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All rings considered in this paper are commutative but may not have a unity.
An ideal A of a ring R is said to be a multiplication ideal if for every ideal B of R,
Bc A, there is an ideal C of R such that B=AC. An ideal A4 is said to be an
M-ideal if for every ideal B containing A, there is an ideal C such that A=BC.
R is said to be a multiplication ring if every ideal of R is a multiplication ideal
(equivalently every ideal is an M-ideal). A ring R is said to be an (AM)-ring if
for any two ideals A and B of R, A <B, there is an ideal C of R such that A=BC.
An ideal A is said to be simple if there is no ideal A’ with A2<A4’<A. A ring
R is said to be primary if R has at most one proper prime ideal. R is said to be
a special primary ring if R has a prime ideal P such that every ideal of R is a
power of P. If S is a multiplicatively closed subset of R and A is any ideal then
A¢ denotes the extension of A to the quotient ring Rg and A4¢¢ denotes the con-
traction of 4¢ to R. A ring is said to satisfy (x)-condition if every ideal with
prime radical is primary. A ring R is said to satisfy (Hm) or (Ham) according
as every proper homomorphic image of R is a multiplication ring or an (AM)-ring.
The purpose of this note is to determine the structure of rings satisfying (Hm)
and (Ham) and the desired structure is given by Theorems 1.7 and 2.5.

1. Let R be a ring and N be its set of nilpotent elements. For any subset
S of R, define St=(N: S)=set of all x in R such that xS=N[7, p. 434]. The
following lemma is due to Griffin [7, Lemma 7].

LemMmA 1.1. If for any element x of a ring R there exists an ideal D such
that (x)=D(N +(x)+ x*) then there is an idempotent ee(x+)* and a positive
integer n such that x"=ex".

LemmMa 1.2. If R is a ring satisfying (Hm) and xe€R such that x2#0
then (x) is an M-ideal.

ProOOF. Suppose A4 is any ideal of R such that xe 4. Now (x)/(x?)<
A/(x?) in R/(x?) which is a multiplication ring. There is an ideal I containing
x2 such that (x)/(x?)=(4/(x»))(/(x2)). Thus (x)=AI+(x2)=AI+(x))+(x?)
= A(I +(x)), since x2€ A(I +(x)). Therefore (x) is an M-ideal.

CorOLLARY 1.3. If R is a ring satisfying (Hm) such that rad(0)=(0) then
R is a multiplication ring.
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COROLLARY 1.4. If R is a ring satisfying (Hm) and xeR with x*#0
then there are an idempotent e € (x1)! and an integer n such that x"=ex".

Proor. It follows from Lemmas 1.1 and 1.2.

LemMmA 1.5. If R is a ring satisfying (Hm) such that x2>#0 for some xe€R
then R is idempotent.

Proor. Since R/(x?) is a multiplication ring, (R/(x?))2=R/(x?). Thus R
=R2+(x?)=R2

THEOREM 1.6. If R is a ring satisfying (Hm) and x € R such that x?#0
then there exists an idempotent e such that x=ex.

ProoF. Since x2#0, (x) is an M-ideal. There is an ideal I of R such
that (x)=IR=IR?>=(IR)R=xR. Let x=xy, yeR. Now 0#x2=x%y? im-
plies that y2#0 and by Corollary 1.4 we get an idempotent e and an integer n
such that y"=ey". Then x=xy=xy2=---=xy"=x(ey")=e(xy")=ex.

NoTATION. Let R be a ring and x a non-zero element of R. If there exists
a prime integer p such that px=0=x? then we denote I3={x, 2x,..., px=0}
which is isomorphic to Z/(p) as a Z-module.

THBOREM 1.7.* A ring R satisfies (Hm) if and only if R satisfies one of

the following:
I. R is a multiplication ring.

II. x2=0 for each xe R and R=1I3 type.

III. R has a unity and a unique maximal ideal M such that

(i) M2=(0).

(ii) If x, ye M such that (x)£(y) and (y)$(x) then M=(x)+(y).

(iii) There is an ideal A such that (0)< A<M and every such A is principal.

(iv) R does not contain a chain of five ideals.

(v) R is noetherian.

