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1. Statements of results

Throughout this paper, spaces and maps are considered in the piecewise
linear category unless otherwise stated. Let Mn be a closed connected orientable
^-dimensional manifold. By M; we denote a compact punctured submanifold
of Mw, that is, a submanifold obtained from Mn by removing the interior of an
n-ball.

The purpose of this paper is to discuss some properties of Mn such that M"0

can be imbedded in the (n + l)-sphere Sn+1, or equivalently such that Mn

0 is
homeomorphic to a submanifold in Sw+1 bounded by some locally flat (n — l)-knot
Kn~1czSn+1. Since Mn is imbeddable in Sn+1 for n<2, we assume n>3.

We shall prove the following complete classification theorem of the homology
groups of such manifolds Mn, where an abelian group G is called a direct double
if G~A@A for some A.

THEOREM I. Assume that a punctured manifold Mn

0 of a closed connected
orientable n-manifold Mn is imbeddable in Sn+i. Then the integral homology
groups Gi = Hi(Mn\ Z) of Mn satisfy the following properties (l)-(3):

(1) If n = 2q + l and q>i is odd, then the 2-primary component of Gq is a
direct double.

(2) If n = 2q + \ and q>2 is even, then the torsion part TorG^ of Gq is a
direct double.

(3) If n = 2q and q>2, then TorG^^TorG^ and GJΎorGq is a direct
double.

Conversely, assume that a series Gl9...,Gq of finitely generated abelian
groups satisfies the above properties (l)-(3). Then there exists a closed connected
orientable n-manifold Mn such that Ht(Mn; Z) = Gj for l<i<q and M£ is
imbeddable in Sn+ί.

REMARK 1.1. By using the Alexander duality, W. Hantzsche [5, p. 42]
obtained the following result which is analogous to the first half of Theorem I:
If a closed manifold Mn is imbedded in Sn+ί, then ΎorHq(Mn; Z) is a direct
double for n = 2# + l(>3) and Hq(Mn\ Z)/ΊoτHq(Mnι Z) is a direct double for
n = 2q(>4). By Lemma 2.2, we see also that this homological classification is
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complete in an analogous sense to the latter half of Theorem I. A noteworthy

difference between imbeddings of punctured and unpunctured manifolds appears
in the case that n — 2q + l and q > 1 is odd. As a concrete example, the lens space
L(a, b) for odd a is not imbeddable in S4, though L(α, b)0 is imbeddable in S4

(cf. W. Hantzsche [5, Satz 3], H. Schubert [16, Satz 6] and E. C. Zeeman [20,

p. 486]).

For M" of odd dimension n = 2q + 1 and a field F9 consider the semi-charac-
teristic

KM"; F) = Σ?=ιdimF//ί(M"; F) (mod2).

Then, the first half of Theorem I implies the following

COROLLARY. Assume that Mn

0 is imbedded in Sn+1. Then the difference
χ(M"; Z2)-KMΠ; Q) of the semi-characteristics is 0 (mod 2) for odd n, and the
Euler characteristic χ(Mn) is 0 (mod 2) for even n.

Now, consider the following notion due to D. Puppe [15] :

DEFINITION. A closed connected orientable n-manifold Mn is spherical
(sphά'renahnlich), if there exists a degree one map of the (n + l)-sphere Sn+1 to
the suspension ΣM" of M".

Then, we see the following important homotopical property in Proposition

2.2:

ASSERTION. If a punctured manifold Mn

0 of a closed connected orientable
manifold Mn is imbedded in Sn+ί, then Mn is spherical.

As is seen in Lemma 2.1, the homological restrications of Mn in Theorem I
are deduced from this assertion.

On the other hand, the following are known :

PUPPE'S CRITERION [15, Satz 12]: Mn is spherical if and only if there
is a closed connected orientable n-manifold M' with a degree one map M'->MW

such that M' is imbedded in Sn+1 by a locally flat imbedding. (His arguments,
although presented only in the differential category, work equally in the piecewise
linear category.)

