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Let X be a Banach space and 4 be an operator in X such that 4A—wlI is
dissipative for some real number w. Let D,(A4) be the set of those x e D(A)
for which there exists a sequence {x,} in D(A) such that lim,,, x,=x and lim
SUDP, L o I AX,|I < + 00 (see [9]). In this paper we are concerned with the set D,(A).

This work is motivated by the papers of Crandall [2] and Bénilan [1].
Assuming that R(I—21A4)>D(A) for sufficiently small positive numbers A,
Crandall defined a set D(A), which is called a generalized domain, and showed
that D(A) coincides with the set of those x € D(A) for which T(t)x is Lipschitz
continuous in ¢t on compact t-sets and therefore is invariant under T(f). Here
the semigroup {7(t); t=0} on D(A) is defined by T(H)x=lim,.,, (I —(t/n)4A)"x
for t=0 and xe D(4). An extension of the result was obtained by Bénilan [1].
He defined the set D(A4) by considering an extension 4 of A and showed, among
others, that if — A4 is a pseudo-generator then a result of Crandall’s type holds for
the set D(A).

In this paper we establish some sufficient conditions in order that 4 generates
a nonlinear semigroup {T(t); t=0} on D(A) such that D,(A4) as well as D(4) is
invariant under T(f) (Theorem 4.3). The set D,(A) is in general a subset of D(A)
and it is shown that if liminf,_,,h 'd(R(I—hA), x)< + o for every x € D(A),
then D,(4)=D(A) (Proposition 2.3). Thus Theorem 4.3 extends some results in
[1] and [2]. The set D, (A) also possesses some interesting properties. We
observe, for instance, that D,(A) is invariant under certain perturbations. The
results in sections 2 and 4 will be used in the final section to prove a result on
m-dissipativity.

1. Preliminaries

Let X be a real Banach space with norm || - |. For a subset S of X, we
denote by S its closure and by d(S, x) the distance from xe X to S. Let 4 be an
operator in X. By this we mean a multi-valued operator with domain D(4) and
range R(A) both contained in X. We often identify A with its graph {[x, y]
e X xX; xeD(A), ye Ax}. We denote by A the closure of 4 and we say that
A is closed if A=A. For each x € D(A), we write

NlAx|l = inf {{ly]l; y € Ax}.
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We say that A is locally bounded on S< X if for each x € S there are a neighbor-
hood U, of x and a positive constant M such that || Az|| <M for every z € D(A)
nU,.

Let X* denote the dual space of X. We denote by (x, f) the pairing between
xe X and fe X*. For each [x, y]e X x X, we set

Ly, x1; = sup {(y, f); fe Fx};
[y, x1; = inf {(y, f); fe Fx},
where F is the duality map from X into X*, i.e., F is defined by
Fx ={feX*; (x,f) = |xlI*={fI?} for xeX.

The symbol [ -, -], will be used also to denote the corresponding functional on
X** X X**.
An operator 4 in X is said to be dissipative if for every [x, y], [u, v]€ 4,

[y—v,x—ul]; =0,
or equivalently if for every A>0 and for every [x, y], [u, v]e A4,
Ix —ull < Il(x = 4y) — (u — )] .

If A is dissipative and R(I —14)=X for all (or for some) A>0, then 4 is said to
be m-dissipative. Here I denotes the identity operator on X.

Let w be a real number and let 4 be an operator in X such that A—wl is
dissipative. Following Bénilan [1], we define an operator 4 in X** by

A = {[x, y]e D(A) x X**; V[u, v]€ 4, Ife F(x — u),
(s ) — @ f) £ olx — ul|?}
and a set D(4) by
D(4) = {xeD(A); 3{x,} = D(A), lim,, ,, X, = x, im sup, ., [ Ax,[l < +o0}.

It is clear that A< A if A is regarded as an operator in X**. Also, we note that
if [x, y]€ 4, then

Ix —ull = = 20)7H(x — Ay) — (u — A0)]|

for every [u, v] € A and for every 1>0 such that lw<1.

