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§ 1. Introduction

A two point connection problem for linear ordinary differential equations

in the whole complex plane is to seek the explicit connection formulas between

two fundamental sets of solutions locally defined and to analyze global behaviors
of solutions. In this paper we shall be concerned with the system of linear

differential equations

(i.i) ^^(AO + AS+. .+ AJ'ΪX,

where the coefficients At (ί = 0, 1,..., q) are n by n constant matrices, and derive
the connection formulas between two fundamental sets of solutions in neighbor-

hoods of f = 0 and f = oo.

The origin f = 0 is a regular singularity of (1.1). According to the local theory
of systems of linear differential equations (see W. Wasow [23, Chapters II and V]),
an application of a finite number of constant transformations and the so-called

shearing transformations reduces (1.1) to a system of linear differential equations
in which the leading coefficient matrix is of the following Jordan canonical form:

(/= 1,2,..., v) ,

0
«,/-

(1.2)

0

*) Throughout this paper, as in this expression, use will be made of the notation that a scalar
in the matrix representation denotes a diagonal matrix whose diagonal elements equal that
scalar.
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where pi —

(1.3)

nonzero integer (i^j) and

0 I

1

o Ί 0

(/ = 1,2,..., v)

Then the reduced system of linear differential equations possesses, corresponding

to each nt by nt Jordan block js/t, a set of convergent power series solutions near

ί = 0, which are expressed in terms of the column vectorial form

(1.4) x\(f) =

(1.5)
m=0

G}(m)Γ (ft, = Λ; j = 1, 2,..., n,),

and it turns out that a fundamental set of solutions near ί = 0 of (1.1) consists of

v sets of convergent power series solutions with the expressions similar to (1.4) and

(1.5), where for each fixed i every characteristic constant ρtj differs from the others

by integers.

On the other hand, t= oo is a singularity of Poincare's rank q for (1.1). In

order to see whether t = 00 is an irregular singularity of (1.1) or not, we have to

apply W. B. Jurkat and D. A. Lutz-J. Moser's theorem [7, 13] to (1.1). However,

if the integer q ̂  1 and the matrix Aq is similar to

(1.6)

o

0, λk (k

then t — oo is certainly the irregular singularity of (1.1) at which we can immediately

find formal power series solutions of the column vectorial form

(1.7) Xk(t) = exp
q — s=o

Hk(s)Γ

In more general cases when t = oo is the irregular singularity and the matrix Aq

has multiple eigenvalues, applying the ingenious theorem established first by

M. Hukuhara [5, 6] and independently by H. L. Turrittin [22], we can reduce

(1.1) to the canonical system of linear differential equations
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(1.8) t djt = {δkj(/tk(t) + μk + Λ) + BJ-1 + B2Γ* + - + £NΓ»}X

(fc, 7 = 1,2,...,v),

where <5kj denotes the Kronecker delta, i.e., the first term in braces is the block-

diagonal matrix, /tk(t)(k = l, 2,..., v) are polynomials of the form

/**(*) = V + αίS-iί"'1 +'••+ «{ί (fc = 1, 2,..., v),

/i being a positive integer, and Jk (fe=l, 2,..., v) are nfc by nfc shifting matrices

stated in (1.3). From (1.8) we can also easily find the explicit expressions of

formal power sereis solutions at infinity.

Considering the above fact, we deal with two systems of linear differential

equations in this paper. In Section 5 we first consider the two point connection

problem for (1.1) which possesses convergent power series solutions of the form

(1.4-5) and formal power series solutions of the form (1.7). For simplicity, we

from the outset assume that A0=ρ + J and Aq = Aq. Next in Section 6 we treat

the canonical system of linear differential equations (1.8) which is assumed to

possess a fundamental set of convergent power series solutions involving no

logarithmic terms near the origin. The two point connection problem for systems

of linear differential equations of more general types will then be solved by a slight

modification of these considerations.

Now we shall shortly explain our method of attack in the former case. Our

method is based on the expansion of convergent power series solutions in series of

functions whose global behaviors can be somewhat easily analyzed.

Putting rtf = n, ρ^ = p and dropping the superscript i from X^t), ^j (0 and

Gj(m) in the expressions (1. 4-5), we can write a fundamental matrix of solutions

of (1.1) in the form

(1.9) (X,(0, *2(0>. ., X,(0) = (*ι(0, *2(0, . , £»(0)fJ%

where J* is the transposed matrix of the n by n shifting matrix J. Hereafter we

use the notation that a matrix A* denotes the transposed matrix of A. The func-

tions Xj(t)(j=l, 2,..., n) defined by the convergent power series (1.5) satisfy the

systems of homogeneous and nonhomogeneous linear differential equations

sJΫ
(1.10) i&j± = (AQ + Att+ +Aqί )Xl9

S/Ϋ

(1.11) t*±L = (A0 + Ait+. .+ Ajttfj - Xj-^t) (j = 2, 3,..., n).

Substituting (1.5) into (1.10-11) and identifying coefficients of like powers of ί,

we see that the coefficients G/m)(j = l, 2,..., n) are determined by the following
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systems of linear difference equations of the q-th order

(m + p - 40)G,(m)

(1.12)

(1.13)

= AlGl(m - 1) + AzG^m - 2) +•••+ AjG^m - q),

(p - Xo)Gι(0) = 0, G,(r) = 0 (r<0),

(m + p - A0)Gj(m)

= AiGfm - 1) + A2Gj(m - 2) +•••+A9Gj(m - q) - G,_ι(ro),

(p - Λ0)G/0) = - G,._,(0), G/r) = 0 (r < 0) (j = 2, 3,..., «).

Similarly, we see by the same procedure as above that the coefficients H*(s)

(k = 1, 2,..., M) of the formal solutions (1.7) are determined by the systems of linear

difference equations of the q-th order

04,-

(1.14) + (A! - αί)ί/*(

(A, - λk)H"(0) = 0,

where we can put

1) + (A0 + s - q - μk)H"(s - q) = 0,

= 0 (r<0) (fe = 1, 2,..., n),

(1.15) #'(0) =

ί J ϊ
0

, ό ,

, #2(0) =

1 ° 1
1
0

i 0 ,

, ..,//π(0) =

' 0 N

ό
1

We then establish the following expansion theorem, together with showing a

method of determining the constant coefficients ΓJ'ί/, fc = l, 2,..., n; 1=1, 2,..., g)
called the Stokes multipliers :

,..., Gπ(m))

= Σ Σ Σ

(1.16)

(1.17)

= Σ (G^m),

Σ
k=l ί=l

where the w by n matrix functions 7f (ί, s) are defined by

Σ
s=0
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(1.18) Yffo s) = t<> Σ &kι(™ + s)tm (k = 1, 2,..., « ; / = !, 2,..., 4).
m=0

We call the matrix functions Yk(t9 s) the fundamental matrix functions associated

with the two point connection problem to be considered from the fact that they

are defined only by the characteristic constant λk, α*_ ί 9 . . . 9 μk and p, and have just

the same behaviors in the respective neighborhoods of two singular points as the

desired global solutions of (1.1). From (1.17) and the global behaviors of the

associated fundamental matrix functions Yk(t9 s) we can prove that in every

sectorial neighborhood of infinity S(li9 /2,..., ln) there exists a fundamental set

of actual solutions £j(r)(fc = l, 2,..., n) such that $k(t)~Xk(i) as f->oo and the
connection formula

(1.19)

holds. Since S(lί9 /2,..., / Λ )(l^/ι, /2,..., '«^<?) cover the whole complex ί-plane,
from (1.19) we can immediately clear up the Stokes phenomenon.

The method stated above was established first by K. Okubo [14] and has

been extended in a series of papers [15, 9, 10]. However, in those papers we did

not explain the fact that the error terms in the asymptotic expansion formulas

of their final results can be removed, and also did not give the concrete method

of evaluation of the Stokes multipliers. As one of our objectives of this paper,

we shall show that the error terms can be dropped, and moreover that the exact

values of the Stokes multipliers can be evaluated if the asymptotic behaviors of

the coefficients Gj(m)(j = l9 2,..., n) as m->oo are known.

The asymptotic bahaviors of the coefficients &%(m) of the associated funda-

mental matrix functions (1.18) for large m play a basic role in the analysis to follow,

for instance, in proving (1.16) and in evaluating the Stokes multipliers. The

functions #f(m)(/=l, 2,..., q) form a fundamental set of solutions of the system

of linear difference equations

(1.20) (m + q + p - μk + J)<gk(m + q) - u\&k(m + q - 1) - •••

= 0.

In the next section, in order to obtain the asymptotic behaviors of ^k(m\ we

shall investigate the relations between ^f(m)(/ = l, 2,..., q) and a fundamental

set of solutions Φϊ(m)(/ = l, 2,..., q) of the system of linear difference equations
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(1.21) λkΦ
k(m + q) + α^Φ^m + q - 1) +•-•

+ a\Φk(m + 1) - (m + p - μk + J}Φk(m) = 0.

Since the solution Φj^ra) can be expressed in terms of a modified gamma function

and its derivatives, we consequently obtain the desired results for ^f(ra) with

the help of the study of the modified gamma function by N. G. de Bruijn [2].

Moreover, taking account of the relations between <3\(m) and Φ\(πί) just derived,

we can obtain the well-formed results as to the global behaviors of the associated

fundamental matrix functions Yk(t, s) in Section 3.

In guaranteeing the validity of the expansion (1.16), we have to estimate the

coefficients Hk(s)(k=l, 2,..., n) for sufficiently large positive values of s. The

derivation of their estimates is a difficult and complicated work since there is no

general way to obtain the growth order of solutions for such systems of linear

difference equations (1.14) with a singular matrix as their coefficient of the highest

order. In Section 4 we shall explain a method to reduce (1.14) to normal systems

of linear difference equations and then, applying O. Perron- H. Poincare's

theorem, we shall obtain the estimates of Hk(s), together with showing how to

determine the characteristic constants α*_ ί 9...9 αj[ and μk.

Section 7 deals with the evaluation of the Stokes multipliers and in the last

section we shall apply our theory established to the solution of the two point con-

nection problem for the extended Airy equation.

§ 2. Relations between two systems of linear difference equations

As will be seen in the later sections, the matrix function Φ(m), which is defined

as a solution of the matrix form of the system of linear difference equations (1.21),

appears as the Stokes multiplier in the study of the asymptotic behavior of the

associated fundamental function 7(ί, s) and on the other hand, the asymptotic

behavior of the matrix function 0(m) as m-*oo is needed in several stages of our

analysis. So in this section we shall make clear the explicit expressions of the

matrix functions Φ(m) and ^(m), obtaining the important relations between them.

In fact, we can express the matrix function Φ(m) in terms of a modified gamma

function and its derivatives.

From now on we assume that m is the complex variable since an integral m

is regarded as an integral value on the real axis of the complex m-plane.

First we summarize some results derived in the previous paper [10].

Assuming for the time being that Rev>0, a modified gamma function is

defined by the integral

(2.1) Γ(v: yΛ) = Γ(v: y,-l5..., yk,..., yx)
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where the abbreviation that the dependence on q — l complex parameters
y€ _!,..., yΛ,..., 7ι is represented only by the /c-th parameter γk has been used and
hereafter will be used throughout this paper.

By partial integration we easily obtain the q-ih order linear difference equation

(2.2) vΓ(v: yfc) = Γ(v + q: yfc) + yq-,r(v + q - 1: yk) + +ytΓ(v + 1: yk)

and from this, we immediately see that the modified gamma function Γ(v: yk) can
be analytically continued over the whole complex plane except for v=0, — 1,
—2,— Therefore the above condition imposed on v can be replaced by the
condition that v^ a non-positive integer.

If we put

(2.3) φt(m) = Γ(m + p - μ: αjkλ-fc/«ω*ί|-1>)(λ-1/«ω|-1)w+p"μ (/ = 1, 2,..., q),

where A~1/* = |/l|~1/βexp( — iargλ/q)( — π^argλ<π) and ω = exp(2πί/g), then
we find from (2.2) that Φ/(m)(/ = l, 2,..., q) are particular solutions of the linear
difference equation

(2.4) Aφ(m + q) + α^^m + q - 1) +•••+ α^m + 1) = (m +p - μ)φ(m).

With the aid of the detailed study of the modified gamma function by N. G. de
Bruijn [2; Chapter 6], we can prove the following

PROPOSITION 2.1. Under the assumption that p — μ^ an integer, φι(m)
(1 = 1, 2,..., q) form a fundamental set of solutions of the q-th order linear
difference equation (2.4). Each solution φι(m) has the asymptotic behavior

(2.5) 0,(ifi) - (A-^^ω'-O^^f-^-Y^expΓ—log m - — + m\ ^m / \# q k

x ( Σ dιkm~klq] as m > oo in |arg(m -f p — μ)| < π — δ,
\fc=0 /

w/iere rfzo

 = l and δ is an arbitrarily small positive number.

The latter part of the above proposition is due to N. G. de Bruijn and then
the former part can be proved by using these asymptotic expansions (2.5).

