. Then there exists an element be A
such that btx + R = x + R for all xeA. Since A is left s-unital, we can find an
element e such that ea = a. We write e — bte = ac + k (ceA, fceK). Then
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a=(e — bte)a = aca + ka (eaA®K), whence it follows that a = aca.

COROLLARY 5 ([19, Theorem 5]). // A contains 1 then the following are

equivalent:
1) A is a regular ring.
2) A is a right CPP-ring and AA is p-injective.
3) A is a right p. p. ring and AA is p-injective.
4) AA and every singular homomorphic image of AA are p-injective.
5) Every singular homomorphic image of AA is flat.
6) A is a right CPF-ring such that every principal right ideal is the right

annihilator of an element.
7) Every singular homomorphic image of AA is either p-injective or flat,

and every principal right ideal is the right annihilator of an element.
2')-7') The left-right analogues 0/2)-7).

3. F-rings. A right s-unital ring A is called a right V-ring if every ir-
reducible right >l-module is s-injective. A right s-unital ring A is a right F-ring
if and only if every right ideal of A is an intersection of maximal right ideals
([15, Theorem 4]). If A is an s-unital, right F-ring then it is a right p-F-ring
([15, Proposition 4]). Now, we begin by improving [16, Corollary 6],

THEOREM 3 (cf. [19, Theorem 8]). // A is s-unital, then the following are
equivalent:

1) A is a right V-ring.
2) A is a right p-V-ring and every right ideal R of A is an ideal of R*.
3) Every minimal right ideal of A is s-injective and every singular homo-

morphic image of AA is semi-simple.

PROOF. By [16, Proposition 1 (1) and Theorem 1], 1) implies 2) and 3).
2)=>1) Let R be an arbitrary right ideal of A. Suppose there exists some

beR*\R9 and set T=R + bA. There exists a right ideal S which is maximal with
respect to the property that R^S^T. We consider the non-zero homomorphism
g: bAA-^T/SA defined by bx-+bx + S. Since T/SA is p-injective, we can find an
element dεT such that bx + S = dbx + S for all xεA. We define h: AA-*T/SA

by x-+dx + S. Since dR^R*R^R^S9 R is contained in the maximal right ideal
Ker/i, so that #*^Ker/ι. But, this implies bA = R* Π bA^Kerg, a contradic-
tion. We have therefore seen that R* = R, proving 1).

3)=>1) Let MA be irreducible, R an essential right ideal of A, and h: RA-^
MA a non-zero homomorphism. Obviously, H = Ker h is a maximal right subideal
of R. If H is not essential in RA then MA is isomorphic to some minimal right
ideal which is s-injective by hypothesis. If H is essential in RA9 then so is it
in AA and there holds that H* = H and R* = R. Since HaR, there exists a
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maximal right ideal S of A such that H^S but Rς£S. Now, it is easy to see
that S (Ί R = H and S + R = A. Hence, in either case, h can be extended to some
g: AA->MA, proving 1) ([15, Proposition 3]).

COROLLARY 6. // every essential left ideal of A is two-sided, then the

following are equivalent:
1) A is a regular ring.
2) A is an s-unital9 right CPP-ring.
3) A is a right p-V-ring.
4) A is fully right idempotent.
5) A is a left s-unital ring such that if L is an essential left ideal with

L* = L then L is a right s-unital ring and AA/L is p-injective.

PROOF. Obviously, 1) implies 2) through 5). By [15, Proposition 6], 3)

implies 4).
2)=>4)=>1) By Corollary 3 (2) and Lemma 4 (2).

5)=>1) Let L be an essential left ideal of A. Then, the argument employed
in the proof 2)=>1) of Theorem 3 enables us to see that L* =L, and therefore L is
a right s-unital ring. Hence, A is a regular ring by Theorem 2.

Combining Theorem 3 with Corollary 6, we readily see that any s-unital right
F-ring all of whose essential left ideals are two-sided is a regular ring ([19, Corol-
lary 11]). Furthermore, by Theorem 3 and Corollary 6 (and its proof), we can
prove that an s-unital ring A all of whose essential one-sided ideals are two-sided
is a right F-ring if and only if A is a regular ring whose minimal right ideals are
s-injective ([19, Corollary 12]).

A right s-unital ring A is called a right Vn-ring if every irreducible right
^4-module 17 has the following property: For any right ideal R of A generated
by n elements and /: RA-*UA there exists an element u e U such that f ( x ) = ux
for all xeR. The notion of a right Faring coincides with that of a right p-V-
ring. If A is a right Fw-ring for all positive integers n then A is called a right

f-V-ring (see [19]). It is easy to see that every non-zero right ideal of a right
p-F-ring contains a maximal right subideal.

