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Let X be a Banach space and A be an operator in X such that A — ωl is

dissipative for some real number ω. Let Da(A) be the set of those x e D(A)
for which there exists a sequence {xrt} in D(A) such that lim,,.̂  xn = x and lim
suP/ι^oo IMxJII < + oo (see [9]). In this paper we are concerned with the set Da(A).

This work is motivated by the papers of Crandall [2] and Benilan [1].

Assuming that R(I — λA) => D(A) for sufficiently small positive numbers A,
Crandall defined a set D(A\ which is called a generalized domain, and showed

that D(A) coincides with the set of those x e D(A) for which T(t)x is Lipschitz
continuous in ί on compact ί-sets and therefore is invariant under T(ί). Here

the semigroup {T(f)\ f^O} on D(A) is defined by T(Ox = Hmπ_>00 (I-(t/n)A)~nx

for fg:0 and xeD(A). An extension of the result was obtained by Benilan [1].
He defined the set 6(A) by considering an extension A of A and showed, among
others, that if -A is a pseudo-generator then a result of CrandalΓs type holds for
the set ί)(A).

In this paper we establish some sufficient conditions in order that A generates

a nonlinear semigroup {T(ί); ί^O} on D(A) such that Da(A) as well as D(A) is
invariant under T(f) (Theorem 4.3). The set Da(A) is in general a subset of D(A)
and it is shown that if liminfΛ_> 0 + /ι~1J(K(/— hA\ x)< + oo for every xεD(A),
then Da(A) — D(A) (Proposition 2.3). Thus Theorem 4.3 extends some results in
[1] and [2]. The set Da(A) also possesses some interesting properties. We
observe, for instance, that Da(A) is invariant under certain perturbations. The
results in sections 2 and 4 will be used in the final section to prove a result on
m-dissipativity.

1. Preliminaries

Let X be a real Banach space with norm || ||. For a subset S of X9 we
denote by S its closure and by d(S, x) the distance from x e X to S. Let A be an
operator in X. By this we mean a multi-valued operator with domain D(A) and
range £(4) both contained in X. We often identify A with its graph {[x, y\
eXxX', xeD(A), ye Ax}. We denote by A the closure of A and we say that
A is closed if A=A. For each x e D(A\ we write

=mf {\\y\\; ye Ax}.
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We say that A is locally bounded on S<^X if for each x e S there are a neighbor-

hood Ux of x and a positive constant M such that |||^4z||| ^M for every zeD(A)

ni/,.
Let X* denote the dual space of X. We denote by (x, /) the pairing between

x e Jf and /e X*. For each [x, j] e X x X, we set

[>,*], = sup {(y,/

where F is the duality map from X into X*, i.e., F is defined by

x,/)=| |xp=| |/p} for xεX.

The symbol [ , ]s will be used also to denote the corresponding functional on

X**xX**.
An operator A in X is said to be dissipative if for every [x, y], [u, v] eA,

[y-υ,x- u]t <; 0,

or equivalently if for every λ>Q and for every [x, y], [u, v] eA,

\\x-u\\ £\\(x-λy)-(u-λυ)\\.

If A is dissipative and R(I — λA) = X for all (or for some) A>0, then A is said to
be m-dissipative. Here / denotes the identity operator on X.

Let ω be a real number and let A be an operator in X such that A — ωl is

dissipative. Following Benilan [1], we define an operator λ in X** by

A = {[x, y] e D(A) x X** V[tι, u] e 4, 3/e F(x - w),

and a set D(A) by

= {x e5θϊ); 3{xJ c D(̂ ), lim^ xn = x, lim sup^^ |||^xj|| < 4- 00} .

It is clear that AaA if /4 is regarded as an operator in Jf**. Also, we note that

if [x, y] e A, then

||x - u|| ̂  (1 - λωrl\\(x - λy) - (u - λυ)\\

for every [u, v] e A and for every A>0 such that Aω< 1.
Let C be a closed subset of X. A one-parameter family {T(ί); ί^O} of

nonlinear operators from C into itself is called a (nonlinear) semigroup on C if
it has the following properties :

( i ) Γ(0)x = x for x e C ;
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(ii) T(t + s)x = T(t)T(s}x for ί, s ^ 0 and x e C ;
(iii) lim,_>0 + T(t)x = x for xεC.

