
HIROSHIMA MATH. J.
9 (1979), 303-312

Normal Functions Bounded on Arcs and a Proof of
the Gross Cluster-Value Theorem

Stephen DRAGOSH and Donald C.

(Received March 20, 1978)

Abstract

A differential form of the two-constants theorem that is valid for meromor-
phic functions is given. Treated as a (differential) maximum principle, this
two-constants estimate is used to give a simple proof of the Gross cluster-value
theorem.

Introduction

In their 1957 paper on normal functions, O. Lehto and K. I. Virtanen [4,
Theorem 6] gave an improved (differential) form for normal meromorphic
functions of the classical two-constants theorem. In this paper we show that a
more general form of this result is true for arbitrary meromorphic functions /,
although in most applications the most useful estimates on /' in the hypothesis
will imply / is a normal function. We recast the two-constants estimate as a
(differential) maximum principle.

We conclude with a reasonably short proof of the Gross cluster-value theorem
[3] which has not had an easily digested proof, although J. L. Doob [2] gave an
accessible proof.

§ 1. The differential two-constants theorem

A domain G in the finite plane W bounded by a finite number of disjoint
Jordan curves is called a Jordan domain. A nonempty subset y of dG (the bounda-
ry of G) is an admissible set if it is the union of a finite number of open arcs in
dG and boundary curves of dG. The harmonic measure at z e G of γ relative to

G is denoted by ω(z) = ω(z, y, G). For zeG, let /ω(z)=ω(z)+zω*(z), where
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ω*(z) is a conjugate to ω(z) defined in some neighborhood of z. (In the following
analysis we use the quantity \f'ω(z)\ so neither the constant nor the neighborhood
chosen matters.)

If A £ W9 A denotes the closure of A in W.

THEOREM 1. Let f be meromorphic in a domain G*^W. Let G be a

Jordan subdomain of G* in which f is holomorphic and bounded by K. Sup-
pose there is an admissible subset γl of dG for which

lim sup |/(z)| ^ k < K (z e G) ,
z-»teyι

and an open analytic arc γ2^G* Γ) dG such that at some point q£y2, !/(#)! =^
Then, with ω(z, γl9 G) = ω(z),

(1.1) \f'(q)\*\

PROOF. According to the two-constants theorem, for z 6 G,

with equality occurring at z = q. The level line \f(z)\ = K is tangent to γ2 at
z = q9 and /'(g^O. If n is the inner normal to γ2 at q, then

(1.2)
z=q

With fω defined in a neighborhood of q, it is simple to calculate that d\f(z)\/dn

= -I/'(0)1 and dω(z)/dn = \f'ω(q)\at z = q. If these are substituted in (1.2), the
theorem is proved.

By dividing both sides of (1.1) by (l + |/(tf)|2) we obtain the Lehto-Virtanen
result [4, Theorem 6]. We have been unable to obtain Theorem 1 from the
Lehto-Virtanen result.

As Lehto and Virtanen noted [4, Theorem 7], \f'ω(q)\ assumes a simple
form if G* is the unit disk D: |z|<l, and G is defined as follows. Let / be an
open subarc of the unit circle C: |z| = l, and, for 0<α<π, let

Lβ(/) = {zeD: ω(z, /, D) = JLZL* J ,

Tβ(0 = zeD: ω(z, /, D)> ̂

Note that the lens TΛ(Ϊ) has interior angle α at each cusp. If we let G= Γβ(/), yl = /
and y2=Lα(/), then, for zeLα(/),
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(1.3) \f'a(z)\ = -̂ 2- Γ-zί-lτ.OC 1 \Z\

The important feature of (1.3), aside from its simple form, is its independence
from /. In this situation, under the assumptions of Theorem 1, (1.1) becomes

This suggests seeking upper estimates for (l-M2)l/'(tf)l in the form displayed
by the right-hand side of (1.4). We begin by letting

If we define

/(x, s) = xe-!(*+*) , 0 ̂  x < oo, 0 < s < oo,

then (1.5) can be written as

(1.6) (1 - |z|')|

Note the convenient identity, valid for 0<f<oo,

> N(z.f}}

A few other properties of 7(x, s) will be needed. First, observe that for any

s, 0<s<oo, /(•, s) has a single maximum value

which occurs at

Thus /(•, 5) is increasing in the interval [0, J5(s)] and we let I~\ 9 s) denote the

inverse function relative to this interval. As either variable tends to oo — the

other fixed and finite — / tends to zero and so we define /(oo, s)=/(x, oo)=
7(oo, oo) = 0. For any x, 0<x<oo, /(x, •) is a decreasing function on [0, oo].
From this and an investigation of the graph of /(•, s), one can easily see the

following. If m <B*(s0) and

, s0) < m, m < K < M,
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then, for each s > s0,

(1.8) M<Γ\m, s).