The relation between a fundamental set of solutions of (2.4) and that of the
linear difference equation

(2.6) - (m + q + p - μ)g(m + q) + α^(m + $-!)+ — + α^^(m + 1)
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+ λg(m) = 0

is very important. Let us denote a fundamental set of solutions of (2.6) by

(2.7) gι(m),g2(m),...9gq(m)9

and its Casorati determinant by ^g(m) as follows:

g2(m) - gq(m)

(2.8)

9ι(m + q - 0

We denote the cofactor of the (j, k) element gfin + k—i) in the above repre-
sentation of the Casorati determinant by A(

g

J*k\m). Similarly, &φ(m) and
A^ k\m) denote the Casorati determinant constructed by a fundamental set of
solutions 0j(m)(/=l, 2,..., 0) of (2.4) and the cofactor corresponding to the
(j, fc) element φj(m + k — 1), respectively. We then have derived the following
results.

PROPOSITION 2.2. Let us denote

(2.9)

and

(2.10) 0'-''2 "
Then the functions Ej(m) form a fundamental set of solutions of (2.6),
conversely, the functions &j(m) form a fundamental set of solutions of (2.4).
Moreover, for each j (7 = 1,2,..., q\ we have the following relations:

(2.11) - (m + k + p - μ)Ej(m + k) + α^(m + k - 1) + •••+ αk£,(w)

(fc = 0, l,...,g-1),

(2.12) ^(/w + £) + OLq-^j(m + *-!)+ — + α€_k^(w)

Taking account of Propositions 2.1 and 2.2, we shall from now on take

(2.13) 0/m) = -E/m) ( = 1, 2,..., 0)
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as a fundamental set of solutions of (2.6), and then we can easily obtain the ex-
plicit asymptotic expansion formulas for #/m), together with the relations needed
later. We summarize them in the form of

PROPOSITION 2.3. We have

(2.14) βj(M) ~ V-i » 1 + 0(ari/<) (,-1.2....,,)

and

(2.15) i r _ ^ μ-ι/9ωy-i)-rw-r/ί^ + Q(nΓ1^)} (j = 1, 2,..., q)

for sufficiently large values of m in the sector |arg(m + p — μ)| <π — δ, δ being an
arbitrarily small positive number. Moreover we have the following important
relations:

(2.16) [A0/m - l)]φ,(m + q - 1)

- 2) + α,.^/m - l)]φ,(m + 4 - 2)

-f [λflf/m - q) + α^.^/m - 4 + 1) +•••+ α^/m -

0 for j + \ (j, I = 1, 2,..., q).

PROOF. The asymptotic expansion for #/m) can easily be derived from
(2.5) and (2.9), and the asymptotic formula (2.15) is an immediate consequence of
(2.14). As for (2.16), it follows from the relation (2.11) that

λgj(m - q + k - 1) + α^.^/m - q + k) + ••• + αfc#/m - 1)

= -λEj(m - q + k - 1) - α^E/m - q + k) αfc£/m - 1)

= α^E/m) + α fc_2£/m + 1) +•••+ α^/m + k - 2)

+ fc- 1)

Hence the left hand side of (2.16) is equal to

+ 9 - D + Ay -vWφfrn + 4 - 2) +•
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thereby obtaining the desired result.

Now we shall investigate the properties of solutions of two systems of linear
difference equations (1.20) and (1.21), omitting the index k.

Setting

Φ(m) =

and substituting them into (1.21) and (1.20), respectively, we have the following
linear difference equations of a scalar type:

λφl(m 4- q) + α-.j^m + q - 1) +•••,+ Λ^φl(m + 1)

' Φ l ( m ) \

Φ2(m)

ώ"(m) ,

. *(«) =

V(m) '

ί*(«)

έj"ΪΓ/fl)

(2.17)
= (m + p -

+ q} + a g _!<

= (m 4- p -

f (m + p'-/ι)j

q - 1) -f •••+ ^φJ(m +Ί)

) + φJ-*(m) (j = 2, 3,..., n),

- 1) +•••+ Λq,^gl(m - 4 4- 1)

(2.18)
(m + p - μ)flf '(m)

+ ag_!^(w - g + 1) +

We first collect some easily verified results.

- q) (j = 2, 3,..., n).

LEMMA 2.1. Particular solutions of the nonhomogeneous linear difference
equations in (2.17) αnd (2.18)/or 7 = 2, 3,..., n are given by

(2.19) (̂'») = 7741yτ^r(ί

and

(2.20)
1

(7 - 1)! dm'

respectively, where φl(nί) and g*(ni) are solutions of the respective homogeneous

linear difference equations.

PROOF. The proof will be immediately done by induction, considering
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the relations

(m + p - μ)(φJ(m))f + φj(m) + (φ^\nfff = λψ(m + q))' + ••• + α^φ^m + 1))'

and the like, where the prime denotes differentiation with respect to m.

LEMMA 2.2. Lei φl(m) and gl(ni) be solutions of the homogeneous linear
difference equations in (2.17) and (2.18), respectively. Then we have particular

matrix solutions of (1.21) and (1.20) expressed in the form

(2.21) Φ(m) =

and

(2.22) fr(m) = e x p / H m ) = ^!(m) + g2(nί)J

respectively.
Moreover, if we put

(2.23) Φ(m + r)#(w) = J(m: r),

r being an arbitrary number, then A(m: r) can be written in the form

(2.24) A(m: r) = δ\m: r) + δ2(m: r)J +•••+ ^M(m: r)/"'1,

(2.25) δJ(m: r) = Σ φJ+l~k(m + r)gk(m),
k=l

(2.26) ^(ιw: r) = _ _ 5i(w: r) (7 = 1, 2,..., /i) .

PROOF. We observe from Lemma 2.1 that Φ(m) satisfies the system of linear
difference equations (1.21) as follows:

(m + p — μ + J)Φ(m)

= (m + p - μ 4- J)(φ\m) + φ2(m)J +•-+ φa(m)Jn'1)

= (m + p - μ)φ1(m) + {(m + p - μ)φ2(m) + φ\m)}J +•-

+ {(m + p - μ)φn(m) + φn-l(m)}Jn-1 -f φn(m)Jn

= {α^^m + 1) +..-+ λψK™ -f g)} + {^φ2(m -f 1) +•••+ Aφ2(m
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+ •••+ {^φn(m + 1) +•••+ λφn(m + q)}Jn~l

= oqΦίw + 1) +•••+ λΦ(m + q).

Similarly, we see that &(m) defined as (2.22) satisfies (1.20). Since the formulas
(2.25) can be derived directly by multiplication, we shall prove the formulas
(2.26). From the relation

(φ'(m + r)0*(ro))' = jφJ+*(m + r)gk(m) + kφJ(m + r)gk+1(m)9

it follows that

(δJ(m: r)Y = Σ (0 + 1 - k)φ^'\m + r)g\m) + kφ^'\m + r)g^(m)}
k = l

= jφj+ί(m + r)g\m) + Σ 0 + 1 ~ k)φJ+2~k(m + r)gk(m)
k=2

+ Σ (k - l)φj+2~k(m + r)gk(m)
fc=2

j+l
= 7 Σ Φj+2~k(m + r)^*(m)

and hence the required formulas (2.26) are obtained.

We now take the functions ψf(m)(/=l, 2,..., g) defined by (2.3), and then
take the functions g](ιn)(j=\, 2,..., q) defined by (2.13) as the respective funda-
mental sets of solutions of the homogeneous linear difference equations in (2.17)
and (2.18). Then we have the following important results.

THEOREM 2.1. The qn column vectors of the matrices

(2.27) Φ,(m) = expfy-^^Km) (/ = 1, 2,..., q)

and

(2.28) *χm) = e*pj-gj(m) (J = 1, 2,..., q)

form the respective fundamental sets of solutions of the systems of linear differ*
ence equations (1.21) and (1.20). Moreover we have the relations

(2.29) φ£m + q

+ Φt(m + q-2) lλ&j(m - 2) 4- α€_ ̂ /m - 1)]
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+ Φ,(m)[λ*χro - 0) + <Vι^ (m - q + 1) +•••+ α^/m - 1)]

0 /or V / (7, / = 1,2,. ..,4).

PROOF. In order to prove that the qn column vectors of Φj(w) and
(/ = 1, 2,..., g) form a fundamental set of solutions of (1.21) and (1.20), respectively,
we need only show the nonvanishing of the respective Casorati determinants

and Φ9(m). After simple calculations, we obtain

+ l)-^(m + g - 1),

the right hand sides of which never vanish from the assumptions, and we have
thus proved the first part of the theorem. As for the relations (2.29), taking
Lemma 2.2 into consideration, we can write the left hand side of (2.29) in the form

- 2: q) + αf .^,/m - 1 : q - 1)

+ λAtj(m - q\ q) +α ί_1J l/m - q + 1 : q - 1) +•••+ α^i/m - 1:1)

where

) = ΦKm + 9-1) C^Xm - 1)]

+ φK"> + β - 2)[A0Xm - 2) + α,_ l f fj(m - 1)]

m - q) + ̂ .̂ (m - β + 1) +•••+ α j f irχm - 1)]

and

^^(w) = -*Mm) (k = 2' 3 - w)

Since, according to Proposition 2.3,



74 Mitsuhiko KOHNO

1 for / = j,

0 for I Φ j (/, 7 = 1,2,.. .,g)

and hence ^7(m) = 0 (fc = 2, 3,..., n), we obtain the required result.

REMARK 1. Let / take only q consecutive integers. For such / we define
Φι(m) by (2.3). Then the q functions again form a fundamental set of solutions
of the linear difference equation (2.4). If we define g fjri) associated with such q
functions by (2.13), then the relations of the form (2.16) also hold.

REMARK 2. Let /' = / mod q, i.e., Γ = pq + l, p being an integer. Then we
have φl,(m) = φl(m)ωpq(m+f>-μϊ ana hence the left hand side of the foumula (2.16)
in which φfjri) is replaced by φv(nί) is equal to ωpq(m+p~μϊ for /=;', and to zero

for l^=j. From this fact, if Φt(m) is replaced by ΦΓ(m) = exp ( J—j — jφr(m) in

(2.29), then the left hand side of the formula (2.29) is equal to
for l—j, and to zero for

Finally, we note that, taking account of the expression (2.28), the asymptotic
behaviors of 0,(m)(/=l, 2,..., q) as m->oo can be derived from the asymptotic
expansions (2.14) and the differentiation of them with respect to m.

§ 3. Associated fundamental matrix functions

We introduce the function 7(ί, s) associated with the two point connection
problem to be considered, and anew write down its definition as follows:

(3.1) Y(t,s)=t
m=0

where the matrix coefficients ^(m) satisfy the linear difference equation

(3.2) (m + p - μ + J)^(m) = α^(m - 1) +•••

+ (xq-^(m - q + 1) + λ&(m - q).

In Sections 5 and 6 we shall attempt to expand convergent power series
solutions of systems of linear ordinary differential equations in terms of a sequence
{Y(t, 5); s = 0, 1,...} and then to obtain their global behaviors in the whole
complex ί-plane from those of Y(t, s).

For that purpose, we shall investigate the global behavior of the associated
fundamental matrix function Y(t, s) in detail in this section.

We begin with the study of scalar functions defined by the definite integrals

(3.3) z(t: v: yk) = z(t: v: yi9..., γfc,..., γ J
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= Γexp (—/«(! - τ«) 4- Σ
Jo \<7 fc=

(3.4) zF(t: v: γk) = Γexp (•!/«(! - τ«) 4-
Jo \# zf-

fc=ι

where the function F(τ) is holomorphic at least in the closed disk |τ|^l. It is
easy to see that the definite integral z(ί : v : yk)9 together with zF(t : v : yk), is well-
defined under the assumption that Rev>0, but by partial integration and then
using the principle of analytic continuation we can replace the condition Re v>0
by a weaker condition that v^O, — 1, —2,... .

We now consider the behavior of (3.3) for sufficiently large values of t.
Suppose that \t\>tθ9 t0 being a sufficiently large positive number and t lies in the
sector

(3.5) S,: -|-£arg/<|-,

Putting η = tτ and changing the path of integration which is the line segment from
the origin to t into the following two paths of integration :

( i ) the positive real axis from the origin to infinity

(ii) the circular arc |ty| = | f | from t to |ί| and then the positive real axis from
\t\ to infinity,

we have

(3.6) z(t: v: yk) =

= exp(KO)rvΓexp(-
fe

= Γ(v: 7fc)exp(p(0)rv - ί(t: v:

where we set

and Γ(v: γk) is the modified gamma function defined in (2.1). From this formula
and the observation of the analytic continuation of the modified gamma function
described in the preceeding section, we can see again the well-definedness of the
definite integral (3.3) under the condition that v^O, —1, — 2,... .

We define the function za(t : v : γk) by the integral
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(3.7) za(t: v:γk) = J%xp (p(t) - p(η)) (j-)̂

in the domain ^ = {ί; \t\^t0>0, |argf|:g3π/2# — δ, δ being an arbitrarily small

positive number} —{ί; |f |cos(argf — π/q)<t0, \argt\>π/q}. In the above integral,

the path of integration is taken the so-called Friedrichs' path [3] as follows: when

t lies in the sector |argί|^π/g, η moves along the path of integration (ii) stated

above, and when t lies in the sector π/q<\aτgt\^3π/2q — δ, η moves along the

straight line orthogonal to the line \&rgη\ = π/q from t to |ί|cos(argί —π/g)e±πί/ί

and then along the same path (ii) from that point to infinity. We immediately

see that the function za(t: v: γk) is an analytic continuation of the function ί(t:

v: yk), and then we can prove the following

LEMMA 3.1. The function za(t\ v: yk) is bounded in the domain 2.