THEOREM 4. Let A be an s-unital ring.
(1) A is a right Vn-ring if and only if every maximal right subideal I of

any non-zero right ideal R of A generated by n elements is the intersection of I*

and R.
(2) If A is a right Vn + 1-ring then any right ideal of A generated by n

elements and its maximal right subideals are intersections of maximal right
ideals. In particular, if A is a regular ring then any finitely generated right
ideal of A and its maximal right subideals are intersections of maximal right

ideals.
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(3) A is a right f-V-rίng if and only if all the maximal right subideals of
any non-zero finitely generated right ideal of A are intersections of maximal
right ideals.

PROOF. (3) is only a combination of (1) and (2).
(1) First, we shall prove the if part. Let U be an irreducible right A-

module, R = aίA-] \-anA, and /: RA-^UA a non-zero homomorphism. Since
F = Ker/ is a maximal right subideal of R, by hypothesis there exists a maximal
right ideal M such that F^M but R£M. Then there holds AIF = R/F®M/F,
and it is easy to see that / can be extended to some g: AA-^UA. Now, by Lemma
1, there exists an element e such that ea^a^ Setting u = g(e), we have f ( x ) = ux
for all x e R. Conversely, suppose that A is a right Fπ-ring. Let R be a right ideal
of A generated by n elements, and / a maximal right subideal of R. Taking a e
R\I, we see that I + aA = R. Now, the natural homomorphism R-^R/I can be
extended to some h: AA^R/IA. Then Ker/i is a maximal right ideal containing
/ and a <£ Ker h. This means I = /* n R.

(2) Let # be a right ideal of A generated by n elements. In virtue of (1),
it suffices to prove that R* = R. Suppose, on the contrary, there exists some
bER*\R. Then T=R + aA is a right subideal of #* generated by n- f l elements,
and there exists a right ideal S which is maximal with respect to R ̂  S c T. Now,
the natural homomorphism T-+T/S can be extended to some h: AA^>T/SA.
Then Ker h is a maximal right ideal containing R. Hence R* ̂  Ker h and follows
the contradiction T= Tn R* c T n Ker h = S.

4. Strongly regular rings. Many authors have given various conditions for
a ring to be strongly regular (see, e.g., [2], [15] and [16]). In this section, to
the list of equivalent conditions we shall add several news.

A ring A is said to be semi-commutative [12] if xy = Q implies xAy = Q (x, y
e A). Evidently, every reduced ring is semi-commutative and every semi-com-
mutative ring is an JV-ring in the sense of [7]. It is easy to see that A is semi-
commutative if and only if every left annihilator in A is a two-sided ideal, or
equivalently, if and only if every right annihilator in A is a two-sided ideal. As
a consequence, the class of semi-commutative rings contains left duo rings and
right duo rings.

LEMMA 5. // A is s-unital and semi-commutative, then every idempotent
of A is central.

PROOF. Let e be an idempotent of A. Then eAr(e)^er(e) = Q and /(e)Ae
c/(φ = 0. Hence, eA^/(r(e)) = Ae and Ae^r(/(e)) = eA, whence it follows
that Ae = eA ana e is central.

A right s-unital ring A will be called a right CP*F*-ring if A has the following



Regular Rings, K-Rings and their Generalizations 145

property: For each maximal essential right ideal R of A one of the following
conditions is verified: (a) A/RA is /7-injective (b) R is a left s-unital ring; (c) R
is the right annihilator of a non-nilpotent element of A.

LEMMA 6. Let A be a right CP*F*-ring. If a right ideal R of A contains
(α) + r(α) + (/(α)) with some aeA, then R is a direct summand of AA.

PROOF. There exists a right ideal / such that R®I is essential in AA. Sup-

pose RφI^A. Then, by [16, Lemma 1 (4)], R®I is contained in a maximal
essential right ideal M. If A/MA is p-injective, considering the homomorphism
aAA-+AjMA defined by flx-»x + M, we can find an element be A such that x + M

= bax + M for all xeA. This implies a contradiction A = M. Next, if M is a
left s-unital ring, for each xeA there exists an element yeM such that xa = yax.
Then x — yx e /(a) £ M, so that xeM. This means A = M, a contradiction.
Finally, if M = r(f) with a non-nilpotent element t then ία = 0 yields t e /(a)^M
= r(0, and therefore ί2 = 0. This is a contradiction.

