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§1. Introduction

A two point connection problem for linear ordinary differential equations
in the whole complex plane is to seek the explicit connection formulas between
two fundamental sets of solutions locally defined and to analyze global behaviors
of solutions. In this paper we shall be concerned with the system of linear
differential equations

(1.1) IX _ (Ao + Ayt ++ 41X,

where the coefficients 4; (i=0, 1,..., q) are n by n constant matrices, and derive
the connection formulas between two fundamental sets of solutions in neighbor-
hoods of t=0 and t=oc0.

The origin t=0 is a regular singularity of (1.1). According to the local theory
of systems of linear differential equations (see W. Wasow [23, Chapters I and V),
an application of a finite number of constant transformations and the so-called
shearing transformations reduces (1.1) to a system of linear differential equations
in which the leading coefficient matrix is of the following Jordan canonical form:

R o, .
(1.2) /40= . ’dl=pi+',i*) (l= l, 2;'“: V),

0 o,

x) Throughout this paper, as in this expression, use will be made of the notation that a scalar
in the matrix representation denotes a diagonal matrix whose diagonal elements equal that
scalar.
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where p;— p;# a nonzero integer (i# j) and
0 0
10
(1.3) J, = l'°'
0 10

Then the reduced system of linear differential equations possesses, corresponding
to each n; by n; Jordan block .«7;, a set of convergent power series solutions near
t=0, which are expressed in terms of the column vectorial form

(1.4) Xi() = ,il Tl—_—l—j)—!(log 0% (=1,2....n)
(1.5) Ry = 4 3 Gimm oy = pis = 1, 2o,

and it turns out that a fundamental set of solutions near t=0 of (1.1) consists of
v sets of convergent power series solutions with the expressions similar to (1.4) and
(1.5), where for each fixed i every characteristic constant p;; differs from the others
by integers.

On the other hand, t= o0 is a singularity of Poincaré’s rank g for (1.1). In
order to see whether t= o0 is an irregular singularity of (1.1) or not, we have to
apply W. B. Jurkat and D. A. Lutz-J. Moser’s theorem [7, 13] to (1.1). However,
if the integer g =1 and the matrix A, is similar to

A 0
A2

)
]

(1.6) . s A # 0, Ay # (k#J)),

0 e
then t= oo is certainly the irregular singularity of (1.1) at which we can immediately
find formal power series solutions of the column vectorial form

k ©
(1.7) Xk(t) = exp @_ktq + fiﬂfﬂ“ + o+ ake )t S Hé(s)ts
- =0

k=1,2,...,n).

In more general cases when t=oo0 is the irregular singularity and the matrix 4,
has multiple eigenvalues, applying the ingenious theorem established first by
M. Hukuhara [5, 6] and independently by H. L. Turrittin [22], we can reduce
(1.1) to the canonical system of linear differential equations
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dx - . -
(1.8) v = {0k A() + pe + Ji) + Byt + Byt™2 4.+ Byt™M}X

k, j=1,2,.,v),

where 6, ; denotes the Kronecker delta, i.e., the first term in braces is the block-
diagonal matrix, #,(t)(k=1, 2,..., v) are polynomials of the form

/‘k(t)=lkth +ali§—lth—1 +"'+al1‘t (k= 19 29"-5 V), .

h being a positive integer, and J, (k=1, 2,..., v) are n, by n, shifting matrices
stated in (1.3). From (1.8) we can also easily find the explicit expressions of
formal power sereis solutions at infinity.

Considering the above fact, we deal with two systems of linear differential
equations in this paper. In Section 5 we first consider the two point connection
problem for (1.1) which possesses convergent power series solutions of the form
(1.4-5) and formal power series solutions of the form (1.7). For simplicity, we
from the outset assume that Aq=p+J and Aq=ﬁq. Next in Section 6 we treat
the canonical system of linear differential equations (1.8) which is assumed to
possess a fundamental set of convergent power series solutions involving no
logarithmic terms near the origin. The two point connection problem for systems
of linear differential equations of more general types will then be solved by a slight
modification of these considerations.

Now we shall shortly explain our method of attack in the former case. Our
method is based on the expansion of convergent power series solutions in series of
functions whose global behaviors can be somewhat easily analyzed.

Putting n;=n, p;;=p and dropping the superscript i from X¥(1), X i(t) and
Gi(m) in the expressions (1. 4-5), we can write a fundamental matrix of solutions
of (1.1) in the form

(1‘9) (Xl(t), XZ(I)"", Xn(t)) = (Xl(t)9 X2(t)""’ Xn(t))t','s

where J, is the transposed matrix of the n by n shifting matrix J. Hereafter we
use the notation that a matrix 4, denotes the transposed matrix of 4. The func-
tions X (=1, 2,..., n) defined by the convergent power series (1.5) satisfy the
systems of homogeneous and nonhomogeneous linear differential equations

(1.10) ,dgl = (Ao + Ayt ++ AR,
(1.11) td;?tj=(A0+A1t+--~+Aqtq)Xj—)?j_l(t) (j=23,..,n).

Substituting (1.5) into (1.10-11) and identifying coefficients of like powers of ¢,
we see that the coefficients G;(m)(j=1, 2,..., n) are determined by the following
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systems of linear difference equations of the g-th order
(m + p — Ag)G,(m)
(1.12) = A,G,(m - 1) + 4,G,(m — 2) +---+ A,G,(m — q),
(p— A49)G1(0) =0, Gy(r) =0 (r<0),
(m + p — Ao)Gy(m)
(1.13) =A;G(m — 1) + 4,G(m — 2) +--+ A,G(m — q) — G;_(m),
(p—A0)G0) = — G;_4(0), G{(r) =0 (r<0) (j=23,.,n).

Similarly, we see by the same procedure as above that the coefficients H¥*(s)
(k=1, 2,..., n) of the formal solutions (1.7) are determined by the systems of linear
difference equations of the g-th order

(A, — AH () + (A, — ak_)H*(s — 1) +--
(1.14) +(A; —a)H*(s — g+ 1) + (4o + 5 — g — w)H*(s — q9) = 0,
(A, — WH¥0) =0, H*r) =0 (r<0) (k=1,2,..,n),

where we can put

1 ] 0 0
0 1 :
(1.15) HY0) = , H*(0)=| 0 |,..., H*0) = :
: : 0
0 0 1

We then establish the following expansion theorem, together with showing a
method of determining the constant coefficients T¥i(i, k=1, 2,...,n; =1, 2,..., q)
called the Stokes multipliers:

(116) (Gl(m)a Gz(m)s-“’ Gn(m))

> Y HYs)(TE, TH2,..., TE)@Hm + s)y

©
s=0 k=1 I=1

(117) (Xl(t)9 X2(’)a--w Xn(t))

-~

I

mio(Gl(m)’ G,(m),..., G,(m))tmtets

I

00 n q
2 3 S HAO(TH, T, TIYHE 9™,

where the n by n matrix functions Y¥(t, s) are defined by
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(1.18) Yf(t,s)=to§0.<¢f(m+s)rm k=1,2.,n51=1,2,..,q).

We call the matrix functions Y#(¢, s) the fundamental matrix functions associated
with the two point connection problem to be considered from the fact that they
are defined only by the characteristic constant 4,, a%_,,..., 4 and p, and have just
the same behaviors in the respective neighborhoods of two singular points as the
desired global solutions of (1.1). From (1.17) and the global behaviors of the
associated fundamental matrix functions Y¥(t, s) we can prove that in every
sectorial neighborhood of infinity S(ly, I,,..., ,) there exists a fundamental set
of actual solutions X(t)(k=1, 2,..., n) such that X¥(f)~ X*(t) as t—oco and the
connection formula

(1.19) (X1(1), X5(0),..., X,(1)
TiIT§2 - T
= (X}®, X3, ..., x3@) | TRTHE - TH
THTE T

holds. Since S(Iy, 1,,..., I)(1£1,, 1,,..., I,<q) cover the whole complex t-plane,
from (1.19) we can immediately clear up the Stokes phenomenon.

The method stated above was established first by K. Okubo [14] and has
been extended in a series of papers [15, 9, 10]. However, in those papers we did
not explain the fact that the error terms in the asymptotic expansion formulas
of their final results can be removed, and also did not give the concrete method
of evaluation of the Stokes multipliers. As one of our objectives of this paper,
we shall show that the error terms can be dropped, and moreover that the exact
values of the Stokes multipliers can be evaluated if the asymptotic behaviors of
the coefficients G (m)(j=1, 2,..., n) as m— oo are known.

The asymptotic bahaviors of the coefficients #¥(m) of the associated funda-
mental matrix functions (1.18) for large m play a basic role in the analysis to follow,
for instance, in proving (1.16) and in evaluating the Stokes multipliers. The
functions ¢¥(m) (=1, 2,..., q) form a fundamental set of solutions of the system
of linear difference equations

(1200 (m+q+p—p+ DM+ q) — akg*(m +q — 1) —---
- Ot’,;_lg"(m + 1) - lkgk(m) = 0.

In the next section, in order to obtain the asymptotic behaviors of #f(m), we
shall investigate the relations between #¥(m)(I=1, 2,..., q) and a fundamental
set of solutions @¥(m)(I=1, 2,..., q) of the system of linear difference equations
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(1.21) LP(m + q) + ak_ PKm + g — 1) +--
+ akP*(m + 1) — (m + p — p, + J)P*(m) = 0.

Since the solution ®¥(m) can be expressed in terms of a modified gamma function
and its derivatives, we consequently obtain the desired results for @¥(m) with
the help of the study of the modified gamma function by N. G. de Bruijn [2].
Moreover, taking account of the relations between #¥(m) and ®%(m) just derived,
we can obtain the well-formed results as to the global behaviors of the associated
fundamental matrix functions Y{(¢, s) in Section 3.

In guaranteeing the validity of the expansion (1.16), we have to estimate the
coefficients H*(s)(k=1, 2,..., n) for sufficiently large positive values of s. The
derivation of their estimates is a difficult and complicated work since there is no
general way to obtain the growth order of solutions for such systems of linear
difference equations (1.14) with a singular matrix as their coefficient of the highest
order. In Section 4 we shall explain a method to reduce (1.14) to normal systems
of linear difference equations and then, applying O. Perron- H. Poincaré’s
theorem, we shall obtain the estimates of H*(s), together with showing how to
determine the characteristic constants a%_,,..., o and p.

Section 7 deals with the evaluation of the Stokes multipliers and in the last
section we shall apply our theory established to the solution of the two point con-
nection problem for the extended Airy equation.

§2. Relations between two systems of linear difference equations

As will be seen in the later sections, the matrix function &(m), which is defined
as a solution of the matrix form of the system of linear difference equations (1.21),
appears as the Stokes multiplier in the study of the asymptotic behavior of the
associated fundamental function Y(¢, s) and on the other hand, the asymptotic
behavior of the matrix function ¢(m) as m— oo is needed in several stages of our
analysis. So in this section we shall make clear the explicit expressions of the
matrix functions ®(m) and ¢(m), obtaining the important relations between them.
In fact, we can express the matrix function @(m) in terms of a modified gamma
function and its derivatives.

From now on we assume that m is the complex variable since an integral m
is regarded as an integral value on the real axis of the complex m-plane.

First we summarize some results derived in the previous paper [10].

Assuming for the time being that Rev>0, a modified gamma function is
defined by the integral

(2'1) F(VI ’yk)=r(v: yq—l"“’ Vis-o> ’YI)
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= ® —n—q—%—lﬁ k) v—ld
Soexp( q 1;1 k)N s

where the abbreviation that the dependence on g—1 complex parameters
Yg—15-++» Yio+++» Y1 18 represented only by the k-th parameter y, has been used and
hereafter will be used throughout this paper.

By partial integration we easily obtain the g-th order linear difference equation

2.2) VE(v:y) =T+ q:y) + 7L +q = 1iy) +-+9 0+ 1: )

and from this, we immediately see that the modified gamma function I'(v: y,) can
be analytically continued over the whole complex plane except for v=0, —1,
—2,.... Therefore the above condition imposed on v can be replaced by the
condition that v# a non-positive integer.

If we put

.3) ¢(m)=TI(m+ p — p: gl MakU=D)(J-tagl-tynte=r (] =1, 2,..., q),

where A YVe=|A|"Yaexp(—iargi/q)(—n<argi<mn) and w=exp(2ni/q), then
we find from (2.2) that o(m)(I=1, 2,..., q) are particular solutions of the linear
difference equation

24)  Adm + q) + tg_yd(m + g — 1)+t ayd(m + 1) = (m +p — wp(m).

With the aid of the detailed study of the modified gamma function by N. G. de
Bruijn [2; Chapter 6], we can prove the following

ProPosITION 2.1. Under the assumption that p—u# an integer, ¢,(m)
(I=1, 2,..., q) form a fundamental set of solutions of the q-th order linear
difference equation (2.4). Each solution ¢,(m) has the asymptotic behavior

1/2 0
2.5) ¢,(m) ~ (A“”w"‘)"’*‘""(—%’i—) exp <ﬂ logm — memy c,km‘*/q)
qm q q k=1

X (i d,km"‘/q) asm— o0 in larg(m+p—pl<mn-—39,
k=0

where diy=1 and 6 is an arbitrarily small positive number.

The latter part of the above proposition is due to N. G. de Bruijn and then
the former part can be proved by using these asymptotic expansions (2.5).

The relation between a fundamental set of solutions of (2.4) and that of the
linear difference equation

(2.6) —-(Mm+qg+p—wgm+q) +o9(m + g —1) +-+ g g(m + 1)
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+ Ag(m) =0
is very important. Let us denote a fundamental set of solutions of (2.6) by
.7 g1(m), g,(m),..., g,(m),
and its Casorati determinant by % ,(m) as follows:
g1(m) g2(m) "+ gq(m)

28 @,m=|91m+D gam+1) g m+1)

gim+qg—1) gym+q—1) g m+g—1)

We denote the cofactor of the (j, k) element g(m+k—1) in the above repre-
sentation of the Casorati determinant by A4Y-¥)(m). Similarly, ¥,(m) and
4Y-¥(m) denote the Casorati determinant constructed by a fundamental set of
solutions ¢,(m)(I=1, 2,...,q) of (2.4) and the cofactor corresponding to the
(j, k) element ¢;(m+k—1), respectively. We then have derived the following
results.

PROPOSITION 2.2. Let us denote

Ag’f,l)(m)

(2'.9) E;(m) =

and
(2.10) e,my=A40m=q) ;5

A€ ,(m — q)

Then the functions E(m) form a fundamental set of solutions of (2.6), and
conversely, the functions & (m) form a fundamental set of solutions of (2.4).
Moreover, for each j(j=1, 2,..., q), we have the following relations:

@l11) —-(m+k+p—pwWEm+k)+uE(m+k—1)+--+ 0, E;(m)

Ay,k+1)(m)
_—W (k—O, 1,...,q"1),
(2.12) A8;(m+ k) + oy &i(m + k — 1) + -+ 0, 8 ;(m)

ASJ,uH)(m — q)
== > 1 k=0,1,..,q-1).
€q(m—q) ( q )

Taking account of Propositions 2.1 and 2.2, we shall from now on take

(2'13) gj(m) = - J(m) (J = 1’ 29'"’ 4)
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as a fundamental set of solutions of (2.6), and then we can easily obtain the ex-
plicit asymptotic expansion formulas for g;(m), together with the relations needed
later. We summarize them in the form of

PRrROPOSITION 2.3. We have

_ATVa . maDia { oy } .
2.14)  g;(m) 7 w $,m T D) 14+ 0O(m=19) G=12,...,9

and

(2.15) ﬂ—%’ﬁ(;)—”-~wwwf-l)-fm-w{l+0(m‘1/4)} G=1,2.9
Jj

for sufficiently large values of m in the sector |arg(m+p—p)|<n—34, 6 being an
arbitrarily small positive number. Moreover we have the following important
relations:

2.16) [igm — DIgi(m + g — 1)
+ [Agi(m —2) + a,_yg;(m — D]p(m + g — 2)
+
+ Dgm — @) + agyg (m — q + 1) -+ + oy g,0m — D]pm)
1 for j=1,
0 for j#I (J,1=1,2,...,9).

