Semigroups of nonlinear operators and invariant sets

Tadayasu TAKAHASHI (Received May 21, 1979)

Let X be a Banach space and A be an operator in X such that $A - \omega I$ is dissipative for some real number ω . Let $D_a(A)$ be the set of those $x \in \overline{D(A)}$ for which there exists a sequence $\{x_n\}$ in D(A) such that $\lim_{n\to\infty} x_n = x$ and $\lim\sup_{n\to\infty} \|Ax_n\| < +\infty$ (see [9]). In this paper we are concerned with the set $D_a(A)$.

This work is motivated by the papers of Crandall [2] and Bénilan [1]. Assuming that $R(I-\lambda A)\supset \overline{D(A)}$ for sufficiently small positive numbers λ , Crandall defined a set $\widehat{D}(A)$, which is called a generalized domain, and showed that $\widehat{D}(A)$ coincides with the set of those $x\in \overline{D(A)}$ for which T(t)x is Lipschitz continuous in t on compact t-sets and therefore is invariant under T(t). Here the semigroup $\{T(t); t\geq 0\}$ on $\overline{D(A)}$ is defined by $T(t)x=\lim_{n\to\infty}(I-(t/n)A)^{-n}x$ for $t\geq 0$ and $x\in \overline{D(A)}$. An extension of the result was obtained by Bénilan [1]. He defined the set $\widehat{D}(A)$ by considering an extension \widehat{A} of A and showed, among others, that if A is a pseudo-generator then a result of Crandall's type holds for the set $\widehat{D}(A)$.

In this paper we establish some sufficient conditions in order that A generates a nonlinear semigroup $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ such that $D_a(A)$ as well as $\widehat{D}(A)$ is invariant under T(t) (Theorem 4.3). The set $D_a(A)$ is in general a subset of $\widehat{D}(A)$ and it is shown that if $\liminf_{h\to 0+}h^{-1}d(R(I-hA),x)<+\infty$ for every $x\in\widehat{D}(A)$, then $D_a(A)=\widehat{D}(A)$ (Proposition 2.3). Thus Theorem 4.3 extends some results in [1] and [2]. The set $D_a(A)$ also possesses some interesting properties. We observe, for instance, that $D_a(A)$ is invariant under certain perturbations. The results in sections 2 and 4 will be used in the final section to prove a result on m-dissipativity.

1. Preliminaries

Let X be a real Banach space with norm $\|\cdot\|$. For a subset S of X, we denote by \overline{S} its closure and by d(S, x) the distance from $x \in X$ to S. Let A be an operator in X. By this we mean a multi-valued operator with domain D(A) and range R(A) both contained in X. We often identify A with its graph $\{[x, y] \in X \times X; x \in D(A), y \in Ax\}$. We denote by \overline{A} the closure of A and we say that A is closed if $A = \overline{A}$. For each $x \in D(A)$, we write

 $|||Ax||| = \inf \{||y||; y \in Ax\}.$

We say that A is locally bounded on $S \subset X$ if for each $x \in S$ there are a neighborhood U_x of x and a positive constant M such that $|||Az||| \le M$ for every $z \in D(A) \cap U_x$.

Let X^* denote the dual space of X. We denote by (x, f) the pairing between $x \in X$ and $f \in X^*$. For each $[x, y] \in X \times X$, we set

$$[y, x]_s = \sup \{(y, f); f \in Fx\};$$

$$[y, x]_i = \inf\{(y, f); f \in Fx\},\$$

where F is the duality map from X into X^* , i.e., F is defined by

$$Fx = \{ f \in X^*; (x, f) = ||x||^2 = ||f||^2 \}$$
 for $x \in X$.

The symbol $[\cdot, \cdot]_s$ will be used also to denote the corresponding functional on $X^{**} \times X^{**}$.

An operator A in X is said to be dissipative if for every [x, y], $[u, v] \in A$,

$$[y-v, x-u]_i \leq 0$$

or equivalently if for every $\lambda > 0$ and for every $[x, y], [u, v] \in A$,

$$||x - u|| \le ||(x - \lambda y) - (u - \lambda v)||$$
.

If A is dissipative and $R(I-\lambda A)=X$ for all (or for some) $\lambda>0$, then A is said to be m-dissipative. Here I denotes the identity operator on X.

Let ω be a real number and let A be an operator in X such that $A - \omega I$ is dissipative. Following Bénilan [1], we define an operator \hat{A} in X^{**} by

$$\widehat{A} = \{[x, y] \in \overline{D(A)} \times X^{**}; \, \forall [u, v] \in A, \, \exists f \in F(x-u),$$

$$(f, y) - (v, f) \le \omega ||x - u||^2$$

and a set $\widehat{D}(A)$ by

$$\widehat{D}(A) = \{x \in \overline{D(A)}; \exists \{x_n\} \subset D(\widehat{A}), \lim_{n \to \infty} x_n = x, \lim \sup_{n \to \infty} \||\widehat{A}x_n\|| < +\infty \}.$$

It is clear that $A \subset \widehat{A}$ if A is regarded as an operator in X^{**} . Also, we note that if $[x, y] \in \widehat{A}$, then

$$||x - u|| \le (1 - \lambda \omega)^{-1} ||(x - \lambda y) - (u - \lambda v)||$$

for every $[u, v] \in A$ and for every $\lambda > 0$ such that $\lambda \omega < 1$.