COROLLARY 7. If A is a right CP*F*-ring with I, then AaA + r(a) + /(a)A
= A.

PROOF. If R = AaA + r(ά) + /(a)A then R = eA with some idempotent e
(Lemma 6). Since 0 — eaeR n r(e) = 0, we obtain 1 — ee/(a)^R, which implies

leR.

THEOREM 5 (cf. [19, Theorem 13]). The following are equivalent:
1) A is a strongly regular ring.
2) A is a reduced, right p-V-ring all of whose essential right ideals are

two-sided.
3) A is a left duo, right p-V-ring.
4) A is an s-unital, semi-commutative, right V-ring, and Aa c a A + r(a)

for any aeA.
5) A is an s-unital, semi-commutative, right p-V-ring, and Aa^aA + r(a)

for any aeA.
6) A is an s-unital, semi-commutative, right V'-ring, and Aa^

for any aeA.
7) A is an s-unital, semi-commutative, right p-V'-ring, and Aa^

for any aeA.
8) A is a reduced, right CPF-ring all of whose maximal essential right

ideals are two-sided.
9) A is a reduced, right CP*F*-ring all of whose maximal essential right

ideals are two sided.
10) A is a right duo, right CP*F*-ring such that r(a)^/(a) for each aeA.
20-10') The left-right analogues o/2)-10).
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PROOF. Obviously, 1)=>8)=>9), 2)=>9), 4)=>6), and 5)=>7). By [16, Theo-
rem 5], 1) implies 2) through 7) and 10). Moreover, 4)=>5) and 6)=>7) by [16,
Proposition 1].

3)=>1) By [15, Proposition 6], A is fully right idempotent. For any a ε A,
noting that (a\ is an ideal, we have a e(AaA)^aA(a\. Hence, a = aba with some
b eA, and A is strongly regular by [2, Theorem].

7)=>1) It suffices to prove that A = aA + r(a) for any aeA. Suppose
aA + r(a)ΦA for some a. Let R be a maximal right ideal containing aA + r(a)
(see [16, Lemma 1 (4)]). Then A = R@I with a minimal right ideal / ([16,
Lemma 2]), and I = eA with some idempotent e ([16, Lemma 1 (3)]). Hence,
I = eA is an ideal by Lemma 5. This enables us to see that al^aA n / = 0. But
we have then a contradiction I^r(a)^R.

9)=>1) Again, it suffices to prove that A = aA + r(ά) for every aeA. Sup-
pose aA + r(a)^A for some a. Let R be a maximal right ideal containing a A
+ r(a). First we claim that R is essential in AA. In fact, if not, A = R@I with
a minimal right ideal /. Since / is generated by some central idempotent, it fol-
lows that /£r(0)cjR. Hence, R is essential in AA9 and therefore an ideal. Ac-
cordingly, R is a direct summand of AA by Lemma 6. But, it is impossible.

10)=>1) Let a be an arbitrary element of A. Then, by Lemma 6, A is the
direct sum of aA + r(ά) and some ideal /. Hence, we obtain /cr(α)Π/ = 0.
Namely, A = aA + r(ά).

5. CPP-rings. In [5], a ring A with 1 is called a right PCI-rίng if each
proper cyclic right ^-module is injective. A right PC/-ring is either Artinian,
semi-primitive or a right semi-hereditary simple domain ([5, Theorem 14]).
The existence of right PC/-domains which are not division rings is shown by
Cozzens [3]. Recently, in [6], a ring A3 1 all of whose cyclic right ^4-modules
are injective or projective has been characterized as A = S®T where 5 is Artinian,
semi-primitive and T is 0 or a right PC/-domain. This is the primary motivation
for the present section.

LEMMA 7. Let A be a non-regular, right CPP-ring. If A = Rί®R2 with
right ideals Rί and R2, then Rί or R2 is completely reducible.

PROOF. Suppose neither Rl nor R2 is completely reducible. Then there
exists a proper essential right subideal R't of Rif Since R't cannot be a direct
summand of AA9 A/Rf

t is a p-injective right v4-module. Obviously, A/R/

ΐc^Rί/Rf

l

®R2 and A/R2^Ri®R2/R2 as right ^-modules. Hence, both RiA are p-injec-
tive, so that AA is p-injective. Combining this with the fact that A is a right p. p.
ring (Corollary 3 (1)), Theorem 2 shows that A is a regular ring, a contradiction.