If in addition there is a real number ω such that

(iv) ||T(ί)x - T(t)y\\ ^ eωt\\x - y\\ for t ̂  0 and x,yeC,

then we write {T(0; ί^O} eβω(C). Let {T(ί); ί^O} be a semigroup on C
and let S be a subset of C. If each T(t) maps S into itself, then 5 is said to be
invariant under T(f).

2. Definition and properties of Da(A)

DEFINITION 2.1 (cf. [9]). Let A be an operator in X and set

Da(A', M) = {xeD(Z); 3{xJ c D(A\ lim^ xn - x, limsup^ |||AxJ|| ^ M}
/or M>0. We de/me a set Da(A) by

Da(A)= WDα04;M)
M>0

and for each xEDa(A), we write

\Ax\ =M{M;xeDa(A;M)}.

The following result presents some elementary properties of Da(A).

PROPOSITION 2.2. Let A be an operator in X. Then:

( i ) D(A) cz Da(A) c= D(A) and \Ax\ ̂  \\\Ax\\\ for x e D(A) .

(ii) Da(A) = Da(A) and \Ax\ = \Άx\ for xeDa(A).
(iii) // xeDa(A) and \Ax\ = 0, then xeD(A) and QeAx.
(iv) IfxneDa(A), limn_ 0 0xπ = x and liminf^^^ \Axn\ < +00, then x e Da(A)

and \Ax\ ̂  liminf,,,,.^ \Axn\ .

PROOF, (i) is clear. To prove (ii), it suffices to show that Da(A) a Da(A)
and |^4x|^|^x| for xeDa(A). Let xeDa(Ά). Then there exists a sequence
{[xn, jj} in A such that h'm,,.̂  xn = x and lim,,^^ ||j;J| = |^x|, which ensures the
existence of a sequence {[un, vn~]} in A such that lim,,..̂  ι/n = limn_>(Λ xw = x and
lim,,^^ llϋnl^lim,,.,^ H^l^l^xj. Thus it is shown that xεDa(A) and \Ax\

^\Ax\.
The property (iii) follows from the fact that if xeDa(A) and |y4x|=0, then

there exists a sequence {[xπ, yn~]} in A such that limπ^00x/I = x and lim,,^^ ||};M||
= 0.

Finally, let {xn} be any sequence in Da(A). Then there exists a sequence

{[>„> ιv]} in ^4 such that \\un-xn\\^l/n and ||UB|| ^|^xM| + l/n for all n^l.
Therefore, if 1^^^ xπ = x and liminf,,^^ |Axw |< + 00, then lim,,^ w,, = x and
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liminf^^ ||ι;J ̂  liming ̂  \Axn\. This implies that xeDa(A) and \Ax\£

lim inf,,^ \Axn\, so (iv) is proved. Q. E. D.

Now let ω be a real number and let A be an operator in X such that A — ωl

is dissipative. Then Da(A)aD(A)9 where D(A) is the set defined in section 1.

In fact, since A<=Ά and D(A) = Da(A) under our notation, it follows that Da(A)

cDa(A) = D(A) and |.2x|^|Λx| for xeDa(A).
The next result gives a condition under which Da(A} = D(A).

PROPOSITION 2.3. Let A be an operator in X such that A — ωl is dissipa-
tive and let x e D(A). Then x e Da(A) if and only if lim infΛ^0 + h~ld(R(I-hA\ x)
<+oo. // in particular l iminf Λ _ 0 + h~ld(R(I — hA), x) = 0, then xεDa(A) and

PROOF. If x e Da(A), then it is easy to see that lim suρ f t_0+ h~ld(R(I — hA), x)

^ \Ax\. Next suppose that M(x) = lim infΛ_ 0 + h~1d(R(I — hA), x) < +00.

Then for any ε>0 such that εω<l, there exists a triplet (ft, xh9 yh) such that
xft, yh~]£A and

(2.1) \\xh-hyh-x\\^h(M(x) + s).

Since

||XΛ - u|| ̂  (1 - Λω)-ΊI(x* - hyh) - (u - hυ)\\

for every [M, ϋ] eA, (2.1) implies

(2.2) ||XΛ - χ|| g (1 - ftωrKllx, - ftjΛ - x|| + ft|^x|)

^ ft(l - ftω)-^!^! + M(x) 4- ε).