§ 2. The maximum principle

We give now the Lehto-Virtanen maximum principle formulated for mero-

morphic functions via Theorem 1 (see also [1], p. 30). For τ e C, let

;/) = limsupJV(z;/), zεD;
z-»τ

and for A^D set

zeA

and

All of the above quantities are allowed to be infinite. We suppress / if no con-
fusion results.

THEOREM 2. Let f be meromorphic in D, and let G be a Jordan domain
in D contained in some Tα(/), 0<α<π. Suppose for τeδG— LΛ(Γ) and ze G,

lim sup |/(z)| ^ m < oo,
z-+t

and set M = M(G;/). Then

(2.1) I(K, --N(G;f» <m (m £ K £ M) .

IfN(G;f)<oo and m<B*- JV(G;/), then

(2.2)

PROOF. We first prove the following: for each K9 m<K<M9 there is a
point q = q(K) eGnD such that

(2.3)

then, (2.1) holds for each (fixed) K with m<K<M because I(K, •) is decreasing.
Finally (2.1) holds for m<K<M because /(•,$) is continuous. Also, (2.2)
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follows from (2.1) and (1.8).

Since K<M, there exists an arc l(K)al such that |/(z)|<K in TΛ(l(K)) n G
= G*(K) while \f(q)\ = K for some point q e LΛ(l(KJ) n 5G*(K). Let G(K) be
the component of G*(K) containing q on its boundary, and set y(K) = dG(K) —

α/(*o)
We now apply Theorem 1 with ω(z)=ω(z, y(K), G(K)) to obtain

(2.4) !/'(«)! Ϊ>I/;(«)|K log -f .

(If there are "holes" of G in G(K) that intersect LΛ(l(K)) at a point so as to prevent

G(K) from being a Jordan domain, we shrink them slightly to produce a Jordan
domain and use m + ε<K instead of m in (2.4); we then let ε->0.) Because

ω(z, y(K), G(K)) :> ω(z, /(K), Tα(/(K)) , z 6

with equality at z = q, the same inequality applies to the normal derivatives at g;
thus from (1.3) and (2.4) it follows that

(2.5) ( 1 - \q\*)\f'(q)\ > - - K log

This inequality, together with (1.6) and (1.7), leads to

2AΓlog- - — -

smα

and so (2.3) is verified.

In the sequel we will be concerned with domains G of a fairly simple type,
namely those cut from a lens Tα(/) by a Jordan arc γ on which / is bounded. We
say that a Jordan arc γ properly intersects Ta(ΐ) if there is a subarc y*cy such that

y*cTα(/) except for its endpoints which lie on Lα(/). The (simply connected)
domain in TΛ(l) bounded by y* and an arc of Lα(/) we denote generically by Ha(y, I)
even though there may be more than one possible subarc y*. If |/(z)|<m on y,
Theorem 2 is applicable to any Hα(y, /).

§3. Functions bounded on arcs ending at points

To prepare for the proof of the Gross theorem, we investigate the local
behavior of functions bounded on an arc ending at a point on C.

For τ e C and 0<β<π, we define a /Wangle at τ, S(β, τ), in the usual fashion;

that is, if lτ is the arc on C from τ to — τ in the clockwise sense, then
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S(β) = S(β, τ) = zeD: *-JL < ω(z, /„ D)

We set

l/Wlsw = Mm sup |/(z)|, z e 5(0, τ) ,
z-*τ

and say that / is bounded in angles at τ if |/(τ)|S(/J) is finite for each β, Q<β<π.
If y is a Jordan arc in D except for one endpoint at τ e C, let

|/(τ)|y = lim sup |/(z)|, z e y, z ^ τ.
z-+τ

THEOREM 3. Let f be meromorphic in D, and suppose for some τ e C,
N(τ;/)<oo, and ί/iere is an arc y ending at τ for which |/(τ)|y is finite.

If for some /?, 0 < /? < π,

(3.1) l/<τ)|y<min|/(t)|W ), ** Λf(t ;

(3'2)

and so

(3.3)

PROOF. First choose a sequence of arcs {/„}, /ι = /τ, /«+ιc:/n, with one
endpoint at τ and the other endpoint approaching τ as n->oo; let {/*} denote the
sequence obtained from {/„} by reflection in the diameter from τ to — τ. Let

We assume that γ has its initial point at — τ. Then y properly intersects
either Tα(/Λ) or Tα(/*), or both, for each n > 1. If we set

T Λ = T α ( / Π ) n Tα(/*),

then the union of all the closed domains HΛ(y, /„) and ΐJΛ(γ9 I*) covers Tn. Be-
cause / is normal in a neighborhood of τ and thus is uniformly continuous with
respect to the non-Euclidean metric close to τ, we infer that

limsup |/(z)| = |/(τ)|S(/0, z e Tn, n = 1, 2,... .