CAPPELL-SHANESON'S IMBEDDING THEOREM [3, Th. 6.4] : // Mn is spher-
ical, then Mn is imbeddable in Sn+2.

We can see that the converse of this theorem is not true. In fact, every

orientable closed connected 3-manifold M3 is imbeddable in S5 by a locally flat
imbedding by M. W. Hirsch [6, Cor. 4], but M3 is not spherical if the 2-primary
component of H^M3; Z) is not a direct double (e.g., the lens space L(a, b) for
even a) by Lemma 2.1.
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Furthermore, we shall show the following

THEOREM II. For each n>3 with n^4, there exists a closed connected
orientable n-manifold M" such that Mn is spherical but Mn

0 is not imbeddable
inSn+l.

In case n=4, a corresponding result is not known.

REMARK 1.2. For each n>3, there exists a closed connected orientable
n-manifold which is not spherical as is seen in Example 3.3.

2. Proof of Theorem I

In the first place, we note the following known result:

PROPOSITION 2.1. Let Vn be a compact n-manifold and Wn+l a (possibly
non-compact) manifold without boundary. If Vn is imbeddable in Wn+1,
then Vn is so in Wn+l by a locally flat imbedding.

PROOF. If dVn = Q, then this follows from M. Kato [7, Th. 3.7]. Let
dV"^0 and assume that Vn is a submanifold of Wn+1. Take a regular neigh-
borhood N of dV" in Wn+l such that N n Vn is a collar neighborhood of dVn in
Vn

9 and set

W = W"*1 - IntN 9 V = Vn - Int(JV n V").

Then Vn is homeomorphic to V, and we obtain a proper imbedding /: V"^>W.
By [7, Th. 3.7], / is approximated by a locally flat proper imbedding /': Vn->W.
This completes the proof.

PROPOSITION 2.2 (Assertion in § 1). Let Mn be a closed connected ori-
entable n-manifold. If a punctured submanifold Mn

0 of Mn is imbedded in
Sn+ί, then Mn is spherical.

PROOF. By the above proposition, there is a locally flat imbedding of Mn

0

in Sn+1. Hence there is an imbedding /: Mn

0 x [0, 1]-»S"+1. This induces
clearly a homotopy equivalence

Sn+1/cl(Sn+l -f(Mn

0 x [0, 1])) > ΣMn (the suspension of M")

and we have a degree one map Sn+1-^ΣMn by composing the projection (cf.
D. B. A. Epstein [4]). Thus we have the proposition.

Now, we prove the first half of Theorem I in § 1 by the above proposition
and the following

LEMMA 2.1. Suppose that Mn is spherical.
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(1) Ifn = 2q + l and q>l is odd, then the 2-primary component of Hq(Mn;

Z) is a direct double.
(2) If n = 2q+l and q>2 is even, then ΎoτHq(Mnι Z) is a direct double.
(3) If n = 2q and q>2, then Hq(Mn\ Z)/ΊorHq(M"; Z) is a direct double.

PROOF. (1) Let n = 2q-}-l and q>l be odd. Then D. Puppe [15, Satz 11]
proved that the Postnikov square

ki:H*(M*;Z2i) - > #"(M"; Z2,+ι) (i = 1,2,...)

vanishes if Mn is spherical. Further, an argument parallel to D. Puppe [15,
Satz 16] shows that /c* = 0 if and only if

(*) 2ί~1L(z, z) = 0 for all zeHq(M"; Z) with 2'z = 0,

where L: ΎoτHq(M"'9 Z) x Tor #β(M" Z)->β/Z is the dual linking pairing.
Let T be the 2-primary component of Tor Hq(Mn Z). Then L induces a

dual pairing L:T x T->β/Z.

SUBLEMMA. T admits an orthogonal splitting T^φ ΘΓ* wiί/ί respect
to L, w/iere T' is isomorphic to a direct sum of some copies of Z2i.