Proor. Assume R satisfies (Hm). Suppose I1I does not hold. Let x eR
such that x2#0. By Theorem 1.6 there exists an idempotent e such that x=ex.
Let A=eR and B={r—er: re R}. Then A and B are ideals of R and it is easy to
see that R=A®B. Clearly A#(0). If A<R then B#(0) and hence A(=R/B)
and B(=~R/A) are multiplication rings and consequently R is a multiplication
ring. If A=R then e is the unity of R and (i) to (v) of III follow from [14, Theorem
2.5 and Theorem 3.12]. Now suppose x2=0 for each x in R. If (0)<(x)<R,

*) I am indebted to the referee, whose comments enabled me to put Theorem 1.7 in the present
form.
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then R/(x) is a multiplication ring. Let é=e+(x) be any non-zero idemoptent
in R/(x). It can be easily seen that ¢23#0 which is impossible. Thus R=(x)
for every x#0 in R. It is now plain that R=I} type for some prime integer p.

The converse is trivial, for if R satisfies I or II then R evidently satisfies
(Hm) and if R satisfies I1I then R satisfies (Hm) by [14, Theorem 3.12].

CoroOLLARY 1.8. A ring satisfying (Hm) satisfies (*)-condition.
Proor. This follows from Theorem 1.7 and [6, Theorem 7).

2. In this section we establish the structure of rings satisfying (Ham). The
structure of (AM)-rings was established by Mori [10] and Griffin [7].

LeMMA 2.1. If R is an (AM)-ring then R satisfies one of the following:
I. R=R? and hence R is a multiplication ring.
II. R#R? and every non-zero ideal of R is principal and a power of R.

Proor. This is [7, Proposition 4].

LEMMA 2.2. Let R be a ring satisfying (Ham). If A<B are ideals of R
such that AB#(0) then there is an ideal C of R such that A=CB.

ProOF. Let ae A and beB such that ab#0. Since A/(a)<B/(a), there
is an ideal I containing (a) such that A/(a)=(I/(a))(B/(a)). Thus A=IB+(a).
Again (a)/(ab) < B/(ab) implies that there is an ideal J containing (ab) such that
(a)=JB+(ab). Thus A=IB+JB+(ab)=(+J)B+(ab)y=(I+J)B.

CoROLLARY 2.3. If R is a ring satisfying (Ham) without nilpotent ele-
ments then R is an (AM)-ring.

LemMMA 2.4. If A is any ideal of a ring R such that there is no ideal of R
properly between A and A? then for every positive integer n, the only ideals
between A and A" are A, A2, A3,..., A".

Proor. This is [3, Lemma 3].

THEOREM 2.5. A ring R satisfies (Ham) if and only if R satisfies one of the
following:

I. R=R? and R satisfies (Hm).

II. R#R? but R*=(0) such that every non-zero proper ideal of R is of
the type Iy and every two proper distinct ideals I3 and Iy intersect at (0) and
R=L®I}.

III. Either R is an (AM)-ring or there is a non-zero proper prime ideal P
of R satisfying the following:

(i) P?=(0) and P=I3 type.



4 Raj Kumar JAIN

(ii)) P<R?or R=R’@®P.
(iii) The only ideals of R are (0), P, R, R?,.... Each ideal of R is gener-
ated by at most two elements.

Proor. Suppose R satisfies (Ham).

Case I. R=R2 We shall prove that R satisfies I. Let 45(0) be any ideal
of R. Since R/A is an (AM)-ring and (R/4)*=R/A, we deduce from Lemma 2.1
that R/A is a multiplication ring. Thus R satisfies (Hm).

Case II.* (0)=R2<R. In this case the ideals of R are the Z-submodules
of the additive group R. By Lemma 2.1, every homomorphic image of R is
simple and isomorphic to Z/(p) for some prime p. It follows that R is a finitely
generated abelian group. By Lemma 2.1, R satisfies the condition II.