Proor. The asymptotic expansion for g,(m) can easily be derived from
(2.5) and (2.9), and the asymptotic formula (2.15) is an immediate consequence of
(2.14). As for (2.16), it follows from the relation (2.11) that

Agm—qg+k—-1)+o,_,g(m—qg+k+-+ogiim-1)
=—AE(m-q+k—-1)—o,_E(m—q+k)—-—oEi(m—1)
= 1E{m) + o, 2E(m+ 1)+ + E(m+ k —2)

—(m+k—14p—wE(m+k—1)

- Agf,k)(m)
?‘ﬁ(m) '

Hence the left hand side of (2.16) is equal to

g¢l(m) {Af{'q)(m)%(m +q-1)+ Afj,j""”(m)d;l(m +q=2) +-
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+ 4§ D(m)p(m)},
thereby obtaining the desired result.

Now we shall investigate the properties of solutions of two systems of linear
difference equations (1.20) and (1.21), omitting the index k.
Setting

¢1(m) g'(m)
omy) =| ™ | gm =| 9™

¢":(m) g”:(m)

and substituting them into (1.21) and (1.20), respectively, we have the following
linear difference equations of a scalar type:

Apt(m + q) + oy P'(m + q — 1) +--+ a;d(m + 1)
=(m + p — Woi(m),
(2.17)
Api(m + q) + oy pi(m + g — 1) +---+ aydi(m + 1)
=(m+p—wWeim) + ¢~ (m)  (j=2,3,..,n),
(m+p— pwg'(m) = a;g'(m — 1) +-+ a,_1g'(m = q + 1)
+ Agl(m — q),
(2.18) . . .
(m + p — g’(m) + g/~(m) = a;9°(m — 1) +---
+ a,—19(m — q + 1) + Agi(m — q) (j=23,.,n).

We first collect some easily verified results.

LeMMA 2.1. Particular solutions of the nonhomogeneous linear difference
equations in (2.17) and (2.18) for j=2, 3,..., n are given by

i di-1
@19) #1m) = Gy G (B1(m))
and
(2.20) gitm) = —L1 A iomy) (=2, 3,...,n)
: G=1)1 dmiT 2 3oees ),

respectively, where ¢p'(m) and g'(m) are solutions of the respective homogeneous
linear difference equations.

ProoF. The proof will be immediately done by induction, considering
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the relations

(/(m)) = jpI*!(m),
(m + p = (@MY + GI(m) + (I (m)) = AP/ (m + @Y +-++ay($(m + 1)
and the like, where the prime denotes differentiation with respect to m.

LeEMMA 2.2. Let ¢p'(m) and g'(m) be solutions of the homogeneous linear
difference equations in (2.17) and (2.18), respectively. Then we have particular
matrix solutions of (1.21) and (1.20) expressed in the form

(2.21)  ®(m) = exp (Jﬁ)@(m) = $1(m) + GAm) + -+ Pr(m)Jn1
and
(222)  9(m) = exp (gL )g'(m) = g*(m) + g2(m)J + -+ + g (m)",

respectively.
Moreover, if we put

(2.23) d(m + r)g(m) = Ad(m: r),

r being an arbitrary number, then A(m: r) can be written in the form

(2.24) Am: r) = 8'(m:r) + 62(m: r)J +---+ 6"(m: r)J1,
where
(2.25) dm:r) = kZi"&(j)f“"‘(m + r)g¥(m),
. j—1 .
(2.26) oi(m: ) = 1 71 d‘f;j_l sim:r)  (j=1,2...,m).

Proor. We observe from Lemma 2.1 that &(m) satisfies the system of linear
difference equations (1.21) as follows:

(m+p—p+ N)®(m)
=(m+p — p+ J)($(m) + $*(m)J +---+ ¢"(m)J""1)
=(m+ p — wp'(m) + {(m + p — WP*(m) + $'(M)}J +---
+{(m + p — we"(m) + ¢ (M)}~ + p"(m)J"
= {a;¢'(m + 1) +--+ Ap'(m + P} + {0,9*(m + 1) +---+ 1p*(m + q)}J
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+- 4 {ap"(m + 1) +---+ Ap"(m + g)}J !
=, P(m+ 1)+ + AP(m + q).

Similarly, we see that ¢(m) defined as (2.22) satisfies (1.20). Since the formulas
(2.25) can be derived directly by multiplication, we shall prove the formulas
(2.26). From the relation

(I(m + r)gk(m))’ = j@*(m + r)gh(m) + k¢p’(m + r)g**'(m),

it follows that

(Bm: 1) = £ 1G + 1 = K3GI40m + r)gh(m) + k140 + 1gt*1(m)
= B 1m + Igim) + 3 (+ 1 = Kg*3H(m + Ighom)
+ 3 (k= 1G24 + ghm) + j§m + g *m)

Jj+1
=7 % ¢ Hm + r)ghm)
= jéiti(m: r)
and hence the required formulas (2.26) are obtained.

We now take the functions ¢{(m)(l=1, 2,..., q) defined by (2.3), and then
take the functions gi(m)(j=1, 2,..., q) defined by (2.13) as the respective funda-
mental sets of solutions of the homogeneous linear difference equations in (2.17)
and (2.18). Then we have the following important results.

THEOREM 2.1. The qn column vectors of the matrices

(2.27) ®(m) = exp<Jj‘,’~n—)¢,l(m) (A=1,2,..9
and
(2.28) @ (m) = exp<J7d”T)g}(m) G=1,2..,49)

form the respective fundamental sets of solutions of the systems of linear differ-
ence equations (1.21) and (1.20). Moreover we have the relations

(2.29) ®(m + q — ) [Ag;(m — 1)]
+
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+ &(m)[AZ(m — q) + oy %j(m —q + 1)+ + ;& (m — 1)]
1 for j=1,

0 for j#1 U, 1=1,2..9.

ProOF. In order to prove that the gn column vectors of &,(m) and ¥ (m)
(I=1, 2,..., q) form a fundamental set of solutions of (1.21) and (1.20), respectively,
we need only show the nonvanishing of the respective Casorati determinants
€ o(m) and € 4,(m). After simple calculations, we obtain

Co(m) = G y(m)€y(m + 1) Cy(m + q — 1),
Cg(m) = € ,(M)E,(m + 1)---F,(m + q — 1),

the right hand sides of which never vanish from the assumptions, and we have
thus proved the first part of the theorem. As for the relations (2.29), taking
Lemma 2.2 into consideration, we can write the left hand side of (2.29) in the form

iy(m—1:q)
+ Ay(m —2:q) + oy 4(m—1:q — 1)
+
+ A4y (m —q:q) fo,_Aim—q+1:q—1)+-+a,d4(m—1:1)
= b};(m) + 83(m)J + -+ 8y (m)Jn~1,
where
1i(m) = ¢l(m + q — 1) [Agj(m — 1)]
+ ¢l(m + g — 2)[Agh(m — 2) + a,_1g93(m — 1)]
+

+ GHm) [AgHm — @) + o 1g}(m — g + 1) + -+ aygi(m — 1)]

and

8ty m) = 52 51 AL B k=23,

Since, according to Proposition 2.3,
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1 for 1=},
0 for I#j (Lj=12,..,9
and hence 5{‘,-(m)=0 (k=2, 3,..., n), we obtain the required result.

ReEMARK 1. Let [ take only g consecutive integers. For such | we define
¢(m) by (2.3). Then the g functions again form a fundamental set of solutions
of the linear difference equation (2.4). If we define g;(m) associated with such g
functions by (2.13), then the relations of the form (2.16) also hold.

REMARK 2. Let I'=1mod g, i.e., I'=pq+1, p being an integer. Then we
have ¢,.(m)= ¢ (m)wPi(m+»=1) and hence the left hand side of the foumula (2.16)
in which ¢,(m) is replaced by ¢,(m) is equal to wra(m*te=# for I=j, and to zero
for I#j. From this fact, if ¢,(m) is replaced by @,,(m)=exp<.171dﬁ>¢r(m) in
(2.29), then the left hand side of the formula (2.29) is equal to @re(*+m+o—w)
for I=j, and to zero for [#j.

Finally, we note that, taking account of the expression (2.28), the asymptotic
behaviors of ¢,(m)(I=1, 2,...,q) as m—oo can be derived from the asymptotic
expansions (2.14) and the differentiation of them with respect to m.

§3. Associated fundamental matrix functions

We introduce the function Y(t, s) associated with the two point connection
problem to be considered, and anew write down its definition as follows:

(3.1) Y(t, s) =10 iog(m + s)m,

where the matrix coefficients #(m) satisfy the linear difference equation
3.2) m+p—p+0N%m) =0,9(m —1) +--
+ o, 9(m—q+ 1)+ 19(m — q).

In Sections 5 and 6 we shall attempt to expand convergent power series
solutions of systems of linear ordinary differential equations in terms of a sequence
{Y(t, s); s=0, 1,...} and then to obtain their global behaviors in the whole
complex t-plane from those of Y(t, s).

For that purpose, we shall investigate the global behavior of the associated
fundamental matrix function Y(¢, s) in detail in this section.

We begin with the study of scalar functions defined by the definite integrals

3.3) (Vi P) = Z(E Vi Yieees Viseoos Vg—1)
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1 1 oty

= S exp(—14(1 — 19 4+ ¥ Lkk(] — r"))t"‘ldr,
0 q =1 k

3.4 zp(t:viy) = Siexp (%t‘l(l —179) + q}f‘f%t"(l —r"))F(r)tV“dr,
0 k=1

where the function F(t) is holomorphic at least in the closed disk |t|<1. Tt is
easy to see that the definite integral z(z: v: y,), together with zg(t: v: y,), is well-
defined under the assumption that Rev>0, but by partial integration and then
using the principle of analytic continuation we can replace the condition Rev>0
by a weaker condition that v#0, —1, —2,....

We now consider the behavior of (3.3) for sufficiently large values of t.
Suppose that |t|>t,, t, being a sufficiently large positive number and ¢ lies in the
sector

3.5 S;: — X <argt< .
(3.5) i1y Sargt< g

Putting n =11 and changing the path of integration which is the line segment from
the origin to t into the following two paths of integration:

(i) the positive real axis from the origin to infinity;
(ii) the circular arc |y|=|t| from ¢ to |t| and then the positive real axis from
|t| to infinity,

we have
(3.6) zZ(t:viy) = S;exp (p(®) — p() (%)%

= exp (p() | exp (= pl)n=dn
(i)

- (S:)exp (p®) = pn) (1)1

= T'(v: y)exp(p()= — 2(t: v: 7,

where we set
14 q-1 y
1) ="+ Y Lk
Pt q kg'l k
and I'(v: y,) is the modified gamma function defined in (2.1). From this formula
and the observation of the analytic continuation of the modified gamma function
described in the preceeding section, we can see again the well-definedness of the

definite integral (3.3) under the condition that v#£0, —1, —2,....
We define the function 2,(¢: v: y,) by the integral
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3.7) 246 vi 1) = [ “exp (o0 = ) (1) 41

in the domain 2 ={t; [t|=t,>0, |argt|<3n/2q—0, § being an arbitrarily small
positive number} — {t; |t|cos (argt—7/q) <t,, |argt|>n/q}. Inthe above integral,
the path of integration is taken the so-called Friedrichs’ path [3] as follows: when
t lies in the sector |argt|<m/q, n moves along the path of integration (ii) stated
above, and when ¢ lies in the sector n/q<|argt|<3n/2q—9, n moves along the
straight line orthogonal to the line |argn|=mn/q from ¢ to |t|cos(argt—n/q)et™/1
and then along the same path (ii) from that point to infinity. We immediately
see that the function 2,(t: v: y,) is an analytic continuation of the function 2(t:
v: 7,), and then we can prove the following

LEMMA 3.1. The function 2,(t: v: y,) is bounded in the domain 9.

Proor. We here only show the boundedness of the integral when » lies on
the line orthogonal to argn= +r/q or on the circular arc. In this case, if we put
t=|t|e'?, the variable of integration n can be written in the form

n=clghiles (0514l <101 3% - 3),

where
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J«COS(IOI—“) if T <lpl <10l s 3T —s,
c(lpl) = [°°S 9] ‘“) ! !
[ 1 if 0§|¢l§w|§~;1,

and hence
0< cos({q— —_ 5) < o] < 1.

Then, setting
11Q(¢: 0: 1) = Re(p(t) — p(n),

we easily see that if t, is taken a sufficiently large positive number, we have for an
arbitrarily small positive number ¢

0(6: 8: £) = 0,
Q¢: 0: 1) < %;{cosqe — ¢(16] — &) cos (q(I6] — &)} < 0
© =9l < 10| — &),

which implies that

lexp(p(t) — p(m)| = 1

on that path of integration.
Hence we have

IS" exp (p(t) — p(n)) (;1)%1|

1o} do
<. "exp (Revlllog c(1#)| + (6 — §)[Imvl) - — 42
° (cos(3 =)

=M,

where M is a constant depending on the parameter v. Similarly, we have the
desired boundedness of the integral when 7 moves on the positive real axis, and thus
“the proof of the lemma is completed.

From the above lemma we obtain

3.7 z(t: v:y) = I'(v: yexp(p()t™> + 0(1)
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for sufficiently large values of ¢ in the sector S,.
If ¢ lies in the sector

S;: -in—+£7—r—l§argt<——£+ﬂ1,
q q q q

| being an arbitrary integer, we change the path of integration along the line
segment from the origin to ¢ in the integral (3.6) into the path n=~¢(w' " Y(w=
exp(2mi/q)), where ¢ moves along the paths of integration (i) and (ii). Then by
the same considerations as stated above we have

(3.9) z(t: v:y) = F(v: 9,00~ D) =D exp (p(£))t~> + 0(1)
as t—— in S,

We summarize the above results, together with the behavior of zg(t: v: y,),
in the following

LeEMMA 3.2. Let | be any integer. Then for sufficiently large values of
t in the sector

3.9 S;: ——3~n—+ﬂl§argt<—£+2_n[,
q q q q

the function z(t: v: y,) has the behavior
(3.10) z(t:viy) = T'(v: yo*t~D)pvt-Dexp(p(t)t~> + 0(1)
and the function zg(t: v: y,) has the behavior

F(

m—1 n)
(3.11) Ze(t: vy = (EO !(0) I'(v+ n: ykw"(“”)w‘”""“”t"‘)

n
x exp(p())r™ + O(exp (p())~"~") + O(1).

We here note that the g sectors S, (I=1, 2,..., g) cover the whole complex
t-plane and according to Lemma 3.1, the last O-term in the statements (3.10) and
(3.11) holds in a more wide sector

—»7—n—+6+—2£l§argt< — T 54+ 2my
2q q 2q q

Now we shall turn to the investigation of the associated fundamental matrix
function Y(t, s). From its definition we immediately obtain the following two
relations: For an arbitrary positive integer r,

3.12) Yt, s —r=%s—ntr + 9(s — r + Dtet! +...
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+ (s — Dtrtr~1 4 17Y(1, s).
(3.13) td_"fiitzﬂ =, Y(t, s — 1) + -+ oty Y(t,s — g + 1)

+AY(t, s — @)+ (u—s—DY(,s).