Moreover, (2.1) together with (2.2) implies

(2.3) ||Λ|| ^ (1 - hώ)-\\Άx\ + M(x) + ε) + M(x) + ε.

Clearly (2.2) and (2.3) show that x e Da(A) and \Ax\ ^ |Jϊx| + 2M(x), and the proof
is completed. Q. E. D.

COROLLARY 2.4. Let A be an operator in X such that A — ωl is dissipative
and

(2.4) R(I - λA) => D(A) for all sufficiently small λ > 0.

Then Da(A) = D(A) and \Ax\ = \Ax\ for x e Z)fl(/l).

REMARK 2.5. Let ^4 be an operator as in Corollary 2.4 and let D denote
the generalized domain which was introduced in [2]; it is by definition the set

of those x e D(A) for which HmA_> 0 + \\Aλx\\ < + 00, where Aλ = λ-*\1J[-
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for A>0. Then we obtain Da(A) = D and \Ax\=\imλ^0+ \\Aλx\\ for xeDa(A).
Thus we see that if (2.4) holds, then Da(A) = D(A) = D and μbc| = |Ac| =
limΛ_0 + \\Aλx\\ for xeDa(A). (The fact that D(A) = D was already remarked by
Benilan [1] in the case ω = 0.)

Finally, we remark that Da(A) is invariant under certain perturbations. For
example, let A be an operator in X and B be a single-valued operator in X such

that D(A)c:D(B)9 and suppose that for each xeD(A) there are a neighborhood
Ux of x and positive constants K and L < 1 such that

|| Bz || ^ K + L HI /4z ||| for every z e D(^) n I/,.

Then it is easy to check that Da(A + B) = Da(A). But it seems to be not easy to
verify that ί)(A + B) = D(A) (of course, we assume here that both D(A) and
D(A + B) are defined). Thus Da(A) will be useful in perturbation problems,
especially in nonreflexive Banach spaces. See [7].

3. Remarks on evolution equations and semigroups

Throughout this and the next sections A denotes an operator in X such that
A — ωl is dissipative for some real number ω.

Let z e D(A) be given and consider the Cauchy problem

( (d/dt)u(t)eAu(t)
(CP; z)

I «(0) = z.

This problem has been treated in recent years by means of the difference scheme :

ί (Q - ί-i)"1^ - *Z-ι) ~ % e^xj, fc = 1, 2,..., ΛΓ(n)

where 0 = ίg<ίϊ< <ίft(ll).1<Tgί}J(ϊl) = Γn for some fixed T>0 and for all
n^L See [3], [5], [6], [8] and [9].

Let {un(t)} be a sequence of step functions defined by

ί z for t = 0
« (0 =

[ xί for

The sequence {wn(0} is called a, full sequence of backward approximate solutions
to (CP; z) on [0, T] if the following conditions are satisfied:

(i) max{fj - $_!; 1 gfc^#(/ι)} — > 0 as n — » o o ;

(ϋ) Σft 'ΛQ-Q-Ollβίl l - >0 as n - > oo.
It has been proved (see [3] and [6]) that if {un(t)} is a full sequence of backward
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approximate solutions to (CP; z) on [0, T], then un(t) converges to a continuous

function u(t) uniformly on [0, T]. The limit function u(t) is called a backward

(DS)-lίmit solution to (CP; z) on [0, T] (see [6]). It should be noted that the

backward (DS^-limit solution is unique whenever it exists.
We refer to the papers cited above for the properties of backward (£>S)-limit

solutions. We note here the following facts :

REMARK 3.1 (On changes of partition). Once we obtain the uniform con-
vergence of the sequence (wn(ί)}, we are able to take T π =Tfor all n^.1 in the
above argument; one has only to consider the term

f&oo-i)]'1^ - Γ) (*&(!,) - *&(„)-!)

instead of βft(π).

REMARK 3.2 (On continuation of solutions). Let z, weD(A) and Tί9 T2

>0. Let i ί̂) and v2(t) be backward (DS)-limit solutions to (CP; z) on [0, TJ

and to (CP; w) on [0, T2], respectively. If w = ι?1(Γ1), then the function ιι(ί)
defined by

for fe[0, TJ
"(0 -

ϋ 2(f- T,) for ί<Ξ(Γ1? T! + T2]

is necessarily a backward (DS)-limit solution to (CP; z) on [0, Tί + T2].