Let C be a closed subset of X. A one-parameter family {T'(¢); t=0} of
nonlinear operators from C into itself is called a (nonlinear) semigroup on C if
it has the following properties:

(i) T@O)x = x for xeC;
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(ii) T(t + s)x = T()T(s)x for t,s =20 and xeC;
(iii) lim, o4 T(t)x = x for xeC.
If in addition there is a real number w such that

(iv) IT(t)x — T(H)y| < e*|x — y|| for t 20 and x, yeC,

then we write {T(¢); t=0}eQ,(C). Let {T(z); t=0} be a semigroup on C
and let S be a subset of C. 1If each T(¢t) maps S into itself, then S is said to be
invariant under T(t).

2. Definition and properties of D,(A4)

DEerFINITION 2.1 (cf. [9]). Let A be an operator in X and set
D (4; M) = {xe D(A); 3{x,} = D(A), lim,_ , x, = x, limsup, ., [|4x,[| < M}
for M>0. We define a set D(A) by

D,(A) = \J Dy(4: M)

and for each x € D,(A), we write
|Ax| = inf{M; xe D, (A; M)}.
The following result presents some elementary properties of D (A).

PROPOSITION 2.2. Let A be an operator in X. Then:

(i) D(4) = D,(A) = D(A) and |Ax| £ [|Ax|| for xeD(A).

(ii) D, (A) = D,(A) and |Ax| = |Ax| for x e D, (A).

(iii) If xeD,(A) and |Ax| = 0, then xe D(A) and 0e Ax.

(iv) If x,e D, (A), lim,_, ., x, = x and liminf,_, , |Ax,] < + 00, then x € D, (A)
and |Ax| £ liminf,_,  |Ax,|.

Proor. (i) is clear. To prove (ii), it suffices to show that D, (A)c D, (A)
and |Ax|<|Ax| for xeD,(A). Let xeD,A). Then there exists a sequence
{[x, y,]1} in 4 such that lim,_,, x,=x and lim,_, , || y,| =|Ax|, which ensures the
existence of a sequence {[u,, v,]} in A4 such that lim,, , u,=lim,., , x,=x and
lim,, , v, =lim,_, || y,]|=|4x|. Thus it is shown that xeD,(A4) and |Ax|
<|Ax].

The property (iii) follows from the fact that if xe D, (4) and |Ax|=0, then
there exists a sequence {[x,, y,]} in A such that lim,_  x,=x and lim,_ . || y,|
=0.

Finally, let {x,} be any sequence in D,(4). Then there exists a sequence
{[uy v,1} in A such that |u,—x,|<1/n and |v,||=Z|A4x,|+1/n for all n>1.
Therefore, if lim,_ ., x,=x and liminf,. , |4x,| < + oo, then lim,. , u,=x and
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liminf,_, , |v,]| £liminf,_, , |Ax,|. This implies that xeD, (A4) and [Ax|<
liminf, , |4x,|, so (iv) is proved. Q.E.D.

Now let w be a real number and let A be an operator in X such that A —wI
is dissipative. Then D, (4)<D(A), where D(A) is the set defined in section 1.
In fact, since Ac A and D(A)=D,(A) under our notation, it follows that D,(A4)
=D (A)=D(A) and |Ax| £ |Ax]| for x € D,(A).

The next result gives a condition under which D,(4)=D(A).

PrROPOSITION 2.3. Let A be an operator in X such that A—wl is dissipa-
tive and let x e D(A). Then x € D,(A) if and only if lim inf,_ o, h~'d(R(I —hA), x)
<+o00. Ifin particular liminf,_ o, h™1d(R(I—hA), x)=0, then x € D,(A) and
|Ax| =|Ax|.

Proor. If x e D, (A), then itiseasy to see that lim sup,_o+ h~1d(R(I —hA), x)
< |Ax|. Next suppose that M(x)=lim inf, o, h"'d(R(I — hA), x) < + 0.
Then for any ¢>0 such that ew<1, there exists a triplet (h, x;, y,) such that
0<h=Ze, [xy, yol€ A and

(2.1) Xy — hyy — x| < h(M(x) + ¢).
Since

xp — ull <A = ho) t|(x, — hy,) — (u — ho)|
for every [u, v] € 4, (2.1) implies
(2.2) %y = xIl < (1 = ho)~*(x, — hy, — x| + hlAx])

< h(1 — ho) Y(|Ax| + M(x) + &).