PROOF. We here only show the boundedness of the integral when η lies on

the line orthogonal to arg η = ± π/q or on the circular arc. In this case, if we put

t= \t\eίθ, the variable of integration η can be written in the form

η = c(\φ\)\t\e*+

where
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' coβ(|0|-£)
\ Ί / ι

c(\Φ\) =

if

if

0 < 1.

and hence

Then, setting

we easily see that if ί0 is taken a sufficiently large positive number, we have for an
arbitrarily small positive number ε

Q(θ: θ: ί) = 0,

- c(\θ\ - ε))} < 0

which implies that

on that path of integration.

Hence we have

|exp(p(ί) - p(η))\ Z

^ M,

where M is a constant depending on the parameter v. Similarly, we have the

desired boundedness of the integral when η moves on the positive real axis, and thus

the proof of the lemma is completed.

From the above lemma we obtain

(3.7) z(ί : v : yk) = Γ(v : yk)exp (p(t))Γ * + 0(1)
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for sufficiently large values of t in the sector S^ .
If t lies in the sector

Sl: - - + - / < arg/ < - - + - - / ,
9 q ~ q q

I being an arbitrary integer, we change the path of integration along the line
segment from the origin to t in the integral (3.6) into the path η = ξωl~ί(ω =

exp(2πί/#)), where ξ moves along the paths of integration (i) and (ii). Then by
the same considerations as stated above we have

(3.8) z(ί: v: yk) = Γ(v: γkω
k«-V)ωv«-u exp(p(ί))r

as t - > oo in 5/.

We summarize the above results, together with the behavior of zF(t: v: yΛ),
in the following

LEMMA 3.2. Let I be any integer. Then for sufficiently large values of
t in the sector

(3.9) S,: - -̂  + ̂ / < arg/ < - -* + ̂ π /,
q q ~ q q

the function z(t: v: yfc) /ιαs r/i^ behavior

(3.10) z(ί: v: γfc) = Γ(v: yX^'1^^^1) exp(p(ί))

and the function zF(t: v: yfc) /ιas the behavior

(3.11) zF(ί: v: yk) = (m^^-ψ^Γ(v + n:
\n=0 «!

x exp(p(ί))rv

We here note that the q sectors St (1=1, 2,..., q) cover the whole complex
ί-plane and according to Lemma 3.1, the last O-term in the statements (3.10) and
(3.11) holds in a more wide sector

_ 7π δ 2π ; ̂  < _ π _ ̂  2π 7

2^ ^ ~ 2q q

Now we shall turn to the investigation of the associated fundamental matrix
function Y(t, s). From its definition we immediately obtain the following two
relations : For an arbitrary positive integer r,

(3.12) Y(t, s - r) = (̂s - r)t<> + &(s - r + l)ί'+1 + •••
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-1-'-1 + rγ(t,s).

(3.13) ί - - = *!Y(t, s - 1) + - + α^yfr s-q + 1)

Substituting the formulas (3.12) for r = l, 2,..., g into the right hand side of (3.13),
we then have the system of nonhomogeneous linear differential equations of the
first order

(3.14) t = {λf« + α,.!*-1 + ••• + M + (μ - 5 - J)}7(ί, s)

- 2) 4- «,_!#(« -

By quadrature, we therefore obtain the integral representation of Y(t, s) as a
particular matrix solution of (3.14) with the form (3.1) as follows:

(3.15) y(ί, s) = Z(λV*t: s- μ + p + q-l: γk)t<>+«-1iλ&(s - 1)]

\ s- μ + p + q-2: γk)P>+*-2lλ&(s - 2) + a,_^(5 - 1)]

ί: s - μ + p: yk)tp[.λ<g(s - q) + a,_^(s - q + 1) +•••+ a^(s - 1)],

where we put γk = akλ~k/q ( fc=l, 2,..., ^~ 1) and

(3.16) Z(ί: v : yΛ) = Γexp (—t*(l - τ«) + '£ -^-/Hl ~ τ*)>)τ/+v"1Λ.
Jo \^ fc=ι A: /

This integral representation plays an important role in the derivation of the
global behavior of Y(t, s) on its Riemann surface. To see this, we first investigate
the global behavior of the matrix function Z(t : v : yk). As in the case of a scalar
function, assuming that t lies in the sector 5X and taking (i) and (ii) as the path of
integration after the change of variables η = tτ, we can rewrite (3.16) in the form

(3.17) Z(t: v: yk) =



80 Mitsuhiko KOHNO

(•

= f ,(v: yA)exp(XO)r'-> - 2,(ί: v: yk),

where we put

(3.18) y,(v: yk) = ί°°exP( - p^η^^dη
Jo

and we have used the fact that Ψι(v: yk) commutes with J. By the same con-
siderations as in the proof of Lemma 3.1, we have

(3.19) 2t(ί: v: yfc) = O(l) as t - > oo in 9

since the matrix function Z1(ί: v: yfe) has the form

2ι(*: v: y») = j"ejφG»(/) -p(ι0){l + -1- log (-J.)/ +
(lί)

and the logarithmic terms do not essentially influence on the estimates of the
integrals. Hence we have

(3.20) Z(ί: v: Jk) = Ψ,(v: yk)^p(p(t))rj~v + 0(1) as t - > α> in S,

and similarly, for any integer / we have

(3.21) Z(r: v: γh) = ψfy: yk) exp(p(t})rj~v + 0(1) as t - > oo in Sl9

where we put

(3.22) Ψt(v: yk) = Γ exp(-
jo

Concerning the function ^(v: yfc), it is easily seen by partial integration that
Ψt(v : γk) satisfies the linear difference equation

(3.23) Ψ(v + q: yfc) + yq-^(v + <?- ! : yk) +-

Moreover if we write
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= <AKv: yk)

then we have

(3.24) ψl (v: γk) = Γ(v:

(3.25) ψ{(v: yk) = ^ - r * H ( v : y fc) (y = 2, 3,..., it) ,

where Γ(v: yfc) is the modified gamma function defined in (2.1). Then, from the

results derived in Section 2 and the considerations given above, we can prove

LEMMA 3.3. Assume that p — μ^ an integer. Let I be an arbitrary
integer. Then we have

(3.26) Z(λl' t: s + p-μ: M-*/«)

= exp -P + -ίtyβ-ι +... +

/or sufficiently large values of t in the sector

(3.27) St(λ) : -*!L + ϊ?Ll<> arg λ"*t < - — + — /,

ί/ie matrix function Φl(s)=Ψi(s + ρ-μ: ockλ~k^qωk^-^)(λ~'l^ω1-'1)
is exactly the same function defined in Section 2, i.e.,

(3.28) Φt(s) = expj~~r(s + p- μ: akλ-k'*ωk

satisfying the system of linear difference equations

λΦ(s + q) + κq-ιΦ(s + q-\) +•••+ a^(s + l) = ( s - h p - μ + J)Φ(s).

Jn the statement (3.26) ί/ie /asί O-term holds in a more wide sector

(3.29) §t(λ) : - ̂ - + δ + 2?L/ g arg A1'/*/ g - JL - ^ + 2π_/f2q q 2q q

δ being an arbitrarily small positive number.

Moreover we can prove just the same result as that of a scalar function
zF(t: v: yfc), which is needed later.
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LEMMA 3.4. Let ZF(t: v: γk) be a matrix function defined by the definite

integral

(3.30) ZF(t: v: γk) =
JO \y k-O

where the matrix function &(τ) is holomorphic at least in the closed disk |τ|^l.

Then we have

(3.31) ZF(λU*t: s + p - μ: αfcr
fc/«)

n=o

ι 0(1)

as f - * oo in

We now define q associated fundamental matrix functions

(3.32) Yj(t, s) = t' Σ */m + s)l« (j = 1, 2,..., 0),
m=0

where

which are defined in Theorem 2.1.

Taking the relations (2.29) in Theorem 2.1 into consideration, if t lies in the

sector S|(λ)(/=l, 2,..., g), we have

(3.33) , yί

- 1)]

- 2) + ̂ .^(j- 1)]

p: αfcA-*/*)/p[Aί^(.y - g) + α^^^ - q + 1) -h

+ α^/j - 1)]
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where δjt is the Kronecker symbol and 2,(ί: v: yk) denotes the integral defined in
St of the same type as %ι(t: v: γk) in St.

From Lemma 3.3 we then have

(3.34) Ϋjfa s) = O^*-1) as t - > oo in §t(λ).

But we can get a more precise information about the asymptotic behavior of
ΫJt(t9 s). In fact, substituting (3.33) into the relation (3.12), we have

Yj(t9 s) = a y ι e x p / f + y*-1 +-..+ α t/r^- 4 ?„(/, *)

= SfyCsr - I)/'-1 4- 9j(s - 2)ίo-2 4 ••• 4 ^(Λ - r)/'~r + r l^ί/, s - r)

= ̂ (j - l)/^1 -f &j(s - 2)/"-2 + — 4- &j(s - r)^r

4 rr<5;ίexp^— /« 4 -^y*-1 4- — 4- «1ArJ+'|-I+r 4 Γ'Ϋj^t, s - r) ,

which implies that

(3.35) ?χr, s) = &j(s - i)^-1 4 ar/s - 2)ί"-2 4-4- sr/s - r)f^

Let σ be an arbitrary positive integer and put r = q + σ. From the estimate (3.34)
for Yβ(t9 s — r), we obtain

(3.36) Ϋjfa s) = &j(s - I)**-1 + - + &j(s - σ)tf>~*

4- ^/s - σ - l)^"^1 4 4 &j(s - r)^-Γ 4 r

= ^/s - ly-^ ^ ̂ /s - σ)^~σ 4

- t'{9j(s - ΐ)Γl 4 &j(s - 2)r2 4 } as r - > oo in

Thus we have established the following important theorem for the global be-
haviors of the associated fundamental matrix functions Yj(t9 s).

THEOREM 3.1. Assume that ρ — μ^ an integer. Each associated funda-
mental matrix function 7/ί, s)0*=l, 2,..., g) has the asymptotic behavior as
follows :

(3.37) Yj(t9 s) - δjl exp /« + J f c J L /JL -ι

4 tp{&j(s ~ I)*"1 4- ^/s - 2)Γ2 4-}

as t - > oo in S,(λ) (/ = 1, 2,...,
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where the q sectors Sl(λ)(l = l,2,...,q) cover the whole complex i-plane.
Strictly speaking, the asymptotic power series in the statement (3.37) holds

Finally, we note that in order to obtain the global behavior of Y/ί, s) on its
Riemann surface, we have only to apply Theorem 3.1 after changing suitably the
variable of integration. For instance, if t lies in the sector Spq+l(λ) for any integer
p9 then we have 7/f, s)= Yj(tarpq, s)ωp^ and apply (3.37) to its right hand side,
obtaining

(3.38) Y.

+ O(tf>-*) as t -- » oo in Spq+l(λ).

But this fact is also an immediate consequence of Remark 2 in Section 2.

§ 4. Growth order of coefficients of formal solutions

Now we shall be concerned with the growth order of the coefficients Hk(s)
(k=l, 2,..., n) of formal power series solutions (1.7) for sufficiently large positive
integral values of 5. The column vectorial coefficients Hk(s)(k=l, 2,..., n)
satisfy the systems of linear difference equations (1.14) whose coefficients of the
highest order are singular matrices. From those linear difference equations just
as they are, we cannot obtain the estimates of Hk(s)(k~l9 2,..., n). But we have
to go through the first process of determining the characteristic constants α^_ l5

..., α{ and μk (k = 1, 2,.,., n), and this determination leads to the reduction of the
systems of linear difference equations (1.14) to those of a regular type, that is,
systems of linear difference equations with nonsingular matrices as their co-
efficients of the highest order. More precisely speaking, we can reduce (1.14) to
systems of linear difference equations of the Perron-Poincare type and then obtain
the estimates of Hk(s)(k=l, 2,..., n) by applying O. Perron-H. Poincare's
theorem [16, 17]. To show this, we consider the system of linear difference
equations for

(4.1) (Aq - λJH^s + q) + (Aq., - α^)/^ + g - 1) + ...

+ (A, - αDH^s + 1) + (A0 - μ± + s)H*(s) = 0,

subject to the intial conditions

(4.2) (Aq - λJH^O) = 0, H*(r) = 0 for - (q - 1) ^ r < 0.

It is easy to see that the other systems of linear difference equations for Hk(s)
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(fe=2, 3,..., n) can be transformed to those of just the same form as (4.1) by the
so-called elementary transformations.

We here put

( (A! - A2)-

Λί =

A, =

0

βf1

/ Λ 1 \ 1(AI - A3)
 1

0 (At - λB)-ί J

where j8J and y j (ί=0, 1,..., q— 1) are (n — l)-dimensional row and column
vectors, respectively, i.e.,

and ^J (i=0, 1,..., g-1) denote (n-1) by (n-1) matrices constructed by the
remaining elements of the matrices At (i=0, 1,..., q — 1). Moreover we put

and

(i = 0, 1,.

