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Abstract

A differential form of the two-constants theorem that is valid for meromor-
phic functions is given. Treated as a (differential) maximum principle, this
two-constants estimate is used to give a simple proof of the Gross cluster-value
theorem.

Introduction

In their 1957 paper on normal functions, O. Lehto and K. I. Virtanen [4,
Theorem 6] gave an improved (differential) form for normal meromorphic
functions of the classical two-constants theorem. In this paper we show that a
more general form of this result is true for arbitrary meromorphic functions f,
although in most applications the most useful estimates on f’ in the hypothesis
will imply f is a normal function. We recast the two-constants estimate as a
(differential) maximum principle.

We conclude with a reasonably short proof of the Gross cluster-value theorem

[3] which has not had an easily digested proof, although J. L. Doob [2] gave an
accessible proof.

§1. The differential two-constants theorem

A domain G in the finite plane W bounded by a finite number of disjoint
Jordan curves is called a Jordan domain. A nonempty subset y of 0G (the bounda-
ry of G) is an admissible set if it is the union of a finite number of open arcs in
0G and boundary curves of 0G. The harmonic measure at z € G of y relative to
G is denoted by w(z)=w(z, 7, G). For zeG, let f(z)=w(z)+iw*(z), where
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w*(z) is a conjugate to w(z) defined in some neighborhood of z. (In the following
analysis we use the quantity | f.,(z)| so neither the constant nor the neighborhood

chosen matters.)
If A= W, A denotes the closure of A in W.

THEOREM 1. Let f be meromorphic in a domain G*<W. Let G be a
Jordan subdomain of G* in which f is holomorphic and bounded by K. Sup-
pose there is an admissible subset y, of 0G for which

limsup |f(2)] < k < K (zeG),
Z—*tEYY

and an open analytic arc y,<G* n 0G such that at some point g €v,, | f(9)|=K.
Then, with w(z, y;, G)=w(z),

(L.1) 7@ = 1fu(@IK log K-

ProoF. According to the two-constants theorem, for z € G,

w(z)

@ < k()"

with equality occurring at z=q. The level line |f(z)|]=K is tangent to y, at
z=q, and f'(q)#0. If n is the inner normal to y, at g, then

(1.2) gl

dw(z)
="

z=q

k
i K log X
With f, defined in a neighborhood of ¢, it is simple to calculate that d|f(z)|/on
= —|f'(q)| and dw(z)/on=|f,(q)|at z=q. If these are substituted in (1.2), the
theorem is proved.

By dividing both sides of (1.1) by (1+]f(q)|?) we obtain the Lehto-Virtanen
result [4, Theorem 6]. We have been unable to obtain Theorem 1 from the
Lehto-Virtanen result.

As Lehto and Virtanen noted [4, Theorem 7], |f.,(q)| assumes a simple
form if G* is the unit disk D: |z|] <1, and G is defined as follows. Let I be an
open subarc of the unit circle C: |z]=1, and, for O<a<m, let

L) = {zeD: o(z, I, D) =" ; “},

T() = {zeD:'co(z, 1, D) > n_;t—a} .

Note that the lens T,(]) has interior angle « at each cusp. If we let G=T (), y, =1
and y, =L,(I), then, for z e L,(l),
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’ _ 2sina 1
(1'3) lfw(z)| - a 1 — Izlz .

The important feature of (1.3), aside from its simple form, is its independence
from I. In this situation, under the assumptions of Theorem 1, (1.1) becomes

(14) (1 = g7 @)= 2522 | 7 () log LADL

This suggests seeking upper estimates for (1—|q|?)|f'(q)| in the form displayed
by the right-hand side of (1.4). We begin by letting

(15) (- |z|2)—1—jL-f—,"ﬁ)z-')|T = N(z; 7).

If we define
I(x, s) = xe~5(x+3) , 0<x<o0, 0<s< o0,

then (1.5) can be written as

(L6) (1= 121 @) = 21 log g WAL
Note the convenient identity, valid for 0<t?< oo,

@l 1)
(1.7) Hog 77, Mz~ BT, NG

A few other properties of I(x, s) will be needed. First, observe that for any
s, 0<s<oo, I(-, s) has a single maximum value

BH(s) = LIV e

which occurs at

B(s) = 1+,/s1+s7.

Thus I(-, s) is increasing in the interval [0, B(s)] and we let I~!(-, s) denote the
inverse function relative to this interval. As either variable tends to oo — the
other fixed and finite — I tends to zero and so we define I(co0, s)=I(x, 0)=
I(00, 0)=0. For any x, 0<x<oo, I(x, -) is a decreasing function on [0, co].
From this and an investigation of the graph of I(-, s), one can easily see the
following. If m <B*(s,) and

I(K, sg) < m, m<K<M,
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then, for each s>s,,

(1.8) M <I'(m,s).