Moreover, (2.1) together with (2.2) implies
(2.3) Iyall < (1 = ho) (1 Ax] + M(x) + &) + M(x) + e.

Clearly (2.2) and (2.3) show that x € D ,(4) and |Ax| <|Ax|+2M(x), and the proof
is completed. Q.E.D.

COROLLARY 2.4. Let A be an operator in X such that A—wl is dissipative
and

(2.4) R(I — AA) > D(A)  for all sufficiently small A > 0.
Then D, (A)=D(A) and |Ax|=|Ax| for x e D (A).

REMARK 2.5. Let A be an operator as in Corollary 2.4 and let D denote
the generalized domain which was introduced in [2]; it is by definition the set
of those x € D(A) for which lim,_,q, ||4,x] < + 0o, where A,=A"1[(I—-AA)1—1I]
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for A>0. Then we obtain D, (4)=D and |Ax|=lim,_ ., [|4,x|| for x e D A).
Thus we see that if (2.4) holds, then D (A)=D(A)=D and |Ax|=|Ax|=
lim,_ o, ||4;x| for xeD,(4). (The fact that D(4)=D was already remarked by
Bénilan [1] in the case w=0.)

Finally, we remark that D,(A) is invariant under certain perturbations. For
example, let A be an operator in X and B be a single-valued operator in X such
that D(4)<D(B), and suppose that for each x € D(4) there are a neighborhood
U, of x and positive constants K and L<1 such that

IBz|| = K + L||Az]| for every zeD(A)nU,.

Then it is easy to check that D, (4+B)=D,A). But it seems to be not easy to
verify that D(4+ B)=D(A) (of course, we assume here that both D(4) and
D(A+B) are defined). Thus D, (A4) will be useful in perturbation problems,
especially in nonreflexive Banach spaces. See [7].

3. Remarks on evolution equations and semigroups

Throughout this and the next sections 4 denotes an operator in X such that
A—wl is dissipative for some real number w.
Let z € D(A) be given and consider the Cauchy problem

(d/dtyu(t) € Au(?)
u(0) = z.

(CP; 2)

This problem has been treated in recent years by means of the difference scheme:

(% — G- 'Ok — Xk-y) —gheAxt,  k=1,2,..., N(n)

(DS; 2) {

Xy = z,

where 0=1§<t] <+ <thm-1 <TEthm=T, for some fixed T>0 and for all
n=1. See [3], [5], [6], [8] and [9].
Let {u,(f)} be a sequence of step functions defined by

z for t=0

un(t) = [
x} for te(t_,, 7], k=1,2,...,N(n).

The sequence {u,(t)} is called a full sequence of backward approximate solutions
to (CP; z) on [0, T7 if the fo]ldwing conditions are satisfied:

(i) max{tz —t2_;;1<k<Nn}—0 as n—> o0;

i) XN - g-)lel —0 as n— oo.
It has been proved (see [3] and [6]) that if {u,(¢)} is a full sequence of backward
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approximate solutions to (CP; z) on [0, T7], then u,(t) converges to a continuous
function u(#) uniformly on [0, T]. The limit function u(t) is called a backward
(DS)-limit solution to (CP; z) on [0, T] (see [6]). 1t should be noted that the
backward (DS)-limit solution is unique whenever it exists.

We refer to the papers cited above for the properties of backward (DS)-limit
solutions. We note here the following facts:

ReMARK 3.1 (On changes of partition). Once we obtain the uniform con-
vergence of the sequence {u,(f)}, we are able to take T,=T for all =1 in the
above argument; one has only to consider the term

eheny + [T = - ) (T = - 1)1 (T, = T) (Xhny = Xhemy-1)
instead of efy,).

REMARK 3.2 (On continuation of solutions). Let z, we D(A) and Ty, T,
>0. Let v,(¢) and v,(¢) be backward (DS)-limit solutions to (CP; z) on [0, T,]
and to (CP; w) on [0, T,], respectively. If w=v,(T;), then the function u(f)
defined by

v4(0) for te[0, T,]
u(t) =
vy(t — Ty) for te(T,, T, + T,]
is necessarily a backward (DS)-limit solution to (CP; z) on [0, T, + T,].

