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Introduction

L. Ahlfors and A. Beurling [1] gave a characterization of the removable

singularities for the class of analytic functions with finite Dirichlet integral, in

terms of extremal distances on the complex plane. In the iV-dimensional eu-

clidean space RN, Vaisala [9] introduced the notion of null sets for extremal

distances of order JV, namely, NED-sets, and gave measure-theoretic conditions

for NED-sets.

In the present paper, we are concerned with the extremal distances of order 2

in the JV-dimensional space RN with N^.3 and give several characterizations of

null sets for these extremal distances. More precisely, we shall consider the

following three kinds of null sets. Given a compact set E in RN, denote by

(£C)Q the Kerέkjartό-Stoϊlow compactification of Ec ( = RN-E) and by (£ c)/

the Aleksandrov compactification of Ec. Let Bo, B1 be two disjoint closed balls

in Ec, λ be the extremal distance of order 2 between Bo and Bγ and λ0 (resp. λQ, λj)

be the extremal distance of order 2 between Bo and Bt relative to EC-(BO U Bx)

(resp. (£%-(B0 U Bt% (£ c)/-(^o U BJ). If λo=λ (resp. λQ = λ, λQ = λj) for
every choice of Bo and Bl9 then we call E an NED2-set (resp. NED$-set, NEDψ1-

set).

Corresponding to these extremal distances, there are notions of 2-capacities

of condenser, which were studied by many authors (for example, see [12], [5],

[11]); and there are also notions of principal functions (see [8]). We shall give

characterizations of JVJED2-sets, NED$-sets and NED%>/-sets in terms of corre-

sponding 2-caρacities of condensers and principal functions.

Another characterizations will be given by the removability for certain classes

of harmonic functions (cf. [5], [8], [11] for related results). Let G be a bounded

domain containing E and let HD2(G) (resp. HD\G—E)) be the class of all har-

monic functions with finite Dirichlet integrals on G (resp. on G - £ ) . We shall

say that E is removable for HD2 (resp. KD2; KD2; HD2) if every ueHD2(G-E)

with "vanishing normal derivative along £ " (resp. with no flux; with no flux and

"constant value along each component of £ " ; with no additional condition) can

be extended to a function in HD\G). (For precise definitions of HD2, KD2,

KD2, see § 3, as well as the references cited above.) It is well known (see [3])
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that E is removable for HD2 if and only if the Newtonian capacity of E is zero.

We shall show that E is an NED2-set (resp. NED$-set; ΛΓEDf^-set) if and only if

it is removable for HD2 (resp. for KD2 as well as for KD2; for HD2). From the

relations Hb2aKD2ciHD2, it follows that every JVEDp-set is an NED$-set and

every JVEDf-set is an JV£D2-set. In the final remark (Remark 7.3), we give ex-

amples which show that these three classes of null sets are actually different.

[Here we note that in the two dimensional case, the classes of NED$-sets and

NED2-sets coincide (see [1], [8]).]

§ 1. Preliminaries

We shall denote by χ = (χl9 x2,...,xN) a point in RN, and set |x |=(xf + X2

H hxjv)1/2. The inner product of x and yεRN will be denoted by (x, y). For

a set E in RN, we let dE denote its boundary, E its closure and Ec its complement.

The iV-dimensional Lebesgue measure of E will be written as V(E). For an open

set G in RN, let L\G) be the family of real valued measurable functions f on G for

which I/I2 is integrable. We denote by C^iG) the family of infinitely differ-

entiable functions on G and by CQ(G) the subfamily consisting of functions with

compact support in G. For a function u defined in G, we let Fu denote the

gradient of u in case it exists.

Let τ be a C1-surface which divides RN into a bounded domain and an

unbounded domain. In this paper, when we consider the normal derivative d/dv

at a point of τ, the normal is drawn in the direction of the unbounded domain.

Let G be a domain in RN. By a locally rectifiable chain in G we mean a

countable formal sum y = Σ7i> where each γt is a locally rectifiable curve in G.