Let C be a closed subset of X. A one-parameter family $\{T(t); t \ge 0\}$ of nonlinear operators from C into itself is called a *(nonlinear) semigroup on C* if it has the following properties:

(i)
$$T(0)x = x$$
 for $x \in C$;

- (ii) T(t+s)x = T(t)T(s)x for $t, s \ge 0$ and $x \in C$;
- (iii) $\lim_{t\to 0+} T(t)x = x$ for $x \in C$.

If in addition there is a real number ω such that

(iv)
$$||T(t)x - T(t)y|| \le e^{\omega t} ||x - y||$$
 for $t \ge 0$ and $x, y \in C$,

then we write $\{T(t); t \ge 0\} \in Q_{\omega}(C)$. Let $\{T(t); t \ge 0\}$ be a semigroup on C and let S be a subset of C. If each T(t) maps S into itself, then S is said to be invariant under T(t).

2. Definition and properties of $D_a(A)$

DEFINITION 2.1 (cf. [9]). Let A be an operator in X and set $D_a(A; M) = \{x \in \overline{D(A)}; \exists \{x_n\} \subset D(A), \lim_{n \to \infty} x_n = x, \limsup_{n \to \infty} \||Ax_n\|| \le M \}$ for M > 0. We define a set $D_a(A)$ by

$$D_a(A) = \bigcup_{M>0} D_a(A; M)$$

and for each $x \in D_a(A)$, we write

$$|Ax| = \inf \{M; x \in D_a(A; M)\}.$$

The following result presents some elementary properties of $D_a(A)$.

PROPOSITION 2.2. Let A be an operator in X. Then:

- (i) $D(A) \subset D_a(A) \subset \overline{D(A)}$ and $|Ax| \leq ||Ax||$ for $x \in D(A)$.
- (ii) $D_a(A) = D_a(\overline{A})$ and $|Ax| = |\overline{A}x|$ for $x \in D_a(A)$.
- (iii) If $x \in D_a(A)$ and |Ax| = 0, then $x \in D(\overline{A})$ and $0 \in \overline{A}x$.
- (iv) If $x_n \in D_a(A)$, $\lim_{n \to \infty} x_n = x$ and $\liminf_{n \to \infty} |Ax_n| < +\infty$, then $x \in D_a(A)$ and $|Ax| \le \liminf_{n \to \infty} |Ax_n|$.

PROOF. (i) is clear. To prove (ii), it suffices to show that $D_a(\overline{A}) \subset D_a(A)$ and $|Ax| \leq |\overline{A}x|$ for $x \in D_a(\overline{A})$. Let $x \in D_a(\overline{A})$. Then there exists a sequence $\{[x_n, y_n]\}$ in \overline{A} such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} \|y_n\| = |\overline{A}x|$, which ensures the existence of a sequence $\{[u_n, v_n]\}$ in A such that $\lim_{n \to \infty} u_n = \lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} \|v_n\| = \lim_{n \to \infty} \|y_n\| = |\overline{A}x|$. Thus it is shown that $x \in D_a(A)$ and $|Ax| \leq |\overline{A}x|$.

The property (iii) follows from the fact that if $x \in D_a(A)$ and |Ax| = 0, then there exists a sequence $\{[x_n, y_n]\}$ in A such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} ||y_n|| = 0$.

Finally, let $\{x_n\}$ be any sequence in $D_a(A)$. Then there exists a sequence $\{[u_n, v_n]\}$ in A such that $||u_n - x_n|| \le 1/n$ and $||v_n|| \le |Ax_n| + 1/n$ for all $n \ge 1$. Therefore, if $\lim_{n \to \infty} x_n = x$ and $\lim\inf_{n \to \infty} |Ax_n| < +\infty$, then $\lim_{n \to \infty} u_n = x$ and

 $\liminf_{n\to\infty} \|v_n\| \le \liminf_{n\to\infty} |Ax_n|$. This implies that $x \in D_a(A)$ and $|Ax| \le \liminf_{n\to\infty} |Ax_n|$, so (iv) is proved. Q. E. D.

Now let ω be a real number and let A be an operator in X such that $A - \omega I$ is dissipative. Then $D_a(A) \subset \widehat{D}(A)$, where $\widehat{D}(A)$ is the set defined in section 1. In fact, since $A \subset \widehat{A}$ and $\widehat{D}(A) = D_a(\widehat{A})$ under our notation, it follows that $D_a(A) \subset D_a(\widehat{A}) = \widehat{D}(A)$ and $|\widehat{A}x| \leq |Ax|$ for $x \in D_a(A)$.

The next result gives a condition under which $D_a(A) = \hat{D}(A)$.

PROPOSITION 2.3. Let A be an operator in X such that $A-\omega I$ is dissipative and let $x \in \widehat{D}(A)$. Then $x \in D_a(A)$ if and only if $\liminf_{h\to 0+} h^{-1}d(R(I-hA), x) < +\infty$. If in particular $\liminf_{h\to 0+} h^{-1}d(R(I-hA), x)=0$, then $x \in D_a(A)$ and $|Ax|=|\widehat{A}x|$.