Substituting the formulas (3.12) for r=1, 2,..., q into the right hand side of (3.13),
we then have the system of nonhomogeneous linear differential equations of the
first order

¢ dy(, s)

(3.14) it

={A + ot b ot + (u— s — )Y(R, )

+ [Ag(s — 1)Jreta1

+ [A9(s — 2) + a,_%(s — D)Jte+a2

+

-:l- [A9(s — @) + o, 1% —q+ 1)+ + 0, 9(s — 1)]t*.

By quadrature, we therefore obtain the integral representation of Y(t, s) as a
particular matrix solution of (3.14) with the form (3.1) as follows:

(3.15) Y(t,s) =Z(AYt:s — pu+ p + g — 1 yp)trr a1 [Ag(s — 1)]
+ Z(AYati s — p 4+ p + g — 2: )t AG(s — 2) + a1 9(s — 1)]
+
+ Z(AYat: s — p 4 prytP[AF(s — q) + 0 F(s — q + 1)+ 4 0, %(s — 1)],

where we put y,=o, A7 *4 (k=1, 2,..., g—1) and
1 ] q-=1 y _
(3.16) Z(t:v:y) = S exp <~~~t‘l(] —19) + Y Lkl — t"))t“' tdz.
V] q k=1 k

This integral representation plays an important role in the derivation of the
global behavior of Y(, s) on its Riemann surface. To see this, we first investigate
the global behavior of the matrix function Z(¢: v: y,). As in the case of a scalar
function, assuming that ¢ lies in the sector S, and taking (i) and (ii) as the path of
integration after the change of variables n=tr, we can rewrite (3.16) in the form

(3.17)  Z(t: v:y) = exp (p(t))t""S:exp(— P’ ~tdy
1)
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- onexp (p(®) — p('l”(%)

(ii)

= ¥,(v: y)exp (PO — Zy(t: v: 9y,

J+vy d"
n

where we put
(3.18) ¥i0v:v) = So exp(— p(m)n’*~1dy

and we have used the fact that ¥,(v: y,) commutes with J. By the same con-
siderations as in the proof of Lemma 3.1, we have

3.19) 2,(t:v:9)=0(1) as t—> 0 in 2

since the matrix function Z,(¢: v: y,) has the form

2,6 v: 90 = [ Texp 0@ — p) {1 + L tog (1) + -

(ii)
I O

and the logarithmic terms do not essentially influence on the estimates of the
integrals. Hence we have

(3.20) Z(t:viy) = Y,(v:y)exp(p(®)t?-v + O(1) as t—> o0 in S,
and similarly, for any integer ! we have
(3.21) Z(t:v:iy) = P(v:y)exp(p()t~?=> + O(1) as t—> o0 in §,

where we put
(3:22) Wi = | exp(= plrt ) ety 41

- gll(v: ‘))kwk(l_l))(l)(’~1)("+v).

Concerning the function ¥(v: y,), it is easily seen by partial integration that
Y (v: y,) satisfies the linear difference equation

(3.23) PO+ q:y) + 7,1 PO+ g =119+ + 9,70 + 119
=+ VPW: 7).

Moreover if we write

© -1
¥i(v: 7)) = Soexp(-—p(nw”‘)){l + k’—g%’Tw—lJ +oee
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+ dog (no'™1H))"71 ~1yv 41
e s (e

=Ylv:iy) +YFOviy )T+ H YTy )T,
then we have

(3.24) \l/‘l (v: yk) = F(V: ykwk(l"l))wv(l—l)’

. j—1
(3.25) HO:n) = oy eVl G=23.m),

where I'(v: y,) is the modified gamma function defined in (2.1). -Then, from the
results derived in Section 2 and the considerations given above, we can prove

LemMA 3.3. Assume that p—u# an integer. Let | be an arbitrary
integer. Then we have

(3.26) Z(AMat: s + p — p: oy A7k9)
= exp (—zq+ Hat 0 e 0 )R (5) + O(L)
for sufficiently large values of t in the sector

2n
3.27 S (A - + nl <arg Al < — r + ==,
( ) A): q q & q q

where the matrix function @(s)=Y(s+p—pu: A~ * k=) (A" Vag!-1) J+stp=u
is exactly the same function defined in Section 2, i.e.,

(3.28) P (s) = exp <J—§;—>F(s + p— pu: o A7 ak(=D) (- tagt-1)ste—n

satisfying the system of linear difference equations
AD(s +q) + o D(s+qg—1)++a;P(s+1)=(s+ p — pu+ J)D(s).

In the statement (3.26) the last O-term holds in a more wide sector

329) S, — 1 45+ <argatiar< — L — 54 20
(3.29) (A q PR g S -5 7

o being an arbitrarily small positive number.

Moreover we can prove just the same result as that of a scalar function
zg(t: v: y,), which is needed later.
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LEMMA 3.4. Let Zg(t: v: y,) be a matrix function defined by the definite
integral

(3.30) Ze(t: v:pe) = S‘exp(}ﬂ(l =10 + 3 k(1 = ) ) IE (s,
0 k=0

where the matrix function & (t) is holomorphic at least in the closed disk |t|<1.
Then we have

(3.31) Zp(AMat: s + p — p: a A7k/9)

m—1 4—n
= exp(Le0+ Bmtpt gty )rors (T L0065 4 mFE@©O)
9 gq-1 on:

+0 cxp(%t" + % +e a1t>t"+“"’“"") +0()
as t— o0 in S;(4).
We now define g associated fundamental matrix functions
(3.32) Y(t,5) =1 3G m+ o (=129,

where

9,m) = exp(JL)gim) =120

which are defined in Theorem 2.1.

Taking the relations (2.29) in Theorem 2.1 into consideration, if ¢ lies in the
sector S;(A)(I=1, 2,..., q), we have

(3.33) Y, ) = 6,,exp (%t“ Bt gy oclt)t‘”""

—2)AVat:s —p+p+q— LA Mt 1Ag (s — 1)]
—Z2,(AVst: s — p+ pt+ g — 2: A MY 2[AG (s — 2) + oy G (s— 1)]
- 2,(AV: s —p + p: AR [AG (s — q) + 01D (s — g+ 1) +--
+ algj(s - l)]

= 5,,exp(%t‘ + ;—"_‘_% +- alt)t‘“““ + Y@,
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where &, is the Kronecker symbol and Z(t: v: y,) denotes the integral defined in
S, of the same type as Z,(t: v: y,) in S;.
From Lemma 3.3 we then have

(3.34) T.(t, 5) = O(t**a"1) as t— 0 in S(A).

But we can get a more precise information about the asymptotic behavior of
Y,,(t, 5). In fact, substituting (3.33) into the relation (3.12), we have

Yj(t, S) = 5_” exp<—3-tq + %t““l + b + Otlt)t—“’“"’ + le(t, S)

=G,(s— D+ G (s =2t 2 4+ Gi(s =T+t s — 1)

=g](s— l)tp—l +gj(s—2)t"_2+---+ gj(S’—'r)p_’
— A Og—1 4q—1 Jtue—st _
+ 775, exp ;14+71—:-Tt‘1 ot agt )T Y (8 s — 1),

which implies that
(3.35) Yt ) =9 s — DIF L + G (s — Dt o+ G (s — Pt
+ Pt s — 7).

Let o be an arbitrary positive integer and put r=q+0. From the estimate (3.34)
for Y;(t, s—r), we obtain

(3.36) Yy(t, ) =F s — D"+ + F (s — o)tP°
+ G (s—0—Dtr 7 4o 4 G (s — )P 4 t79700(tPF a7
=G (s— Dt 4.4 G (s — o)™ + Ot~ 1)
~P{G (s — DI+ G s — Q2 +-}  as t— o0 in S§i(A).

Thus we have established the following important theorem for the global be-
haviors of the associated fundamental matrix functions Y(t, s).

THEOREM 3.1. Assume that p—us an integer. Each associated funda-
mental matrix function Y(t, s)(j=1, 2,..., q) has the asymptotic behavior as
follows:

(3.37) Y, s5) ~ d;,exp (—;—t" + ;‘fi_:l—ltq“ + ocg)t‘“""

+t{G (s — D+ G(s — D72 +--)

as t— o0 in S)(A) (I=12..,9),
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where the q sectors S(A)(I=1,2,...,q9) cover the whole complex t-plane.
Strictly speaking, the asymptotic power series in the statement (3.37) holds

in 8,(%).

Finally, we note that in order to obtain the global behavior of Y(t, s) on its
Riemann surface, we have only to apply Theorem 3.1 after changing suitably the
variable of integration. For instance, if ¢ lies in the sector S, (4) for any integer
p, then we have Yi(¢, s)=Y,(tw™74, s)wP? and apply (3.37) to its right hand side,
obtaining

(3.38)  Y;(t ) =0, exp (%ﬂ + By oc,t)t"*“‘sa)““*s*"“‘)

+ O(tr~Y) as t— 0 in S,54(4).

But this fact is also an immediate consequence of Remark 2 in Section 2.

§4. Growth order of coefficients of formal solutions

Now we shall be concerned with the growth order of the coefficients HX(s)
(k=1, 2,..., n) of formal power series solutions (1.7) for sufficiently large positive
integral values of s. The column vectorial coefficients H*(s)(k=1, 2,..., n)
satisfy the systems of linear difference equations (1.14) whose coefficients of the
highest order are singular matrices. From those linear difference equations just
as they are, we cannot obtain the estimates of H¥(s)(k=1, 2,..., n). But we have
to go through the first process of determining the characteristic constants ak_,,
...,of and y, (k=1, 2,..., n), and this determination leads to the reduction of the
systems of linear difference equations (1.14) to those of a regular type, that is,
systems of linear difference equations with nonsingular matrices as their co-
efficients of the highest order. More precisely speaking, we can reduce (1.14) to
systems of linear difference equations of the Perron-Poincaré type and then obtain
the estimates of H*(s)(k=1, 2,...,n) by applying O. Perron-H. Poincaré’s
theorem [16, 17]. To show this, we consider the system of linear difference
equations for H(s) :

“.1) (A, — ADH (s + @) + (44— — 04 DH (s + g — 1) +---
+ (4y — a)HY(s + 1) + (Ao — py + $)H'(s) = 0,
subject to the intial conditions

4.2) (4,—-2DH ) =0, H()=0 for —(g—1)<r<O.

It is easy to see that the other systems of linear difference equations for H*(s)
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(k=2, 3,..., n) can be transformed to those of just the same form as (4.1) by the
so-called elementary transformations.

We here put
hi( Z%ES)
His) = ( ) ) me=|
ﬁ‘(s) :
‘ hi(s)
(A — A)71 0
Al = Gy - ls_)_1 ,
0 Gy =207
at' B}
Ai=< R ) i=0,1,...,g = 1),
oAb/ '

where B} and y{ (i=0, L,...,g—1) are (n—1)-dimensional row and column
vectors, respectively, i.e.,

Bl = (a}?, al?,..., al"y,
at
ait
vzl': g (l=01 1,---,(1_1)»
ant
1

and A! (i=0, 1,..., g—1) denote (n—1) by (n—1) matrices constructed by the
remaining elements of the matrices 4;(i=0, 1,..., g—1). Moreover we put

A=A A —al)  (i=1,2,...,q-1),
o § = AVAY — ),
and
nl = Ay} (i=0,1,.,9-1).
Then we can rewrite the linear difference equation (4.1) in the form
(4.3) (afty —al_DhiGs + g — 1)+ (all, — al )hi(s + g — 2) +--
+(a§! — py + () + B A+ g — D + B A s + 9 - +

-+ ByA(s) = 0,
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4.4 Alis+ q) = d}‘_lﬂl(s +q—-1)+n_his+q-1)
+ LA s+ g —2) + nlshi(s + g — 2)
+
+ 1HY(s + 1) + nihi(s + 1)
+ (&} + AL)A(s) + nhi(s).

Substituting the second formula (4.4) into the first formula (4.3) one after another,
we obtain a relation between hi(s—r)(0<r<q) and A'(s—r)(1Sr=q), together
with the formulas to determine the characteristic constants a)_,,...,a} and pu,.
In fact, dropping the index 1 from now on, we have

By-1A(s +q—1)+ B, ,A(s + g — 2) ++-+ BoA(s)

= o i{ S g B+ a = 1= 1)+ (o + 4G — DAG - 1)
+ ’=qunq_,h(s +q—1=0}+ B28(s + g —2) +--+ BoA(s)

q-1
= ’gl(ﬂq—ldq—r + ﬁq—l—r)H(s +q - 1 - r)
+ Bg-1(Ho + A(s — 1)A(s — 1)
+ T Bomitl-shs + a4 = 1= 1)+ By ith(s = 1)

and then replace the term of the highest order HA(s+g—2) by the right hand
member of (4.4) again. If v times above procedures lead to

(4.5) Bo-1A(s + g — 1)+ B,_,A(s + g — 2) +---+ BoA(s)
= qg:P(v: NAGS+q—v—r)+ =ilQ(v: r:)AG — 1)

+ T Ry Dh(s = 1+ 1) + 3 Ry(v: (s = 1),

where P(v: r) are (n—1)-dimensional row vectors not depending on s, Q(v: r: s)
are (n— 1)-dimensional row vectors depending on s and Ry(v: r)(i=1, 2) are scalar
constants, then we have the following recurrence relations: For 0<r<q-1,

4.6) Pv+1:r)=Pv: Dy, + P(v:ir+1) (l1sr=q-v-1),
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@ { Qv+ 1ir:s)=PW: ) 11—, + Qvir:s) 1=sr=sv),

' O + 1:v + 1:5) = P(v: 1)(fo + A(s — v — 1)),
@ [ R,(v + 1: )= P(v: Dn,4, + Ry(v:r) 1sr=sq-v-1),

.8

) R(v+1:r)=R,(v:r) (g—v=rsq-1),
[ R,(v+ 1:r)=P(: Ditysy—, + Ry(v:ir)  (1Sr=v),
4.9)
Ry(v+ 1:v + 1) = P(v: Dno,

where the formulas have no meaning when the relations between v and r in the
round parentheses do not hold.
From the above recurrence formulas, putting

PO:1)=f,_y, P0:2)=pB,_5,..,P0:q) =P,
and
R, (0:1)=R(0:2)=--=R;(0: q — 1) =0,

we can successively evaluate the values of P(v: r), Q(v: r: s), Ry(v: r) and Ry(v: r)
for 1 £v<gq, thereby finally obtaining the formula

(4.10) Bo-1A(s + g — 1) + By A(s + g — 2) +-+ BoH(s)
=§‘,1 0(g: r:)A(s — r) + ‘z‘;Rl(q: h(s—1+r) + rZI:IRZ(q: rh(s —r).
Consequently, substituting (4.10) into (4.3), we have

(aq~1 - aq—l)h(s +q - 1)
+(ag-2 — %2 + Ry(q: g — 1))h(s + g — 2)
4.11) +
+ (ag — u + Ry(q: 1) + s)h(s)

2 q
+ 3.0(g: r: )AG = 1) + 3 Ry(g: Dh(s = 1) = 0.
Considering the initial conditions that h(0)=1, h(r)=0 (r<0) and H(r)=0

(r<0), we immediately obtain the formulas-to determine the characteristic con-
stants a,_,,..., «; and u as follows:
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gy =g t Ry(g:q— 1),
(4.12) :
% = a; + Ry(q:2),

u=ay+ Ri(q:1).

These relations then yield the formula
@.13)  sh(s) + g":l 0q: r: HAG — 1) + qu Ry(a: Ph(s — 1) = 0.