Case III.  (0)<R?<R. Let 0#yeR? Suppose there is an ideal I such
that RZ<I<R. Then R/(y) is an (AM)-ring and (R/(»))?=(R2+(y))/(y)=R?
/() <R/(y). Lemma 2.1 implies that every non-zero ideal of R/(y) is a power of
R/(y) which is impossible since (R/(y))><I/(y)<R/(y). Thus there is no ideal
of R properly between R and R2. Using Lemma 2.4 we deduce that the only
ideals of R between R and R” are R, R?,..., R" for every integer n. Hence every
ideal of R properly containing (y) is a power of R. Let A be any ideal of R.
If A25(0) then every ideal of R properly containing A2 is a power of R. In par-
ticular if 42<A then A is a power of R. Hence for every ideal A of R, either
A?=(0) or (0)#A=A? or A is a power of R. Suppose A2+#(0) and A is not a
power of R. Then A=A2. Let 0#xe A2 Then every ideal of R properly
containing (x) is a power of R. As (x)SA and A is not a power of R, we get
(x)=A. Since A=A42 (x)=(x?)=(x3)=---. Let x=rx2, reR. Then (rx)?
=rx. Denote e=rx. Then e is a non-zero idempotent and A=(x)=(e). Let
B={r—er: reR}. Then R=A®B. A=R/B and A?=A implies that A is a
multiplication ring. Since R is not a multiplication ring, B is not a multiplication
ring. But B~R/A is an (AM)-ring. Therefore B2#B. Hence B2=(0) or
B=R* for some integer k>1. If B2?=(0), then R2=A2?@B?=A?=AcR.
We get that A=R? which is impossible. Now suppose that B=R¥, k>1. Then
R=A®R*=A2@R*< R? which is again impossible. Thus for every ideal A
of R, either A4 is a power of R or A2=(0). If 4 is any proper ideal of R such that
AER? then R=R?2+A. If there is a non-zero y € R? N A, then A is a power of
R or A=(y)<SR?, a contradiction. Hence R=R2@®A. Let 0#aecA. Then as
above R=R?®(a) and therefore A=(a). Thus every non-zero ideal 4 of R
satisfies one of the following:

x) I am thankful to the referee for suggesting me the proof of Case II which has considerably
simplified my original proof.
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(i) A is a power of R.

(i) A%=(0), A is a principal ideal generated by every non-zero element

of A such that either R=R?@®A or A<R2.

Also R?#(0). Leta, b e R such that ab#0. If (ab)<(a) then (a) is a power
of R and if (ab)<(b) then (b) is a power of R. If (ab)=(a)=(b) then we get
(a)=(a?) and such a case is impossible, as we have already proved. Thus for
some k, R¥=(x) is a principal ideal. If k=1 then every ideal of R is principal.
Suppose k>1. Let R* be any power of R. We can find a least integer m such
that t<2mk. If R*=R?7k then R* is a principal ideal. If R*>R2?"k and
R2?mk %£(0) then R!/R?"k is a non-zero ideal of R/R?"k which is an (AM)-ring
whose every ideal is principal. Since R?"* and R*/R?*"* are principal ideals,
R? is generated by at most two elements. If R?mk=(0) then by Lemma 2.4, the
only ideals of R are powers of R and hence R is an (AM)-ring. '

Consider now rad (0). If rad(0)=R then every element of R is nilpotent.
Thus R*¥=(x) is nilpotent, showing that R is an (AM)-ring. If rad(0)#R then
there is a prime ideal P, (0)<P<R. Clearly P is not a power of R. Thus
P2=(0) and P is the principal ideal generated by every non-zero element of P such
that either R=R?®P or P<R?. Suppose 4 +#(0) be any ideal of R which is not
a power of R. Then A2=(0) and it implies that A<P. Since P is generated by
every non-zero element of P, A=P. Thus P is the only non-zero ideal of R
which is not a power of R. Hence either R is an (AM)-ring or there is a prime
ideal P of R such that P=1I% type, P<R? or R=R*@P.

Now assume that R satisfies any one of I, I, III. If R satisfies I then clearly
R satisfies (Ham). Suppose R satisfies II. If A is any non-zero proper ideal of
R then R=A@I} type by II. Since I} is an (AM)-ring, R/A(=1}) is an (AM)-
ring and hence R satisfies (Ham). Lastly assume that R satisfies III.  If R*%(0)
for any k then R/R¥ is clearly an (AM)-ring. It remains only to verify that R/P
is an (AM)-ring. Now any non-zero ideal of R/P is (R*+ P)/P, k an integer such
that R*€ P. Now (R*+ P)/P=(R/P)* and hence R/P is an (AM)-ring.
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