PROOF. If $x \in D_a(A)$, then it is easy to see that $\limsup_{h\to 0+} h^{-1}d(R(I-hA), x) \le |Ax|$. Next suppose that $M(x) = \liminf_{h\to 0+} h^{-1}d(R(I-hA), x) < +\infty$. Then for any $\varepsilon > 0$ such that $\varepsilon \omega < 1$, there exists a triplet (h, x_h, y_h) such that $0 < h \le \varepsilon$, $[x_h, y_h] \in A$ and

$$(2.1) ||x_h - hy_h - x|| \le h(M(x) + \varepsilon).$$

Since

$$||x_h - u|| \le (1 - h\omega)^{-1} ||(x_h - hy_h) - (u - hv)||$$

for every $[u, v] \in \widehat{A}$, (2.1) implies

(2.2)
$$||x_h - x|| \le (1 - h\omega)^{-1} (||x_h - hy_h - x|| + h|\widehat{A}x|)$$
$$\le h(1 - h\omega)^{-1} (|\widehat{A}x| + M(x) + \varepsilon).$$

Moreover, (2.1) together with (2.2) implies

$$(2.3) ||y_h|| \le (1 - h\omega)^{-1}(|\widehat{A}x| + M(x) + \varepsilon) + M(x) + \varepsilon.$$

Clearly (2.2) and (2.3) show that $x \in D_a(A)$ and $|Ax| \le |\widehat{A}x| + 2M(x)$, and the proof is completed. Q. E. D.

Corollary 2.4. Let A be an operator in X such that $A-\omega I$ is dissipative and

(2.4)
$$R(I - \lambda A) \supset \overline{D(A)}$$
 for all sufficiently small $\lambda > 0$.

Then $D_a(A) = \widehat{D}(A)$ and $|Ax| = |\widehat{A}x|$ for $x \in D_a(A)$.

Remark 2.5. Let A be an operator as in Corollary 2.4 and let D denote the *generalized domain* which was introduced in [2]; it is by definition the set of those $x \in \overline{D(A)}$ for which $\lim_{\lambda \to 0+} \|A_{\lambda}x\| < +\infty$, where $A_{\lambda} = \lambda^{-1}[(I - \lambda A)^{-1} - I]$

for $\lambda > 0$. Then we obtain $D_a(A) = D$ and $|Ax| = \lim_{\lambda \to 0+} ||A_{\lambda}x||$ for $x \in D_a(A)$. Thus we see that if (2.4) holds, then $D_a(A) = \widehat{D}(A) = D$ and $|Ax| = |\widehat{A}x| = \lim_{\lambda \to 0+} ||A_{\lambda}x||$ for $x \in D_a(A)$. (The fact that $\widehat{D}(A) = D$ was already remarked by Bénilan [1] in the case $\omega = 0$.)

Finally, we remark that $D_a(A)$ is invariant under certain perturbations. For example, let A be an operator in X and B be a single-valued operator in X such that $D(A) \subset D(B)$, and suppose that for each $x \in \overline{D(A)}$ there are a neighborhood U_x of X and positive constants X and X and X such that

$$||Bz|| \le K + L||Az||$$
 for every $z \in D(A) \cap U_x$.

Then it is easy to check that $D_a(A+B)=D_a(A)$. But it seems to be not easy to verify that $\hat{D}(A+B)=\hat{D}(A)$ (of course, we assume here that both $\hat{D}(A)$ and $\hat{D}(A+B)$ are defined). Thus $D_a(A)$ will be useful in perturbation problems, especially in nonreflexive Banach spaces. See [7].

3. Remarks on evolution equations and semigroups

Throughout this and the next sections A denotes an operator in X such that $A - \omega I$ is dissipative for some real number ω .

Let $z \in \overline{D(A)}$ be given and consider the Cauchy problem

(CP; z)
$$\begin{cases} (d/dt)u(t) \in Au(t) \\ u(0) = z. \end{cases}$$

This problem has been treated in recent years by means of the difference scheme:

(DS; z)
$$\begin{cases} (t_k^n - t_{k-1}^n)^{-1}(x_k^n - x_{k-1}^n) - \varepsilon_k^n \in Ax_k^n, & k = 1, 2, ..., N(n) \\ x_0^n = z, \end{cases}$$

where $0 = t_0^n < t_1^n < \dots < t_{N(n)-1}^n < T \le t_{N(n)}^n = T_n$ for some fixed T > 0 and for all $n \ge 1$. See [3], [5], [6], [8] and [9].

Let $\{u_n(t)\}\$ be a sequence of step functions defined by

$$u_n(t) = \begin{cases} z & \text{for } t = 0\\ x_k^n & \text{for } t \in (t_{k-1}^n, t_k^n], \quad k = 1, 2, ..., N(n). \end{cases}$$

The sequence $\{u_n(t)\}$ is called a full sequence of backward approximate solutions to (CP; z) on [0, T] if the following conditions are satisfied:

- (i) $\max \{t_k^n t_{k-1}^n; 1 \le k \le N(n)\} \longrightarrow 0 \text{ as } n \longrightarrow \infty;$
- (ii) $\sum_{k=1}^{N(n)} (t_k^n t_{k-1}^n) \|\varepsilon_k^n\| \longrightarrow 0$ as $n \longrightarrow \infty$.