Combining (4.13) with (4.4), we have thus obtained the required system of linear
difference equations of a regular type:

4.14) H(s) =-B,_(s)H(s — 1) + B,_,(s)H(s — 2) + -+ By(s)H(s — q),

where
lpwn - Low:r:
P’ 2(q:r) SQ(q.r.s)
(4.15) B, ,(s) = (l=sr=q-1,
’Iq—r ’ ‘dq-—r

N r 2(g: q) _SQ(Q-‘]-S)

(4.16) By(s) =
No Lo+ A(s — q)

Now, in order to derive the estimate of H(s), we shall investigate the behaviors of
Q(q: r: s)(1=r=q) for sufficiently large positive integral values of s. We can
prove the following

LeEmMA 4.1.
4.17) lim %Q(q: r:s)=P(r—1: 14 1=rgy9g)

hold.

Proor. Since P(v: 1)(0<v=<g—1) are constant vectors, it immediately
follows from (4.7) that

(4.18) limLow+ 1:ri9) =timLow:ry) (1=rsv)

and

(4.19) lim—;—Q(v+1:v+1:s)=P(v: DA (0<v<qg-—1).
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Then, applying (4.18) in the first place and (4.19) in the next place, we have the
required formula (4.17) as follows:

lim-}g—Q(q: r:s) = lim %Q(q —1l:r:5)

= limLQ(q —2:r:5)

s S

=lim Lo(r: i) = Pr — 1: )4
(1=sr=9.
We here define the norm of an n by m matrix 4=(a'/) by
4l = max {¥ |a*“]}.
15isn j=1

Then, according to Lemma 4.1, we have for s>N>¢q, N being a sufficiently
large positive integer,

(4.20) IBe- (N = |1 Bg-1 +1=b,, (=r=q-1),

where we have put

0 —Pr—1:1)4
limB,_,(s) = %,

) (I=srsgq-1).
Ng—r o

q-r

In particular, since
o(l> —Plg—1:1)4+ o(l)
s s

Mo (s—qAa+ o,

By(s) = as §— 00,

we have for s=N>¢q

(4.21) IBo() < (s — @IAy — 417" + [ 4ol
where
(4.22) 14, — A4l = min|4; — 4] > 0.

J#1

Taking account of the estimates (4.20) and (4.21), we obtain from (4.14)

(4.23) [HOI = bg-1[H(s — DIl + bg-2[lH(s — 2)| +-+-+ by|H(s — g + D]
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+ (s = DAy = LI+ [ADIHG — 9l (52 N)

and hence we have only to consider the growth order of a solution of the single
linear difference equation

(4.24) H(s) =b,_1#(s — 1)+ b,_,#(s —2) +-+ b H#H(s—q+1)
+((s = QWA = 471 + [4olN# (s — a),

subject to the initial conditions

(4.25) H#(N — 1) = |H(N - 1)|, (N — 2) = |[H(N - 2)|,..., #(N — q)
= |H(N — 9|

since we easily see from (4.23) and (4.25) that

(4.26) IH®I = #(s) (s 2 N).

Obviously, the linear difference equation (4.24) is of the Perron-Poincaré type
(see [16, 17]) and the corresponding Newton-Puiseux polygon constructed by
the coordinates (0, 0), (1, 0),..., (g—1, 0) and (g, 1) is a straight line with the
directional coefficient 1/q. Applying O. Perron-H. Poincaré’s theorem to (4.24),
we have

H(s) | _
(4.27) hm |y =Dl

where 7y is a root of the algebraic equation
— 1A, = A"t =0, ie,
(4.28) Iyl = |I1 = Ay7Ye.

Combining (4.26) and (4.27-8), we therefore obtain the required growth order of
H(s).
We state the result derived above in the form of

THEOREM 4.1. The coefficients H*(s)(k=1, 2,..., n) of the formal solutions
(1.7) have the following growth order:

. || H* 1/s 1
(4.29) Iim ( IF(IS +(§))|1/q|> < W (k=1,2,.,n,

§—0
where

(4.30) |4 — A4l = min|i; — 4| > 0.
J*k
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§5. Connection problem for a system of differential equations with
multiple characteristic constants at a regular singularity

In this section we shall solve the two point connection problem for the
system of linear ordinary differential equations (1.1). For each k (k=1, 2,..., n),
let @¥(m)(I=1, 2,..., q) be a fundamental set of solutions of the system of linear
difference equations (1.21) and then take #¥(m)(l=1, 2,..., q) defined in asso-
ciation with @¥(m) in Section 2 as a fundamental set of solutions of the system of
linear difference equations (1.20). Let us denote

(5.1) gk(m) = exp(J;fz)g}“(m)

= gi'(m) + gi*(m)J + -+ gi"(m)J"~!
k=12,..,n:1=1,2,...,9).

Now we shall begin with the definition of column vectorial functions F¥(m)
expressed in terms of the series :

(5.2)  Fk(m) = 3 H*s)ghiim +s) (Ghk=1,2.,n1=1,2,..q),
s=0

where H*(s)(k=1, 2,..., n) are the coefficients of formal solutions (1.7). In
order to prove the well-definedness of the functions F¥!(m), that is, the con-
vergence of the series in the right hand side of (5.2), we need exact informations
on the asymptotic behaviors of the functions g¥i(m) for sufficiently large values
of m in a sector including the positive real axis. Taking account of (2.5), (2.14)
and (2.20) and applying the theorem of termwise differentiation of an asymptotic
expansion, we have

i-1
(5.3) g¥i(m) ~ (Ak“/‘lw"‘)""(log Aapt=t — %log m>

X exp{— % log m + -q@ - %logm + mO(m‘l/q)}{d{" + O(m=119)}

Gi,k=1,2,...,n;1=1,2,...,9)

for sufficiently large values of m in the sector |arg(m+p—p )| <n—3’, &' being a
small positive number larger than J in (2.5), where d¥ (i, k=1, 2,...,n; I=1,
2,..., q) are constants. Moreover it follows from (5.3) that for an arbitrary
number 7, there hold in the above sector

ki
(5.4) % ~ (,{El/qwl-l)—rm—r/q{l + O(m-l/q)} as m — oo
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G,k=1,2,...,n;1=1,2,...,9).

By means of Abel’s transformation, using the asymptotic relations (5.4), we can
prove the following lemma in exactly the same manner as in the paper [10] and we
here omit its proof.

LeMMA S5.1. Suppose that the series which define the functions F¥i(mg)
for a certain number mg, are absolutely convergent. Then the series defining
F%(m) are also absolutely convergent in the right half-plane Re m=Re m,+z¢,
€ being an arbitrarily small positive number. Moreover we have the asymptotic
relations

(5.5) Fti(m) ~ H0)gt (m){1 + O(m~"/9)}
(,k=1,2,...,n,1=1,2,...,9)
for sufficiently large values of m in that right half-plane.

From this lemma, using Theorem 4.1 and (5.3), we can show the well-definedness
of Fki(m) as follows:

THEOREM 5.1. Let mg be an arbitrary number. Then, under the assump-
tion that

(5.6) O<lhl<ldj—Al (i#kij=1,2..n),

the functions F¥(m)(i, k=1, 2,...,n;1=1,2,...,q) are well-defined in the
right half-plane Re m>Re m,,.

Proor. Considering Lemma 5.1, we here have only to prove the absolute
convergence of the series defining F¥i(mg). In order to apply Cauchy’s test to
these series, we evalutate the values of

67 Hm (IHS)IgH (s + mo))'s

i (_ IH*(s) |l )”s_- ki 1
< PR |l NV | i /a|\1/s

From (5.3) and the asymptotic behavior of the gamma function, we have for
sufficiently large s

i-1
gti(s + mo)I' (s + V1 ~ (l;‘”w"‘)"(log At~ — %log (s + mo))

X exp {— —;— logs + -;— - ('% + %>logs + SO(S‘”“)}
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X ex -l—<s + —l-)lo s = EA}{J“ + O(s~1/9)}
p q P g q I
i—1
~ ()upl/‘lco“l)"(log A=t — —;—log(s + m0)>‘

d%i being a constant, which implies that

(5.8) Lim (|gk'(s + mo)[IT'(s + DY)V < [A}1017!| = [2,|1/1.
S§—+00

Combining (5.8) and (4.29), we therefore obtain

Al

— k ki 1/s A e
(5.9) lim ([ ($)lg¥(s + mo))'"* = =77

<1
from the assumption (5.6) and the definition of |1, — 4, as stated in (4.30) and thus
we have completed the proof of Theorem 5.1.

From now on, we let the variable m take only integral values. We first obtain
the following important theorem.

THBOREM 5.2. Assume that p—u,# an integer (k=1, 2,...,n). Then the
Sfunctions F¥'(m)(k=1, 2,..., n; =1, 2,..., q) form a fundamental set of solutions
of the linear difference equation (1.12) for m= —q+1. From this fact, the
coefficients G,(m) can be expressed in terms of the linear combination

(5.10) Gi(m) = 3 3 THFH(m),

11i=1

~

where the constant coefficients TiY(k=1, 2,...,n; =1, 2,..., q) are determined by
the system of linear equations

G.11) G =3 STHFG)  (r=—q+1, —q+2,.., —1,0).

n
k=1 I=1

-

Proor. From (1.14) and (2.18) we easily see that

(5.12) (m + p — Ap)Ft'(m)

Me

0{('" + 5+ p— W)+ (i — s — A)H*(s)gk (m + 5)

s

Ms

HY(s){ofgt'(m + s — 1) + afgf'(m + s — 2) +--+ Agl'(m + 5 — g)}

s=0
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+ % {(4, — AHY(s + q) + (Ag-y —ak_DH*(s + g — 1) +---
s=-q
+ (4, — o)H*(s + 1)}g¥i(m + s)

= AqigoH"(s)gi‘l(m —q+s)+ Aq“,;on(s)g”“(m —qg+1+5)

+e Ay ZOH"(s)g',‘l(m —1+5)
=

= AF(m — q) + Aj_ F¥'(m — q + 1) +---+ A F¥'(m — 1),

where we have used the initial conditions that H*(r)=0 for r<0. This implies
that F¥{(m)(k=1, 2,...,n; I=1, 2,..., q) are particular solutions of the system of
linear difference equations (1.12). In order to prove that those particular solutions
form a fundamental set of solutions of (1.12), we have only to show the nonvan-
ishing of the Casorati determinant constructed from them:

(5.13) Fp(m) =
Fi(m) - F11(m) F?'(m)
Fi{(m+1) -Fi(m+1) F}(m+1)

Fi\(m+q—1)---Fil(m+q—1) F2(m+q—1)---
F3'(m) - Fit(m) -+ Fgl(m)
F2l(m+1)  Fii(m+1) - Fyl(m+1)

F2(m+q—1)--Fil(m+q—1)---Fil(m+q—1)

It is easily verified from (5.12) that the Casorati determinant satisfies the first order
linear difference equation

(5.14) (m + g = 10€4(m) = (= D@D ] 48xm — 1),

whence we have

(_ l)nz(q—l)(m-f-q—l)(ﬁ lk)m+q—1
=

(5.15) €r(m) = Tm + q));l Cr(—q +1).

From (5.14), if we could prove that € (m)#0 for a certain value of m, then we
have @ (m—1)#0 and similarly, by successive applications of (5.14), we finally
obtain €y(m)#0 for m= —q+1.
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Let m be a sufficiently large number. Then it follows from (5.5) that
(5.16) %p(m) ~
H(0)g}* (m) -H'(0)g5' (m) H?*(0)g3'(m)
H'\(O)gli(m+1)  -H'O)gii(m+1)  H20)gi(m+1)

H (01 (m+q—1)-H'\(0)gLi(m+q—1) H*(0)g} (m+q—1)--
H0)g2im) - HAO)gl(m)  -HM(0)gh (m)
H*(0)g3'(m+1) --H"(0)gi'(m+1) --H"(0)g3'(m+1)

H2(0)g2 ! (m +q— 1) H"(0) gL (m+q ~ 1) H*0)g2i (m+q— 1)
x {1 + O(m~1/%)}

- (_ l)n(nz—ll gggz—x)

gi'(m) +gg'(m)
gilm+1)  giim+1) 0
ot (m+g—1)-gii(m+g—1)
g91'(m) g7 (m)
gttm+1) g3 (m+1)
g%‘(n;+q—1)~~g},’(m:+q.—l)
gitm  gyiom)
0 gt'(m+1)  --g3l(m+1)

g1l (m+g—1)--git(m+qg—1)

x {1 + O(m~1/9)}

n(n—1) 9(9-1)
~(=1 2 T € u(m)€ ,2(m)--E yn(m) {1 + O(m~19)}.

Since for each k, gk'(m)(I=1, 2,..., q) form a fundamental set of solutions of the
linear difference equation

(5.17) (m + p — pg*i(m)

= afgti(m — 1) +--- + af_1g*'(m — q + 1) + L4g*'(m — q),
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the Casorati determinant € ,(m) does not vanish. We therefore conclude that
% ((m)#0 for a sufficiently large value of m.

Moreover we can calculate the exact value of € p(—q+1), together with
obtaining an invariant relation between the characteristic constants y, and p.
In fact, we see again from (5.17) that the Casorati determinant % ,(m) satisfies
the first order linear difference equation

(5.18) (Mm+q—1+p—p)8u(m) =(— DAL u(m — 1),

which implies that

(5.19) € (m) = L= })(;lik)q'"’;(z o k) ¢ (0.

On the other hand, from the asymptotic behaviors of g¥l(m)(l=1, 2,..., q) we
have for sufficiently large values of m

(5.20) € (m) ~ szllgf‘(m)
1 1 1
A im—1/4 Alag—1m=1/4 <A~y 1/e
M‘q—l:)/qm—(q—l)/q lf“"zl)/"w_(q"l)m"(“‘”/q---lﬁq_l)s/"a)_(q_”“"”m'(“_”/"
x {1 +O0(m %)}
~ (lf[l g4 (M) 1V E=DRY (1, @7, @0~ D) {1 + O(m™ 119},

where V(x,, X,,..., x,) denotes the so-called Vandermonde determinant, i.e.,
Va(xi, Xg5000 Xg) = 2

Since we moreover obtain

I=1

-1 q -q/2
~<}“k /") wq(q—x)/2m~<q-1)< 27\ (A1 @a(a=1)/2)=(m+1=pictp)
q q

X exp{— (m +1—pe+p— —g—)logm + m + R(A, ak_y,..., a’{)}
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x {1 +0(m 19},

where R(4;, ak_,,..., «f) is a constant (see [10]), we can evaluate the exact value
of € ,(0), letting m— oo in (5.19), as follows:

— | F'(m+qg+p—p)
(5-22) (ggk(O) = F(q T = Hk) = 1)'1'1}, y k %ak(m)

. _ Qng)~%2
I'g+p— )

(l;lw‘l(‘l—l)/Z)llk—pl§‘Q-l)/2 Vq(l, w—l,___, a)"(‘“”)
X exp (R(Ay, oh—1,..., 2))m™3E D20 (m + g +p — i)
X exp{— m+1—p.+p— %—)logm + m}{l + O(m~1/9)}

- @nr)-@-nizgmaz A8/ 24+P=ic g 8(4=1) (hxc=P)/ 2
I'ig+p— )

x V,(1, o7%,..., o~ D) exp (R(A, ak_y,..., b)) {1 + O(m~1/P)},

which implies that # ,(0) is equal to the constant in the last expression. Then,
taking account of (5.16), (5.19) and letting m— o0 in (5.15), we have

(5.23) €p(—g+1)

(n—1) 49(9-1)

T+ (=12 2 ()% ,:(m)E yu(m)

~

5 {1 + O(m~1/9)}
(__ l)nz(q~1)(m+q—1)(n lk)m+q—1
k=1

- (_ l)n(n2—l) ‘1(‘12—1) __"z(q_l)z{ n

u:j

I'(q + P — M) k(O)}("' 1)=n(n=1)(g=1)m

] rm+q )
X {l::[;[l F(m+4+p—l‘k)}{l + O(m~1/9)}

n(n=1) 8@=1) _ 3, 112 (.8 - % (=m0
~(=1) T T2 HaWUZIY 2 u»ekmﬁ S
x {1 + O(m~1/9)} .