THEOREM 6. The following are equivalent:



Regular Rings, K-Rings and their Generalizations 147

1) A is an s-unital, right CPP-ring.
2) A is a regular ring or A = S®T where S is a right (and left) completely

reducible, semi-prime ring and T is a simple domain (not a division ring) all
of whose proper cyclic right modules are divisible.

PROOF. It suffices to prove that 1) implies 2). Let S be the unique maxi-
mal regular ideal of A (see [9]). If A/SA is /Mnjective then A/SA(S is p-injective,
and hence A/S is a regular ring by Theorem 2, which means that A itself is regular.
In what follows, we assume that A = S®T with a non-zero right ideal T. We
claim here that T coincides with the ideal /(S). In fact, T^/(S). Since (/(S)

Π S)2 = 0 implies /(S) n S = 0, we obtain A = S® /(S) and T= /(S). If e is a non-
zero idempotent of T with eT^T, then A = S®eT®rτ(e). By Lemma 7, eT
or S®rτ(e) is completely reducible, and so TeT or Trτ(e) is a completely reducible
right T-module. Since T is an s-unital semi-prime ring by Corollary 3 (2), TeT
or Trτ(e) is a non-zero regular ideal, a contradiction. Hence, T cannot be
completely reducible. Consequently, 5 is a completely reducible semi-prime ring
by Lemma 7. Now, let a be an arbitrary non-zero element of T. Then T=
rτ(a)®bT with some b e T such that ab = a and rτ(a) = rτ(b). Since b is von
Neumann regular by [16, Lemma 1 (3)], rτ(α) must be 0. This means that T
is a domain with identity (see [16, Lemma 1 (1)]. Since T is fully right idempotent
by Corollary 3 (2), T is simple by [15, Proposition 7 (3)]. Finally, if R is a non-
zero proper right ideal of T then R cannot be a direct summand of Tτ, and so
T/RT is p-injective. Hence T/RT is divisible by Lemma 2.

COROLLARY 8. If A is a reduced ring then the following are equivalent:
1) A is an s-unital, right CPP-ring.

2) A is a strongly regular ring or A = S®T where S is a direct sum of
division rings and T is a simple domain (not a division ring) all of whose proper
cyclic right modules are divisible.

COROLLARY 9. If A contains 1, then the following are equivalent:
1) A is a right CPP-ring.
2) A is a regular ring or A = S®T where S is an Artinian, semi-primitive

ring and T is a simple domain (not a division ring) all of whose proper cyclic
right modules are divisible.

COROLLARY 10 (see [6]). If A contains 1, then the following are equivalent:
1) Every cyclic right (unital) A-module is injective or projective.
2) A = S®T where S is an Artinian, semi-primitive ring and T is 0 or a

simple, right semi-hereditary, right Ore domain (not a division ring) all of whose
proper cyclic right modules are injective.

PROOF. Obviously, it suffices to show that 1) implies 2). By Corollary 9,
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if A is not regular then A = S®T where S is Artinian, semi-primitive and T is a
simple domain. Since T is a right semi-hereditary, right Ore domain by [5,
Proposition 5 and Theorem 17], it remains only to prove that if A is regular then
A is Artinian. Thus we assume henceforth A is a regular ring. (The subsequent
proof will provide a shorter proof of [5, Proposition 12].) In the rest of our
proof, we shall use freely the following result of Osofsky[13]: Any right
injective right PCI-ring is Artinian, semi-primitive. We also claim that if
A=Rί®R2 with some right ideals Rt then Rt or R2 is completely reducible.
In fact, this is obvious by the proof of Lemma 7 and the above result of Osofsky.
Now, let S be the right socle of A, and assume that S^A. Then it is easy to see
that S cannot be a direct summand of AA. Hence, A/S is a division ring and S
is essential in AA. Since SA cannot be finitely generated, we may distinguish be-
tween two cases.

Case I: There exists a homogeneous component of infinite length. Ob-

viously, S = S1θSr2 with some infinitely generated right ideals 5f such that S2 —S
Since A/Sί^(S1®S2)IS1~S2^S as right ^4-modules and A/Si is injective, the
injective hull AA = $A is imbedded in AfS^. This implies A = &A with some
$eA. We therefore obtain A/S = A/S9 and so A = A. But then A is Artinian,
a contradiction.

Case II: There exists no homogeneous component of infinite length. In
this case, S=S1@S2 with some ideals Sf which are infinitely generated right
ideals. Since A/Sί is seen to be Artinian, this is impossible.
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