Then we can rewrite the linear difference equation (4.1) in the form

(4.3) (e», - αJ_,)Λl(ί + ί - 1) + (βii2 ~ oeί-2)Λl(s + q - 2)

β - 2)
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(4.4) fi\s + q) = sfi-β^s + «-!) + ifJ-i

_2#i(s + q - 2) + if J_2Λl(s + q - Ί)

+ sί\Hl(s + 1) + irtΛKa + 1)

Substituting the second formula (4.4) into the first formula (4.3) one after another,
we obtain a relation between h\(s—r)(0^r^q) and fί^s — r)(l^r^^), together
with the formulas to determine the characteristic constants αj_1(..., α} and μ t.
In fact, dropping the index 1 from now on, we have

(« + 9 - 1) + 0,-2fl(s + 9 - 2) +•••+

/Vι{ΣX-,#(s + « - 1 - r) + (a/o
r=l

+ Σ iff-r*(* + ̂  - 1 - r)} + βq-2ti(s + q - 2) +.-

r=l q

Λ(s -

r=l

and then replace the term of the highest order ft(s + q — 2) by the right hand
member of (4.4) again. If v times above procedures lead to

(4.5) j8f-!#(s + 9 - 1) + βt-2&(s + q~ 2) +••.+ β0fί(s)

= ΣV^0>: r)θ(s + q-v-r)+Σ 6(v: r: s)#(s - r)
r=l

i(v: r)/ι(s - 1 + r) + Σ R2(v: r)h(s - r),

where P(v: r) are (n — l)-dimensional row vectors not depending on s, β(v: r: s)
are (n — l)-dimensional row vectors depending on s and RI(V: r)(i = 1, 2) are scalar
constants, then we have the following recurrence relations: For O r g r r g g — 1,

(4.6) P(v + 1 : r) = P(v: lX4_ r + P(v: r 4- 1) (1 ̂  r ^ q - v - 1),



A Two Point Connection Problem 87

( Q(v + 1: r: 5) = P(v: 1WΪ+1_P + β(v: r: s) (1 g r g v),
(4.7)

1 Q(v + 1: v + 1: s) = P(v: 1)(̂ 0 + Λ(s - v - 1)),

f Rt(v + 1: r) = P(v: ί)ηv+r + RJv: r) (1 g r g <? - v - 1),
(4.8)

I Λ , ( v + l : r ) = Λ 1(v:r) (ί - v £ r £ « - 1),

: r) = P(v: 1>/V + 1_Γ + K2(v: r) (1 g r g v),
(4.9)

where the formulas have no meaning when the relations between v and r in the
round parentheses do not hold.

From the above recurrence formulas, putting

P(0: 1) = /?,_!, P(0: 2) = βq_2,..., P(0: q) = β0

and

Λ,(0: 1) = /?,(0: 2) ----- R^O: q - 1) = 0,

we can successively evaluate the values of P(v: r), Q(v: r: s), RI(V: r) and R2(v: r)
for 1 ̂  v g q, thereby finally obtaining the formula

(4. 10) βq_ ̂ (s + q-l) + βq.2fi(s + q-2)+-+ βϋfi(s)

= ΣQ(q: r: s)ίί(s - r) + ?*,(«: r)h(s - 1 + r) + ± R2(q: r)h(s - r).
r=l r=l r=l

Consequently, substituting (4.10) into (4.3), we have

(α,_! -α,_!)ft(s + q- ί)

+ (a,_2 - a 4_ 2 + R^q: q - l))ή(s + g - 2)

(4.11) t

+ Σ β(ί : r: s)#(s - r) + f Λ2(β : r)h(s - r) = 0.
r=l r=l

Considering the initial conditions that /ι(0) = l, /ι(r) = 0 (r<0) and ^(r) = 0
(r^O), we immediately obtain the formulas to determine the characteristic con-
stants α^-i,..., ocj and μ as follows:
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(4.12)

q-l

' q - 1),

=a !(«: 2),

μ = α0 + *1(g: 1).

These relations then yield the formula

(4.13) sh(s) + Σ Q(l : r: s)fi(s - r) + Σ Λ2(^: r)Λ(s - r) = 0.
r=l

Combining (4.13) with (4.4), we have thus obtained the required system of linear
difference equations of a regular type :

(4.14) //(*) =

where

(4.15) Brτ(s)

(4.16) 1

Bq.2(s)H(s - 2) B0(s)H(s - q),

--R2(q:r)

Va-r

4- Λ(s - q),

Now, in order to derive the estimate of //(s), we shall investigate the behaviors of
Q(q: r: s)(l^r5Ξg) for sufficiently large positive integral values of s. We can

prove the following

LEMMA 4.1.

(4.17) lim -fβ(«: r: s) = P(r - 1: l)Λ (1 £ r £ q)
s-*oo &

hold.

PROOF. Since P(v: l)(0gv^g —1) are constant vectors, it immediately

follows from (4.7) that

(4.18) lim ~Q(v + 1: r: s) = lim -fβ(v: r: s) (1 ̂  r ^ v)
5-*00 " 5->OO «*

and

(4.19) lim-f ρ(v + 1: v 4- 1: s) = P(v: l)Λ (0 g v ̂  9 - 1).
s-»oo «»
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Then, applying (4.18) in the first place and (4.19) in the next place, we have the
required formula (4.17) as follows:

Hm±Q(q: r: s) = lim -J-Q(g - 1: r: s)
s-χχ> ύ s-*oo "

= l im--Q(«-2 : r : s )
s-»oo *

= lim — Q(r: r: s) = P(r - 1 : \)Λ
s-»oo $

We here define the norm of an n by m matrix A = (aij) by

= max { £ |α"|}.

Then, according to Lemma 4.1, we have for s^N>q, N being a sufficiently
large positive integer,

(4.20) \\Bq.r(s)\\ ^ ||^_J + 1 = bq_r (1 ̂  r ̂  q - 1),

where we have put

0 - P ( r - l : l ) / l
lim

In particular, since

(1 ^ r ^ g - 1) .

I η<>

as oo,

we have for s

(4.21) ||B0(s)|| g (s - ^lίj - λj-i + MO|| ,

where

(4.22) |ίt - A! I = min \λj - λj > 0.

Taking account of the estimates (4.20) and (4.21), we obtain from (4.14)
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+ ((s - q)\l, - λj-i + \\A0\\)\\H(s - q)\\ (s ^ N)

and hence we have only to consider the growth order of a solution of the single
linear difference equation

(4.24) jT(s) = Vi ^C5 - 1) + bq-2Jf(s - 2) +•••+ b^(s - q

subject to the initial conditions

(4.25) tf(N - 1) = ||ff(N - 1)||, ^(N - 2) = ||#(ΛΓ - 2)||,..., Jf(N - q)

= \\H(N-q)\\

since we easily see from (4.23) and (4.25) that

(4.26) \\H(s)\\ ^^(s) (s^N).

Obviously, the linear difference equation (4.24) is of the Perron-Poincare type
(see [16, 17]) and the corresponding Newton-Puiseux polygon constructed by

the coordinates (0, 0), (1, 0),..., (<?-!, 0) and (q, 1) is a straight line with the
directional coefficient l/q. Applying O. Perron-H. Poincare's theorem to (4.24),
we have

(4.27)
^ .*r ..v */S

hm
Γ(s + I)1/*

where γ is a root of the algebraic equation

yq-\λί -^r^o, i.e.,

(4.28) M-t f i -^r 1 " .

Combining (4.26) and (4.27-8), we therefore obtain the required growth order of

H(s).
We state the result derived above in the form of

THEOREM 4.1. The coefficients Hfc(s)(/c=l, 2,..., n) of the formal solutions
(1.7) have the following growth order:

where

(4.30) \lk - λk\ = min |A, - λfc| > 0.
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§ 5. Connection problem for a system of differential equations with
multiple characteristic constants at a regular singularity

In this section we shall solve the two point connection problem for the
system of linear ordinary differential equations (1.1). For each k (k=l, 2,..., n),
let Φf(ra)(/ = l, 2,..., q) be a fundamental set of solutions of the system of linear
difference equations (1.21) and then take ^ί(w)(/=l, 2,..., q) defined in asso-
ciation with Φftm) in Section 2 as a fundamental set of solutions of the system of
linear difference equations (1.20). Let us denote

(5.1)

= β\l(m) + gϊ2(m)J +•••+ g^(m)J"'1

( f c = l , 2,. . . ,« :/ =1,2,..., q).

Now we shall begin with the definition of column vectorial functions
expressed in terms of the series

(5.2) Ff«(m) = ΣH WgWm + s) (i, k = I, 2,..., n; I = 1, 2,..., q),
5=0

where Hk(s)(k=\, 2,..., n) are the coefficients of formal solutions (1.7). In
order to prove the well-definedness of the functions '̂(w), that is, the con-
vergence of the series in the right hand side of (5.2), we need exact informations
on the asymptotic behaviors of the functions ^'(w) for sufficiently large values
of m in a sector including the positive real axis. Taking account of (2.5), (2.14)
and (2.20) and applying the theorem of termwise differentiation of an asymptotic
expansion, we have

(5.3) g

x exp I - — log m + — - ~ log m + mO(nΓl^)\ {rff ' +

(i, fc= 1, 2,..., n; / = 1, 2,...,g)

for sufficiently large values of m in the sector |arg(m + p — μfe)|<π — δ', <5' being a
small positive number larger than δ in (2.5), where d\l (i, k=l, 2,..., n; /=!,
2,...,<?) are constants. Moreover it follows from (5.3) that for an arbitrary
number r, there hold in the above sector

(5.4) ~ (V/*ω<-0-rw-|'/«{l + O(m~u*)} as m - > oo
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By means of Abel's transformation, using the asymptotic relations (5.4), we can
prove the following lemma in exactly the same manner as in the paper [10] and we
here omit its proof.

LEMMA 5.1. Suppose that the series which define the functions F*l(m0)
for a certain number m0 are absolutely convergent. Then the series defining
Ff'Orc) are also absolutely convergent in the right half-plane Rem^Rera 0 + ε,
ε being an arbitrarily small positive number. Moreover we have the asymptotic
relations

(5.5)

(i, k= 1, 2,...,n; /•= 1, 2,..., q)

for sufficiently large values of m in that right half-plane.

From this lemma, using Theorem 4.1 and (5.3), we can show the well-definedness
of Ff *(m) as follows :

THEOREM 5.1. Let m0 be an arbitrary number. Then, under the assump-
tion that

(5.6) 0 < \λh\ < \λj - λk\ (i *k\j = 1, 2,..., n),

the functions Ffί(m)(i, fc=l, 2,..., n\ /=!, 2,..., q) are well-defined in the
right half-plane Rem>Rem 0 .

PROOF. Considering Lemma 5.1, we here have only to prove the absolute
convergence of the series defining F^m^). In order to apply Cauchy's test to
these series, we evalutate the values of

(5.7)

^ EE( .JfffiJ /^"ϊSίQgί^s + m0)\\Γ(s
s-*.oo \ \1 (S + L)ίiq\ / s-*oo

From (5.3) and the asymptotic behavior of the gamma function, we have for
sufficiently large s

gϊ*(s + m0)Γ(s

x exp {- j-logs •+ S-
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exp {^(5+ I) log* - !]{#' + 0(3-"*)}

x exp|(^ - -̂ - y)log s +

<?** being a constant, which implies that

(5.8) ΠS (|
s-»oo

Combining (5.8) and (4.29), we therefore obtain

(5.9)

from the assumption (5.6) and the definition of \lk — λk\ as stated in (4.30) and thus
we have completed the proof of Theorem 5.1.

From now on, we let the variable m take only integral values. We first obtain
the following important theorem.

THEOREM 5.2. Assume that p — μk^ an integer (fe=l, 2,..., n). Then the
functions F$1(m)(k= I, 2,..., n; / = !, 2,..., q) form a fundamental set of solutions
of the linear difference equation (1.12) for m^—q + 1. From this fact, the
coefficients Gλ(m) can be expressed in terms of the linear combination

(5.10) Gι(m)= Σ ΣΓίWfi),
k=l 1=1

where the constant coefficients Tf1(fe = l, 2,..., rc; /=!, 2,..., ^f) are determined by
the system of linear equations

(5.11) C,(r) = Σ Σ n^ί'W (^ = -9 + 1, -q + 2,.-, -1, 0).
* = 1 (=1

PROOF. From (1.14) and (2.18) we easily see that

= Σ {(m + s + p - μk) + (μk - s - A0)}H*(s)gP(m + s)

= Σ H^ία^JHm + s - 1) + α^P(m + s - 2) + - + λkgϊ\m + s - q)}
s=0
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Σ {(A, -
s=-q

q)

(A, -

= Λ, Σ H
»=0

-q+s)
s=0

-q

s)

s)

s)

- q - 1),

where we have used the initial conditions that Hk(r) — 0 for r<0. This implies

that Fj1(m)(/c = l, 2,..., n; / = !, 2,..., #) are particular solutions of the system of
linear difference equations (1.12). In order to prove that those particular solutions
form a fundamental set of solutions of (1.12), we have only to show the non van-
ishing of the Casorati determinant constructed from them :

(5.13) Vr(m) =

- 1)

It is easily verified from (5.12) that the Casorati determinant satisfies the first order
linear difference equation

(5.14) (m + q -

whence we have

(5.15) *,(«)=-

- 1),

From (5.14), if we could prove that #f(w)^0 for a certain value of m, then we
have #jr(w —1)^0 and similarly, by successive applications of (5.14), we finally
obtain <#F(m)^Q for mί> -q + 1.
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Let m be a sufficiently large number. Then it follows from (5.5) that

(5.16) VF(m) ~

Hπ(0)g"t

1(m+l)

x {1+ 0(m-1")}

B(B-I) <(9-l)

Q

9Ϊ(m)

9\l(m+l)

-D gWm + q

0

x {1 + 0(m-u«)}

n(n-l) 4(g-l)~(-o"
Since for each k, gkιl(m)(l-\, 2,..., q) form a fundamental set of solutions of the
linear difference equation

(5.17) (m + p -

1) + α* l - q + 1) + - q),



96 Mitsuhiko KOHNO

the Casorati determinant <£gk(m) does not vanish. We therefore conclude that
<^F(m)^0 for a sufficiently large value of m.