This implies that

(5.24)

e
x
I
=3
h-)

and
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(5.25) €r(—q+1)

n(n—1) 4(4—1)_"2 _ n —_
= (- ™ e TE e ), 0

k=1

since the Casorati determinant € (—qg+1) is a nonzero constant not depending
on m. The invariant identity (5.24) will also be obtained from (4.12), considering
the formulas (4.6-9), although the algebraic calculation is not easy.

Now, from the theory of linear difference equations, we have

n q

(5.26) L Gym) =Y 3 TH(m)F¥(m),

k=1 I=1

where TF(m)(k=1, 2,...,n; l=1, 2,..., q) are periodic functions of period 1.
However, since the variable m takes only integral values, we may regard T¥'(m)
as constant coefficients and from the fact that €(—q+1)5#0, we can determine
the constant coefficients T¥'(k=1, 2,..., n; I=1, 2,..., q) by the linear equation
(5.11) subject to the initial conditions that G,(0)=1 and G,(r)=0 for r=—gq+1,
—q+2,..., —1. Thus the proof of Theorem 5.2 is completed.

Next we consider the functions F¥(m)(k=1,2,...,n;1=1,2,...,q) for
i=2, 3,..., n. Simple calculations similar to (5.12) lead to

(5.27) (m + p — Ag)F¥i(m) = A;Ff(m — 1) +---+ A F¥(m — q) — F'~'(m)
(i=2,3,...,n).
Multiplying both sides of
(m + p = AJFFA(m) = A,F2(m — 1) + -+ AFf2(m — q) — FF(m)

by T¥! and summing over k and ! from 1 to n and from 1 to g, respectively, we
have from (5.10)

(m + p — Ag)Gy(m) = 4,Gy(m — 1) +---+ AqGZ(m —q) — G (m),
where we have put

Gy(m) = 3 3 THFI(m),

which implies that G,(m) is a particular solution of the nonhomogeneous linear
difference equation (1.13) for j=2. Hence, from the general theory of linear
difference equations, the coefficients G,(m) can be expressed in the form

Ga(m) = Gym) + 3, 32 TPFH(m),
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where the constant T%2 are determined by the linear equation
n q
Gon) = Go) = X STEFH()  (r=—g+1, ~g+2..,~10).

Follwing the same procedure as above, we can finally obtain

THEOREM 5.3. The coefficients G(m)(j=1, 2,..., n) are expressed in the
Sform

J n 4
(528 Gm = £ B ITHUEm)  (=1,2.m),
= =1 [=1
where the constant coefficients T¥(k=1, 2,...,n;1=1, 2,..., q) are determined
by the linear equation
J q q

(5.29) G0 — 3 3 S THHCIFKG) = 3 Y THFH()

i=2 k=1 1=1 k=1 1=1

-~

(r = —q + 1’ —q + 2:---’ —19 0)’
successively.

Proor. The proof will be done by induction. Suppose that the formulas
for G,(m), Gy(m),..., G{(m) in the form of (5.28) are obtained, together with
determining the constant coefficients T¥i(k=1, 2,...,n; l=1, 2,...,q) for i<]j.
Multiplying both sides of (5.27) by T¥/+2-i and summing over k, ! and i from
1 to n, from 1 to g and from 2 to j+1, respectively, we have a particular solution
of the nonhomogeneous linear difference equation (1.13) for G;, (m) as follows:

(m+p-— AO)Gj+l(m) = AIGj+l(m -1 +-+ Aqu.,,,(m -q)
J+1 n q
=3 3 S TH R (m)
i=2 k=1 I=1
= A1Gj+1(m -1 +-+ Aqu+l(m - q) — Gym),
where we have put
J+1 q
Gjpa(m) =3, 3 3 TH+2IFf(m).
i=2 k=1 I=1
Hence we can write G, ;(m) in the form
n q
Gjua(m) = Gy y(m) + 3 3 THHFF(m),

determining the constant coefficients T¥/*1(k=1, 2,...,n; I=1, 2,...,q) by the
linear equation
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Gj1(r) — Gj+ 1(r) = kél IZ_,‘ TY*1FF\(r)
r=—-q+1, —q+2,..., —1,0).
This completes the proof of Theorem 5.3.

We can now rewrite (5.28) in the form

M=
Me

(5.300 G;m)= > TkI+1-iFk(m)

=1

.

1

-
I

1

00 n q J . .
=3 3 3 HHO(E THIgH(m + )
0 n q .
= ‘ZE) kgl l=lHk(s)(T{‘1a szs'--’ T{"‘)(g{‘l(m + 5)9

g;‘j—l(m + S)’---, g{‘l(m + S)s 0,..., 0)* (] = 1’ 2"--’ n)s
and hence we have

(5'31) (Gl(m)’ Gl(m)a'--s Gn(m))
00 n q
= 3 3 S HAQ(TH, TR, TINGHm + 5.
§= =1 I=1
From this relation we can immediately prove the following expansion theorem.

THEOREM 5.4. The convergent power series solutions X (t)(j=1, 2,..., n)
of the linear differential equation (1.1) can be expanded in terms of the associ-
ated fundamental matrix functions Y¥(,s)(k=1,2,...,n;1=1,2,...,q) as
Sfollows:

(5'32) (Xl(t)’ XZ(t)"--, Xn(t))

q
= 3 3 S HHOTH, TH,..., TINYHE, 94t

=0 k=1

)

where
(5.33)  YH1,s) = "gog{‘(m Fomte (k=1,2..,n1=1,2..,q).

Proor. From the relation (5.5) we easily find that functions of the form
(5.34)  Xk(@) = "goF’,“(m)t"‘*P Gk=1,2.,n1=12,.,9)

are well-defined for |f| < oo and moreover we have
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(5.35) Xki(t) =

nMS

3 3 @O m + i

I
‘ﬁ[vjs

H¥(s)( Z gri(m + s)tm*e)

since the interchangeability of the order of sums over s and m is guaranteed by
the absolute convergence of the double series. In fact, if we put for a sufficiently
large positive integer o

REm: 0) = Torim T oT 2, 1) gk em+9),

then we can prove the uniform boundedness of R¥!(m: ) by means of Abel’s
transformation and the behavior of g¥i(m), the fact of which also has been used
in the proof of Lemma 5.1 (see [10]). Hence the absolute convergence of the
double series in (5.35) immediately follows from the inequality

5. S IHKO] lghm + o)

m=0 s

Z IH ()| Z lgki(m + s)rm+e| + Z R}i(m: o)lg(m + o)tm*7|.

From the above consideration we have

(X1(®), Xo(0,...., X(1) = (R 1(0), X5(),..., R, ()"

= "go(de), G,(m),..., G (m))tm+e+Is

= ,20 2, kZ::l élH"(S)(T’,“, TE2,..., T¥G5(m + s)ytmte+ds
- ,20 kZ::I ,él HYS)(TY, T, Tf")"go(g’,‘(m + s)tmte) I
=5 3 S HO@H, TR, TV VI ™

Thus we have established the expansion theorem.
We are now in a position to state our main theorem.
THEOREM 5.5. Suppose that
(i) p—wu+# an integer (k=1, 2,..., n), and

(ii) 0<%—J<1 G#k) (G, k=1,2,..., n).
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If t is sufficiently large in the sector
(5.36) Sy, Ly L) = S;,(A) N S,(A) 0 -+ 0 Sy (4,)
(I, e ,=1,2,...,9),

where

2n
5.37 S,(A ———+——l Sargillu < — LY
( ) (A : 7 7 g 7 7

k=1,2,..,n;1=1,2,..,9),
then we have
(5-38) (Xl(t): Xz(t),---, Xn(t)) ~ Z Xk(t)(le’ lky T

Proor. Let p and o be arbitrarily large positive integers. Putting p'=p+q
and using the relation (3.12) and the integral representation (3.15), we have

(5.39) (X1, X5(1),..., X,(1)

3 HE(s)(TH, TR,..., T (ks — D + g(s — 22

MS
M=

0

ook GHs = PIT) + PV 5 — P)hat”

@
[
-~
[]
[y
-~
-

= 2 £.(Gy(= 1), Ga(= 70 Gl = PP

n q
F 53 3 HOTH, TR, TG s — gyt

=0 k=1 I=1

1

0 n q
+ XX BAYHE s = p)(TE, T, TE)H ()bt

s=a+1 k=1 [

P’

;( 1( r)a GZ( - r)s-"’ Gn( - r))t-H-J‘

o n q ,
s;q k; lngk(s)(T‘l‘la TH,..., T¥YF@E, s — p)ut 7+

{3 @ A Z e QL% 0 — p' + g + p — et WEigi1D)]
k=1
+ 7 Zgr (At 0 — P + g — 1 + p — py: akA5/9)

+ ok 1 Zox (A0 —p' +q— 1+ p— p: akdz//9)]
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+ °[MZex (A} 0 — p' + 1 +p — py: dkA19)
t ok 1 Zpx (A0 —p + 1+ p — py: dbA9) +-o
+ ot Zo (A9t 0 —p' + 1+ p — et dfA 1] 472 e,

where we have put
q
(.40 FH@) = % 21 G5 + 0 + 1 + )(TH, TE,..., T Hs + 0 + 1)yt

and used the notation (3.30). In the above calculation we also have used the
termwise integration the validity of which is easily seen, taking account of the
proof of Theorem 5.1, from the fact that the power seies (5.40) is absolutely and
uniformly convergent in any compact set of

A L

[t < BRI [ — Al = Ijn:kn [4; = Al

and hence, in the closed unit disk |7|<1.
We here apply Theorem 3.1 and Lemma 3.4 to (5.39) and obtain

(Xl(t)a Xz(t)’ teey Xn(t))

~ 1P Z (Gl(_ r)9 Gz(_ r),‘.., G,,(— r))t-H""

r=1

a n q
+2 2 IZIH"(S')(TP, TY,..., Tt

s=0 k=1
k
X {5uk eXP<—%"—t¢ + qiq:l_ltq_l-{_m-'— allct)t—nu,‘_ﬁp: + O(tl"l)} PENIE
B *
+ Z” {0<exp<ﬂtq + _“’5_—1_14—1 4ot a‘l‘t)t"1+“k~a—1+p') 4 O(tP’“I“l)} P
k=1 q g-—1 .
p
~ 19{2 (Gl(_ r), Gz("“ r),..., Gn(— r))t_r + O(I_p—l)}t"‘
r=1
+ ﬁ exp(llitq + _a_,q‘._.l_tq-l + e+ a’ft)tuk
k=1 q qg-—1
g
X {sgon(S)(T;‘:’ T’ff,, T’I‘:)t" +O(t—a—1)} ,

the first expression of which means the asymptotically zero expansion since from
the initial conditions, G{(r)=0 (j=1, 2,..., n) for all r<0. We have thus com-
pleted the proof of Theorem 5.5.
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Lastly we make some remarks.

REMARK 3. Obviously, the sectors S(Iy, ly,..., ), lpsees I,=1,2,...,q)
cover the whole complex t-plane and hence, we have completely analyzed the global
behaviors of X (1)(j=1, 2,..., n) in the whole complex t-plane. On the other
hand, although the global behaviors of them on their Riemann surfaces, that is
the same thing, the determination of the Stokes multipliers in other planes, will
be obtained directly from Theorem 5.5, we are led to the same results, only fol-
lowing Remark 2 in Section 2.

REMARK 4. We can rewrite Theorem 5.5 in the following form; There
exists a fundamental set of solutions Xk(t)(k=1, 2,..., n) in the sectorial neighbor-
hood S(I, I5,..., 1,) of infinity such that

(5.41) X ~XX1t) as t— oo in Sy, by, 1)
and the connection formula
(5.42) (X1(0), X,(0)s..., X,(2)

TH Ti-Ti

22 2
]:'12...]:1:

= (L), R20),..., Re)| T
i) gy
holds. In fact, if we put
1) =Ci X)) + CyuX,(0) ++-+ C,y X,(0),

3B = Cp2X (1) + Cp2X,5(1) ++-+ Co2 XD,

X5(0) = C1nX1() + C2nXo(t) ++-+ CuX,(0),
where the matrix {C;;} is the inverse matrix of {T}/}, i.e.,

Ti! Ti2--Tir ([ Cyy CrpoCyy

T3 T3 T1 || Co1 Co2r+Cop | 1,

then we easily see that X&(t)(k=1, 2,..., n) form a fundamental set of solutions
and have the properties (5.41) and (5.42).
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§6. Connection problem for a system of differential equations with
multiple characteristic constants at an irregular singularity

In the case when the constant matrix A, in (1.1) has multiple eigenvalues,
according to H. L. Turrittin-M. Hukuhara’s theorem, an appropriate non-
singular transformation

6.1) X = CH)Y=( k‘éockrk/v)x

where N and p are suitably chosen positive integers and the change of variables
t=1t1/? reduce the system of linear differential equations (1.1) to the canonica
system of linear differential equations similar to (1.8) for Y(7)(see [5, 6, 22]).
In this section we therefore consider the two point connection problem for the
system of linear differential equations

d

N
6.2) t—d/}, = {65 () + e + Jp) + 'gl Bt} X

N
= {SAr+ B (Gok=1,2,..,v),
r=1 r=0

where 4,(f)(k=1, 2,...,v) are polynomials of degree g (q=1) with the form
At) = At +ak 17t 4o 4 okt k=1,2,..,v)

and J, (k=1, 2,..., v) are n, by n, shifting matrices stated in (1.3), i.e.,

Al\ n, 0
A
).;%
Aq = ..lz s
Ay Ny
0 .'A
a}. . n, 0
olh
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s ne=1l;n+n,+--+n,=n).

BN,

1

v

v
1,

We hereafter assume that A,#4,; (k#1i), A,#0 (k, i=1, 2,...,v). In appearance,
the origin t=0 is not a regular singularity, but from the fact that the regular
singularity is invariant under such a linear transformation of a fractional power
polynomial as (6.1)** we may assume that the system of linear differential
equations (6.2) has a fundamental set of solutions of the form

(6.3) X[(t) = tos ioc,.(m)tm G=1,2,.,n),

where for simplicity p,—p;# an integer (i# j; i, j=1, 2,..., n) have been assumed.
We then see that the coefficients G;(m)(j=1, 2,..., n) satisfy the systems of linear
difference equations

(pj + MG m) = 3 4,G,(m = 1) + T B,Gfm +1)

(6.4)
G0)£0,G()=0(r<0) (j=1,2,..,n).

On the other hand, we can obtain v sets of formal power series solutions with
the following form:

(6.5) (X*1(1), X42(1),..., Xknu(1))
= (RH1(1), R*2(1),..., X*nu(O)r~7x exp (p(1)),

where
(6.6) Ren(t) = 3 HM( e (=1, 2,0, 1),
5=0
k
6.7) Pu() = —*;—z« B bl (=120,

*x) As a matter of course, the coefficient matrices in (6.2) must satisfy the Jurkat-Lutz con-
ditions for the regular singularity.
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Direct calculations show that the power series X*"(f)(n=1, 2,..., n,) formally
satisfy the systems of homogeneous and nonhomogeneous linear differential
equations

dXx q . N -,
(6.8) t=— = {E(,)A,t + r=2113,t - A0} X4,
6.9 B (S At B @) R 4 Remi

(11 = 2, 3,..., nk).