§2. The maximum principle

We give now the Lehto-Virtanen maximum principle formulated for mero-
morphic functions via Theorem 1 (see also [1], p. 30). For 7€C, let

N(z; f) = limsup N(z; f),  zeD;
and for A<D set
M(4; f) = sup|f(2)I,
and
N(4; f) = supN(z; f).

All of the above quantities are allowed to be infinite. We suppress f if no con-
fusion results.

THEOREM 2. Let f be meromorphic in D, and let G be a Jordan domain
in D contained in some T(l), 0<a<n. Suppose for teG—L,(l) and z€G,

limsup |f(2)] < m < o,
z=T
and set M=M(G; f). Then

@.1) I(K, sh.‘;‘a NG;f)<m (m<K<M).

If N(G; f)< o and m<B* ( NG f)), then

(2.2) M< 1~1<m, X N(G; f)).

Proor. We first prove the following: for each K, m<K<M, there is a
point g=q(K) € G n D such that

@3) 1(k, 2 N@: ) <m;

then, (2.1) holds for each (fixed) K with m <K <M because I(K, -) is decreasing.
Finally (2.1) holds for m<K<M because I(-, s) is continuous. Also, (2.2)
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follows from (2.1) and (1.8).

Since K <M, there exists an arc I(K) <! such that [f(z)|]<K in T((K))n G
=G*(K) while |f(g)|=K for some point g€ L,(I(K)) n dG*(K). Let G(K) be
the component of G*(K) containing g on its boundary, and set y(K)=0G(K)—
L,(I(K)).

We now apply Theorem 1 with w(z)=w(z, y(K), G(K)) to obtain

(2.4) @I = @K log .

(If there are “‘holes” of G in G(K) that intersect L,(I(K)) at a point so as to prevent
G(K) from being a Jordan domain, we shrink them slightly to produce a Jordan
domain and use m+¢<K instead of m in (2.4); we then let e—»0.) Because

o(z, ¥(K), G(K)) = o(z, (K), T(I(K)), zeG(K),

with equality at z=gq, the same inequality applies to the normal derivatives at q;
thus from (1.3) and (2.4) it follows that

2.5) (1= lgD)If @) = 2322 giog K
This inequality, together with (1.6) and (1.7), leads to

K

CR
I(K, <% N(g; /)

> 2K10g—’§—

2Klog

and so (2.3) is verified.

In the sequel we will be concerned with domains G of a fairly simple type,
namely those cut from a lens T,(I) by a Jordan arc y on which f is bounded. We
say that a Jordan arc y properly intersects T(]) if there is a subarc y* =y such that
y*<= T (I) except for its endpoints which lie on Ly (l). The (simply connected)
domain in T,(I) bounded by y* and an arc of L (I) we denote generically by H(y, )
even though there may be more than one possible subarc y*. If |f(z)]<m on y,
Theorem 2 is applicable to any H(y, I).

§3. Functions bounded on arcs ending at points

To prepare for the proof of the Gross theorem, we investigate the local
behavior of functions bounded on an arc ending at a point on C.

For te C and 0< B <r, we define a f-angle at 7, S(B, 1), in the usual fashion;
that is, if I, is the arc on C from'z to —1 in the clockwise sense, then
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S(B) = S(B, 1) = {zeD: “z‘nﬁ < w(z, 1, D) < “2“;/’}.
We set
[f@ls@y = lir:l_’stup £, zeS(B, 1),

and say that f is bounded in angles at 7 if | f(1)]s(, is finite for each f, 0<f <.
If y is a Jordan arc in D except for one endpoint at 7€ C, let

If(@l, = limsup [f(z)l, zey, z#

THEBOREM 3. Let f be meromorphic in D, and suppose for some te€C,
N(z; f)< 0, and there is an arc y ending at t for which |f(z)|, is finite.
If for some B, 0<fB<m,

3.1 @l < min {1/ @lswr B yror g1 NE D)}

then

(2 I(K gt fi NG D) <@y 1O, < K < 1 @lsp

and so
(3.3 f@lsin < I(If @l 5y NE D).

Proor. First choose a sequence of arcs {l,}, I;=1, Il,,,<l,, with one
endpoint at 7 and the other endpoint approaching t as n—oo; let {I¥} denote the
sequence obtained from {l,} by reflection in the diameter from 7 to —rt. Let

a=(n+p)/2.
We assume that y has its initial point at —z. Then y properly intersects
either T,(I,) or T(I¥), or both, for each n>1. If we set

T, = T,() n T(3),

then the union of all the closed domains H,(y, I,) and H,(y, I*) covers T,. Be-
cause f is normal in a neighborhood of 7 and thus is uniformly continuous with
respect to the non-Euclidean metric close to 7, we infer that

limsup |f)] = 1f@lsgy ~ z€Tp n=1,2...