REMARK 3.3 (On dependence of solutions on initial values). Let T>0 and
{z.} be a sequence in D(A). For each m, let v,(f) be a backward (DS)-limit
solution to (CP; z,,) on [0, T]. If lim,,, , z,,=z, then there exists a backward
(DS)-limit solution u(t) to (CP; z) on [0, T] and lim,,_, ., v,,(f)=u(t) uniformly
on [0, T] (see [9]).

REMARK 3.4 (The case A4 is continuous). Let ze D(4) and T>0. If A4 is
continuous and the domain D(4) is closed, then the backward (DS)-limit solution
u(t) to (CP; z) on [0, T] satisfies the integral equation

u(t) =z + S; Au(s)ds  for te[0, T1,

that is, »(?) is an exact solution of (CP; z) on [0, T].
Next let {T(f); t=0} € Q,(D(A)). We say that {T(f); t=0} is generated by
A(or A generates {T(t); t=0)) if for each x € D(A), T(t)x satisfies the inequality
20t T(t)x — ul|? — |x — uf? < 25' 201y, T(D)x — uldt
0

for every t=0 and for every [u, v] € A.
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REMARK 3.5. 1If — A4 is a pseudo-generator (see [1] for the definition), then
A generates a semigroup {T(t); =0} € Qy(D(A)).

REMARK 3.6. If for any x € D(A) and for any T >0, there exists a backward
(DS)-limit solution u(t; x) to (CP; x) on [0, T], then 4 generates a semigroup
{T(1); t=20} € Q,(D(A)). Here {T(t); t=0} is defined by T(t)x=u(t; x) for =0
and x e D(A). See [6].

The following result is proved in a manner similar to [1] and we omit the
proof.

ProrosITION 3.7. Let {T(t); t=0} e Q. (D(A)) be a semigroup generated
by A. Then we have
(i) D(A) = D(A) = {xe D(A); T(t)x is Lipschitz continuous in t
on any bounded subinterval of [0, + 00)};
(ii) if xeD(A), then ||T(H)x — x| < |Ax| gte“"dr forall t=0 and
lim,o., ) T(Ox — x| = |Axl; ’
(iii) if xeD(A), then T(t)xeD(A) and |AT(t)x| < e®*|Ax| for all t = 0.

This result shows that if A generates a semigroup {7(t); t=0} € Q (D(A)),
then the set D(A) is invariant under T(¢).

In connection with Propositions 2.3 and 3.7, there is a question: Let A4
generate a semigroup {T(¢); t=0} € Q,(D(4)). Then does it follow that D,(A)
=D(A)? We know already that D,(4)=D(A) under the condition (2.4). Also,
it is well-known that if X is reflexive and if A generates a semigroup {T(t); t=0}
€ Q,(D(A)), then A has an extension B such that B—wlI is dissipative and D(B)
=D, (B)=D(B)=D(A). But we do not know whether the above question is
affirmative in general.

4. Invariance of D, (A)

In this section we give some conditions under which 4 generates a semigroup
{T(#); t=0} € Q,(D(A)) such that D,(A4) as well as D(A) is invariant under T(?).

PROPOSITION 4.1.  Assume that the following conditions are satisfied:

(A1) liminf,o. h™'d(R(I — hA), x) = 0 for each xe D, (A).

(A2) For each x €D, A), there is a number T,>0 such that on [0, T,]
there exists a backward (DS)-limit solution to (CP; x) whose values belong to
D,(A). Then A generates a semigroup {T(t); t=0} e 0.(D(A)) such that

(i) for each xe D(A), u(t)=T()x is a backward (DS)-limit solution to
(CP: x) on every finite interval [0, T];
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(ii) if xeDyA), then |T()x — x| = IAxlS; e*dt forall t=0 and

lim, o4 7Y T@x — x| = |Ax];
(iii) if xe D,(A), then T(t)x € D (A) and |AT(t)x| < e**|Ax| for all t=0.