By this splitting, L induces also a dual pairing L: T'xT'-ίβ/Z. Define
a dual pairing

L': (T* ® Z2) x (T* ® Z2) - . ρ/Z (i = 1,..., s)

by the equality L'O^®!, Λ2®l) = 2ί~1L(Λ1, a2) for al,a2eTi. Then, by
translating 1/2 of Q/Z to 1 of Z2, L

1 defines a non-singular form

D:(Ti®Z2) x (T'®Z2) - >Z 2 ( i= l,...,s).

Since 2ί~1L(α, α) = 0 for all αe T1' by (*), it follows that I''(α®l, α®l) = 0
for all aeT\ Hence the form L' is symplectic, and we see that dimZ2Γ

ί®Z2

is even by taking a symplectic basis. Thus the 2-primary component Γ of
Hq(Mn Z) must be a direct double.

(2) Let n = 2q + l and q>2 be even. Then, by W. Browder [1, Th. 1],
ΎorHq(M"; Z) is isomorphic to either B@B or B®B®Z2.

On the other hand, according to G. Lusztig, J. Milnor and F. P. Peterson
[13], the difference %(Mn; Z2)-#(MW; β) of the semi-characteristics is equal to
the Stiefel- Whitney number w2w2g_1[Mn]. Further, since Mn is spherical, the
total Stiefel- Whitney class of M" is trivial by D. Puppe [15, Satz 13]. Thus the
above difference is 0.

Moreover, it is easy to see that

(**) KM" Z2) - KM" β) = dim Z2(Tor Hq(M» Z) ® Z2) (mod 2)
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forn = 2q + 1 (cf. [13, p. 358]). These show that Tor #/M" Z) =
(3) Let n = 2q and q>2. Since Sq«: /f*(M"; Z2)->f/M(M/I; Z2) is trivial

by D. Puppe [15, 6.7], the dual pairing

U : H«(Λf»; Z2) x H*(Mn\ Z2) - > H"(M»; Z2)

is symplectic. Thus dimZ2/ί^(MM Z2) is even, and the Euler characteristic
χ(Mn) is even by the Poincare duality over Z2. Therefore τankzHq(Mn Z) is

even by the Poincare duality over β, and the conclusion of (3) holds.
These complete the proof of Lemma 2.1 except for the proof of Sublemma.

PROOF OF SUBLEMMA. Let T = T1® ©TS be any splitting, where T*
is isomorphic to a direct sum of copies of Z2i. Let x e Ts be any element of order

2" (1 < u < s). Then we can find x' e Ts with

2M~1x = 2s" V ^ 0, 25x' = 0.

Since the pairing L is non-singular, 2s~1L(x'9 j/^O for some yeT, and so
2s~1L(x', /)^0 for some y'εTs. Hence 2tt~1L(x, /)^0 and L(x,
This shows that L\TS x Ts is also non-singular.

Therefore L and L| Ts x Ts determine the isomorphisms

, Q/Z), x - >

s, ρ/Z), x'

Thus, for any xeT, there exists just one element x' 6 Ts with

L(x, 3;) = L(x\ y) for all μeT',

and x — x' belongs to the orthogonal complement T' of T* in T with respect to
L. This shows T=T'@TS

9 and we see the sublemma by the induction on s.

PROOF OF THE FIRST HALF OF THEOREM I. Proposition 2.2 and Lemma 2.1
imply the first half of Theorem I, where Tor G^.^TorG^ in (3) is the Poincare

duality.

PROOF OF COROLLARY TO THEOREM I. By the equality (**) in the proof of
Lemma 2.1 and the Poincare duality, the corollary is a direct consequence of the
first half of Theorem I.

REMARK 2.1. Corollary to Theorem I holds for every spherical manifold
Mn (cf. Lemma 2.1).

To prove the latter half of Theorem I, we use the following lemmas.