Select a sequence z, in T, (n fixed) tending to 7 for which

lim | f(z)l = 1/ ®lscay-
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For each k=1, 2,..., there is a domain H, with either H,=H,(y, l,) or H,=
H,(y, I¥) such that z, € H,. For the moment, we suppose

Hk = Ha(‘y’ ln)

for all values of k; the analysis is similar if the other case holds for all values of k.
From (2.1) of Theorem 2, we have, after suppressing f from the notation,

(3.4) 1(M(HY, 2 N(H,) )< My 0 B,

Since I(x, -) is decreasing and H, <= T (l,),

1(M(HD, 2 N(T.(1) < MO0 T.0,)

and if we let A,=lim inf M(H,), then

1( 4y 2 NTL(L)) S MO TL(G)).

Finally, using

lim sup N(T(1,)) < N(7)

and

lim sup M(y n T,(1,)) < |f(2)l,s
we obtain
(3.5) I <lim sup A, & N(t)) <1f @),

Since (3.4) holds for each K with M(y n H,) <K <M(H,), (3.5) holds for each K
with lim sup M(y n H,) <K <lim inf M(H,)=A4,.
Since | f(z)l =1 f(@lse)»

(3.6) [f@se) < A4ne

If | f(7)|, satisfies (3.1), then from (3.6) we see that (3.5) holds for each K with
|f()l,<K<|f(D)lseq which gives (3.2). Then (3.2) and (1.8) give (3.3). This
completes the proof.

RemMARK. If |f(7)l,=0, then Theorem 3 shows that f has angular limit 0
at T which is the Lehto-Virtanen result [4] on asymptotic values for normal
functions.
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§4. The Gross cluster-value theorem

A value w in the extended plane Q is said to be a principal value of f at 7if w
is in the cluster set of f on every arc y ending at t; w is said to be an angular value
of f at 7 if w is in the cluster set of f in some angle S(8, 7), 0<f<n. The range
of f at 7 is the set

R(f, 1) = {weQ: f(z,) =w for some sequence z,—> 1, z,€D}.

Gross CLUSTER-VALUE THEOREM. Let f be meromorphic in D and sup-
pose wg is an angular value of f at t and also w, is an accumulation point of
Q—R(f, 7). Then wy is a principal value of f at .

RemArk. The original proof of Gross is involved and Doob [2] gave a more
direct proof using one-sided cluster values and the non-Euclidean-based properties
of normal functions. Difficulties arise in using the non-Euclidean geometry with
normal functions; curves must lie in D and sometimes estimates on |f| are needed
in terms of the boundary cluster sets, and the journey between angular and tan-
gential approach via non-Euclidean geometry requires skillful navigation. The
differential two-constants theorem in the form of Theorem 3 allows an integrated
approach by avoiding much of the non-Euclidean geometry.

Proor oF THE Gross THEOREM. We can assume that wo=oco0. Take any
arc y ending at 7 and suppose | f(7)|, is finite; we assume that for z ey,

f@N < k.

We will show that f is bounded in each angle S(B, 7) for z sufficiently close to
7; then oo is not an angular value of f at t and the proof of the theorem will be
complete.

Fix B, 0<f<mn, and set a=(n+f)/2. Let u(z) denote the classical elliptic
modular function in D. Choose any finite point w, in Q— R(f, 7) and then select
w, in Q— R(f, 7) with |w,| >k so that first

lwil + k& « n+B .
2 =% <8 (2cosﬂ/2 N(D"‘))

and then also

-1 'W1|+k TC+B . ) _l_
I (2 ol — % * Zcospz Y PiM) <3

Now choose w; in Q—R(f, ©) so that

4.1) < | W3 T Wa) 9
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By using a conformal mapping if necessary, we can assume that f omits w,, w,,
w; in D. Then the function

g(z) = —wy f(z2) —w,

W - wy f(z) —w,

omits 0, 1, co and is therefore subordinate to u; hence for z € D,
N(z; g) < N(D; p).

Also, for zey,

|W1| + k
o)l < 2- Pl £ 2

so that

lwil + k n+p ) «f T+ P
oI, < 2PUEE < B (55 NDi ) < B (L N o))

Now either

5 |w1|+k 1

19(D)s < lg(‘c)lv ol = < 5

or |g(7), satisfies (3.1) and hence (3.2); in the latter case we use (1.8) — or we could
use (3.3) and the fact that I-(|g(7)l,, -) is increasing — to deduce that

19 Isgn < 1719 D) 5275 ND; b))

and thus

iflwyl+k w4+ P } ) 1
19 (lsy < T2t SR EF VD )<

In either case we have

2) l0@lsp < 5

If f were not bounded in S(B, 1), then from (4.1) we see that

1
19(Dsep) 2 5>

which contradicts (4.2). This completes the proof of the theorem.
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