REMARK 3.3 (On dependence of solutions on initial values). Let T>0 and

{zm} be a sequence in D(A). For each m, let vm(t) be a backward (DS)-limit
solution to (CP; zm) on [0, T]. If lim,,,̂  zm = z, then there exists a backward

(DS)-limit solution u(t) to (CP; z) on [0, T] and limm^aoυm(t) = u(t) uniformly
on [0, T] (see [9]).

REMARK 3.4 (The case A is continuous). Let zeD(]4) and T>0. If A is
continuous and the domain D(A) is closed, then the backward (DS)-limit solution

u(t) to (CP; z) on [0, T] satisfies the integral equation

u(f) = z + f ' Au(s)ds for ί e [0, Γ] ,
Jo

that is, u(ί) is an exact solution of (CP; z) on [0, T].

Next let (Γ(ί); ί^O} eβω(5(3)). We say that {Γ(ί); *^0} is generated by

A(or A generates (T(ί); ^0}) if for each xeDU), T(ί)x satisfies the inequality

6Γ2ωί||T(Ox - u\\2 - || x - M||2 ^ 2 Γ e-2ω'|>, T(τ)x - w]sc/τ
Jo

for every ίg:0 and for every [w, t>] e^.
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REMARK 3.5. If -A is a pseudo-generator (see [1] for the definition), then

A generates a semigroup (T(t)\ t^Q}e QQ(D(A)}.

REMARK 3.6. If for any x eD(A) and for any T>0, there exists a backward
(DS)-limit solution u(t\ x) to (CP; x) on [0, T], then A generates a semigroup

{T(0; ί^O} eQω(D(A)). Here {T(f); ί^O} is defined by T(t)x = u(t\ x) for t^O

andxεDζA). See [6].

The following result is proved in a manner similar to [1] and we omit the
proof.

PROPOSITION 3.7. Let {T(ί); ί^O} eQω(D(A)) be α semigroup generated
by A. Then we have

( i ) ΰ(A) = D(A) = {xe D(A); T(t)x is Lipschitz continuous in t
on any bounded subinterval of [0, +00)};

(ii) if xεD(A\ then \\T(f)x - x\\ ̂  \Ax\ (' eωτdτ for all ί ^ O and

(iiϊ) if xεD(A\ then T(t)xeD(A) and \AT(t)x\ ^ eωt\Ax\ for all t ^ 0.

This result shows that if A generates a semigroup {T(ί); ί^O} e
then the set D(^) is invariant under T(f).

In connection with Propositions 2.3 and 3.7, there is a question: Let A

generate a semigroup {Γ(ί); ^0} eQω(D(A)). Then does it follow that Da(A)
= D(A)Ί We know already that Da(A) = D(A) under the condition (2.4). Also,

it is well-known that if X is reflexive and if A generates a semigroup {T(£); ί^O}

e Qω(D(A)), then A has an extension B such that B — ωl is dissipative and D(B)
= Da(B) = D(B) = D(A). But we do not know whether the above question is

affirmative in general.

4. Invariance of Da(A)

In this section we give some conditions under which A generates a semigroup

e Qω(D(A)) such that Da(A) as well as D(A) is invariant under T(ί).

PROPOSITION 4.1. Assume that the following conditions are satisfied:

(Al) lim inf f c_ 0+ h~ld(R(l - hA\ x) = 0 for each x e Da(A) .
(A2) For each xeDa(A\ there is a number Tx>0 such that on [0, TJ

there exists a backward (DS)-limit solution to (CP; x) whose values belong to

D0(A). Then A generates a semigroup (T(ί); ^0} e Qω(D(A)) such that

( i) for each xeD(A), u(t) = T(t)x is a backward (DS)-limit solution to

(CP: x) on every finite interval [0, T];
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(ii) if xeDa(A\ then \\T(i)x - x|| ^ \Ax\(* eωτdτ for all ί ^ O and

-x\\ = \Ax\ 9

(iii) ifxeDa(A)9 then T(t)xeDa(A) and \AT(t)x\^eωt\Ax\ for all ί^O.