LEMMA 2.2. For any integers n(>3), m(>0) and p with l<p<n/2,



52 Akio KAWAUCHI

there exists a closed connected orίentable n-manifold Mj(m) which is imbeddable
in Sn+1 by a locally flat imbedding and whose homology groups H 4(M J(m) Z)
(l<;ΐ<n/2) are given as follows:

(1) Let n = and q>\. Then

m if i = p9 when p = q and m = 0 or when p < q,

m^ 0,Zm if i = p, vv/ien p =

0

(2) Lβί n = 2q and q > 2. Then

if i = p — 1 or p, when p = q and m 0,

ϊ = p -f ls w/zen p = q — 1 and m 7^ 0,

Zm φ Zm // i = p, when p = q and m = 0,

0 otherwise (1 < i <> q).

PROOF. According as m = 0 or 1, Mj(m) = Spx Sn~p or Sπ is a desired

manifold.
Let m^>2. Let/m: S1-^1 be a simplicial map of degree m and C(/m) be

the mapping cone of /m. Then C(/m) is a simplicial 2-complex, and is imbeddable
in S4. Let L^m) be an imbedded image of C(fm) in Sί+1 (i>3) and set

Lj(m) = (n - 2 1),

where Σp~l denotes the (p-l)-th suspension. Then, the boundary M£(m) of

the regular neighborhood of L£(m) in Sn+1 is certainly a locally flat submanifold
of Sπ+1, and we see easily that M£(m) has the desired homology groups by using
the Alexander duality and the Mayer- Vietoris sequence.

LEMMA 2.3. Let n = 2q + l and q>l is odd. Then for any odd integer
α^3, there exists a closed connected orientable n-manifold Mn(a) such that its
punctured submanifold M"(α)0 is imbeddable in Sn+1 by a locally flat imbedding

and

); Z) =
if i = 4>

if 1 ̂  i < q.

PROOF. For q = !9 the lens space L(α, b) is such a manifold by H. Schubert
[16, Satz 6] and E. C. Zeeman [20, p. 486]. For each odd q > 3, by making use of
M. A. Kervaire [11, Th. II.2], [10, Th. 4.3] and W. Browder and J. Levine [2], we
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can construct a locally flat 2q-knot K2q<=:Sn+ί such that E(K2q) = Sn+1-T(K2q)
(T(K2q) is an open tubular neighborhood of K2q in Sn+ί) is a fiber bundle over

S1and

0 if ί 7* q,

where E(K2q) is the connected infinite cyclic cover of E(K2q) and Z<ί> is the
integral group ring of the infinite cyclic covering transformation group < ί > of
E(K2q). Let M"(0) be a manifold such that M"(α)0 is a fiber of this bundle
E(K2q) over S1. Then we see easily the lemma.

Now, we are ready to prove Theorem I.

PROOF OF THE LATTER HALF OF THEOREM I. Note that if Mn

0 and
M'0

Λ are imbeddable in Sn+i by locally flat imbeddings, then so is (Mrt#M/π)0.
Then, we can realize a desired manifold in the latter half of Theorem I, by making
a connected sum of some manifolds in Lemmas 2.2 and 2.3.

3. Proof of Theorem 11

First of all, we take notice of simply connected manifolds.

EXAMPLE 3.1. For a simply connected closed 4-manifold M4, the follow-
ing three conditions (a)-(c) are equivalent:

(a) M4 is spherical.
(b) M4 is spin, i.e., the Stiefel-Whitney class w2(M4) is zero.
(c) M4 is imbeddable in S5.
On the other hand, these conditions do not imply that M4 is imbeddable in

Ss. In fact, if M4 is orientable and has non-zero signature (e.g., if M4 is a
Kummer or K3 surface), then M4 cannot be imbedded in S5.