It has been proved (see [3] and [6]) that if $\{u_n(t)\}$ is a full sequence of backward

approximate solutions to (CP; z) on [0, T], then $u_n(t)$ converges to a continuous function u(t) uniformly on [0, T]. The limit function u(t) is called a *backward* (DS)-limit solution to (CP; z) on [0, T] (see [6]). It should be noted that the backward (DS)-limit solution is unique whenever it exists.

We refer to the papers cited above for the properties of backward (DS)-limit solutions. We note here the following facts:

REMARK 3.1 (On changes of partition). Once we obtain the uniform convergence of the sequence $\{u_n(t)\}$, we are able to take $T_n = T$ for all $n \ge 1$ in the above argument; one has only to consider the term

$$\varepsilon_{N(n)}^{n} + \left[(T - t_{N(n)-1}^{n})(T_{n} - t_{N(n)-1}^{n}) \right]^{-1} (T_{n} - T)(x_{N(n)}^{n} - x_{N(n)-1}^{n})$$

instead of $\varepsilon_{N(n)}^n$.

REMARK 3.2 (On continuation of solutions). Let $z, w \in \overline{D(A)}$ and $T_1, T_2 > 0$. Let $v_1(t)$ and $v_2(t)$ be backward (DS)-limit solutions to (CP; z) on $[0, T_1]$ and to (CP; w) on $[0, T_2]$, respectively. If $w = v_1(T_1)$, then the function u(t) defined by

$$u(t) = \begin{cases} v_1(t) & \text{for } t \in [0, T_1] \\ v_2(t - T_1) & \text{for } t \in (T_1, T_1 + T_2] \end{cases}$$

is necessarily a backward (DS)-limit solution to (CP; z) on $[0, T_1 + T_2]$.

REMARK 3.3 (On dependence of solutions on initial values). Let T>0 and $\{z_m\}$ be a sequence in $\overline{D(A)}$. For each m, let $v_m(t)$ be a backward (DS)-limit solution to $(CP; z_m)$ on [0, T]. If $\lim_{m\to\infty} z_m = z$, then there exists a backward (DS)-limit solution u(t) to (CP; z) on [0, T] and $\lim_{m\to\infty} v_m(t) = u(t)$ uniformly on [0, T] (see [9]).

REMARK 3.4 (The case A is continuous). Let $z \in \overline{D(A)}$ and T > 0. If A is continuous and the domain D(A) is closed, then the backward (DS)-limit solution u(t) to (CP; z) on [0, T] satisfies the integral equation

$$u(t) = z + \int_0^t Au(s)ds \quad \text{for} \quad t \in [0, T],$$

that is, u(t) is an exact solution of (CP; z) on [0, T].

Next let $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$. We say that $\{T(t); t \ge 0\}$ is generated by $A(\text{or } A \text{ generates } \{T(t); t \ge 0\})$ if for each $x \in \overline{D(A)}$, T(t)x satisfies the inequality

$$e^{-2\omega t} \|T(t)x - u\|^2 - \|x - u\|^2 \le 2 \int_0^t e^{-2\omega \tau} [v, T(\tau)x - u]_s d\tau$$

for every $t \ge 0$ and for every $[u, v] \in \widehat{A}$.

REMARK 3.5. If -A is a pseudo-generator (see [1] for the definition), then A generates a semigroup $\{T(t); t \ge 0\} \in Q_0(\overline{D(A)})$.

REMARK 3.6. If for any $x \in \overline{D(A)}$ and for any T > 0, there exists a backward (DS)-limit solution u(t; x) to (CP; x) on [0, T], then A generates a semigroup $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$. Here $\{T(t); t \ge 0\}$ is defined by T(t)x = u(t; x) for $t \ge 0$ and $x \in \overline{D(A)}$. See [6].

The following result is proved in a manner similar to [1] and we omit the proof.

PROPOSITION 3.7. Let $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$ be a semigroup generated by A. Then we have

- (i) $\widehat{D}(A) = D(\widehat{A}) = \{x \in \overline{D(A)}; T(t)x \text{ is Lipschitz continuous in } t \text{ on any bounded subinterval of } [0, +\infty)\};$
- (ii) if $x \in \hat{D}(A)$, then $||T(t)x x|| \le |\hat{A}x| \int_0^t e^{\omega \tau} d\tau$ for all $t \ge 0$ and $\lim_{t \to 0+} t^{-1} ||T(t)x x|| = |\hat{A}x|$;
 - (iii) if $x \in \hat{D}(A)$, then $T(t)x \in \hat{D}(A)$ and $|\hat{A}T(t)x| \le e^{\omega t}|\hat{A}x|$ for all $t \ge 0$.

This result shows that if A generates a semigroup $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$, then the set $\widehat{D}(A)$ is invariant under T(t).