Moreover we can calculate the exact value of &F( — g + 1), together with
obtaining an invariant relation between the characteristic constants μk and p.
In fact, we see again from (5.17) that the Casorati determinant ^gk(m) satisfies
the first order linear difference equation

(5.18) (m + q - 1 + p - μk)Vβ*(m) = ( -

which implies that

- 1),

(5.19) p - μk)
Γ(m + q + p - μk)

On the other hand, from the asymptotic behaviors of 5f/ 1 (m)(/=l, 2,..., q) we
have for sufficiently large values of m

(5.20)
1n

/=!

x {1 +

~ (ngtl(m))^-^m-^-^2Vq(l, ω-1,..., GT«-

where Vq(xl9 x2, .., xq) denotes the so-called Vandermonde determinant, i.e.,

I 1 ...

Since we moreover obtain

(5.21) rt'On)

x exρ |- - μk 4- m + R(λk, a
k

q-l9..., α{
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x {1 +0OΓ1/*)},

where R(λk, α*_ lv.., αj) is a constant (see [10]), we can evaluate the exact value
of &gk(Q), letting m-»oo in (5.19), as follows:

+P -

x exp - (m + 1 - μk H- p -

^ >Γ(q + p - μk)

x K€(l, ω-1,..., ω-^-^expί^α,, αj.!,..., aj)){l +

which implies that &gk(0) is equal to the constant in the last expression. Then,
taking account of (5.16), (5.19) and letting m-»oo in (5.15), we have

(5.23) VP(-q+ 1)

(Γ(m + $))"(- l)"11^

p -

p -

x {1 -fOί/

This implies that

(5.24)

and
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(5.25) »,(-ί+i)

J(β_1)2 rή Γ(g + , - ̂  I

U=ι ΛΛ J

since the Casorati determinant #F(— g + 1) is a nonzero constant not depending
on m. The invariant identity (5.24) will also be obtained from (4.12), considering
the formulas (4.6-9), although the algebraic calculation is not easy.

Now, from the theory of linear difference equations, we have

(5.26) dim) = Σ Σ TF(m)F\\m)9
fc=l 1=1

where Tf1(m)(fc=l, 2,..., n; /=!, 2,..., q) are periodic functions of period 1.
However, since the variable m takes only integral values, we may regard T}\rri)
as constant coefficients and from the fact that #F( — q + l)^Q9 we can determine
the constant coefficients τp(fc = l, 2,..., n; /=!, 2,..., g) by the linear equation
(5.11) subject to the initial conditions that Gi(0) = l and G^r^O for r= -g + 1,
— g + 2, . . . , — 1 . Thus the proof of Theorem 5.2 is completed.

Next we consider the functions Fj f l(m)(fc=l, 2,..., n; / = !, 2,..., 4) for
ί = 2, 3,..., n. Simple calculations similar to (5.12) lead to

(5.27) (m + p -

Multiplying both sides of

(m + p - ^o)FP(m) = A^F^m - 1) +-+ ^Fj2(m - q) -

by Tf1 and summing over A: and / from 1 to n and from 1 to q, respectively, we
have from (5.10)

(m + p - AQ)S2(m) = ̂ ^(m - 1) +•••+ AqQ2(m - q) - G^m),

where we have put

G2(m)= Σ ίτpFp(m)9k=l 1=1

which implies that G2(m) is a particular solution of the nonhomogeneous linear
difference equation (1.13) for j = 2. Hence, from the general theory of linear
difference equations, the coefficients G2(m) can be expressed in the form

G2(m) = G2(nί) + Σ Σ TW
k=l 1=1
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where the constant Tf 2 are determined by the linear equation

G2(r) - G2(r) = kΣ Σ TWW (r = -g + 1, -* 4- 2,..., -1, 0).

Follwing the same procedure as above, we can finally obtain

THEOREM 5.3. The coefficients G/m)(; = l, 2,..., n) are expressed in the

form

(5.28) G/m) = £ Σ Σ Γ?'+1-'F?'(m) ( = 1, 2,..., n),

where the constant coefficients T{^(fc=l, 2,..., n; / = !, 2,..., #) are determined
by the linear equation

(5.29) <?,(r) - Σ Σ Σ rf>+1- W) = Σ Σ
i=2 k=l 1=1 *=1 1=1

rf>+1- W) = Σ
1=1

(r= -g + 1, -g + 2,..., -1,0),

success ively.

PROOF. The proof will be done by induction. Suppose that the formulas
for Giίm), G2(m),..., G/m) in the form of (5.28) are obtained, together with
determining the constant coefficients Tf<(fe = l, 2,..., n; ί=l, 2,..., 0) for i^j.
Multiplying both sides of (5.27) by Tf 7'"1"2"4 and summing over fe, / and i from
1 to n, from 1 to q and from 2 to j + 1, respectively, we have a particular solution
of the nonhomogeneous linear difference equation (1.13) for GjJrl(m) as follows:

(m + p - A>)δ;

J + l n 9

- Σ Σ Σ
i=2 *=1 1=1

= Aι6,+1(ro - 1) + +A,Gj+ί(m - q) - G/m),

where we have put

t

Hence we can write Gj+l(m) in the form

fc ^
determining the constant coefficients rjy+1(fe = l, 2,..., n; / = !, 2,..., 0) by the
linear equation
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GJ+1(r) - <VιW = ± ± T^W)
k=l 1=1

(r= -q + 1, -4 + 2,..., -1,0).

This completes the proof of Theorem 5.3.

We can now rewrite (5.28) in the form

(5.30) Gj(m) = Σ Σ Σ T
n=l 1=1 i=l

= Σ Σ Σ H«(s)( Σ Γϊ'+1-'0f'(m + 5))
s=0 k=l 1=1 i=l

= Σ Σ Σ#*ωσP, n2,..., Tϊ")foϊ'(m + s),
s=0 λ=l 1=1

gfJ-^m + s),..., g\\m + s), 0,..., 0)* (j = ί, 2,..., n),

and hence we have

(5.31) (GΛm), G2(m),..., Gn(m))

= Σ Σ ΣHHsXΓϊ1, rp,..., τrm(m + s)*.
s=0 fc=l 1=1

From this relation we can immediately prove the following expansion theorem.

THEOREM 5.4. The convergent power series solutions Xj(t)(j = l9 2,..., n)
of the linear differential equation (1.1) can be expanded in terms of the associ-
ated fundamental matrix functions Y\(t, s)(fc=l, 2,..., n; / = !, 2,..., q) as
follows:

(5.32) (X^X^.^XM)

= Σ Σ

(5.33) 7f(ί, «) = Σ *?("» + 5)r+p (fc = 1, 2,..., n; / = 1, 2,..., β).
m=0

PROOF. From the relation (5.5) we easily find that functions of the form

(5.34) XY(t) = Σ Fϊf(m)r^ (i, k = 1, 2,..., n; / = 1, 2,
m=0

are well-defined for \t\ < oo and moreover we have
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(5.35) *?'(*) = Σ Σ (H*(s)0ϊ'(m + s))Γ+"
m=0 s=0

= Σ H*(sX Σ
s=0 m=0

since the interchangeability of the order of sums over s and m is guaranteed by
the absolute convergence of the double series. In fact, if we put for a sufficiently
large positive integer σ

: σ) =

then we can prove the uniform boundedness of R^^m: σ) by means of Abel's
transformation and the behavior of '̂'(m), the fact of which also has been used
in the proof of Lemma 5.1 (see [10]). Hence the absolute convergence of the
double series in (5.35) immediately follows from the inequality

Σ Σ l|H*(s)|| \g?(m + s)r+<>|
m=0 s=0

^ Σ \\H"(s)\\ Σ |0ί'(m + s)r+o| + Σ Rl^m: σ)\g(m + σ)r+'|.
s=0 m=0 m=0

From the above consideration we have

= Σ (
m=0

= Σ Σ Σ
m=0 s=0 k=l 1=1

= Σ Σ Σ^ωσϊ1, Tf2,..., τf ) Σ (arf(m +
s=0 k = l ί=l m=0

= Σ Σ ΣH*(s)(τp9TF,...,τWYi(t9s)*t' .
s=0 fc=l /=!

Thus we have established the expansion theorem.

We are now in a position to state our main theorem.

THEOREM 5.5. Suppose that

(i) ρ-μk^ an integer (/c = l, 2,..., n\ and

(ϋ) 0 < . lλk\
~
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If t is sufficiently large in the sector

(5.36) S(/1; 12,..., /„) = s,,̂ ) n s/2(A2) n - n s(nμB)

(/i, 12,-, ln = 1,2,..., 4),

where

(5.37) 5,(At) : - -2*. + .2*. / ̂  arg λi/ ί < - — + — /
1 1 9 9

(k = 1, 2,..., n; / = 1, 2,...,q),

then we have

(5.38) (X&), χ2(t),..., *„(*)) ~ ί ̂ oxns n2 ..... n«) .
PROOF. Let p and σ be arbitrarily large positive integers. Putting p'=p + q

and using the relation (3.12) and the integral representation (3.15), we have

(5.39) (Xt(t\ X2(t\..., Xn(t»

- Σ Σ ίHHsHTί1, rp,..., TW&Ks - Dr1 + vfts - 2)r2

5=0 /-I 1=1

(- r), G2(- r),..., G,,(- r))r'w

+ Σ Σ ίfl^xn1, n2,-, n onc,«- PV-'M
s=0 k=l Z=l

oo n 1

+ ^ \^ \^ f V k f f e nf\CTkl 'Tk2 ΠΓf , ^. /. \Λ ι\*9 >j y J\ * i 9 •*• i »•••> -*

= V Σ (Gt( - r), G2( - r),...( GB( - r))r'+J

r=l

£ n
Σ _

5=0 fc=l 1=1

- p + 9 + p - μk: α

2[AtZ,,c2(AJ/«/: σ - p' + q - 1 + p - μk: «}A

+ β .ίZ^.αi/ /: σ -X + q - 1 + p - μk:
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ί : σ-p'+l+p- μk: α*V/

-p' + i+p- μk:

σ - /,' + 1 + p - μk: a}

where we have put

(5.40) *\(τ) = Σ Σ *ϊ(s + * + 1 + ''XT?1, T?2,...,
Z=l s=l

and used the notation (3.30). In the above calculation we also have used the
termwise integration the validity of which is easily seen, taking account of the
proof of Theorem 5.1, from the fact that the power seies (5.40) is absolutely and
uniformly convergent in any compact set of

and hence, in the closed unit disk |τ| ̂  1.
We here apply Theorem 3.1 and Lemma 3.4 to (5.39) and obtain

r=l

+ Σ Σ
5=0 fc=l /=!

r=l

+...+

5=0

the first expression of which means the asymptotically zero expansion since from
the initial conditions, G/r) = 0 (j = l, 2,..., n) for all r<0. We have thus com-
pleted the proof of Theorem 5.5.
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Lastly we make some remarks.

REMARK 3. Obviously, the sectors S(/lf /2,..., /Π)(/15 /2> » '« = !> 2,..., 4)
cover the whole complex ί-plane and hence, we have completely analyzed the global
behaviors of Xj(t)(j = l, 2,..., n) in the whole complex ί-plane. On the other
hand, although the global behaviors of them on their Riemann surfaces, that is
the same thing, the determination of the Stokes multipliers in other planes, will
be obtained directly from Theorem 5.5, we are led to the same results, only fol-
lowing Remark 2 in Section 2.

REMARK 4. We can rewrite Theorem 5.5 in the following form; There
exists a fundamental set of solutions |̂(ί)(/c= 1, 2,..., n) in the sectorial neighbor-
hood £(/!, /2,...5 /„) of infinity such that

(5.41) $&i)~Xk(f) as

and the connection formula

(5.42)

oo in S(/ l 5/2,...,/„)

*!('),...* *S

\ Tft ry*—Γj£/

holds. In fact, if we put

+ C21x2(t)

+ C22X2(t) Ca2Xn(t),

C2nX2(t)+.. +CnnXn(t)9

where the matrix {C/7 } is the inverse matrix of [T\{}9 i.e.,

/ Λ1 Γ* /~* \
^11 ^12"'^1

J'nl 2^/12

2"'*-2n

in •* in / \

= 1,

then we easily see that ^(ί)(fe=l, 2,..., n) form a fundamental set of solutions
and have the properties (5.41) and (5.42).
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§6. Connection problem for a system of differential equations with
multiple characteristic constants at an irregular singularity

In the case when the constant matrix Aq in (1.1) has multiple eigenvalues,
according to H. L. Turrittin-M. Hukuhara's theorem, an appropriate non-
singular transformation

(6.1) X =

N

k=0

where N and p are suitably chosen positive integers and the change of variables
τ = fi/p reduce the system of linear differential equations (1.1) to the canonica
system of linear differential equations similar to (1.8) for Y(τ)(see [5, 6, 22]).
In this section we therefore consider the two point connection problem for the
system of linear differential equations

(6.2) Λ)

{Σ
r=l

Σ
r=0

(j,k= 1, 2,..., v),

where yffc(r)(/c = l, 2,..., v) are polynomials of degree q(q^i) with the form

and Jfc (fc=l, 2,..., v) are nfc by nλ shifting matrices stated in (1.3), i.e.,

' V\ 0

1 '

0

0

0
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• \

I /•>-

0

0

nv = ri) .