PROOF. Suppose that M4 is simply connected and spin. Then the double
D(M) = δ(M4 x [0, 1]) is also so, and the signature of £>(M) is 0. Hence, it follows
from J. Milnor [14, Cor. 3] and C. T. C. Wall [19, Th. 3] that a connected sum
of D(M) and some copies of S2 x S2 is homeomorphic to a connected sum S of
some copies of S2xS2. S is clearly imbeddable in S5. Thus M4 is also so,
and we see (b)=>(c). Proposition 2.2 and D. Puppe [15, Satz 13] show
(c)=>(a)=>(b).

If M4 is imbeddable in S5, then M4 is imbedded in S5 by a locally flat imbed-
ding (cf. Proposition 2.1). Thus M4 separates S5 into two compact orientable
5-manifolds whose boundaries are M4. This implies that the signature of M4

is 0, and we see the latter half.
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EXAMPLE 3.2. For a simply connected closed 5-manίfold M5, the follow-

ing three conditions (a)-(c) are equivalent:
(a) M5 is spherical.
(b) M5 is spin, i.e., w2(M5) = 0.

(c) M5 is imbeddable in S6.

PROOF. Note that M^m) constructed in the proof of Lemma 2.2 is simply
connected and spin. Then Smale's classification of simply connected spin
manifolds [17] states that if M5 is spin, then M5 is homeomorphic to a connected
sum of some copies of M|(m). Thus we see (b)=>(c).

For n > 6, we obtain the following

LEMMA 3.1. For each n>6, there is a simply connected closed n-manifold
Mn such that Mn is spherical but Mn

0 is not imbeddable in Sn+ί.

PROOF. Consider S4ίxS"~4ί for n-4i>2 and i>\. According to D.

Sullivan [18], there exists an n-manifold Mn which is homotopy equivalent to
S4ίx5""4ί and whose Hirzebruch-Thom class Lί(M)eH4ί(M; β) is non-zero.
Since S4ίxSM~4ί is spherical by D. Puppe [15, Satz 5], M" is spherical.

Suppose that Mn

0 is imbedded in Sn+1 by a locally flat imbedding. Then,
by a conic extension, we obtain an imbedding /: M"-+Sn+2 such that A = {x
eMn\ f is not locally flat at x} consists of at most one point. On the other
hand, since n>6, an argument of S. E. Cappel and J. L. Shaneson [3, Prop. 6.8]
shows that dim A > n — 4i( > 2), which is a contradiction. Thus, by Proposition
2.1, M; is not imbeddable in S"+1.

Now, we consider another construction of spherical manifolds.
Let Kn~2 be a framed knot in S", where the framing is assumed to be a null-

homologous framing if n = 3, and set

Mn(K) = d(Dn+ί U (D"-1 x D2)),

where (dDn-ί)xD2 = K»-2xD2<=:Sn = dDn+1. Then

LEMMA 3.2. Mn(K) is a spherical n-manifold.

PROOF. By the above definition, there is a map

f:Mn(K) - > S X x S"-1

which induces an isomorphism /* : #*(MW(K); Z)~H*(Si x S"'1 Z). Then the
suspension Σ f : ΣM"(K)-^Σ(S1 x S"'1) is a homotopy equivalence by the well-
known theorem of J. H. C. Whitehead. Since S1 x S""1 is spherical, we obtain
a degree one map Sn+ί-+ΣMn(K) as desired.

From M. Kato [8, Th. 5.5], it follows that Mn(K) for any locally flat knot
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Kn~2c:Sn with even n>4 is imbeddable in Sn+1 by a locally flat imbedding.
On the other hand, we see the following

LEMMA 3.3. For each odd n>3, there exists a locally flat knot Kn~2c:Sn

such that Mn(K)0 is not imbeddable in Sn+1.

PROOF. Let n = 2q + l and q>l. Consider a locally flat knot Kn~2<=:Sn

whose qih Alexander polynomial is

A(t) = t2 - t + 1 or ί4 - ί2 + 1

according as q is odd or even. Such a knot exists certainly by an argument of
M. A. Kervaire [11, Th. II. 2]. (For q = \, A(f) is the Alexander polynomial
of a trefoil knot.)