In connection with Propositions 2.3 and 3.7, there is a question: Let A generate a semigroup $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$. Then does it follow that $D_a(A) = \widehat{D}(A)$? We know already that $D_a(A) = \widehat{D}(A)$ under the condition (2.4). Also, it is well-known that if X is reflexive and if A generates a semigroup $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$, then A has an extension B such that $B - \omega I$ is dissipative and $D(B) = D_a(B) = \widehat{D}(B) = \widehat{D}(A)$. But we do not know whether the above question is affirmative in general.

4. Invariance of $D_a(A)$

In this section we give some conditions under which A generates a semigroup $\{T(t); t \ge 0\} \in Q_{\omega}(\overline{D(A)})$ such that $D_{\alpha}(A)$ as well as $\widehat{D}(A)$ is invariant under T(t).

Proposition 4.1. Assume that the following conditions are satisfied:

- (A1) $\lim \inf_{h\to 0+} h^{-1}d(R(I-hA), x) = 0$ for each $x \in D_a(A)$.
- (A2) For each $x \in D_a(A)$, there is a number $T_x > 0$ such that on $[0, T_x]$ there exists a backward (DS)-limit solution to (CP; x) whose values belong to $D_a(A)$. Then A generates a semigroup $\{T(t); t \ge 0\} \in \mathcal{Q}_{\omega}(\overline{D(A)})$ such that
- (i) for each $x \in \overline{D(A)}$, u(t) = T(t)x is a backward (DS)-limit solution to (CP: x) on every finite interval [0, T];

(ii) if $x \in D_a(A)$, then $||T(t)x - x|| \le |Ax| \int_0^t e^{\omega \tau} d\tau$ for all $t \ge 0$ and $\lim_{t \to 0+} t^{-1} ||T(t)x - x|| = |Ax|$;

(iii) if
$$x \in D_a(A)$$
, then $T(t)x \in D_a(A)$ and $|AT(t)x| \le e^{\omega t} |Ax|$ for all $t \ge 0$.

PROOF. By Propositions 2.3, 3.7 and Remarks 3.3, 3.6, it suffices to show that for each $x \in D_a(A)$, there exists a continuous function u(t) defined on $[0, +\infty)$ such that $u(t) \in D_a(A)$ for all $t \ge 0$ and u(t) restricted to any finite interval [0, T] is a backward (DS)-limit solution to (CP; x) on [0, T].

Let $x \in D_a(A)$ and let J denote the set of all numbers $c \in (0, +\infty)$ such that the statement in (A2) holds for c instead of T_x . Set $T^* = \sup\{c; c \in J\}$; note that $J \neq \emptyset$ by (A2). Now we shall show that $T^* = +\infty$. To do this, assume that $T^* < +\infty$. Then there exists a momotone increasing sequence $\{c_i\} \subset J$ such that $\lim_{i \to \infty} c_i = T^*$. For each i, let $v_i(t)$ be a backward (DS)-limit solution to (CP; x) on $[0, c_i]$ such that $v_i(t) \in D_a(A)$ for all $t \in [0, c_i]$ and let $\{v_{i,n}(t)\}$ be a full sequence of backward approximate solutions to (CP; x) on $[0, c_i]$ such that

$$\delta_{i,n} = \sup \{ \|v_{i,n}(t) - v_i(t)\|; t \in [0, c_i] \} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Note that $|Av_i(t)| \le e^{\omega t} |Ax|$ for all $t \in [0, c_i]$ and for all i (cf. [6] and [7]). Next let $\{\varepsilon_m\}$ be a sequence of positive numbers such that $\lim_{m\to\infty} \varepsilon_m = 0$. For each m, choose an integer $k = k(m) \ge 1$ such that $T^* - c_k \le \varepsilon_m$ and then an element $[x_m, y_m] \in A$ such that $||x_m - v_k(c_k)|| \le \varepsilon_m$ and $||y_m|| \le |Av_k(c_k)| + \varepsilon_m$. With this choice, define step functions $u_{m,n}(t)$ on $[0, T^*]$ by

$$u_{m,n}(t) = \begin{cases} v_{k,n}(t) & \text{for } t \in [0, c_k] \\ x_m & \text{for } t \in (c_k, T^*]. \end{cases}$$

Then we have

$$\begin{aligned} \|x_{m} - v_{k,n}(c_{k}) - (T^{*} - c_{k})y_{m}\| \\ &\leq \|x_{m} - v_{k}(c_{k})\| + \|v_{k}(c_{k}) - v_{k,n}(c_{k})\| + (T^{*} - c_{k})\|y_{m}\| \\ &\leq \varepsilon_{m} + \delta_{k,n} + \varepsilon_{m}(e^{|\omega|T^{*}}|Ax| + \varepsilon_{m}) \end{aligned}$$

for all m and n. Therefore, taking Remark 3.1 into account, we see that a suitable subsequence of $\{u_{m,n}(t)\}$ becomes a full sequence of backward approximate solutions to (CP; x) on $[0, T^*]$, that is, there exists a backward (DS)-limit solution u(t) to (CP; x) on $[0, T^*]$. Since $u(t) = v_i(t)$ on $[0, c_i]$ and $|Av_i(t)| \le e^{\omega t} |Ax|$ for $t \in [0, c_i]$, it is clear that $u(t) \in D_a(A)$ for all $t \in [0, T^*]$. Thus $T^* \in J$. In view of (A2) and Remark 3.2, this contradicts the definition of T^* . So we conclude that $T^* = +\infty$, and the proof is completed. Q.E.D.