From these it is easily seen that the coefficients H*"(s)(n=1, 2,..., n,) satisfy the
following systems of homogeneous and nonhomogeneous linear difference equa-
tions

(A, — W)H*(s + q) + (A _; — ak_)H¥(s + ¢ — D)+ ---

(6.10) | + (Ag — s + YH*(s) + ByH*'(s — 1) + -+ ByH*(s — N) = 0,
H¥1(0) # 0, H¥'(r) =0  (r <0),

(A, — AWH(s + q) + (Ay_; — 0k )H*(s + g — 1)+ -

(6.11) { + (Ag — py + SYH () + B,H*¥(s — 1) +---+ Bkt(s — N) + H¥1=1(s) = 0,

H*"(0) # 0, H*"(r) =0 (r <0) n=23,...n).

We can then give the explicit forms of particular solutions of (6.11) by means of
H¥1(s) as follows:

1 dn1
(6.12) Hk1(s) = =0T W(H"’(s)) n=23,...,m).

Now we shall introduce fundamental functions associated with this two point
connection problem. Let gkl(m)(I=1, 2,..., q) be a fundamental set of solutions
of the linear difference equation

(6.13) (m + p; — w)gh'(m)

= afght(m — 1) +---+ af_1g%'(m — q + 1) + Lg4'(m — q).
We then put
6.14)  @h0m) = exp(Ju L )gstom)

= g§i(m) + g5t (m)J, + -+ gip-(m)Jp=t (I1=1,2,...,9),

whence g%l(m)(n=2, 3,..., n,) satisfy the nonhomogeneous linear difference
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equations
(6.15)  (m + p; — w)ghi(m) = akghi(m — 1) +---+ ak_1g%](m — g + 1)
+ j’kg,‘;;’(m - q) - gl};’—l(m) (’7 = 2’ 3’“" nk)'

As we have seen in Section 2, the gn, column vectors of the n, by n, matrices
g’,‘-,(m)(l= 1, 2,..., q) form a fundamental set of solutions of the linear difference
equation

(6.16) (m + p; — e + JYFK(m)
=ak@k(m — 1) + -+ ak_,F¥(m — q + 1) + 1L,F%(m — q).

We now define associated fundamental functions by the power series
(6.17) Yot s) = 3 @h(m + s)mres
m=0

G=1,2nk=1,2..,v;1=1,2,.,q).

If we choose gk}(m)(I=1, 2,..., q) as (2.13) which are expressed in terms of the
modified gamma functions, then all the remarkable results in regard to the global
behaviors of Y¥%(t, s) are immediately obtained in exactly the same manner as
in Section 3.

We here define

6.18) - F¥(m)= 3 3 H*(s)ghl*1%(m + )
k=1 s=0

G=L2..,nk=12,..,v;n=12,...,n;1=1,2,..,9).

Postponing the proof of the well-definedness of those functions, we first show
that for each j the functions F¥](m) satisfy the system of linear difference equations
(6.4). In fact, it follows from (6.10-11), (6.13) and (6.15) that

(6.19)  (m + p;)FkI(m)

]
M=
Ms

{(m+s+p;—um)+ (u — $)YH™(s)ghi*1™(m + s5)

x
]
ey
w»
[
(=}

M=
Ms

q-1
H*(){ X afghl*'™(m + s —r)
r=1

Ul
-

x s=0

+ Aghlt i (m + 5 — q) — gki™(m + 5)}

+ 3 5 {4y~ WHSG + ) + T (A = t)H(s + 1) + dgH™(s)

x=1 s=0
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+ Z‘, B H**(s —r) + H*1(s)}gki*1 " (m + s)
- n @0
Z W Fil(m —r) + L, Fhl(m — q) — 21 Z H**(s)gh]™(m + s)
’= K=1 s=0

q-1
+ (4, — L) FX] (m — g) + ;1 (4, — BYFXl(m — r) + A FX(m)

+ EBPIn+ 1) + 3 HO )G (m + 5)
= S AFn— 1) + TBFSm+ 1)~ 5 5 H(6)ghom + 5)

n-1 o
+ Zl Z;)H’“‘(s)g’;}'""(m + 5)

]
e
PN

N
Fil(m —r) + ZIB,Fj?’,’(m +r),

where we have put H*9(s)=0 and g%?(s)=0.

We shall now verify the well-definedness of the functions F%](m), the fact of
which in turn guarantees the validity of the above calculation. In the paper [11]
we have established only a slightly rough result on the growth order of coefficients
of formal power series solutions of general canonical systems of linear differential
equations by the same consideration as in Section 4, but a refined investigation
yields the following result: Consider the canonical system of linear differential
equations (6.2), where N=o0 and the power series is assumed to be convergent
for sufficiently large |t|. There can be derived v sets of formal power series so-
lutions of the form (6.5-7). Let hy (i#k; i, k=1, 2,..., v) be the largest non-
negative integers such that

(At + ) — () + ) = Bulhg)th e + Bu(hy — Dthot ... 4 B,(0),

where f,(h;)#0. For each fixed k (k=1, 2,..., v) define the positive integer
i by
gi = min {hy #0}
i#*k

and
B = min {|By(hi)|; hu = i} -

Then we have

- Hkn 1/s _
}Lrg(“""(s_l_f;l)./lllk] éﬂkl/qk (k= la 2,...,V;'1= la 2’-"9 nk)'
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Applying the above result to our case considered where A, # A; (k#1i)
M#O0 (k, i=1, 2,..., v), we have for all k

g=q=hy (#k),

B = |ik — Al = min|4; — 4]
itk

and hence we obtain

a—(__IH*" ()| )”" <1
(6.20) }1.‘2( TG+ D7) S\, < 4k

(k=1,2,..,v;n=1,2,...,n).

This result is exactly analogous to Theorem 4.1. Combining (6.20) with asymp-
totic behaviors of gkJ(m), we can finally obtain the required results as stated in
the first part of Section 5.

Next we shall show the linear independence of the functions F%J(m)(k=1,
2,.ovyn=1,2,...n; 1=1,2,...,q) for each fixed j. We first evaluate the
initial values of H*"(0)(k=1, 2,...,v; n=1, 2,..., n,). From (6.10-11) it is easily
seen that for each k (k=1, 2,..., v) they are of the form

o )
H*1(0) = | A*1(0) |, A*1(0) = th(O) n=1,2..,m)
0 A1.(0)

and satisfy
J A1) + A*1=1(0) = 0, i.e.,
—hj0) =hj3(0) (G=12..,nm—1)
h3.(0) = an arbitrary number nm=12,...,n),

whence, for instance, we can put

0 0 1
6.21) A*(0) = , A%2(0) = 6,...,Hknu(0)=(— pyme-1) L
0 - :
1 -1 1

In order to prove their linear independence, we investigate the Casorati determinant
% r,(m) composed of gn vectorial functions F4j(m), using the asymptotic relations
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(6.22) Film) ~ 3. HQ)g51+-*(m){1 + 0(m™/0)}

for sufficiently large integral values of m. Taking account of (6.21-22), we have

the asymptotic relations

0
0
FE10m) + F3I0m) ~ | (= 1)ightom) | {1 + 0(m~119))
(= 1)g¥lem)

g51+(m)

0

nm=12,.,m-1)

and hence
(6.23) Fk(m) = (F*i(m),..., Fki(m), F*3(m) + F*}(m),..., FX2(m) + F%i(m),...,

Fsue(m) + F50i(m), ..., Fsme(m) + Fkm1(m))

0

(= Dm=1gki(m)---(—1)"<"1gki(m)

0
(= D2g83(m)---(— 1) "2g}3(m)
~n H .
) (= Dght(m)-—-(~ 1) ghi(m)- : :
ghi(m)--gki(m) g*3(m)---  gk2(m)--- gkpe(m)--- gkme(m)

x{1+0m'9} (k=12,..,v)
for sufficiently large integral values of m. The Casorati determinant €p(m)

can be written in the form
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Fi(m) F2(m) < F¥(m)

(6.24) Gpm) =TIt  Fim+l) - Fimt1)

Fim+1-q) Fim+q—1)--F}(m+q—1)

and, considering (6.23) and interchanging the order of rows, we have the asymp-
totic relation

(6.25) €5 (m)

(=D"ighem) (=D ighiom) ‘(:P
0 (~D™1g5om+g— 1) (= D"=1ghom-+ g = 1)
~ | gm 0 Defiem (= DS :
(=Dghien+g=1)-(~Dgfim+q—-1D- }
951(m) -+ g4i(m) 953 (m) o g¥im) -+-g i+ (m) g%3%(m)
#ﬂi:l(M+q-l)--~a5:§("'+q-l)af%(m+q—l)--- it g=1)ghirmtg=D glirmtg=1)

x {1+ O(m~4/%))
~ & {8, (M)} {@,2(m)} " (€ ()} {1 + O(m™ 1)}

Since %gy(m);éo for all k, we consequently obtain %y (m)#0 for sufficiently
large integral values of m.

We here remark that in appearance the order of the system of linear difference
equations (6.4) satisfied by the coefficients G ;(m) is higher than g, but G(m) are the
ones transformed from coefficients of convergent power series solutions of the
original system of linear differential equations (1.1), which satisfy just a g-th order
system of linear difference equations, by the linear transformation (6.1). In
other words, the system of linear difference equation (6.4) is reducible to a g-th
order system of linear difference equations under the Jurkat-Lutz conditions.
We may therefore admit the validity of the argument to follow.

On the basis of the considerations done so far, we can determine the Stokes
multipliers T4} (k=1, 2,..., v; n=1, 2,..., n;;; I=1, 2,..., q) by the relations

3
=

(6.26) G,(m):kg"1 “il TYFS(m)  (j=1,2,..,n).

n

Moreover, since there holds

n
> THHY™(s)g51" '™ (m + 5)
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= i "Zk kx(s)z Tkﬂg1;7+1—x(m + S)

5=0 k=1

x

= 3 H6), B9),.... H(5))

gkt m + s)g*3(m + 5)---gkpe(m + 5) \( TH
gkt(m + s) g’"'k‘l(m + 5)|| TH?

0

Plm+s | T
we can rewrite (6.26), using (6.14), in the following form

6.2 G,;(m)

D q v
.12=:0 ; z=: (Hkl(s)’ sz(S),..., Hk"k(s))g‘]‘l(m + S)*(T'j‘}’ T’j‘%,’ T}T")*
q
= 3 3 H @) HIN), H )y HS) sy HY )y H™(5))
gh(m + 5) 0
% G5i(m + 5) (Titees T3 T3 T3024 Tl THP)a
0

gy (m + 5) )x
(j=1,2,.,n).

From this, we derive the expansion formulas of the convergent power series
solutions (6.3) in terms of the associated fundamental matrix functions (6.17)
as follows:

(6.28) X0 =§OG,(m)tm+m

= z=i1 sS(J(H“(s),..., Hm(s), H2\(s),..., H?"2(s),..., H"(5),..., H""¥(s))

Y}I(t’ S) O
2
x Vi s) (T3 T4, T2, T30,y T, T

0
Y}l(t’ S) *

We are now in a position to solve the two point connection problem for the



114 Mitsuhiko KoHNO

system of linear differential equations (6.2).

Suppose that p;—u,# an integer (j=1, 2,...,n; k=1, 2,...,v) and 0<|4
NAi— Al <l(k#i; k, i=1, 2,...,v). Then, taking account of (6.28) and the
results derived in Section 3, we have

(6.29) X/

~ é)(H“(s),..., H™(s), H2(s),..., H*"2(s),..., HY(s),..., H""¥(s))

t~Imstiexp (py(0) 0
t".’z"!‘f‘l‘z e t
X °3(.p (p2( )) (T]lp T}?[iT]lza 1T§'l';2a TJ, EX le:)*
0

1=9v=s*iv exp (p, (1)) Jx

~ (R1@),..., X"@), X21(@),..., R2(2),..., 2°1@),..., 2'™(1))
t™1rexp (p1(9) 0

T3,,...,T%

vl vn
Ti, T, 2o Thls e TR«

=J 2
o e @) gy

0 .
t~Ivexp (p,(®)

~ (X11(0),..., X1"(®), X2L(0),..., X2 2(p),..., X"1(2),..., X" (1))

X (TH,..., T3, T3,,..., T%2,.., T3,y TV s

Jlx’
v P .
~ kgl :Z"l Tf;?"Xk"(t) (j=1,2,..,n)

as t—oo in the sector S(ly, ..., 1,)=8,,A) nS,(A) N - n S, (A) Uy, Lys..s 1,
=1, 2,..., q), where S (1,)(k=1, 2,...,v; I=1, 2,..., q) are the sectors of the form
(5.37).

§7. Evaluation of the Stokes multipliers

We have established in Section 5-6 that the Stokes multipliers (connection
coefficients) can be given by the constant coefficients appearing in the linear
combinations, where the coefficients G;(m) of convergent power series solutions
are expressed in terms of the functions F¥(m). Regarding the actual
determination of the Stokes multipliers, we have only noted that, applying the
well-known Cramer formula for the solution of linear equations, they can be
evaluated, for instance, by the relations satisfying initial conditions. This is
indeed valid if the values of F¥(r) for r=0, —1,..., —q+1 are given in Theorems
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5.2-3. Moreover, if we occasionally have the exact values of both G;(m) and
F¥(m) for every m, we can immediately apply the Cramer formula to the linear
combinations for any g consecutive values of m and obtain the exact values of
the Stokes multipliers. Since it, however, is not easy to derive the explicit values
of F¥(m) which are considered as the modified factorial series, such a direct method
of calculation stated above cannot be expected to be applied in general.