We hereafter assume that /l f c^A f (k^ί)9 λk^0 (/c, i = l, 2,..., v). In appearance,
the origin f = 0 is not a regular singularity, but from the fact that the regular
singularity is invariant under such a linear transformation of a fractional power
polynomial as (6.1)**) we may assume that the system of linear differential
equations (6.2) has a fundamental set of solutions of the form

(6.3) *XO =
m=0

G/m) 0 = 1, 2,..., n),

where for simplicity ρt — p^ an integer (i^j\ i, 7 = 1, 2,..., ri) have been assumed.
We then see that the coefficients G/m)(7 = l, 2,..., ri) satisfy the systems of linear
difference equations

(6.4)

(Pj + m)G/m) = Σ ArGj(m - r) + Σ ^r^/m + r)
r=0 r=l

G/0) ^ 0, G/r) = 0 (r < 0) ( = 1, 2,..., n).

On the other hand, we can obtain v sets of formal power series solutions with
the following form:

(6.5) (Xkl(t

where

(6.6)

(6.7)

oo

*"(t) = j4flM(ί

i k
_ f f \ ^fc ^q 1 ^*9~1

^ ^ - i

**) As a matter of course, the coefficient matrices in (6.2) must satisfy the Jurkat-Lutz con-
ditions for the regular singularity.
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Direct calculations show that the power series £kη(t)(η = l, 2,..., nk) formally
satisfy the systems of homogeneous and nonhomogeneous linear differential
equations

(6.8) /—-j— = { Σ Art
r + Σ Brt~

r — Λk(t)}$kl,
at r=o r=ι

(6.9) t^rr- = {Σ Af + Σ Brr
r - Ak(f)}%k« + ίk*l»"1(0

at r=o r=ι

(η = 2, 3,..., nk).

From these it is easily seen that the coefficients Hkη(s)(η = l, 2,..., nk) satisfy the
following systems of homogeneous and nonhomogeneous linear difference equa-
tions

(6.10)

(6.11)

(A, - λk)H"(s + q) + (A,.! - <**_!)»»(» + q-

+ 040 - ft + s)H"(«) + B1W*1(s - 1) +•••+ BΛ./ίfcl(5 - N) = 0,

//"(O) ^ 0, Hkl(r) = 0 (r < 0),

(Aq - λk)H""(s + q) + (Λ,_! - «Ϊ_,)H*«(5 + «-!)+-

+ (A0 - μk + s)Hk"(s) + B1/i"o(5 -!)+•••+ Bk

N"(s - N) + Hk"-l(s) = 0,

H*»(0) * 0, #*»(r) = 0 (r<0) (if = 2, 3,..., n,).

We can then give the explicit forms of particular solutions of (6.11) by means of
Hkl(s) as follows:

(6.12) #*'(*) = ( | > _ 1 } ! .(ff"(,)) (, = 2, 3,..., »t) .

Now we shall introduce fundamental functions associated with this two point
connection problem. Let gk\(m)(l — 1, 2,..., q) be a fundamental set of solutions
of the linear difference equation

(6.13) (m + pj - μk)9γ(m)

= αϊ0f(m - 1) +-+ αS-.tfJ'ίm -« + !) + λ^m - q).

We then put

(6.14) βfyOn)

= ffjKw) + βjKwV* +-+ ̂ -(myίr1 α = i, 2,..., «),
whence gj|?(m)(>; = 2, 3,..., nfc) satisfy the nonhomogeneous linear difference
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equations

(6.15) (m + pj - μk)gkjKm) = α$0J?(ro - 1) + ••• + ̂ .̂ (m - q + 1)

- <?) - ^ΓKw) fo = 2, 3,..., nk).

As we have seen in Section 2, the ^nfc column vectors of the nk by nk matrices
&k

Ί(m)(l = 1, 2,..., g) form a fundamental set of solutions of the linear difference
equation

(6.16) (m + pj - μk +

= αϊ^}(m - 1) +...+ αj-^jίm - q + 1) + λk&
kj(m - q).

We now define associated fundamental functions by the power series

(6.17) y),(f, s)= Σ ST$,(m + s)f" +'j
m=0

0 = 1, 2,..., n; k = 1, 2,..., v; / = 1, 2,..., q).

If we choose gyK^ί^ 1» 2,..., ^) as (2.13) which are expressed in terms of the
modified gamma functions, then all the remarkable results in regard to the global
behaviors of Ykι(t9 s) are immediately obtained in exactly the same manner as
in Section 3.

We here define

(6.18) F)jf(m) = Σ Σ H*«(s)g$"-«(m 4- s)
κ=l s=0

(j = 1, 2,..., n; k = 1, 2,..., v; η = 1, 2,..., n fc; / = 1, 2,..., 4).

Postponing the proof of the well-definedness of those functions, we first show
that for each j the functions Ffflm) satisfy the system of linear difference equations
(6.4). In fact, it follows from (6.10-11), (6.13) and (6.15) that

(6.19) (m + pj)FlKm)

= Σ Σ{(m + s + pj- μk) + (μk - s)}Hk«(S)gkjϊ+1-κ(m + s)
κ=l s=0

Σ Σ
κ=l s=0

- q) -

Σ Σ {(^9 - λk)Hk'(s + q) + "Σ(A, - aΐ)Hk«(s + r)
κ=l 3=0 r=l
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+ ΣBrH
k*(s - r) +

r-l

- /•) + λtFtf(m - q) - Σ Σ H^(S)gkjΓκ(m + s)
τ-\ κ=l s=0

+ (A, - λk)Fkj1(m -q) + Σ' (A, - αf)Fj7(ι» - r) + A0F
kj1(m)

r=l

+ ΣB^jHm + /•) + Σ Hkχ-1(s)gkjΓ1-κ(m + s)
r=l κ=l

= Σ AtfKm - /•) + Σ BrF}1(m + r) - "Σ Σ H
r=0 r=l κ=l 5=0

+ Σ1 Σ Hk«(s)gkjΓκ(m + s)
κ = ί s=0

= Σ ArFγi(m -r)+Σ BrF]ϊ(>n + r) ,
r=0 r=l

where we have put #fc°(s) = 0 and g^(s) = 0.

We shall now verify the well-definedness of the functions F^(m), the fact of
which in turn guarantees the validity of the above calculation. In the paper [11]
we have established only a slightly rough result on the growth order of coefficients

of formal power series solutions of general canonical systems of linear differential
equations by the same consideration as in Section 4, but a refined investigation
yields the following result: Consider the canonical system of linear differential
equations (6.2), where N=co and the power series is assumed to be convergent
for sufficiently large \t\.. There can be derived v sets of formal power series so-

lutions of the form (6.5-7). Let /7 ί f cθV/c; i, fc=l, 2,..., v) be the largest non-
negative integers such that

U(0 + μύ ~ (AM + μk) = /WΛΛ)f* l k + βίk(hik - I)**'*-1 +•••+ ftk(0),

where βi^h^^O. For each fixed k (/c = l, 2,..., v) define the positive integer

4* by

qk =
iφk

and

βk = mm{\βik(hik)\;hik =

Then we have

=
= 1 2 v ι ι - 1 2 «t)i, A-., v , ι j i, z ..... /I*;.
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Applying the above result to our case considered where λk

Q (k, ι = l, 2,..., v), we have for all k

βk = 14 - λk\ = min μ, - λk\

and hence we obtain

(6(6

(fe = 1, 2,..., v; f/ = 1, 2,..., nfc).

This result is exactly analogous to Theorem 4.1. Combining (6.20) with asymp-

totic behaviors of #*7(w), we can finally obtain the required results as stated in

the first part of Section 5.

Next we shall show the linear independence of the functions F5?(w)(/c=l,
2,..., v; 77 = 1, 2,..., nk; / = !, 2,..., q) for each fixed j. We first evaluate the

initial values of Hk«(Q)(k=l, 2,..., v; 17 = 1, 2,..., nfc). From (6.10-11) it is easily
seen that for each k (fc = 1, 2,..., v) they are of the form

Hk»(Q) =

o

ί*ϊ(0) \

and satisfy

Jktt
kη(Q) + fl1"*-1^ = 0, i.e.,

hη

nif(0) = an arbitrary number (η = 1, 2,..., nfc),

whence, for instance, we can put

1 1 1υ

0
1 ,

ΓT fr 2 /"ΛΛ
JJ I v / l ——

υ

0

-1

^ -i ,

1(6.21) #Λ1(0) =

In order to prove their linear independence, we investigate the Casorati determinant

composed of qn vectorial functions JF)y(m), using the asymptotic relations
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(6.22)
κ=l

for sufficiently large integral values of m. Taking account of (6.21-22), we have
the asymptotic relations

and hence

(6.23) ffrm) =

~ nk

0

x {1 -h

nk

o
o

ό

0

Fγq(m), F)\(m)

0

0
l,2 s...,v)

(η

for sufficiently large integral values of m. The Casorati determinant
can be written in the form
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(6.24) VPj(m) =

and, considering (6.23) and interchanging the order of rows, we have the asymp-
totic relation

(6.25)

~±

βli{(m+q-l) ~gft(m+q-l)gljl(ιn+q-l)—

{1 +

Since for all /c, we consequently obtain for sufficiently

large integral values of m.

We here remark that in appearance the order of the system of linear difference
equations (6.4) satisfied by the coefficients G/m) is higher than q, but G/m) are the
ones transformed from coefficients of convergent power series solutions of the

original system of linear differential equations (1.1), which satisfy just a #-th order
system of linear difference equations, by the linear transformation (6.1). In

other words, the system of linear difference equation (6.4) is reducible to a #-th
order system of linear difference equations under the Jurkat-Lutz conditions.
We may therefore admit the validity of the argument to follow.

On the basis of the considerations done so far, we can determine the Stokes
multipliers ΓJ? (fc = l, 2,..., v; η = l, 2,..., nk\ /=!, 2,..., q) by the relations

(6.26) = Σ Σ Σ Γ5?F5?
fc=l ι/=l 1=1

Moreover, since there holds

0 = 1, 2,..., n).

oo W k η

Σ TkjlFkjHm) = Σ Σ Σ
η=l s=0 ι/=l κ=l

+ s)
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Σ Σ HkκW Σ
s-O κ=l η-κ

s)gkj2(m

0

we can rewrite (6.26), using (6.14), in the following form

(6.27) Gj(m)

oo q v

= V Y V (Hki(<!2* 2* 2* v" \s;
s=*0 i=l k=l

q oo

= Σ Σ(#nC*),...
/=! s=0

+ s)
0

s)

0

s) Tk2

From this, we derive the expansion formulas of the convergent power series
solutions (6.3) in terms of the associated fundamental matrix functions (6.17)
as follows :

(6.28)

Σ

o

m=0

o

*) /*

We are now in a position to solve the two point connection problem for the
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system of linear differential equations (6.2).
Suppose that Pj—μk¥^ an integer (j = l, 2,..., n\ /c=l, 2,..., v) and 0<|/1Λ|

l\λi-λk\<\(k^i\ k, i = l, 2,...,v). Then, taking account of (6.28) and the
results derived in Section 3, we have

(6.29) Xff)

~ Σ (H"(
5=0

0

r' exp

0

0

/*

0
/Til
^j jΊl

Σ Σ
k=l ι/=l

as ί->oo in the sector S(l1,l2,..
= 1, 2,..., g), where S,(λk)(fc=l, 2,
(5.37).

(7 = 1,2 «)

!,)=Sι1(A1) n s(2(A2) n - n s,y(A,)(/ι, ι2,..., ιv
, v; /=!, 2,..., q) are the sectors of the form

§7. Evaluation of the Stokes multipliers

We have established in Section 5-6 that the Stokes multipliers (connection
coefficients) can be given by the constant coefficients appearing in the linear
combinations, where the coefficients G/m) of convergent power series solutions
are expressed in terms of the functions F\(ni). Regarding the actual
determination of the Stokes multipliers, we have only noted that, applying the
well-known Cramer formula for the solution of linear equations, they can be
evaluated, for instance, by the relations satisfying initial conditions. This is
indeed valid if the values oϊ F\(r) for r = 0, —1,..., —q + 1 are given in Theorems
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5.2-3. Moreover, if we occasionally have the exact values of both G/m) and
F\(m) for every m, we can immediately apply the Cramer formula to the linear
combinations for any q consecutive values of m and obtain the exact values of
the Stokes multipliers. Since it, however, is not easy to derive the explicit values
of F{F(w) which are considered as the modified factorial series, such a direct method
of calculation stated above cannot be expected to be applied in general.

In the theory of difference equations, a solution is used to be characterized
by its asymptotic behavior near infinity, i.e., by its terminal condition. We here
remind of the fact that the coefficients G/ra) are particular solutions of linear
difference equations, which are determined by initial conditions that 0/0)^0,
Gy(r) = 0 (r<0), and hence they have been expressed in terms of linear combi-
nations of an appropriately chosen fundamental set of solutions F\(m) of those
linear difference equations. Since we have already obtained the asymptotic be-
haviors of the solutions Fj(m) as w-»oo in the right half-plane, it therefore follows
that to seek the Stokes multipliers is exactly the same as to investigate how the
particular solutions G/m) behave near infinity in the right half-plane. In other
words, if we can know the asymptotic behaviors of the particular solutions G/m),
then we can immediately determine the Stokes multipliers by a method as follows:
For example, in order to determine Tf1(fc = l, 2,..., n\ / = !, 2,...,g) in (5.10),
we apply the Cramer formula to the linear equations

Gj(r) = Σ Σ T\lFy(r) (r = m, m + 1,..., m + q - 1)
Λ = l / = !

and then let m tend to infinity in the right half-plane.