I f / i s a non-negative Borel measurable function defined in G and y = Σ7i is a

locally rectifiable chain in G, then we set \ fds = Σ \ fds, where ds is the line
J 7 J y i

element. Let Γ be a family of locally rectifiable chains in G. A non-negative

Borel measurable function / defined in G is called admissible in association with
Γ if ί fds^l for each yeΓ. The 2-module M2(Γ) is defined by inf, ( f2dx9

Jy JG

where the infimum is taken over all functions / admissible in association with Γ

and dx is the volume element. The following properties are well known (see,

e.g., [7, Chapter I]):

(1.1) If ΓίczΓ2, then M2(Γί)^M2(Γ2).

(1.2) If each yx e Γx contains a y 2 e Γ2, then M^ΓJ g M2(Γ2).

A property will be said to hold 2-almost everywhere (=2-a.e.) on Γ if the 2-

module of the subfamily of exceptional chains is zero. Denote by GQ (resp. G7)

the Kerekjartό-Stoϊlow compactification (resp. the Aleksandrov compactification)
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of G. In case f is a family of curves in όQ or in όr such that the restriction γ \G

is a locally rectifiable chain in G for each γ e Γ, we denote by M2(t) the 2-module

°f {ΉG? 7 6 ^ } Hereafter, by a curve we shall mean a locally rectifiable curve.

A real valued function u defined in a domain G in RN is called 2-precise (or

BLD), if it is absolutely continuous along 2-a.e. curve in G and |PM|, which is

defined a.e., belongs to L2(G). For a compact subset α of 5G, let ΓG(α) be the

family of all curves in G each of which starts from some point of G and tends to

α. A 2-precise function u on G has a finite curvilinear limit u(γ) along 2-a.e.

curve γ in ΓG(α) (see [7, Theorem 5.4]).

§ 2. Extremal distances and capacities of condenser

Let G be a domain in RN and α0, αx be non-empty compact subsets of dG

such that α0 n α t = 0 . We denote by Γ(α0, αx G) the family of curves in G each

of which connects α 0 and ai. The reciprocal of M2(Γ(α0, oq; G)) will be called

the extremal distance of order 2 between α 0 and αx relative to G. Denote by

^ ( α 0 , <*! G) the family of all 2-precise functions u on G such that u(y) = 0 (resp.

1) for 2-a.e. ye f G (α 0 ) (resp. ΓG(<*I)) We define the 2-capacity of the condenser

(α0, αx G) as

C2(α0, αx; G) = inf ^JFu\2dx; ue^(oco, α i ; G)J.

LEMMA 2.1 ([11, Theorem 4]). In case M 2(fG(α 0) U f G (α 1 ))>0, there ex-

ists a unique harmonic function uoe@(ao, aί; G)for which

C 2 (α 0 , α i ; G ) = ( \Γuo\
2dx.

JG

It is characterized by the condition that u0 e @(<x0, OL1 G) and

(Γιι0,
G

[ (
J G

/or eϋβrj; 2-precίse function v on G such that v(γ) = 0for 2-a.e. ye f G (α o ) U

We call u 0 the extremal function for C2(α0, αx G).

The following property is known (see [7, Theorem 6.10] or [12, Theorem

3.8]):

(2.1) C2(α0, α i G) = M2(Γ(α0, αx G)).

Let E be a compact set contained in a domain G such that £ c is a domain.

Let α0, αx be as above. We denote by ΓQ(α0, α x ; G - £ ) (resp. Γj(α0, α x ; G~£))

the family of curves in (£ C ) Q —G c (resp. ( £ c ) / ~ Gc) each of which connects α0

and α x.
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Let {Gn}^ι be an approximation of G-E towards E such that each Gn is

a subdomain of G-E, each dGn consists of dG and a finite number of compact

(^-surfaces β[*\...9 β%)9 GncGn+ί U dG (n = l, 2,...) and W?β l Gn=G-E. De-

note by ^ * ( α 0 , αj; Gπ, {# π ) } ) the family of all u e % α ^ Gn) such that w(y)