In the theory of difference equations, a solution is used to be characterized
by its asymptotic behavior near infinity, i.e., by its terminal condition. We here
remind of the fact that the coefficients G;(m) are particular solutions of linear
difference equations, which are determined by initial conditions that G;0)#0,
G{(r)=0 (r<0), and hence they have been expressed in terms of linear combi-
nations of an appropriately chosen fundamental set of solutions F¥(m) of those
linear difference equations. Since we have already obtained the asymptotic be-
haviors of the solutions F¥(m) as m— o in the right half-plane, it therefore follows
that to seek the Stokes multipliers is exactly the same as to investigate how the
particular solutions G;(m) behave near infinity in the right half-plane. In other
words, if we can know the asymptotic behaviors of the particular solutions G ;(m),
then we can immediately determine the Stokes multipliers by a method as follows:
For example, in order to determine T¥'(k=1, 2,...,n; =1, 2,..., q) in (5.10),
we apply the Cramer formula to the linear equations

6N =% Iil THFE(G)  (r=mym+1,..,m+q—1)
and then let m tend to infinity in the right half-plane.
As will be seen in Section 8, this method of terminal condition is very effec-
tive for the evaluation of the Stokes multipliers.
We shall now explain the method in more detail, treating, for simplicity, the
single linear differential equation

,,d"x _ & ai " ”_idn—ix
(7.1) “ar = & & g

the connection problem for which has been investigated in the paper [10]. In
this case, the Stokes multipliers T%, (j, k=1, 2,...,n; =1, 2,...,q) must be
determined by the relations

(7.2 Gim) = = S Thfsm) (=1, 200 m),

The coefficients G;(m) of convergent power series solutions of (7.1) satisfy the
linear difference equations
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n  4qi
(7.3 I(m + pj)G;(m) = P rgl aj,[m+p; —r],_;G(m —r)
with the initial conditions
(71.4) G(0)#0,G(n=0 (r<0) (=12,.,n),

where use is made of the notation
Pl =pp—D-(p—p+1), [plo=1,
1) = (1 = 3, aolpTa-s

and the functions f%,(m) have the asymptotic behaviors

(7.5 fhim) ~ghm{l + O(m=Y9)}  (jk=1,2,..,n;1=1,2,..,9)

as m— oo in the right half-plane, g%,(m) being just the same as g%}(m) in (6.13).
Considering the relations

Shi(m+r) gk (m+r) -1
7.6 J ~ ZJ 14+0 /e
( ) f;l(“z) g,’;l()“) { (m )}

~ (50 rm™ 8 {1 + O(n™1/)}
(w =exp(2ri/q); j, k=1,2,...,n;1=1,2,..., 9,

it follows from the Cramer formula that, assuming that G;(m)#0,

(1.7 T% =
f}.l(m+qn—-1)---f}.q(m+qn-—1)---G,:(m+qn—l)---
f}.l(m) ...f}.q(m) ees ﬁl(m) cos
Fhim+gn—1)--f (m+qn—1)-f% (m+gn—1)---
Si1(m) e f 5o (m)
n (m+qn—1)---f7 (m+qn—1)
S51(m) [ (m)

Fri(m+gn—1)-f1 (m+gn—1)

_ 9i1(m)gjs(m)---G;(m) ---g3,(m)---g7,(m)
gi1(m)gi(m)---g%,(m)---g’j (m)---g%,(m)




A Two Point Connection Problem 117

1 1 1

(A"l'l/‘l-’nllq)‘l ...(AIl/q.w‘I'lml/'l)'l ...Gj(m-!-l)/Gj(m)

(1;1/q}n1/q)—(qn—1)...(,11—1/:1'&,-1-lmllq)—(qn—l)...Gj(m.',.qn_. 1)/G,(m) -
1 1 1

(ATYamt/e)—1 < (ATVawa1mt/a)=1 e (A Vit 1mt/9)-1

(AT 14m1/19)=(an=D)... (A7 198~ 1 119)=(an=1)... (A7 Vet~ 1pgt/g) = (an=1)...
1 1
A;Vamila)=1 ... (As1/4ga-1mt/a)—1

(AyVamilay=(an=D... (A Ha@wa~1ml/e)~(an—1)
1 1

(A;Yami/a)~1 s (A Ve 1pl/a)—t

(A;l/q:mllq)-(qn-l)...(1;114:wq-1m1/q)—(qn-l)
x {1+ O(m~1/9)}

_ Gi(m) V§vati(Al/,..., Mo~ ...,
gk (m) V,, Q... A== D

mtiGj(m+r)|Gj(m),..., AL/4,..., A1w—(a~D)
A1p=0=D 274, Iagp=(aD)

x {l+0mY}y (i k=1,2...,n1=1,2,..,¢)

for sufficiently large positive integral values of m, where V,(x, X5,..., Xpg)
denotes the Vandermonde determinant and V,’,',,(x“ X35.ee5 Vpseeer Xpg) denotes a
determinant in which the j-th column (1, xj,..., x4"~!), of the above Vandermonde
determinant is replaced by (1, yis..es Vpoooos Yan—1)%-  Since T¥%; are constants
not depending on m, letting m— oo in (7.7), we have

_ yleéﬁ‘”'l“(l}/‘i,..., Mw-@ N, d;r),.., A/9,.., A1e~@"D)
NV LG, A= D [ i Tag=0-D " "217a " "717ag=@=D)

(7.8) T
(yk=12,..,n1l=12,..,9
if we can know the relations

. Gim) _
(7.9 }‘1_’11010 g%,(m) Vi

and
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. Gi(m+r)
r/q J\n Ty = . = —_—
(7.10) il_’n;m G,(m) d;(r) r=1,2,...,qgn—1).

We can rewrite the above assertion in a more precise manner. Applying O.
Perron-H. Poincaré’s theorem stated before to (7.3), we easily see that the co-
efficients G (m) have the growth order C7/I' <—~ + 1) i.e., entirely the same
growth order as g%,(m) for sufficiently large positive integral values of m. From
this, if we put

(7.11) G(m) = gk, (m)G%,(m) (G, k=1,2,..,n;1=1,2,...,9),

the relations (7.9-10) imply that

(7.12) lim G%,(m) = 9%,
and
k
7.13) im GBI Gy (Ghm) £ 057 = 1,2, qn— 1),

m— o0 G.’l‘l(m) -

thereby obtaining d(r) = (A;'/%w'~1)~"d%(r). From (7.3) and (7.11) we see
that the functions G%,(m)(j, k=1,2,...,n;1=1,2,...,q) satisfy the linear
difference equations

[m + Pj— 1. g'f't(m -r)

@149 Gum = 3 $a, T Py GHim = 1)
= 3§ alomGhiom - 1)
with the initial conditions
(115)  GHO #0, G =0(r<0) (k=12 n1=1,2..,49).

Therefore we conclude that if the particular solutions G%,(m) of the linear differ-
ence equations (7.14) subject to (7.15) have the properties (7.12-13), then the
Stokes multipliers T, are given by (7.8). However, we do not insist that we can
always verify the relatlons (7.12-13) for those particular solutions.

We here make a remark on the linear difference equations (7.14). The
coefficients of (7.14) for each fixed triple (j, k, I) have the following asymptotic
behaviors

Ak (m) ~ a; G o =y mr {1 + O(m1%)},

ie.,
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4, (Mo (r = qi),
(7.16) lim A (m) =
m— 0 (r<gqi).
Therefore the linear difference equation (7.14) is of the Poincaré type and its
characteristic equation is given by

(1.17) A = ¥ a, (o' -1) 8 4n=b
i=1
Obviously, gn roots of (7.17) are given by

A\ ,
(7.18) dyy = (T;) o (i=1,2.,m1=12..,49),
whose g roots d,; (I=1, 2,..., q) necessarily have the same absolute value. As
shown, illustrating an example, by O. Perron [18], in such a case that the char-
acteristic equation has roots with the same absolute value, it occurs that G%,(m+
1)/G%(m) is oscillatory. In practical applications we often encounter cases in
which all or some of the ratios in the left hand side of (7.13) for 1<r=<qn-—1
identically vanish and the remaining ratios have the limits.

Lastly we shall mention that even if the exact values of the Stokes multipliers
cannot be determined by the method of terminal condition and the like, our
theory still shows the usefulness for evaluating approximate values of them.

§8. Applications

In this section, in order to illustrate the effectiveness of our theory established
and to make a few remarks on the conditions imposed so far, we shall consider
the two point connection problem for the extended Airy equation

'y _ v, —
(8.1) P z°y = 0.

For n=2 and v=1 this is just the Airy equation. It is well-known that G. G.
Stokes [20] first noticed a discontinuous change of coefficients appearing in
asymptotic representations of its solutions called Airy functions by a continuous
change of sectorial neighborhoods of infinity. Such a fact and cocfficients are
named the Stokes phenomenon and the Stokes multipliers, respectively, after the
first discoverer. H. L. Turrittin [21] and J. Heading [4] considered (8.1) with
an integer v and a rational number v, respectively, and later B. L. J. Braaksma [1]
treated (8.1) with an arbitrary complex number v by means of the Barnes integral.

Now we rewrite (8.1) in the form
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(8.2) zn_j:_:_{’_ — 21 =0

and consider (8.2), where g is assumed to be a positive integer.***) Putting

z=t" and denoting t#‘;— by 2, we can write (8.2) in the form

(8.3) [2{2 — n}---{2 — n(n — 1)} — n"ta"]y = 0.

Moreover, if we put

1=,

Yp={2 —n(n—p+DHD —n(rn—p+2)}+{D2 —n(n— D}y
(r=23,..n,

(8.4) [

then we have

9yp'—_-yp+l +n(n_p)y‘7 (p=1: 2’---)n_1)y
(8.5)

Dy, = 2{2 — n}-{2 — n(n - D}y = nery,,

whence we obtain the following system of linear differential equations for Y=
(yls Y2seees yn)*

n(n—1) 1 0
ay _ nn—2) 1
(8.6) = - Y.
n o1
710 T L | IO 0
We here apply the so-called shearing transformation
t—a(n-1) 0
-q(n-2
8.7) X = S()Y, S¢) = g
t—!

0 1

to (8.6), and obtain the system of linear differential equations of the desired form

(8.8) 19X = (4o + 420X,

*xx) We can treat (8.1) with a rational number v. If q=i’- in (8.2), then we may only make
the change of variables z=¢"? in the analysis below.
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where, putting p;=(n—j)(n+q)(j=1, 2,..., n),

Py 0 01
P2 01
AO - ’ Aq = . .
. 1
0 Pn nt 0 ...... 0

We shall now seek convergent power series solutions of (8.8) in the neigh-
borhood of the origin t=0. It is easily seen that some of convergent power series
solutions are written in the column vectorial form

(8.9 X0 =1 3 Gmyrm,

where the coefficients G (m) satisfy the system of linear difference equations

(m+p; — AO)Gj(m) = Aqu(m -9,

(8.10)
Gi0)#£0,G(r)=0 (r<0).

From the initial conditions we can see that Gj(m)=0 (m#gm’; m'=0, 1, 2,...)
and hence, putting G(m)=G,(gm), we have

@.11) { (gm + Pj — AO)Gj(m) = Aqu(m - 1),
' G(0)#0, G(r) =0 (r < 0).

Moreover we put Gi(m)=(gU:-V(m), g">D(m),..., g-m(m)), and write down
(8.11) componentwise as follows:

(gm + p; = p)gusd(m) = gU-HD(m — 1) (i =1,2,.,m = 1),
(8.12) | (gm + p; = py)g*/"(m) = n"g¥:D(m — 1),
gyu0) #0,g9uD0) =0 (i #)).

From (8.12) we can immediately see that for 0<k<n—1

9
0
(8.13) Gi(nm+ k) =|gU-*Y(mm+ k)|, k' = j—k (modn),
0

0

as long as the coefficients in the left hand side of (8.12) never vanish. However,
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since for ISk=Zj—1
(8.14) (gnm — kn)g-i=®(nm + k) = gU-i~**Dmm + k — 1),

we cannot determine gU:i~¥)(nm+k) for such integers m that m=k/q (1Sk=<
j—1). For example, if g=1, 2,..., n—1, then we can write k=ql+1' (0ZI'<
g—1) for 1k=<j—1, and for k=q and m=1I we cannot determine g{/-J—4h
(nl+ql) from (8.14). In these cases logarithmic terms appear in the representation
of convergent power series solutions in the neighborhood of the origin ¢t=0.
We therefore obtain the following:

Case 1. If g=n, then there exists a fundamental set of convergent power series
solutions of the form

(8.15) X)) =3 Gmm (= 1,2, 1)

in the neighborhood of the origin t=0, where the coefficients G;(m) satisfy the
system of linear difference equations (8.11).

Case 2. If 1=<q=n-—1, then for 1< j<q we can seek convergent power series

solutions X (t) of the form (8.15) and for each j (1=<j<q) there exist v;=
max {v=0;j+qv=<n} linearly independent solutions with logarithmic terms
associated with X ;(f). We can write them as follows:

(8.16)  Xjiqy(0) = Z(y v),(logt)vv W0 (r=1,2,..,v))

where X ; o(t)= X (f) and the functions X; () (v=1, 2,..., v;) are convergent power
series solutions of the nonhomogeneous systems of linear differential equations

(8.17) t% = (Ao + AtDX,, — X0y (=1, 2,...,v)

with the expressions
(8.18) X0 = t”J”"m;OGqu(m)t"' = zw”vmz:,ocjm(m)m
v=12,.,v).

Since  pjiqv-1y—Pj+qv=—4q(n+q), the coefficients G;,,(m) (v=1,2,...,v)
satisfy the nonhomogeneous systems of linear difference equations

(8.19) (m + pj1qy — AO)Gj+qv(m) = Aqu+qv(m -q) - Gj+q(v—l)(m - q(n + q)),

ie.,
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(820) (qm + Pj+qv — AO)Gj+qv(m) = Aqu+qv(m - ]) - Gj+q(v—1)(m - (n + q))
v=12,.,v).
In the next stage we consider formal solutions of (8.8) which are given by
(821)  XX(1) = exp (%t")t“k S A (k=1, 2,...n),
s=0

where the characteristic constants A,=nwk~!(k=1, 2,..., n), w,=exp(2ni/n).
The coefficients A*(s) satisfy the system of linear difference equations

(lk - Aq)ﬁk(s) = (AO - M +s5— q)ﬁk(s - q)’
(8.22)

A%©) #£0, A*(r) =0 (r<0).
From the initial conditions we can see that A*(s)=0 (s#gs’; s'=0, 1, 2,...) and
hence, putting H*(s)=A*(gs), we have

(A — ADHM(s) = (Ao — i + q(s — D)H*(s — 1),
(8.23)

H*0) # 0, H*(r) =0 (r<0).

We can here put
(8.24) H*(0) =

and from (8.23) for s=1 and (8.24) we can immediately obtain

Jél(pj_.uk)_—_o (k= 1’ 2’-~'s n)9
which determine the characteristic constants y, as follows:

(8.25) Yy = _('iq_)z(n—_l) (k=1,2,..,n).

This also implies that

M=

(8.26) pj— kg.l_lv‘k =0,

ji=1

which is an invariant identity called Fuchs’ relation. In order to derive the
growth order of H¥(s) for sufficiently large values of s, we had better to apply
the constant transformation
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1 1 -1
(8.27) HYs) = CHY(s)=| %1 72 e |HKGs)
,1;115—1 /1»2;—1...,13:—1
to (8.23), obtaining the system of linear difference equations

(A — /Tq)ﬁ"(s) = (Ao — e + q(s — 1)H*(s — 1),

(8.28) -
H40) = (0,..., 1,..., 0),,
7

where A,=C14,C and 4,=C~14,C, i..,

~ For this system of linear difference equations we can easily derive the estimate
of H¥(s) in a similar manner to the proof in the paper [8]. We have

62 1Bl s (i) igjv__lli% I,
q

N being a sufficiently large positive integer, where we have put

Mk — Al = minl'{j — Al = n|l — w,|,

(8.30) _ J#k
a = [|Aoll + |pul-

Hence we have

33D 1@ S ICHA) < M(pr L) 1(s =1+ )

(k=1,2,..,n),

M being an appropriately chosen constant.
According to our theory, we now have to consider two g-th order linear

difference equations
(8.32) hdf(m + q) = (m + p; — w)s(m),
(8.33) (m+pj — wlgs(m) = hgltm —q)  (,k=1,2,.,n),
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which correspond to (2.4) and (2.6), respectively, where ;=0 (I=1, 2,..., g—1).
For each pair (j, k) (j, k=1, 2,..., n) we take the fundamental set of solutions
of (8.32)

(8.34)  ¢%,(m) =_;_{<1q;)1/‘lwz_l}"'+ﬂj_”k 1“<_”i_€]_1_—_&‘)

(w, = exp(27i/q); | = 1, 2,..., q),

which are characterized by the asymptotic behaviors (2.5), and then, as a funda-
mental sets of solutions of (8.33), take the following g solutions defined by (2.13):

l 1/4 m+p =ty
{(G) ea] ,
8.35 k(m) =— =1,2,....,9).
( ) gjl( ) q ["(m+pl'—#k+1> ( ¢1)
q

We here make a remark. If (m+p;—u)/q+1=—-N (N=0, 1, 2,...), then
all gk,(m) (I=1, 2,..., q) and also the Casorati determinant ‘Zg;‘(m) vanish, more
precisely, have simple isolated zeros at such values of m. On the other hand,
ohi(m+q)(I=1,2,..., q) and the Casorati determinant %¢;‘(m+q) have simple
poles only at such values of m. Reminding of the definition that no identical
vanishing of the Casorati determinant implies the linear independence of solutions
of linear difference equations, we can say that ¢%,(m) and g%, (m)(I=1, 2,..., q)
actually form the respective fundamental sets of solutions of (8.32) and (8.33) in
the whole complex m-plane. Moreover we immediately see that the product
g% (m)¢% (m+q) has no singularities in the whole complex m-plane except for
infinity, i.e., are entire and the important relations (2.16) necessarily hold every-
where. This is indeed the case in the considerations of Section 2, though we did
not explain the above fact explicitly. Only by reason of a concise explanation of
our theory we have assumed throughout Sections 2-6 that p;—pu,# an integer,
considering that m ultimately takes integral values. As just shown, the condition
that p;—u, # an integer is not essential and can be dropped by a slightly detailed
observation.