As will be seen in Section 8, this method of terminal condition is very effec-
tive for the evaluation of the Stokes multipliers.

We shall now explain the method in more detail, treating, for simplicity, the
single linear differential equation

Π Π /" ̂ Λχ =
dtn I=Ί v^o

the connection problem for which has been investigated in the paper [10]. In
this case, the Stokes multipliers Tk

μ (7, fe=l, 2,..., n\ / = !, 2,..., q) must be
determined by the relations

(7.2) G/m) = Σ Σ JV),(ro) (j = 1, 2,..., n).
k=ί 1 = 1

The coefficients G/w) of convergent power series solutions of (7.1) satisfy the
linear difference equations
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(7.3) J(m + p;)G/m) = Σ Σ άiιr[m + Pj - r]n_(Gχm - r)
i=l r=l

with the initial conditions

(7.4) G/0) * 0, G/r) = 0 (r<0) (J = 1, 2,..., n),

where use is made of the notation

MP = P(P - 1)-(P - P + 1), Mo = 1,

and the functions /)/(m) have the asymptotic behaviors

(7.5) /fcίm) - ̂ !(m){l + Oίm-1/^)} (7, fc = 1, 2,..., n; / = 1, 2,...,

as m->oo in the right half-plane, gkji(m) being just the same as gkj\(m) in (6.13).
Considering the relations

(7.6)

(ω = exp(2πi/q);j, k = 1, 2,..., n; I = 1, 2

it follows from the Cramer formula that, assuming that G/

(7.7) Γ),=

fjι(m)

/jΊo
9n(m) ga

jq(m)
9ji(m)g1j2(m) gkjl(m) gnj1(m) gtt

jq(m)
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Wr1 -Gj(m+l)IGj(m)

•(Ar1/ίω«-1w1/«)-1 ...(Aj^ω1

x {1 +

_ σ/(ifi)

(Λ * = 1, 2,..., « ; / = ! , 2,..., 0)

for sufficiently large positive integral values of m, where Vqn(xί9 x2>".> xn«)
denotes the Vandermonde determinant and FJ^XU x2> > ΛJ * x«g) denotes a
determinant in which the j-th column (1, *,-,..., Xy11"1)* of the above Vandermonde
determinant is replaced by (1, yί9...9 yr,..., yqn-ι)* Since T*Ί are constants
not depending on m, letting ra-»oo in (7.7), we have

i/ίr Al/^ω"^"1) /f W A 1 /^Γ7 8^ T^ = Λ;^ g" _ v71! » • • • » Al "̂  _ > . » . > ^jv / » • • • » ^n > " . ?

1 ^ •" 7 "

lF,π(Aί/«,..., Ai/'ω-^-1),..., A^ω-"-1',..., AJ/V.. .

0, k = 1, 2 , . . . ,n;/= 1,2,...,

if we can know the relations

(7.9) lim

and
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(7.10) l i m m ^ ^ = dj(r) (r = 1, 2,..., qn - I) .

We can rewrite the above assertion in a more precise manner. Applying O.

Perron-H. Poincare's theorem stated before to (7.3), we easily see that the co-

efficients Gj(m) have the growth order Cy//Y — + 1 \ i.e., entirely the same

growth order as gkji(m) for sufficiently large positive integral values of m. From
this, if we put

(7.11) G/m) = 05,(ro)G5,(m) (7, fc = 1, 2,..., n; / = 1, 2,..., <?),

the relations (7.9-10) imply that

(7.12) HmG5I(m) = y}l
m-*oo

and

(7.13) Urn G^Λr) = rfJiW «?5ιO») * 0; r = 1, 2,..., <?«-!),
m->oo

thereby obtaining d/r) = (V^ω'-^-'dJiCr). From (7.3) and (7.11) we see
that the functions G}z(ra)(7, fc=l, 2,..., n; /=!, 2,..., g) satisfy the linear
difference equations

= Σ
i=l r=l

with the initial conditions

(7.15) G},(0) ^ 0, G$,(r) = 0 (r < 0) (7, k = 1, 2,..., n; / = 1, 2,..., g).

Therefore we conclude that if the particular solutions G}f(m) of the linear differ-
ence equations (7.14) subject to (7.15) have the properties (7.12-13), then the
Stokes multipliers T^ are given by (7.8). However, we do not insist that we can

always verify the relations (7.12-13) for those particular solutions.
We here make a remark on the linear difference equations (7.14). The

coefficients of (7.14) for each fixed triple (7, /c, /) have the following asymptotic
behaviors

i.e.,
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(7.16) lim Λ/Vίw) =
m->°° I 0 (r < tfi) .

Therefore the linear difference equation (7.14) is of the Poincare type and its
characteristic equation is given by

(7.17) <*«" = Σα^ίλϊ^ ω1-1)"^-0.

Obviously, qn roots of (7.17) are given by

(7.18) rf =fjjLY / <

ωι ( i = l , 2,..., n ; / = 1,2,.. .,<?),
\ A fc /

whose q roots d ί f ί(/ = l, 2,..., g) necessarily have the same absolute value. As
shown, illustrating an example, by O. Perron [18], in such a case that the char-
acteristic equation has roots with the same absolute value, it occurs that G^m-f
l)/G}/(w) is oscillatory. In practical applications we often encounter cases in
which all or some of the ratios in the left hand side of (7.13) for Igr^gn — 1
identically vanish and the remaining ratios have the limits.

Lastly we shall mention that even if the exact values of the Stokes multipliers
cannot be determined by the method of terminal condition and the like, our
theory still shows the usefulness for evaluating approximate values of them.

§ 8. Applications

In this section, in order to illustrate the effectiveness of our theory established
and to make a few remarks on the conditions imposed so far, we shall consider
the two point connection problem for the extended Airy equation

(8.1)

For n = 2 and v=ΐ this is just the Airy equation. It is well-known that G. G.
Stokes [20] first noticed a discontinuous change of coefficients appearing in
asymptotic representations of its solutions called Airy functions by a continuous
change of sectorial neighborhoods of infinity. Such a fact and coefficients are
named the Stokes phenomenon and the Stokes multipliers, respectively, after the
first discoverer. H. L. Turrittin [21] and J. Heading [4] considered (8.1) with
an integer υ and a rational number υ, respectively, and later B. L. J. Braaksma [1]
treated (8.1) with an arbitrary complex number v by means of the Barnes integral.

Now we rewrite (8.1) in the form
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(8.2)
dz«

and consider (8.2), where q is assumed to be a positive integer.**** Putting

z = tn and denoting f - - by ̂ , we can write (8.2) in the form

(8.3) O{^ -

Moreover, if we put

f > Ί = J ,
(8.4)

- n(n - 1)} - nnt*tt]y = 0.

2)}-ί^ -n(n-

(p = 2, 3,...,/ι),

then we have

(8.5)
+ n(n-p)yp (p = 1, 2,..., n - 1),

— n\ \β — n(n — l)}y = n"t4By1,

whence we obtain the following system of linear differential equations for Y"«

(8.6)

I n(n - 1) 1 0 )

n(n-2) 1

dt
0

\ nnt^n 0 ••

We here apply the so-called shearing transformation

(8.7)

0
1

to (8.6), and obtain the system of linear differential equations of the desired form

(8.8) t£jL = (A0 + Aqt*)X9

***) We can treat (8.1) with a rational number v. If ^=^- in (8.2), then we may only make

the change of variables z=tnj> in the analysis below.



A Two Point Connection Problem 121

where, putting pj=(n-j)(n + q)(j=l, 2,..., n),

( P i
P2.

*\

> o

0 ]

.

Pn <

[0 1

5 Aq =

0 1
.

, nn O-

\

* .
M
-oj

We shall now seek convergent power series solutions of (8.8) in the neigh-
borhood of the origin f = 0. It is easily seen that some of convergent power series
solutions are written in the column vectorial form

(8.9) Xj(t) = f* Σ e/m)r,
m=0

where the coefficients (j/w) satisfy the system of linear difference equations

f (m + pj - Λ (,)<$/w) = AqGj(m - q),

( 6/0) * 0, 6/r) = 0 (r<0).
(8.10)

From the initial conditions we can see that G/m) = 0 (mΦqm'\ m' = 0, 1, 2,...)
and hence, putting Gj(m) = Gj(qm)9 we have

(8.11)
(qm -f pj - = AqGj(m - 1),

Moreover we put G/m) = (gf^ 1)(m), gu 2>(m)9..., ^
α>w)(m))4s and write down

(8.11) componentwise as follows:

(8.12)

(qm 4- pj - pj)

(qm + PJ - Pn)g">»\m) = n«

- 1) (/ = 1, 2,..., n - 1),

- 1),

From (8.12) we can immediately see that for Orgfcrgn —:

0

0

(8.13) Gj(nm 4- k) = gU*k'\nm +

0

, 0

as long as the coefficients in the left hand side of (8.12) never vanish. However,

, k' = j — k (mod w),
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since for 1 ̂  k ̂  j — 1

(8.14) (4«m - kn)gU *-k\nm + fc) = gU J-k+»(nm + fc - 1),

we cannot determine gU>*~k\nm-\-k) for such integers m that m = k/q (1^/c^
7 — 1). For example, if # = 1, 2,..., n — 1, then we can write k = ql + Γ (O^Γ^
g — 1) for l ^ f c ^ j — 1, and for /c = g and m = / we cannot determine gU J-w
(nl + qΐ) from (8.14). In these cases logarithmic terms appear in the representation
of convergent power series solutions in the neighborhood of the origin f=0.
We therefore obtain the following:

Case 1 . If q ̂  n, then there exists a fundamental set of convergent power series
solutions of the form

(8.15) Xj(t) = i* Σ Gj(m)t«>» (j = 1, 2,..., n)
m=0

in the neighborhood of the origin ί=0, where the coefficients G/w) satisfy the
system of linear difference equations (8.11).

Case 2. I f l ^ ^ ^ n — 1, then for l^j^q we can seek convergent power series
solutions Xj(ί) of the form (8.15) and for each j(l^j^q) there exist v^ =
max{v^0;y 4-gv^ n} linearly independent solutions with logarithmic terms
associated with Xfa). We can write them as follows :

(8.16) xj+qy(t) = Σ r v^ v V(iog/) y- v^> vω (y = i, 2,..., vy)v=0 \Y v ) '

where XJt0(t) = Xj(f) and the functions XΛv(ί)(v= 1, 2,..., v7 ) are convergent power
series solutions of the nonhomogeneous systems of linear differential equations

(8.17) ί - - ^ Λ v = (Λ) + Aj*)XJfV - *,>-!« (v = 1, 2,...,

with the expressions

(8.18) XjtV(t) = toj+«* Σ e, +,v(m)ίm = tPi+qv Σ
m=0 m=0

Since py + q(v _ x } - ρj + qv = - g(n -f ^f), the coefficients Gy + qv(m) (v = 1 , 2, . . . , vy)
satisfy the nonhomogeneous systems of linear difference equations

(8.19) (m + ρj+qv - AQ)G^qv(m) = AqQj+qv(m - q) - GJ+q^1}(m - q(n 4- q)),

i.e.,
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(8.20) (qm + ρj+qv - A0)Gj+qv(m) = AqGj+qv(m - 1) -

123

- (n + g))

In the next stage we consider formal solutions of (8.8) which are given by

(8.21) X*(t) = exp(A-t«)l" Σo#*(s)r (fc = 1, 2,..., n),

where the characteristic constants λk=nω^~1 (k = ί,2,...,n), ωn=exρ(2πi/n).
The coefficients fik(s) satisfy the system of linear difference equations

(8.22)
(λk - - q)β*(s - q),

= o (r

From the initial conditions we can see that fik(s) = 0 (s^qs'; s' = 0, 1, 2,...) and
hence, putting Hk(s)=ίϊk(qs), we have

(8.23)
(λk - 1),

H*(0) * 0,

We can here put

(8.24)

= 0

ί 1

and from (8.23) for s = 1 and (8.24) we can immediately obtain

which determine the characteristic constants μk as follows:

^o.^j) fJ,fc == — \^K == 1, .Z,...,

This also implies that

(8.26)
7=1

0,

which is an invariant identity called Fuchs' relation. In order to derive the
growth order of Hk(s) for sufficiently large values of 5, we had better to apply
the constant transformation
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(8.27)
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1 1 - - . I

Hk(s) = CHk(s) = Hk(s)

to (8.23), obtaining the system of linear difference equations

ί (λk - Άq)Hk(s) = (A0 -μk + q(s - l»Hk(s - 1),
(8.28)

where and Aq = C~lAqC, i.e.,

Mi o ^λ2

\ 0 λ..