REMARK 4.2. If A is locally bounded on $D_a(A)$, then (A2) follows from

(A1). See Remark 4.5 below.

We next exhibit a condition under which (A1) and (A2) in Proposition 4.1 are satisfied.

Let \mathscr{L} denote the collection of all nonnegative functions L defined on $[0, +\infty) \times [0, +\infty)$ such that

- (L_1) L is nondecreasing with respect to each of variables;
- (L_2) $L(\sigma_1, L(\sigma_2, \tau)) \le L(\sigma_1 + \sigma_2, \tau)$ for every (σ_1, τ) and (σ_2, τ) , and consider the following condition:

 $(R_a)_{loc}$ For each $x \in D_a(A)$, there are a neighborhood U_x of x and a function $L \in \mathcal{L}$ such that for any $z \in D_a(A) \cap U_x$, there exist a sequence $\{h_n\}$ of positive numbers and a sequence $\{z_n\}$ in D(A) satisfying the properties

$$(a_1)$$
 $h_n \longrightarrow 0$ and $h_n^{-1}d(z_n - h_nAz_n, z) \longrightarrow 0$ as $n \longrightarrow \infty$;

$$(a_2)$$
 $|Az_n| \leq L(h_n, |Az|)$ for all n .

We now obtain

THEOREM 4.3. Suppose that A satisfies the condition $(R_a)_{loc}$. Then for each $x \in D_a(A)$, there exist a number $T_x > 0$ and a backward (DS)-limit solution u(t) to (CP; x) on $[0, T_x]$ such that $u(t) \in D_a(A)$ for all $t \in [0, T_x]$. Consequently, the conclusion of Proposition 4.1 holds true.

PROOF. Let $x \in D_a(A)$. Let r > 0 and $L \in \mathcal{L}$ be such that $(R_a)_{loc}$ is satisfied with $U_x = S_r(x)$ and with the function L, where $S_r(x) = \{y \in X; \|y - x\| \le r\}$. Set $M_x = L(2, |Ax|)$ and $T_x = \min\{1, r/2(M_x + 1)\}$. Note that by $(R_a)_{loc}$, $|Ax| \le L(\sigma, |Ax|)$ for all $\sigma > 0$ and hence $|Ax| \le M_x$. In the following, we shall show that there exists a full sequence $\{u_n(t)\}$ of backward approximate solutions to (CP; x) on $[0, T_x]$ such that $|Au_n(t)| \le M_x$ for all $t \in [0, T_x]$ and for all n, from which the theorem follows.

Let $\{\varepsilon_n\}$ be a sequence in (0, 1] such that $\varepsilon_n|\omega| < 1/2$ for all n and $\varepsilon_n \to 0$ as $n \to \infty$. For each n, set $t_0^n = 0$ and $x_0^n = x$, and define inductively $t_{k+1}^n > 0$ and $x_{k+1}^n \in D(A)$ in the following manner: If $x_k^n \in D_a(A) \cap S_r(x)$, let h_k^n denote the supremum of all numbers $h \in [0, \varepsilon_n]$ for which there exists an element $x_h \in D(A)$ such that

$$(4.1) d(x_h - hAx_h, x_k^n) \le h\varepsilon_n/2;$$

$$(4.2) |Ax_h| \le L(h, |Ax_k^n|).$$

By $(R_a)_{loc}$, it is clear that $h_k^n > 0$. We define $t_{k+1}^n = t_k^n + h_k^n$ and x_{k+1}^n as the element in D(A) such that

$$(4.3) ||x_{k+1}^n - h_k^n y_{k+1}^n - x_k^n|| \le h_k^n \varepsilon_n \text{for some} y_{k+1}^n \in A x_{k+1}^n;$$

$$(4.4) |Ax_{k+1}^n| \le L(h_k^n, |Ax_k^n|).$$

Note that (4.1) and (4.2) ensure the existence of such an element x_{k+1}^n .

Now assume that t_k^n and x_k^n are defined and that $t_k^n < T_x$. Then by (4.3), (4.4) and (L_2) , we have

(4.5)
$$||x_{i+1}^n - x_i^n|| \le h_i^n (1 - h_i^n \omega)^{-1} (|Ax_i^n| + \varepsilon_n)$$

$$\le 2h_i^n (L(h_{i-1}^n, |Ax_{i-1}^n|) + \varepsilon_n)$$

$$\le 2h_i^n (L(t_i^n, |Ax|) + \varepsilon_n)$$

$$\le 2h_i^n (M_x + 1)$$

for $1 \le i \le k-1$. Here we used the fact that $\varepsilon_n |\omega| < 1/2$. Since $|Ax| \le M_x$, (4.5) holds also for i=0. Therefore, we obtain

$$||x_k^n - x|| \le 2(M_x + 1) \sum_{i=0}^{k-1} h_i^n = 2t_k^n(M_x + 1) < 2T_x(M_x + 1) \le r,$$

that is, $x_k^n \in D_a(A) \cap S_r(x)$. This fact implies that the above induction can be continued so long as $t_k^n < T_x$.