Select a sequence zk in Trt (n fixed) tending to τ for which
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For each fc = l, 2,..., there is a domain Hk with either Hk=HΛ(γ9 ln) or Hk=
HΛ(y, /ί) such that zk e Hk. For the moment, we suppose

Hk = Hα(y, /„)

for all values of fc; the analysis is similar if the other case holds for all values of fc.
From (2.1) of Theorem 2, we have, after suppressing / from the notation,

(3.4) lM(Hk), -- N(Hk) < M(y n Hk).

Since J(x, ) is decreasing and Hk c Tα(/n),

M(y n Γβ(/Λ))

and if we let An=\\m inf M(fίk), then

l(AΛ9 -^ N(Ta(ln)ή < M(y n Γα(/

Finally, using

limsupN(Γα(/n))<N(τ)

and

limsupM(y n Tβ(/n)) < |/(τ)|y,

we obtain

(3.5) / (lim sup 4,, -^ N (τ)) < |/(τ)|r

Since (3.4) holds for each K with M(y n Hk)<K<M(Hk\ (3.5) holds for each K
with lim sup M(y n Hk) < K < lim inf M(Hk) = An.

Since |/(zk)H|/(τ)|W),

(3.6) \f(τ)\S(β)<An.

If l/Wly satisfies (3.1), then from (3.6) we see that (3.5) holds for each K with
|/(τ)|y^X<|/(τ)|W) which gives (3.2). Then (3.2) and (1.8) give (3.3). This
completes the proof.

REMARK. If |/(τ)|y=0, then Theorem 3 shows that / has angular limit 0
at τ which is the Lehto-Virtanen result [4] on asymptotic values for normal
functions.
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§4. The Gross cluster-value theorem

A value w in the extended plane Ω is said to be a principal value of / at τ if w
is in the cluster set of / on every arc γ ending at τ; w is said to be an angular value
of / at τ if w is in the cluster set of / in some angle S(β, τ), 0< β<π. The range

of/ at τ is the set

R(f9 τ) = {w eΩ:f(zn) = w for some sequence zn - » τ, zn e D} .

GROSS CLUSTER-VALUE THEOREM. Let f be meromorphic in D and sup-
pose w0 is an angular value of f at τ and also vv0 is an accumulation point of
Ω — R(f, τ). Then vv0 is a principal value o f f a t τ.

REMARK. The original proof of Gross is involved and Doob [2] gave a more
direct proof using one-sided cluster values and the non-Euclidean-based properties
of normal functions. Difficulties arise in using the non-Euclidean geometry with
normal functions; curves must lie in D and sometimes estimates on |/| are needed
in terms of the boundary cluster sets, and the journey between angular and tan-
gential approach via non-Euclidean geometry requires skillful navigation. The
differential two-constants theorem in the form of Theorem 3 allows an integrated
approach by avoiding much of the non-Euclidean geometry.

PROOF OF THE GROSS THEOREM. We can assume that w0 = oo. Take any
arc γ ending at τ and suppose |/(τ)|y is finite; we assume that for z e y,

l/tol ̂  k.

We will show that / is bounded in each angle S(β, τ) for z sufficiently close to
τ; then oo is not an angular value of / at τ and the proof of the theorem will be
complete.

Fix /?, 0</?<π, and set α = (π -f /?)/2. Let μ(z) denote the classical elliptic
modular function in D. Choose any finite point wx in Ω—R(f, τ) and then select
vv2 in Ω—R(f9 τ) with |w 2 |>fe so that first

£ \2cos β/2

and then also

N(D; μj)
^ 'μjj

|w2| -k ' 2cosβ 12

Now choose w3 in Ω-R(f, τ) so that

(4.1) 4- <
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By using a conformal mapping if necessary, we can assume that / omits w l 5 w2,
w3 in D. Then the function

a(z\ = w3 - w2. f(z) - w .
^ } ~ W l /(z) - w2

omits 0, 1, oo and is therefore subordinate to μ; hence for z e D,

Also, for z 6 v,

so that

.
-k \ 2 c o s β / 2 9 - \2cos β/2

Now either

[g(τ)|T < 2

ly satisfies (3.1) and hence (3.2); in the latter case we use (1.8) — or we could
use (3.3) and the fact that /"1(|flf(τ)|y, •) is increasing — to deduce that

and thus

In either case we have

(4.2) l0(T)|5(,)<-y-

If / were not bounded in S(/J, τ), then from (4.1) we see that

which contradicts (4.2). This completes the proof of the theorem.
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