For this system of linear difference equations we can easily derive the estimate

of Hk(s) in a similar manner to the proof in the paper [8]. We have

(8.29) \\Hk(s)\\ ^ --
— )

N being a sufficiently large positive integer, where we have put

\λk — λk\ = min \λj — λk\ = n\\ — ωn\,

« = ll^o II + N

Hence we have

(8.30)

(8.31) \\H*(s)\\ ί q_ ̂  r(s - I + |-

( Λ = 1,2,. ..,«),

M being an appropriately chosen constant.
According to our theory, we now have to consider two q-th order linear

difference equations

(8.32) λkφ
kj(m + q) = (m + Pj - μk)φkj(m) ,

(8.33) (m + PJ - μjg^m) = λkg
kj(m - q) (j, k = 1, 2,..., «),
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which correspond to (2.4) and (2.6), respectively, where 0^ = 0 (/ = !, 2,..., g — 1).
For each pair (7, fc) (7, fc = l, 2,..., n) we take the fundamental set of solutions

of (8.32)

(S.34, *

(m + - μk

/g); / = 1,2,..., 4),

which are characterized by the asymptotic behaviors (2.5), and then, as a funda-
mental sets of solutions of (8.33), take the following q solutions defined by (2.13):

(8.35)

We here make a remark. If (m + pj — μk)/q + l=-N (ΛΓ = 0, 1, 2,...), then
all #}/(m) (/=!, 2,..., g) and also the Casorati determinant ^^(m) vanish, more

precisely, have simple isolated zeros at such values of m. On the other hand,

Φji(m + <ϊ)(l = l> 2,..., q) and the Casorati determinant &φk(m + q) have simple

poles only at such values of m. Reminding of the definition that no identical
vanishing of the Casorati determinant implies the linear independence of solutions
of linear difference equations, we can say that φji(m) and #}j(m)(/ = l, 2,..., q)
actually form the respective fundamental sets of solutions of (8.32) and (8.33) in
the whole complex m-plane. Moreover we immediately see that the product

0ί/(m)Φy/(m + #) nas no singularities in the whole complex m-plane except for
infinity, i.e., are entire and the important relations (2.16) necessarily hold every-
where. This is indeed the case in the considerations of Section 2, though we did
not explain the above fact explicitly. Only by reason of a concise explanation of
our theory we have assumed throughout Sections 2-6 that pj — μ^ an integer,
considering that m ultimately takes integral values. As just shown, the condition
that pj — μk¥^ an integer is not essential and can be dropped by a slightly detailed
observation.

We shall now define the functions F^t(m)(j9 fc=l, 2,..., n; / = !, 2,..., q) by

(8.36) Ffcm) = Σ fr(s)gkji(m + s)
s=0

= Σ H*(s)0Mm + aq) (j, k = 1, 2,..., n; / = 1, 2,..., q).
s=0

Taking account of (8.31) and (8.35), we can prove the well-definedness of these

functions. For the moment assume that Rem> ̂  + ̂ )v^-l) j^ we

have
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(8.37)
s=0

j-vk

ΛlV I
« _ Λ I
? /I

(f - O.(1)

i
L'\λk-λk

where we have used the notation

(α)0 = 1, (α), = α(α + l).. (α + s - 1) (5 = 1, 2,...)

and Ffaβ γ z) denotes the hypergeometric series. We easily see that the

hypergeometric series in (8.37) is convergent for •*— -̂r— <1. From (8.30)
Λ fc ~ Afc

this condition implies that 1<|1 — exp(2πi/n)|, which is satisfied only for n^5.
For this reason the condition that \λk\<\λj — λk\(j^k',j, fc=l, 2,..., n) was called
the pentagonal condition by K. Okubo [14]. However, under the assumption

I — -̂ - +1 > 0 the hypergeometric series is well-defined

_Afc
*Λ""~Λ fc

for > 1, the hypergeometric= 1 and moreover, even if

series has meaning through the principle of analytic continuation. From this,
it will be seen that the pentagonal condition imposed so far is not essential.
In case the pentagonal condition is not necessarily satisfied, it seems that the
ε-parameter method originally developed in the paper [14] is more effective for
the proof of the well-definedness of the functions F^(m).

We can easily verify, as in the preceeding sections, that for each j the functions
F)z(m)(/c=l, 2,..., n; /=!, 2,..., q) form a fundamental set of solutions of the
system of linear difference equations (8.10) in the right half-plane Rem>
(n + q)(n-l)

Just by means of (8.10), however, the domain of definition of the
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functions F),(w) can be extended to the left half-plane Re m ̂

Moreover we can determine the Stokes multipliers 71}, (fc=l, 2,..., n; /=!,
2,..., q\ obtaining

(8.38)

In Case 2 we introduce the functions #J/)V(m)(;= 1, 2,..., # ; / = !,

defined as (2.20), i.e.,

(8.39) 0$ί>v(m) = ̂ __^

which are solutions of the nonhomogeneous linear difference equations

(8.40) (m + pj - μfc)0},,v(m) = λkg
k

jl)V(m - q) - .̂̂ (m)

(v = 1, 2,...,vy),

where gk

jl^(m) = gk

jι(m)(l = l,2,...,q) are solutions of (8.33) for j = l, 2,..., g.
Then we define the functions, the well-definedness of which can be proved in
exactly the same manner stated above,

(8.41) F*,,v(m) = £ Hk(s)gk

jl>v(m + sg)
s=0

(j = 1, 2,..., 4; v = 0, 1,..., vy; fc = 1, 2,..., π; / = 1, 2,..., ^).

We can see that for each j (j = l, 2,..., g) the functions F)/tV(m) satisfy the
nonhomogeneous systems of linear difference equations

(8.42) (m + pj - A0)Fk

jltV(m) = AqF
k

jlfV(m - q) - FJ^-^m)

where we put Fj ί >_1(m)Ξθ. From (8.42), by induction, we can prove the
following relations, together with determining the Stokes multipliers :

(8.43) Gj+qv(m) = Σ Σ Σ Tk

jl>γF
k

JlfV.γ(m - vq(n + q))
J * y = 0 fc=l /=!

(j = 1, 2,..., q\ v = 0, 1,..., v,).

In fact, for each fixed j(jf = l, 2,...,q) let the Stokes multipliers Γ)/ty(y = 0,
1,..., v; fc=l, 2,..., n; / = !, 2,..., ^f) be determined. Then, multiplying both
sides of

(m - (v + l)q(n + q) + PJ - A0)Fk

jltV+i.y(m - (v + l)q(n + q))

i-yίm - 9 - (v + l)β(n + q)) - Fk

JltV.y(m - (v
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by Tj / f y and summing them over /c, / and 7 from 1 to n, from 1 to q and from 0
to v, respectively, we have

(m + pj+(v+ί)q - Λ0) Σ Σ Σ Tk

jltyFjl>v+1-y(m - (v + l)0(n + q))
γ-O fc=l ί=l

v n β

y=0 Λ=l /=!

- q(n

where we have used Pj — (v+l)q(n + q)=zpj+(v+1)q9 which implies that the sum is
a particular solution of (8.19) for v + 1. Therefore we can determine the Stokes
multipliers T*ΊfV+ί(k=l9 2,..., n; / = !, 2,..., q) and obtain

.v+^.oίm - (v + IMn + <?))

+ Σo fcΣ Σ/^.^.^^.Xm - (v + 1)0(11 + 4)).

Now we shall calculate the exact values of the Stokes multipliers Tk

jh for

simplicity, in Case 1 by the terminal condition method. For that purpose, we

first seek the explicit formulas of the coefficients Gj(m)(j = 1, 2,..., n). It follows
from (8. 12-1 3) that

(8.45)

. r(ι +
q-mn pj \

Hence, if we put

then we have
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ή / 1 , 7x1
ί=1 Γ( m + 1 + ]-γ

(8.46)

Considering the fact that 6/(mn + j-l)q) = (g^ 1\mn + j-l)rO,..., 0)* and
Gj((mn+j— ί)q + r)=0 (r=l, 2,..., q — 1), we solve the linear equation

(j= 1,2,. ..,«).

n q

r) = Σ Σ '
fe=l 1=1

by the Cramer formula, thereby obtaining

ί 1 \
0

ό

0

(8.47) Tfr °

4- j - 1)« + r)

(r = 0, l,...,β-l)

H"(0)

(Λ fc= 1, 2,...,n; / = 1,2,...,4),

where we have used the asymptotic relations

flf )f(w + r)

0M"1)

Taking account of (8.24) and rearranging rows of the determinants in the order

Ag"1, Ag"1(AJ/βω~(I~1)),..., Ag"1^^9^)^'"1^"1)*, we see that the constants in
(8.47) are always of the form
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1 1
0 x2 x

I
X2

rP-l

where Xj (j = 1, 2, ...,/?) are solutions of the equation f(x) =Yl(x — xt) = 0. Since

x/M = Λ,ι/*oΰ~(/~1)(fc= 1, 2,..., n; / = 1, 2,..., ςf) are solutions of the equation

λ2) (x«-Aπ) = x« l l-nπ = 0, we have

and hence we find that the constants in (8.47) are equal to (1/gπ) . On the other
hand, taking account of (8.35) and (8.46), we have

+ j - 1)
kjι((mn + j -

q-1/2
_

χifl
L-L)

n /

where we have used Gauss' multiplication formula

Γ(nz)=-£-

together with Stirling's formula. Consequently, letting m-κx> in (8.47), we



A Two Point Connection Problem 131

obtain

(8.49) ΓJ, = (^y"1+(P;""'c)/'ω('-υ^-^)((2π)-^)^/^

0, fc = 1, 2,..., n ; / = l,2,...,ί).

Thus we have solved the connection problem for (8.8) as follows:

(8.50) Xj(t) ~ £ Tk

jlkX
k(t) (j = 1, 2,..., n)

as f->oo in the sector S(ll9 /2>..., U = Sll(A1) n S/2(A2) n ••• n Sln(λn), where

(8.51) ^α*) : - L + _ L / ̂  ar

Similarly we can determine the explicit values of the Stokes multipliers Tk

jltΊ

in Case 2 after a more complicated calculation.
Taking account of the change of variables z = ίn, (8.4) and (8.7), we shall

now return to the original differential equation (8.2). Let yj(z)(j = ί 9 2,..., n)
be a fundamental set of solutions of (8.2) which can be written in the form

(8.52) yj(z) = r<"-»qtp' Σ g(J'1)(mn + j - i
m=0

= /<--»• Σ Γή / l

 f - / \ * g " ' )

= z-* Σ Π —7 - - f U ' g " " ) " (7 = 1,2,..., n).
— [-» Γ(m + 1 + L_JL)J

From (8.21) we see that formal solutions of (8.2) are given by

(8.53) yk(z) = exp(^z*/*
s=0

where the coefficient hk(s) denotes the first component of the column vectorial
coefficient Hk(s). Then (8.50) implies that

(8.54) yj(z) ~ Σ̂ T]lky
k(z) (j = 1, 2,..., n)

as z->oo in the sector S(ll9 /2,..., /w) = Sί

1

1 n Sf2 Π ••• Π Sjn9 where

(8.55) Sf: (21 - 3)nπ - 2(/c - l)π ^ argz« < (21 - l)nπ - 2(/c - l)π.
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This result has the more explicit expression than derived by H. L. Turrittin and
others (see B. L. J. Braaksma [1]).

To see the above result more vividly, we consider the global behavior of

Ai(z) called the Airy function of the first kind in the sector |argz|<-~-π. Ai(z)

is a particular solution of (8.3), where n = 2 and q = 39 and is expressed in terms of
(8.52) as follows:

(8.56) Ai(z) =
-3m ~3m+l

m=0

From the connection formula (8.54) just derived, we have

(8.57) Ai(z) ~ (3-2/3ΓlZl - 3-^T\ll)yl(z) + (3~2/3J

as z-»oo in the sector S(ll9 /2) = 'Sί/1 Π S?29 S^ being written in the concise form

(8.58)

In the above the formal solutions yk(z)(k=l9 2) are explicitly written in the form

( 2 \ °°

^ / s=0

\: y (21 - k - 2)π ^ arg z < -|-(2/ - k)π .

(8.59)

/ 9_ eχnf _2_^3/
— exp \ -yZ 'V 3

= expf - -f
\ -̂

λ \ Γ(S + -ΐ)Γ(S + ΐ)AY V O / V O / ..-3S
- --- —

5=0

Considering that the sector |argz|<4-π is covered by S(0, 1) U S(l, 1)U5(1, 2)

U S(29 2) and the Stokes multipliers corresponding to S£ (fc=l, 2) are given by

we can calculate the coefficients in the right hand side of (8.57) as below.
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\ __L_

4 2- y7r < arg z < - y π

- J- π ^ arg z < 0

0 ̂  arg z < y 7r

2 4
-yTΓ <ς arg Z < y π

5Sn5f

sin si

sins*

stnsi

3-^nll-3-^T{ll

i
2Jπ

0

0

I*

2VT

3-2/371,2-3-</'Γ?Z2

1
2V^

1
"2/F

1
2/ Γ

1
2V^"

From the above table we at last obtain

.\ i 1 ,.2/~(8.60) Ai(z) ~ — i

exp 4 Σ5=0

(8.61)

in ~ » < arg z < - π,

— π < argz < π,
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(8.62) Ai(z)

1 / Σ Λ K j ) * ~3j/2 in π < argz < π.
s=o ^

From this, we see that the Stokes phenomenon of Ai(z) occurs when z goes across
the negative real axis argz= ±π, i.e., the negative real axis is the actual Stokes
line of Ai(z). Similarly we can analyze the global behavior of the Airy function
of the second kind Bi(z) by exactly the same method as above.

Lastly we mention that our theory can be applied to a variety of problems
for linear differential equation involving parameters, e.g., turning problems and
eigenvalue problems. In particular, we call attention to the analysis by J. B.
Mcleod [12], in which he clarified, treating (8.1), a close relation between the
solution of connection problems and the determination of the distribution of
eigenvalues for singular boundary value problems (see also Y. Sibuya [19]).
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