Suppose that Mn(K)0 is imbeddable in Sn+1. Then, by Proposition 2.1,
there is a submanifold N in Sn+i which is homeomorphic to Mn(K)Q x [0, 1].

Thus, we can choose a basis {ti9 t2} for H^dN; Z)~Z®Z such that ϊ'1*(ί1) =

I'l Oi) ίs a generator of H^N; Z)~Z, where i\ : dNciN. Set

^= s»+ι -IntN

and i2:dW = dNcW. Since ϊ^-f i2*: H^δ^; Z)~Hι(N\ Z)®HJW\ Z), it fol-
lows that

for some integers u and υ with |u |=^lυ|, where e is a generator of H^W; Z)^Z.
Let γ: πί(W)-+<t> be an epimorphism, and W be the infinite cyclic cover

of W associated with y. Then we can show that the homology exact sequence of
(W> dW) induces the exact sequence

(***) Tq+l(ίV, dW) -JL+ Tq(dW) -^ Tq(W),

where Γ*(£, X') = TorQ<ί>/f!|ί(X, X' Q).

For q>!9 we see Hq+1(W, dW\ β) = 0 and hence Γβ+1(Λζ dW) = Hq+i(W,
dW\Q) by using the Wang exact sequence. Thus (***) is exact.

Let 4 = 1. Then rankβ<ί>//1(l^; 0 = 0 and rank<2<ί>H1(aί^; Q) = l. Since
H2(W9 dWi Z) = Z, we have rankQ<i>/f2(FF, 5ί^; β)<l. Thus the exact se-

quence of (W, dW) implies that the image of H2(W\ Q)-+H2(W9 dW\ Q) is con-
tained in T2(W, dW). Therefore (***) is exact.

By the exactness of (***) and Fundamental Theorem II in [9], the local
signature σl(BW) must be 0 at ωe(-l, 1), where γ: π1(dW)^><t> is the re-
striction of γ.

On the other hand, by the construction, the gth Alexander polynomial of
dW with respect to the epimorphism γ is equal to A(tu)A(tυ). Note that a poly-
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nomial t2d — td + l (d>l) has 2d distinct roots of complex numbers of norm 1.
Since |M|^|U|, one finds a real irreducible factor of the form t2 — 2ω0t+i (—1
<ω0<l) of A(tu)A(tv) with multiplicity one. Then by [9, Lemma 1.4], we
have σt0(dW)= ±2, which is a contradiction.

Thus Mn(K)0 is not imbeddable in Sn+1

9 and the lemma is proved.

By Lemmas 3.1, 3.2 and 3.3, we see Theorem II in § 1.

Finally, we give some examples of non-spherical manifolds.

EXAMPLE 3.3. The odd-dimensional real projective space RP2*+1 (<?>!),
the 4m-dimensional complex projective space CP2m (ra>l) and the product
Cp2mχSr (m>l,r>l) are not spherical.

PROOF. Since the total Stiefel-Whitney classes of RP2q+i (g^2e-l),
CP2m and CP2m x Sr are not trivial, none of these manifolds is spherical by
D. Puppe [15, Satz 13]. When q = 2e-l, Hq(RP2«+ίι Z)^Z2 and %(RP2«+1',
Z2)-£(jRP2«+1;Q) = l. Thus RP2«+l (q = 2e-l) is not spherical by Remark
2.1.

REMARK 3.1. Note that the analogous product RP3xSr(r>l) or more
generally the product M3 x Sr for every closed connected orientable 3-manifold
M3 is spherical and imbeddable in Sr+4. In fact, M3 is imbeddable in SΓ+4 so
that the regular neighborhood of an imbedded image of M3 in SΓ+4 is homeo-
morphic to M3 x Dr+ί (M. W. Hirsch [6]).
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