ProOF. By Propositions 2.3, 3.7 and Remarks 3.3, 3.6, it suffices to show
that for each x € D,(A), there exists a continuous function u(f) defined on [0, + o)
such that u(f) e D,(A) for all t=0 and u(t) restricted to any finite interval [0, T']
is a backward (DS)-limit solution to (CP; x) on [0, T].

Let xe D,(A) and let J denote the set of all numbers c e (0, + o) such that
the statement in (A2) holds for ¢ instead of T,. Set T*=sup {c; ceJ}; note
that J#@ by (A2). Now we shall show that T*=+o0. To do this, assume
that T* < +oco. Then there exists a momotone increasing sequence {c;} =J such
that lim;, , ¢;=T*. For each i, let v (t) be a backward (DS)-limit solution to
(CP; x) on [0, c;] such that v(t) e D ,(A) for all te[0, c;] and let {v; ,(t)} be a full
sequence of backward approximate solutions to (CP; x) on [0, ¢;] such that

Sin = sup {l03,(1) — 0(Dl; 1€ [0, &1} — 0 as n — oo,

Note that |4v(2)| < e®?|Ax| for all te [0, ¢;] and for all i (cf. [6] and [7]). Next
let {e,,} be a sequence of positive numbers such that lim,,_, ., ¢,=0. For each m,
choose an integer k=k(m)=1 such that T*—c,<¢,, and then an element [x,,, y,,]
€ A such that ||x,,—uv(cy)] Ze, and |yl = |Av(c)| +&,. With this choice, define
step functions u,,,(¢) on [0, T*] by

U (D) for te[0, ¢]
um,n(t =
Xpm for te(c, T*].
Then we have
”xm - vk,n(ck) - (T* - ck)ym”
S % = vledll + luler) — vl + (T* = ¢ [|ymll
S &y + O + En(elIT|AX] + &)

for all m and n. Therefore, taking Remark 3.1 into account, we see that a suita-
ble subsequence of {u,, ,(f)} becomes a full sequence of backward approximate
solutions to (CP; x) on [0, T*], that is, there exists a backward (DS)-limit solu-
tion u(f) to (CP; x) on [0, T*]. Since u(t)=v(t) on [0, ¢;] and |Av,(?)| < e®*|Ax|
for te[0, ¢;1, it is clear that u(t)e D,(A) for all te[0, T*]. Thus T*eJ. In
view of (A2) and Remark 3.2, this contradicts the definition of T*. So we
conclude that T* = + oo, and the proof is completed. Q.E.D.

ReMARK 4.2. If A is locally bounded on D,(A4), then (A2) follows from
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(Al). See Remark 4.5 below.

We next exhibit a condition under which (A1) and (A2) in Proposition 4.1
are satisfied. '

Let ¢ denote the collection of all nonnegative functions L defined on
[0, + ) x [0, + c0) such that

(L,) Lisnondecreasing with respect to each of variables;

(L) L(oy, L(0,, 1)) L(0, +0,, 1) for every (a4, 7) and (o,, 1),
and consider the following condition:

(R, For each x e D,(A), there are a neighborhood U, of x and a func-
tion Le & such that for any z e D, (4) n U,, there exist a sequence {h,} of positive
numbers and a sequence {z,} in D(A) satisfying the properties

(a,) h,— 0 and h;'d(z, — h,Az,, z) — 0 as n —> ©0;
(ay) |Az,| £ L(h,, |Az|) for all n.
We now obtain

THEOREM 4.3. Suppose that A satisfies the condition (R,),,.. Then for each
x € D(A), there exist a number T,>0 and a backward (DS)-limit solution u(t)
to (CP; x) on [0, T,] such that u(t) € D,(A) for all te[0, T,]. Consequently, the
conclusion of Proposition 4.1 holds true.

Proor. Let xeD, (A). Let r>0and Le.¥ be such that (R)),, is satisfied
with U,=S,(x) and with the function L, where S, (x)={yeX; |y—x||<r}. Set
M,=L(2, |Ax|]) and T,=min {1, r/2(M,+1)}. Note that by (R, |4X|=<
L(o, |Ax]) for all 6>0 and hence |Ax|<M,. In the following, we shall show that
there exists a full sequence {u,(f)} of backward approximate solutions to (CP; x)
on [0, T,] such that |Au,(t)| <M, for all te [0, T,] and for all n, from which the
theorem follows.