PROOF. By Propositions 2.3, 3.7 and Remarks 3.3, 3.6, it suffices to show

that for each x e Da(A), there exists a continuous function u(ί) defined on [0, + oo)
such that u(t)eDa(A) for all ί^O and u(i) restricted to any finite interval [0, T]
is a backward (DS)-limit solution to (CP; x) on [0, T].

Let x e Da(A) and let J denote the set of all numbers c e (0, + oo) such that

the statement in (A2) holds for c instead of Tx. Set T* = sup {c c e J} note
that J 7^0 by (A2). Now we shall show that T*= + oo. To do this, assume
that T*< -f oo. Then there exists a momotone increasing sequence {cjcj such

that lim^oo c~T*. For each /, let υj(f) be a backward (DS)-limit solution to

(CP; x) on [0, cj such that Ό&t)eDa(A) for all ί e [0, cj and let {vitΛ(ί)} be a full
sequence of backward approximate solutions to (CP; x) on [0, cj such that

δt.n = sup {||t;ί)Π(0 - 1 (̂011 t E [0, cj} > 0 as n > oo.

Note that lAv^t^^lAx} for all t e [0, cj and for all ΐ (cf. [6] and [7]). Next
let {εm} be a sequence of positive numbers such that lim^,^^ εm = 0. For each m,
choose an integer fc = fc(w)^>l such that T* —ck^6OT and then an element [xm, jm]

e^4 such that ||xm-t>fc(cfc)|| ^εm and ||j;J| ^|^4ι;fc(ck)|+εw. With this choice, define
step functions um>n(t) on [0, T*] by

ί υktn(f) for *6[0,cJ
um,n(t) =

I xm for ίe(ct, T*].

Then we have

^ \\xm ~ vk(ck)\\ + ||ι;fc(cfc) - vk>n(ck)\\ + (T* -

εw)

for all m and n. Therefore, taking Remark 3.1 into account, we see that a suita-
ble subsequence of {umfΛ(i)} becomes a full sequence of backward approximate
solutions to (CP; x) on [0, T*], that is, there exists a backward (DS)-limit solu-

tion u(t) to (CP; x) on [0, T*]. Since u(t) = Όtf) on [0, cj and \Avi(i)\^eωt\Ax\
for ίe[0, cj, it is clear that u(t)εDa(A) for all ί£[0, T*]. Thus T*eJ. In
view of (A2) and Remark 3.2, this contradicts the definition of T*. So we
conclude that T* = + oo, and the proof is completed. Q. E. D.

REMARK 4.2. If A is locally bounded on Da(A\ then (A2) follows from
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(Al). See Remark 4.5 below.

We next exhibit a condition under which (Al) and (A2) in Proposition 4.1
are satisfied.

Let 3? denote the collection of all nonnegative functions L defined on
[0, + oo) x [0, + oo ) such that

(Lx) L is nondecreasing with respect to each of variables;

(L2) L(σl9 L(σ2, τ))^L(σi + σ2, τ) for every (σls τ) and (σ2, τ),
and consider the following condition:

(Ra)ιoc For each x e Da(A), there are a neighborhood Ux of x and a func-
tion Le & such that for any z 6 Da(A) Π UX9 there exist a sequence {hn} of positive
numbers and a sequence {zn} in D(A) satisfying the properties

(aι) hn > 0 and h~1d(zn — hnAzn, z) > 0 as n > oo

(α2) MZM| ^ L(/trt, |Az|) for all n.

We now obtain

THEOREM 4.3. Suppose that A satisfies the condition (Ra)ιoc. Then for each
xeDa(A), there exist a number Tx>0 and a backward (DS)-limit solution u(i)
to (CP; x) on [0, TJ such that u(t)eDa(A) for all te [0, TJ. Consequently, the
conclusion of Proposition 4.1 holds true.

PROOF. Let xeDa(A). Let r>0 and Le^f be such that CRα)/oc i
s satisfied

with Ux = Sr(x) and with the function L, where Sr(x) = {j;eJr; ||^-χ||^r}. Set

Mx = L(2,\Ax\) and Tx = min {1, r/2(Mx+l)}. Note that by (jRfl)/oc, |Xx|^
L(σ, |^4x|) for all σ>0 and hence \Ax\^Mx. In the following, we shall show that
there exists a full sequence {un(t)} of backward approximate solutions to (CP; x)
on [0, TJ such that \Aun(t)\^Mx for all te [0, ΓJ and for all n, from which the
theorem follows.