In order to complete the proof, we assert that there exists an integer $N(n) \ge 1$ such that $t_{N(n)-1}^n < T_x \le t_{N(n)}^n$. Assume that $t_k^n < T_x$ for all $k \ge 0$. Then there exists a sequence $\{x_k^n\}$ in $D_a(A) \cap S_r(x)$ satisfying the properties

$$(4.6) |Ax_{k+1}^n| \le L(h_k^n, |Ax_k^n|) \le L(t_{k+1}^n, |Ax|) \le M_r, \quad k \ge 0;$$

$$(4.7) ||x_{k+1}^n - x_k^n|| \le 2(t_{k+1}^n - t_k^n)(M_x + 1), \quad k \ge 0.$$

Since $c=\lim_{k\to\infty}t_k^n$ exists in $(0, T_x]$, it follows from (4.6) and (4.7) that $z=\lim_{k\to\infty}x_k^n$ exists in $D_a(A)\cap S_r(x)$ and $|Az|\leq L(c-t_k^n,|Ax_k^n|)$ for all $k\geq 0$. Therefore, by $(R_a)_{loc}$, there exist a number $h\in (0, \varepsilon_n/2]$ and an element $z_h\in D(A)$ such that

$$(4.8) d(z_h - hAz_h, z) \le h\varepsilon_n/3;$$

$$(4.9) |Az_h| \le L(h, |Az|).$$

Choose an integer $k_0 \ge 1$ so that $c - t_k^n \le \varepsilon_n/2$ for all $k \ge k_0$. Since $|Az_h| \le L(h, |Az|) \le L(h, L(c - t_k^n, |Ax_k^n|)) \le L(h + c - t_k^n, |Ax_k^n|)$ for all $k \ge 0$, it follows from the definition of h_k^n that

$$(4.10) d(z_h - (h + c - t_k^n)Az_h, x_k^n) > (h + c - t_k^n)\varepsilon_n/2$$

for all $k \ge k_0$, which implies

$$d(z_h - hAz_h, z) = \lim_{k \to \infty} d(z_h - (h + c - t_k^n)Az_h, x_k^n) \ge h\varepsilon_n/2.$$

This contradicts (4.8), so the assertion follows.

In this way, we see that for each n, there exist an integer $N(n) \ge 1$ and a set $\{(t_k^n, x_k^n); 0 \le k \le N(n)\}$ of pairs such that $0 = t_1^n < t_0^n < \dots < t_{N(n)-1}^n < T_x \le t_{N(n)}^n$, $\max_{1 \le k \le N(n)} (t_k^n - t_{k-1}^n) \le \varepsilon_n$, $x_0^n = x$ and such that (4.3) and (4.4) hold true for $0 \le k \le N(n) - 1$. Define a sequence $\{u_n(t)\}$ of step functions by

$$u_n(t) = \begin{cases} x & \text{for } t = 0 \\ x_k^n & \text{for } t \in (t_{k-1}^n, t_k^n], \quad 1 \le k \le N(n); \ n \ge 1. \end{cases}$$

Then it is evident that $\{u_n(t)\}\$ is the desired full sequence.

Q. E. D.

REMARK 4.4. It remains open whether $D_a(A) = \hat{D}(A)$, even if A satisfies the condition $(R_a)_{loc}$.

REMARK 4.5. The condition $(R_a)_{loc}$ is a generalization of the condition (R_a) treated in [9], so that it includes the following condition

 (R_1) for each $x \in D_a(A)$, there exists a sequence $\{h_n\}$ of positive numbers such that $h_n \to 0$ as $n \to \infty$ and $\bigcap_{n \to \infty} \overline{R(I - h_n A)} \supset \{x\}$.

The condition $(R_a)_{loc}$ also includes the following condition

 (R_2) A is locally bounded on $D_a(A)$ and $\liminf_{h\to 0+} h^{-1}d(R(I-hA), x)=0$ for each $x\in D_a(A)$.

In view of this, Theorem 4.3 may be applied to the cases: (i) A is continuous, and (ii) A is demicontinuous.

REMARK 4.6. The above results are easily extended to the case in which A is ω -quasi-dissipative (see [6] for the definition).

5. A criterion for m-dissipativity

Let A be a dissipative operator in X and S be a subset of X. A is said to be locally m-dissipative on S (see [4]) if for each $x \in S$, there exist a neighborhood U_x of x and a sequence $\{h_n\}$ of positive numbers such that $h_n \to 0$ as $n \to \infty$ and

$$(5.1) \qquad \qquad \bigcap_{n\geq 1} R(I-h_nA) \supset U_x.$$

Among others, Kato [4] proved that if A is almost demiclosed and locally m-dissipative on D(A), then A is m-dissipative, provided that X^* is uniformly convex, and Bénilan [1] proved that if A is locally m-dissipative on $\widehat{D}(A)$, then A is m-dissipative even if X is nonreflexive.

By applying the foregoing results, we give here a proof of the following result which is also found in Kobayashi-Kobayasi [7].