Let {¢,} be a sequence in (0, 1] such that ¢,|w|<1/2 for all n and ¢,—0 as
n—oo. For each n, set t3=0 and xZ=x, and define inductively ,,>0 and
x!,1€D(A) in the following manner: If x} e D, (A4)n S,(x), let hi denote the
supremum of all numbers h € [0, ¢,] for which there exists an element x, e D(4)
such that

(41) d(xh - hAxh’ XZ) = hen/z’
(4.2) |Ax,| < L(h, |Axk]).

By (Rp)oc it is clear that h} >0. We define 7, =t} +h} and x} ., as the element
in D(A) such that

4.3) [Xp+1 — hiyisr — Xkl < hie, for some yi,,€Ax},q;
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(4.4) |AX} 41| = L(h, |AXE]).

Note that (4.1) and (4.2) ensure the existence of such an element x%, .
Now assume that t# and x} are defined and that t#<T,. Then by (4.3),
(4.4) and (L,), we have

4.5) Ixtey — x7] < hi(l — hiw) '(|AxI] + &)
< 2h(L(hE_y, |AXE,]) + &)
< 2h(L(13, |Ax]) + 6,)
< 2h(M,, + 1)

for 1<i<k—1. Here we used the fact that g,|w|<1/2. Since |4Ax|ZM,, (4.5)
holds also for i=0. Therefore, we obtain

Ixi — x| < 2(M, + DX4gh = 26(M + 1) <2T(M + ) =1,

that is, xteD,(A4)Nn S,(x). This fact implies that the above induction can be
continued so long as # < T,.

In order to complete the proof, we assert that there exists an integer N(n)=1
such that th)—; <T Stk Assume that tf<T, for all k=0. Then there
exists a sequence {x#} in D, (A)n S,(x) satisfying the properties

(4.6) |Axk 41 = L(hk, [AXE]) = L(ti sy 14AX]) = M, k205
4.7) Iy — xill =204 — DM, + 1), k20

Since c=lim,_, t} exists in (0, T.], it follows from (4.6) and (4.7) that z=
lim,_, , x} exists in D (4)n S,(x) and |Az| < L(c—1t}, |Ax}|) for all k=0. There-
fore, by (R,),., there exist a number he (0, ¢,/2] and an element z, € D(4) such
that

4.8) d(z, — hAz,, z) < he,/3;
4.9) |Az,| = L(h, |Az]).

Choose an integer ko =1 so that c—1t§ <¢,/2 for all k=k,. Since
|Azy| < L(h, |4z|) = L(h, L(c — 8, |Ax}])) < L(h + ¢ — t}, |Ax}])
for all k=0, it follows from the definition of h} that

(4.10) Az, — (h 4+ ¢ — Az, x2) > (h + ¢ — t2)g,/2
for all k=k,, which implies
d(z, — hAz,, z) = lim,_,, d(z, — (h + ¢ — t})Az,, x}) = he,/2.

This contradicts (4.8), so the assertion follows.
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In this way, we see that for each n, there exist an integer N(n)=1 and a set
{(th, x1); 0Sk=<N(n)} of pairs such that 0= <t§<---<thm-1<T=thn»
max; <, <ym (i —th-1) =&, x§=x and such that (4.3) and (4.4) hold true for
0<k<N(n)—1. Define a sequence {u,(t)} of step functions by

x for t=0
un(t) =
x4 for te(ti_, 1], 1=k NMm);nz=1.
Then it is evident that {u,(t)} is the desired full sequence. Q.E.D.

REMARK 4.4. It remains open whether D, (4)=D(A), even if A satisfies the
condition (R,),.-

ReMARK 4.5. The condition (R,),,. is a generalization of the condition (R,)
treated in [9], so that it includes the following condition

(R,) for each x e D, A), there exists a sequence {h,} of positive numbers
such that h,—0 as n—oo0 and f\ R(I h,A)> {x}.

