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L

Recently the infinite-dimensional Lie algebras have been investigated by
several mathematicians. The purpose of this paper is to study the Jacobson
radicals of infinite-dimensional Lie algebras.

We employ the notation and terminology in [1].

The author would like to express his thanks to Professor S. Togd for his
suggestions.

We denote by L a not necessarily finite-dimensional Lie algebra over a field
f throughout the paper.

DEerINITION. The Jacobson radical of L is defined to be the intersection of
all the maximal ideals of L, with the convention that this intersection is L if there
are no maximal ideals. We denote the Jacobson radical of L by J;.

LEMMA 1. J, g L2

ProOF. Let LxL2 If x&L?, take a subspace M of L which is com-
plementary to <x> and contains L2. Then M is a maximal ideal of L. Hence
x&J,. Therefore J < L2

We introduce the following class : A Lie algebra L belongs to the class &
if and only if

[L/N, LIN] & LIN

for every proper ideal N of L.
It is clear that BN < K.

LEMMA 2. For an arbitrary ideal K of L belonging to 8, J,2L*n K.

Proor. We may assume that K=0. Suppose that there is a maximal ideal
I of L such that

I212nK.
Then I L2 and I2K. Thus L=I+K. We see that
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LiI=(+K)J/I=K/Kn I
Since K € £, we have
[KIKnLKIKnIl<SK/KnlI
and therefore
[L/I, L)I] € L/I.

Since I is a maximal ideal, L/I has no non-zero proper ideals. Hence [L/I, L/I]
=0. Therefore we have I=L2, which is a contradiction. Therefore J, =2 L2
nK.

THEOREM 1. IfLe & or L2€ &, then J,=L2.

PrRoOF. Suppose that Le & (resp. L2e &). Taking K=L (resp. L?) in
LEMMA 2, we see that J, 2 L2. It follows from Lemma 1 that J, =L2.

2.

We now recall the definition of the class $ over a field I of characteristic 0
. [1, p. 257]: A Lie algebra L belongs to $ if and only if L is generated by a set
of finite-dimensional local subideals.

THEOREM 2. Let L be an $H-algebra and o(L) be the maximal locally
soluble ideal of L. Then J,=[L, o(L)].

Proor. Since L is an $-algebra, L has a Levi decomposition, that is,
L=A+0(L) where A is a maximal semisimple subalgebra of L. If I is a maximal
ideal of L, L/I is either non-abelian simple or 1-dimensional. If L/I is non-
abelian simple, I must contain ¢(L) and it is therefore of the form M +o(L),
where M is a maximal ideal of A. Since L is an $-algebra, A is also an $H-algebra.
A can be expressed as the direct sum of finite-dimensional non-abelian simple
ideals, and so the intersection of its maximal ideals is 0. Hence the intersection
of those maximal ideals I of L for which L/I is non-abelian simple equals o(L).
Alternatively, if L/I is 1-dimensional, I contains L2, so that the intersection of
all such maximal ideals of L contains L?. Consequently

L2 nao(L)c J, = a(l).
But we know that J, = L?. Hence

Jy=L%n o(L).

Therefore
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L* =[A4 + o(L), 4 + a(L)]
= [4, 4] + [L, o(L)]
= A+ [L, a(L)].
Since [L, o(L)] =o(L),
L2 n o(L) = (A n ao(L)) + [L, o(L)]

= [L, o(L)].

Hence the theorem is proved.
COROLLARY 1. If L is a perfect H-algebra, then J,=a(L).

CoROLLARY 2. If L is a locally soluble H-algebra, then J,=L2.

3.

If L is a locally nilpotent Lie algebra over a field of characteristic 0, then L
is an H-algebra. Hence by Corollary 2 in § 2, J, = F, = L? where F| is the Frattini
subalgebra of L. If L is soluble, J, is not necessarily equal to F;.

We refer to the example L=P+ <x, y, z> in [2, p. 269]. It is easy to see
that J,=P+ <z> and F < <z>. Therefore F,&J;.

THEOREM 3. F;=J,=L2 if and only if the set of maximal subalgebras of
L coincides with the set of maximal ideals of L.

Proor. Assume that F;=J; =12 and L3 L2. Then there exist maximal
subalgebras and maximal ideals of L. Each of them contains L? by assumption.
If I is an maximal ideal of L, then any maximal subalgebra of L containing I is
an ideal and therefore equals I. Hence I is a maximal subalgebra of L. The
converse is evident.

Conversely, assume that every maximal subalgebra of L is a maximal ideal
of L and conversely. Clearly, F,=J,. Now we assume that F,=J, & L2
Then there is an element x of L such that xe L? and x& F,;. So there exists a
maximal subalgebra M of L such that xé&&M. Since M is a maximal ideal,
M+ <x>=L. Therefore L2 M. This contradiction shows that F,=J,
=12,

We now consider the prime radical r, of L in [3]. We shall here show the
following relation between J, and r;.

THEOREM 4. Jo2L?>nr.
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Proor. Let M be a maximal ideal of L. If dimL/M>1, M is a prime
ideal of L by Theorem S of [3]. If dimL/M=1, then L2c M. Hence J, 2L?

n rL.
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