Let {εj be a sequence in (0, 1] such that βJω|<l/2 for all n and επ-*0 as

n-»oo. For each n, set t% = Q and Xo = x> and define inductively ί" + ι>0 and
x2 + 1eD(y4) in the following manner: If xn

k eD a(A) n Sr(x), let /ι£ denote the
supremum of all numbers h e [0, επ] for which there exists an element xh e /)(^4)

such that

(4.1) d(xh - hAxh, x»k) ^ hεn/2;

(4.2) \Axh\£L(h9\Ax*k\).

By (Ra)ιoc, it is clear that h"k > 0. We define tn

k +1 = tn

k + hn

k and xn

k + l as the element

in D(A) such that

(4.3) ||xj + 1 - hn

ky
n

k + ί - xn

k\\ ^ hn

kεn for some yn

k +
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(4.4) \Axl^\^L(hl, \A*l\).

Note that (4.1) and (4.2) ensure the existence of such an element x2

Now assume that t\ and x" are defined and that fj j < Tx. Then by (4.3),

(4.4) and (L2), we have

(4.5) ||x?+1 - xj| | ^ h1(ί - h1ώ)-\\A^\ + επ)

^ 2A?(L(Λ7-1> \AxJ.1\) + εB)

^ 2Λ?(L(ίϊ, |Λx|) + επ)

^ 2ΛJ(M, + 1)

for l^ig/c-1. Here we used the fact that εJω|<l/2. Since \Ax\^Mx, (4.5)

holds also for i=0. Therefore, we obtain

||x2 - x|| ^ 2(M, + UΣί-o1*? = 2t"k(Mx + 1) < 2TΛM, + 1) g i ,

that is, x j e /)α(^4) Π Sr(x). This fact implies that the above induction can be

continued so long as t% < Tx.

In order to complete the proof, we assert that there exists an integer N(n) ̂  1

such that ί5v(Π)-ι<7;^(M). Assume that tn

k<Tx for all fc^O. Then there

exists a sequence {xj[} in Da(A) Π S>(x) satisfying the properties

(4.6) \Ax*k + 1\ ^ L(/ι2, \Axl\) ^ L(t»k + 1, \Ax\) ^MX9 k^ 0;

(4.7) ||xί + 1-xϊ | | .^2(ίϊ + 1 -ίZ)(M J C +l), k ̂  0.

Since c^lim^^ ίj exists in (0, TJ, it follows from (4.6) and (4.7) that z —

lim^^ x'ί exists in Dfl(^) n Sr(x) and |^z|^L(c-ί2, |^4x2|) for all fc^O. There-

fore, by (Ra)ιoc, there exist a number h ε (0, επ/2] and an element ZΛ ε D(A) such

that

(4.8) d(zh-hAzh,z)£hεnβ 9

(4.9) μtzJ:

Choose an integer /c0^l so that c — ίg^επ/2 for all /c^/c0. Since

|^zj g L(/ι, MZ|) ^ L(/ι, L(c - ίj, |AxZD) ^ L(ή + c - ίj,

for all /c^O, it follows from the definition of hi that

(4.10) d(zΛ - (h + c -

for all fc^/c0, which implies

d(zΛ - hAzh, z) = lim^^ J(zΛ - (h + c -

This contradicts (4.8), so the assertion follows.
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In this way, we see that for each n, there exist an integer N(n)^l and a set
} of pairs such that 0 = tn

1<tn

0<...<tn

N(n)__1<Tx^tn

N(n^
l-tl-.^^&v xg = x and such that (4.3) and (4.4) hold true for

Og/c^ N(n)— 1. Define a sequence (un(f)} of step functions by

ί x for t = 0
un(t) =

[ x"k for ί G (*{[_!, ίj], 1 ̂  /c ^ N(n); n ^ 1.

Then it is evident that {un(f)} is the desired full sequence. Q. E. D.

REMARK 4.4. It remains open whether Da(A) = D(A), even if A satisfies the

condition CRfl)/oc.

REMARK 4.5. The condition (R^ioc is a generalization of the condition (Ra)
treated in [9], so that it includes the following condition

(Ri) for each xeDa(A), there exists a sequence {hn} of positive numbers

such that hn-+Q as n->oo and Γ\ R(I — hnA)=>{x}.