THEOREM 5.1. If A is locally m-dissipative on $D_a(A)$, then A is m-dissipative.

For the proof, we prepare the following lemma.

LEMMA 5.2. Suppose that A is locally m-dissipative on $D_a(A)$. Let $w \in X$ and set B = A - I + w. Then $D_a(B) = D_a(A)$ and B is locally m-dissipative on $D_a(B)$.

PROOF. It is evident that B+I is dissipative. Also, it is easy to check that $D_a(B) = D_a(A)$.

Let $x \in D_a(B)$. Since $x \in D_a(A)$, we can choose a positive number r and a sequence $\{h_n\}$ of positive numbers convergent to zero so that (5.1) holds with $U_x = S_r(x)$ and with the sequence $\{h_n\}$. Set $\rho = r/4$ and $\delta = \min\{1/2, r/4(\|x\| + \|w\| + |Ax| + 1)\}$. Now we shall show that

(5.2)
$$R(I - h_n B) \supset S_o(x) \quad \text{for all} \quad h_n \in (0, \delta].$$

To this end, for each $z \in S_{\rho}(x)$ and $h_n \in (0, \delta]$, define a transformation G_n with $D(G_n) = S_r(x)$ by

$$G_n y = z - h_n (J_n y - w)$$
 for $y \in S_r(x)$,

where $J_n = (I - h_n A)^{-1}$. Then we have

$$||G_n y_1 - G_n y_2|| = h_n ||J_n y_1 - J_n y_2|| \le h_n ||y_1 - y_2|| \le \frac{1}{2} ||y_1 - y_2||$$

for $y_1, y_2 \in S_r(x)$, and

$$||G_n y - x|| \le ||G_n y - G_n x|| + ||G_n x - x||$$

$$\le h_n ||y - x|| + ||z - x|| + h_n (||x|| + ||w|| + ||J_n x - x||)$$

$$\le h_n r + r/4 + h_n (||x|| + ||w|| + h_n |Ax|)$$

$$\le r$$

for $y \in S_r(x)$. Therefore, by applying the fixed point theorem for a contraction map, we see that there exists an element $x_n \in S_r(x)$ such that $G_n x_n = x_n$, i.e.,

$$(5.3) z - h_n(J_n x_n - w) = x_n.$$

Set $z_n = J_n x_n$. Then $z_n \in D(A)$ and $x_n \in (I - h_n A) z_n$, so (5.3) yields

$$z \in (I - h_n A)z_n + h_n(z_n - w) = (I - h_n B)z_n$$

Thus (5.2) is proved, and the proof is completed.

Q. E. D.

We are now in a position to prove Theorem 5.1.

PROOF OF THEOREM 5.1. Let $w \in X$ and set B = A - I + w. Then by Lemma

5.2 and Remark 4.5, B satisfies the condition $(R_a)_{loc}$. Therefore, according to Theorem 4.3, B generates a semigroup $\{T(t); t \ge 0\} \in Q_{-1}(\overline{D(B)})$ such that if $x \in D_a(B)$, then $T(t)x \in D_a(B)$ for all $t \ge 0$,

(5.4)
$$||T(t+s)x - T(t)x|| \le e^{-t}||T(s)x - x|| \le (e^{-t} - e^{-(t+s)})|Bx|$$

for all t, $s \ge 0$ and

$$(5.5) |BT(t)x| \le e^{-t}|Bx| \text{for all } t \ge 0.$$

Now let $x \in D_a(B)$. Then (5.4) and (5.5) imply that $z = \lim_{t \to +\infty} T(t)x$ exists in $D_a(B)$ and |Bz| = 0. Noting that B is closed (see [4]), we see from Proposition 2.2 that $z \in D(B)$ and $0 \in Bz$, i.e., $w \in (I - A)z$. Since $w \in X$ is arbitrary, it is proved that R(I - A) = X, so A is m-dissipative. Q. E. D.

References

- P. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thèse Orsay, 1972.
- [2] M. Crandall, A generalized domain for semigroup generators, Proc. Amer. Math. Soc., 37 (1973), 434–440.
- [3] M. Crandall and L. Evans, On the relation of the operator $\partial/\partial s + \partial/\partial \tau$ to evolution governed by accretive operators, Israel J. Math., 21 (1975), 261-278.
- [4] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. Pure Math. 18, Part I, Amer. Math. Soc., Providence, R. I., (1970), 138-161.
- [5] Y. Kobayashi, Difference approximation of evolution equations and generation of non-linear semigroups, Proc. Japan Acad., 51 (1975), 406-410.
- [6] Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), 640-665.
- [7] Y. Kobayashi and K. Kobayasi, On perturbation of non-linear equations in Banach spaces, Publ. RIMS, Kyoto Univ., 12 (1977), 709–725.
- [8] T. Takahashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of semigroups of nonlinear contractions, Technical Report of National Aerospace Laboratory, 1975.
- [9] T. Takahashi, Convergence of difference approximation of nonlinear evolution equations and generation of semigroups, J. Math. Soc. Japan, 28 (1976), 96-113.

National Aerospace Laboratory, Jindaiji, Chofu, Tokyo, Japan