The condition (R,),,. also mcludes the following condition

(R,) A is locally bounded on D,(A4) and lim inf,_ 4, h~'d(R(I—hA), x)=0
for each x € D(A).
In view of this, Theorem 4.3 may be applied to the cases: (i) 4 is continuous,
and (ii) 4 is demicontinuous.

REMARK 4.6. The above results are easily extended to the case in which
A is w-quasi-dissipative (see [6] for the definition).

5. A criterion for m-dissipativity

Let A be a dissipative operator in X and S be a subset of X. A is said to be
locally m-dissipative on S (see [4]) if for each x € S, there exist a neighborhood
U, of x and a sequence {h,} of positive numbers such that h,—0 as n— o0 and
(5.1) O RA = h,d) > U,

Among others, Kato [4] proved that if A is almost demiclosed and locally
m-dissipative on D(A), then A is m-dissipative, provided that X* is uniformly
convex, and Bénilan [1] proved that if A is locally m-dissipative on D(A), then 4
is m-dissipative even if X is nonreflexive.

By applying the foregoing results, we give here a proof of the following result
which is also found in Kobayashi-Kobayasi [7].

THEOREM 5.1. If A is locally m-dissipative on D, (A), then A is m-dissipa-
tive.
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For the proof, we prepare the following lemma.

LeMMA 5.2. Suppose that A is locally m-dissipative on D,(4). LetweX
and set B=A—I+w. Then D(B)=D,(A) and B is locally m-dissipative on
D (B).

Proor. 1t is evident that B+1 is dissipative. Also, it is easy to check that
Dy(B)=D,(4).

Let xe D(B). Since xe D, (A), we can choose a positive number r and a
sequence {h,} of positive numbers convergent to zero so that (5.1) holds with
U,=S,(x) and with the sequence {h,}. Set p=r/4 and d=min {1/2, r/4(]x|
+ [w] +|4x]+1)}. Now we shall show that

5.2) R(I — h,B) > §,(x) for all h,e (0, d].

To this end, for each zeS,(x) and h,€ (0, 6], define a transformation G, with
D(G,)=S,(x) by

Gy=z—-h(J,y—w) for yeS/(x),
where J,=(I—h,A)"!. Then we have
161 = Gyl = hallTys = Javall € hullys = y2ll S 3 1ys = yal
for y,, y, € S,(x), and
Gy — x|l S 1Gyy — Guxl| + [Gpx — x|
S hlly = x| + Nz = x| + (x| + llwll + [17,x — x])

£ hr + 14+ hy(lx]) + (Wl + Al Ax])

lIA

r

for ye S,(x). Therefore, by applying the fixed point theorem for a contraction
map, we see that there exists an element x, € S,(x) such that G,x,=x,, i.e.,

(5.3) z — h(J,x, — W) = X,
Set z,=J,x,. Then z,e D(A4) and x, € (I —h,A4)z,, so (5.3) yields
ze( — h,A)z, + h(z, — w) =({ — h,B)z,.
Thus (5.2) is proved, and the proof is completed. Q.E.D.
We are now in a position to prove Theorem 5.1.

PROOF OF THEOREM 5.1. Let we X and set B=A—I+w. Then by Lemma
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5.2 and Remark 4.5, B satisfies the condition (R,),,.. Therefore, according to
Theorem 4.3, B generates a semigroup {T(f); t=0}eQ_,(D(B)) such that if
x € D,(B), then T(t)x € D,(B) for all t=0,

(5.4) IT@E + s)x — T@)x]| < e | T(s)x — x|| < (e7* — e~ **9) | Bx|
for all ¢, s=0 and
(5.5) |BT(t)x| £ e*|Bx| forall t=0.

Now let xe D(B). Then (5.4) and (5.5) imply that z=I1im,_ , , T(f)x exists in
D,(B) and |Bz|=0. Noting that B is closed (see [4]), we see from Proposition
2.2 that ze D(B) and Oe Bz, ie., we(I—A)z. Since we X is arbitrary, it is
proved that R(I— A)= X, so A is m-dissipative. Q.E.D.
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