The condition (Ra)ιoc also includes the following condition
(R2) A is locally bounded on Da(A) and lim infΛ_ 0 + h~1d(R(I — hA)9 x) = 0

for each x e Da(A).
In view of this, Theorem 4.3 may be applied to the cases: (i) A is continuous,
and (ii) A is demicontinuous.

REMARK 4.6. The above results are easily extended to the case in which
A is ω-quasi-dissipative (see [6] for the definition).

5. A criterion for m-dissipativity

Let A be a dissipative operator in X and S be a subset of X. A is said to be
locally m-dissipative on S (see [4]) if for each x e S, there exist a neighborhood
17, of x and a sequence {hn} of positive numbers such that /τn->0 as n->oo and

(5.1) Λ R ( / - M ) = (7,.
n^ l

Among others, Kato [4] proved that if A is almost demiclosed and locally

m-dissipative on D(A), then A is m-dissipative, provided that X* is uniformly
convex, and Benilan [1] proved that if A is locally m-dissipative on D(A)9 then A
is m-dissipative even if X is nonreflexive.

By applying the foregoing results, we give here a proof of the following result
which is also found in Kobayashi-Kobayasi [7].

THEOREM 5.1. If A is locally m-dissίpative on Da(A\ then A is m-dissipa-

tive.
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For the proof, we prepare the following lemma.

LEMMA 5.2. Suppose that A is locally m-dissipative on Da(A). Let weX
and set B=A-I + w. Then Da(B) = Da(A) and B is locally m-dissipative on
Da(B\

PROOF. It is evident that B + I is dissipative. Also, it is easy to check that
Da(B) = Da(A).

Let x<=Da(B). Since xeDa(A), we can choose a positive number r and a
sequence {hn} of positive numbers convergent to zero so that (5.1) holds with
Ux = Sr(x) and with the sequence {hn}. Set p = r/4 and <5 = min {1/2, r/4(||x||
+ ||w|| + \Ax\ + 1)}. Now we shall show that

(5.2) Λ(J - M) => W for all /z r te(0,<5].

To this end, for each zeSp(x) and /ιne(0, <5], define a transformation Gn with

Gny = z - hn(Jny - w) for yeSr(x),

where Jn = (I — hnA)~ ΐ . Then we have

\\Gny, - Gny2\\ = hn\\Jny, - Jny2\\ ^ hn\\y, - y2\\ ^ ± \\y, - y2\\

for yί9 y2 e 5r(x), and

^ hn\\y - x\\ + \\z - x\\ +

^ hnr + r/4 + ΛB(||x|| + ||w|| + hn\Ax\)

^ r
for y e 5r(x). Therefore, by applying the fixed point theorem for a contraction
map, we see that there exists an element xneSr(x) such that Gnxn = xn, i.e.,

(5.3) z - hn(Jnxn - w) = *„.

Set zn = Jnxπ. Then ZΛ e D( l̂) and xn e (/ - hnA)zn, so (5.3) yields

z E (I - hnA)zn + hn(zn - w) = (/ - hnB)zn.

Thus (5.2) is proved, and the proof is completed. Q. E. D.

We are now in a position to prove Theorem 5.1.

PROOF OF THEOREM 5.1. Let w e X and set B = A - 1 + w. Then by Lemma
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5.2 and Remark 4.5, B satisfies the condition (Ra)ιoc. Therefore, according to

Theorem 4.3, B generates a semigroup {T(ί); ί^O} eQ.^DζBJ) such that if
x e Da(B\ then T(i)x e Da(B) for all t ̂ 0,

(5.4) \\T(t + s)x - T(i)x\\ ^ e-'\\T(s)x - x\\ ̂  (<r' - e^t

for all ί, 5^0 and

(5.5) \BT(t)x\ ^ e~*\Bx\ for all t ^ 0.

Now let xeDa(B). Then (5.4) and (5.5) imply that z = lim^ + 00 T(i)x exists in
Dfl(β) and |#z|=0. Noting that B is closed (see [4]), we see from Proposition

2.2 that zeD(B) and OeJ3z, i.e., we(/— yl)z. Since w e X is arbitrary, it is

proved that #(/ — ̂ 4) = ̂ , so A is m-dissipative. Q.E. D.
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