We shall now define the functions F%,(m)(j, k=1, 2,...,n; I=1, 2,..., q) by

(8.36) Fk(m)= 3 As)gh(m + s)

s=0
= LHOm +sa)  Gok=1,200m1=12.,9).

Taking account of (8.31) and (8.35), we can prove the well-definedness of these

-1)

functions. For the moment assume that Rem>(—”+—q)2(”—~. Then we

have
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831 I Z H $)ghim + sq)l

=M ' %{(%)Uqw;(t—n}"'”"“"
S I(s—1+—-
< S (T () e ‘+<m 7 #)kl -

< | LI AN p=a-n "R |F<Re(m * ’ZIJ >+ 1)’
= .q {<q> e } jr<ln_j-%_:_&_ +1)HF(-——1)‘
. (-1 w,

( 2] )’
(Re<m+p’ ”">+1>st |4k — Al

= AmF( G =1 sRe(MEALZI) 41 mll—lm)

where we have used the notation
() =1, () = oot + 1)-+-(ot + s — 1) (s=1,2,..)

and F(a, f; y; z) denotes the hypergeometric series. We easily see that the

2;7{‘<1 From (8 30)

this condition implies that 1<|1—exp(2zi/n)|, which is satisfied only for n<5.
For this reason the condition that |4,| <|A;— A, | (j#k; j, k=1, 2,..., n) was called
the pentagonal condition by K. Okubo [14]. However, under the assumption

that Re (ﬂtﬁf—_—m‘)—%+]>0 the hypergeometric series is well-defined

hypergeometric series in (8.37) is convergent for

for ‘T—l‘——’—-l and moreover, even if |—:——‘ > 1, the hypergeometric
A=Ay A=Ay

series has meaning through the principle of analytic continuation. From this,
it will be seen that the pentagonal condition imposed so far is not essential.
In case the pentagonal condition is not necessarily satisfied, it seems that the
e-parameter method originally developed in the paper [14] is more effective for
the proof of the well-definedness of the functions F¥ (m).

We can easily verify, as in the preceeding sections, that for each j the functions
FY(m)(k=1, 2,...,n;1=1, 2,..., q) form a fundamental set of solutions of the
system of linear difference equations (8.10) in the right half-plane Rem >

(—'-'-"1)5(-1?—1—). Just by means of (8.10), however, the domain of definition of the
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functions F¥%(m) can be extended to the left half-plane Rem < Q’iq)z(” - .

Moreover we can determine the Stokes multipliers T%, (k=1,2,...,n; =1,
2,..., q), obtaining

(8.38) G,(m) = él lgT'}aF';x(m)-

In Case 2 we introduce the functions g%, (m)(j=1,2,...,q;1l=1,...,v))
defined as (2.20), i.e.,

(839)  gham) =t A gm0 =12y,

which are solutions of the nonhomogeneous linear difference equations

(8.40)  (m + p; — wIghi,\(m) = hgli,(m — q) — g¥y,,-1(m)
v=12,..,vp),
where g%, o (m)=g%(m)(I=1, 2,..., g) are solutions of (8.33) for j=1, 2,..., q.

Then we define the functions, the well-definedness of which can be proved in
exactly the same manner stated above,

(8.41) Fi1,,(m) = 3 HX(s)gi,(m + sq)
=
(J=12..,9;v=01,..,vi;k=12,..,n1=1,2,..,q).
We can see that for each j (j=1, 2,..., q) the functions F¥%, (m) satisfy the
nonhomogeneous systems of linear difference equations

(842) (m + pj - AO)FIJ"l,v(m) = Aszsl,v(m - q) - F’j‘l,v—l(m)

where we put F%, _,(m)=0. From (8.42), by induction, we can prove the
following relations, together with determining the Stokes multipliers:
PN v n q
(843) Gj+qv(m) = )EO kgl IZ:I T}:l,yF'_;l,v-y(m - vq(n + ‘1))
(J=1,2,...,q;v=0,1,.,vp).

In fact, for each fixed j(j=1, 2,..., q) let the Stokes multipliers T%, ,(y=0,
L..,v; k=1,2,...,n;1=1, 2,...,q) be determined. Then, multiplying both
sides of

(m—(v+1Dg(n + 9 + p; — AFfi,yr1-y(m — (v + Dg(n + q))

= A1, v41-(m — g = (v + Dg(n + q)) = Fj ,—,(m — (v + Dg(n + q))
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by T%, , and summing them over k, | and y from 1 to n, from 1 to g and from 0
to v, respectively, we have

Ms

> Tk, FE o (m = (v + Dg(n + q))

11=1

y
M+ pjri1yg— A0) 2
y=0 k

[}

= 4,3, 3 3 T Fhisnisym =4 = 0 + Daln+ q))

i [V]=

Gj+qv(m - Q(n + q))9

where we have used p;—(v+1)q(n+q)=p;;(y+1)q> Which implies that the sum is
a particular solution of (8.19) for v+ 1. Therefore we can determine the Stokes
multipliers T%, ,,,(k=1, 2,..., n; I=1, 2,..., q) and obtain

Gj+(v+1)q(m) = Z": i T%, v41F%,0(m — (v + Da(n + q))

k=1 1=1

i [V]<

n q
g ;1 T?l,ny;l,v+1—y(m - (V + l)q(n + q))'

Now we shall calculate the exact values of the Stokes multipliers T% %, for
simplicity, in Case 1 by the terminal condition method. For that purpose, we
first seek the explicit formulas of the coefficients G (m)(j=1, 2,..., n). It follows
from (8.12-13) that

(8.44) gunvG -1 = (_—%%,

gy ((m — l)n +j—1)
a(m+ 13 )(m+ 2L ) (m+ 25 1)
] r<1 N el

; ;.1_). gun( ~ 1)
'-‘r(m 1+ J)

(8.45) gUbmn+j—1)=

(j=1,2,.,n).

Hence, if we put

(— 1)’I'(J)n’ !

Ui (0
gy 9(0) = ]>
q

then we have
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(8.46)  gYU:V(mn+j—1) =q-mn[iﬁl r(m+ 141 J>]

(J = , ""’ n) .
Considering the fact that G {(mn+j—1)q) =(gY-Y(mn+ j-1),0,...,0), and
Gj((mn+j- 1)g+r)=0(r=1, 2,..., g—1), we solve the linear equation

Gj((mn +j—1Dg+r)= kgnl Ig‘,le,F}‘,((mn +j—Dg+r

(r=0,1,.,q—1)

by the Cramer formula, thereby obtaining
H(0) -« H"(0)

1
0
0
0 Hl(o)(;pm) H"(O)(ll/‘la) (a- 1))
0

Hl(O)(p/q)q 1, Hn(O)(A'll/qwq(q n)e-1
H*(0) H'(0) --H"(0)

HYOQG0g0™)  H'OG - H (OO 0;¢-))

(8.47) Tk, ~

Hk(d)(l;/qw;(l—l))q—l H‘(b)(A}/“)“‘l---H"(é)(l,‘/“w;‘"‘”)“"

gyu-D(mn+ j —
g5:((mn + j — 1) )

{ 1 + 0(m™)}

(yk=1,2,..,n;1=1,2,.,9),

where we have used the asymptotic relations
F%(m) ~ H*(0)g%,(m){1 + O(m~")},

ghi(m+r) {(/1,,)1/‘1 w-(,_,)}' /g -
T~ m1{l + O(m~1/%)} .

g’j‘t(m) q 4 { ( )}

Taking account of (8.24) and rearranging rows of the determinants in the order
(1, (A o7Y), ., A=) Ay A (AR D), o, (A g t-D)1-1, L,
AL (A g Y), L, AT (A g (- D)4-Y),, we see that the constants in
(8.47) are always of the form
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1 1 1

0 % -x

0 xBteeexP™l | _ xpxaeeex,Vpo1(X2 X300 Xp)
1 1 1 Vo(x1, X35...5 Xp)
X, Xy X

p—1 o p—1,. vP-1
x{ xg ...xg
X1Xp°" *Xp

B CENETHENrS

where x;(j=1, 2,..., p) are solutions of the equation f(x)= H(x x;)=0. Since

Xa=AMlo;"V(k=1,2,.,n;1=1,2,.,q) are solutlons of the equation
Fx)=(x1—A)(x2—A,)---(x2—A,)=x9"—n"=0, we have

(= P, f(x0) = (= 1) #ignxge = (= Der~qnnr,
XXy = (= Do,

and hence we find that the constants in (8.47) are equal to (1/gn). On the other
hand, taking account of (8.35) and (8.46), we have

gy V(mn+ j—1)
g5 ((mn + j — 1)q)

= ql+(P)-”k)/ql;(m”+)— 1)‘0’}"‘0/9@51—1)("J‘l‘k)

x ]ﬂ[ 1 F(mn+j—1+pj ”"+l>
“F(m+1+ q) 19

nmn+j+(ﬂ,—llk)/q—l/2
@n)=DP2

= q!"'(PJ'l‘k)/qw;l"l)(”)'l‘k)(nw":-l)-(m”"'f— DH—=(Py—rx)la

o T(m+ L2ty izl)
X I"I nq _ n
=t r<m+1+—qf—)

- —1)(Py=txe) y—(k—=1){J =14 (Pj— n 1/2 -
~ @I FPsmH018 g (1= 1) (05~ 1) gy (k= DU = 1+(2 ”k)m(@?r)"—“) {1 + 0(mY)},
where we have used Gauss’ multiplication formula

nnz—(1/2)

I'(nz) = @n)Drz ,t[l F(z

together with Stirling’s formula. Consequently, letting m—oo in (8.47), we
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obtain

J=1+(Pj—Hi)/q
®49) T4 = (L)

W= D@1 (2m)n=1p)=1/2
Gy k=1,2,..,n;1=1,2,..,9).

Thus we have solved the connection problem for (8.8) as follows:
(8.50) X[(t) ~ kz" T5 X0  (=1,2,..,n)
=1

as t—oo in the sector S(Iy, I,..., [)=S5,,(4)) n S;,(4;) n --- n S, (4,), where

(8.51) S, — T + _1 Sagifi< -2 + Zq—"
Similarly we can determine the explicit values of the Stokes multipliers T%; ,
in Case 2 after a more complicated calculation.

Taking account of the change of variables z=1¢", (8.4) and (8.7), we shall
now return to the original differential equation (8.2). Let yi(2)(j=1, 2,...,n)
be a fundamental set of solutions of (8.2) which can be written in the form

(8.52)  yj2) = =D T gUsD(mn 4 j — Dytemrri=1e
m=0

—_ n—'noo = 1 nq,—n\m
= t(n=J) m§0|:i=nl r<m+1+i—j)}(t ag=n)
q

— on—j 3 . 1 nym i =
=2z m;0|:,_r11 I"(m + 1+ i ; ]):I(zqq ) (.’ 1,2,...,”)-

From (8.21) we see that formal solutions of (8.2) are given by

(8.53) y*(z) =exp (}“1—“2"/")2("*”("“’)/2" f‘, h*(s)z™sal

=0
(h*0)=1;k=1,2,..,n),

where the coefficient h*(s) denotes the first component of the column vectorial
coefficient H*(s). Then (8.50) implies that

(8.54) 3@~ EThy @ (=12..n)

as z— oo in the sector S(ly, I,,..., [,)=S} nS?,n--- n S}, where

(8.55)  Sk: (2l — 3)nm — 2(k — Dn < argze < (21 — D — 2(k — D
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This result has the more explicit expression than derived by H. L. Turrittin and

others (see B. L. J. Braaksma [1]).
To see the above result more vividly, we consider the global behavior of

Ai(z) called the Airy function of the first kind in the sector |argz| <%n. Ai(z)
isa particuiar solution of '(8.3), where n=2 and q=3, and is expressed in terms of
(8.52) as follows:

z3m Z3m+1

00
AN 4
© 3mi2mir(m+ %) "0 3mesmir(m o+ 4

Ms

(8.56)  Ai(z) =

= 3723y,(z) — 37*3y,(2).
From the connection formula (8.54) just derived, we have
(8.57)  Ai(z) ~ (3723T4;, — 3743T1, )y (2) + (373T%,, — 3743T7,,) y*(2)

as z—oo in the sector S(Iy, I,)=S}, n S%,, S¥ being written in the concise form
k. 2 2

(8.58) Sk: ?(21 —k—-2)nZargz< ?(21 - k).

In the above the formal solutions y*(z) (k=1, 2) are explicitly written in the form

yl(z) = exp (_%_23/2)2—1/4320}11(S)z—3s/2

w sane (s + (s + 2
() S R

y2(z) = exp (_ %23/2>z‘1/4 ihz(s)z‘-’"/z

(8.59)

o LI(s + D)r(s + 2
= exp(— %z3/2>z-1/4s§0(_ %) rE: + 1?2(5)1’(_%3 z-3s/2

Considering that the sector |arg z|<—§~n is covered by S(0, 1)U S(1, 1)U S(1, 2)
U S(2, 2) and the Stokes multipliers corresponding to S¥ (k=1, 2) are given by
35/6 5 . 31/6 1 .
k 2 ~ — e — k 2 = (_ — —_
Tl,-—zﬁexp«{6 Ql—k 1)m}, Th=3 7 exp{6 (~101 k+11)m}(k_1, 2),

we can calculate the coefficients in the right hand side of (8.57) as below.
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| 3-#/3T},—374/°TY, | 37%/T},—37Y/°T,

T4 2 - i .
Tn<argz< 37 SN St 2T 2Jm

5 1
~2r<argz <0 Sinsi 0 Nz
05argz<£ﬂ' $insi 0 i
< 3 1107 2w
2 4 1 2 i 1
Frsargz <57 SinsSi 2z 2J7

From the above table we at last obtain
Nl N S
(8:60) 4i(2) ~ 5 7y'() + 5 72 y*(E)
~ i——\/—%exp (—_—%—23/2>z‘1/4 ihl(s)z‘f‘s/2 in —%n <argz< —m,

§=

YN _2 3/2> S1/4 % B2(c) =382 in —
(8.61) Ai(z) 2\/Eexp< 32 )z Zoh (s)z in —n<argz<m,
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(8.62) Ai(z) ~ Zlﬁr yi2) + 5?1/7? 2(2)

~L_ .; 3/2) -1/4 S 1 -3s/2 1 .‘_1'_
2\/nexp<3z z > hi(s)z in 7 <argz<37.

s=0
From this, we see that the Stokes phenomenon of Ai(z) occurs when z goes across
the negative real axis argz= +m, i.e., the negative real axis is the actual Stokes
line of Ai(z). Similarly we can analyze the global behavior of the Airy function
of the second kind Bi(z) by exactly the same method as above.

Lastly we mention that our theory can be applied to a variety of problems
for linear differential equation involving parameters, e.g., turning problems and
eigenvalue problems. In particular, we call attention to the analysis by J. B.
Mcleod [12], in which he clarified, treating (8.1), a close relation between the
solution of connection problems and the determination of the distribution of
eigenvalues for singular boundary value problems (see also Y. Sibuya [19]).
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