= dj for 2-a.e. yeFGn(β(jn)) (;' = !,...,;(n)), where each α, is a constant depending

on w. We set

, oiχ\ G n , { β j } ) = i n f <\ \Fu\2dx; u e ^ * ( α 0 , α < ; Gn, {β)n)

ijGn

In the same way as in [11, Theorem 1], we see that if M2(FGn(α0) U FGn(<xi))>Q,

then there exists a unique harmonic function unQ in ^*(α 0 , α x; Gn, {j8^w)}) for

which

QKαoί α x; GM, {i8/w)}) = \ \FunO\2dx.
JGn tSί

We call uKfQ the extremal function for Cf(α0, α t ; Gπ, {j8̂
 n )}). It is characterized

by the condition that unQe@*(<x0, ccί Gw, {β(jn)}) and

for every 2-precise function v on Gπ such that u(y) = 0 for 2-a.e. yef G n (α 0 )U

f G n ( α i ) and v(y) = aj for 2-a.e. yeΓGn(β^) (j = l9...J(n)). Note that C?(α0, α x;

Gn, {^ n )})^C?(α 0, «i; Gn+1, {^ n + 1 ) }) (cf. [11, § 1]). Therefore the limit

Ci*(*o, α x; G - £, jSβ) = lim^^ CJ(α0, «i; Gn, {# w ) })

exists and does not depend on the choice of approximation.

LEMMA 2.2. In case M 2(fG(α o)UΓG(α 1))>0, there exists a unique har-

monic function uQon G — E such that

G~Έ
\FuQ\2dx

and MQ(y)=0 (resp. 1) for 2-a.e. yeΓG(<x0) (resp. F<*(<*{)). It satisfies the con-

dition that

G—E
uφ Vφ)dx = 0

for every φeC°°(G-£) such that \Γφ\eL2(G-E)9 Fφ vanishes on some neigh-

borhood ofE and φ(γ)=O for 2-a.e. y eΓG(α0) U F^oij).

PROOF. Let {Gn}^=1 be an approximation of G-E towards E as above.

Let uHtQ be the harmonic function which is extremal for C\(α0, <xί Gn, {β(jn)}).
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As in the proof of [11, Theorems 1 and 2] we see that there exists a unique har-

monic function uQ on G—E such that

CΓ(α0, α t G - EjQ} = ( \FuQ\2dx
J G—E

and

( = 0.

Let φ be a function of C^ίfi-E) such that \Fφ\ eL 2 (G-E) 9 Fφ vanishes on an

open neighborhood U of £ and φ(y)—O for 2-a.e. γ e ΓG(α0) U Λ;(αi) For n

such that dGn-3Gc=lJ, we have

ί (?untQ,Γφ)dx = 0.
JGn

By letting n-»oo we see that \ (FwQ, Fφ)dx=0.

We call wQ the extremal function for C|*(α0, α x; G - £ , ̂ Q).

In case G is an unbounded domain such that 3G is compact, we define the

following capacities of the condenser of E. Let {Gn}^=1 be an approximation

of G — E towards E\} {oo} such that each Gn is a bounded subdomain of G—£,

each dGn consists of dG and a finite number of compact C^surfaces j8iw\..., )8y(i),

^czG^+i UdG (n = l, 2,...) and VJ*=1 Gn = G-E, where oo means the point at

infinity of RN. Denote by ^ * ( α 0 , α t ; GM, { ^ n )}) the family of all M e ^ ( α 0 , α x;

Gn) such that u(y) = aj for 2-a.e. y e f G n ( ^ π )) (j = l,...,;(n)), where each α,- is a

constant depending on w. Denote by ^*(α 0 , α x; Gw, jS
(w)) the family of all

u e 0 * ( α o , α x; Gn, {j8^}) such that u(y)=const, for 2-a.e. y e Wji^f G n ( ^ n ) ) .

We set

C!(α0, αx GΛ, {^>}) = inf

Cf(α O v α i ; GΛ, j8<")) = inf { ^ \Fu\2dx; ue®*(*0, α x; GΛ

We know (cf. [11, §1]) that

C!*(α0, α x; G~£, βQ) = l im^

C|*(a0J «i G-E, βj) - l im^^ Cf (α0, ott Gn, /JO)

exist and these capacities of condenser do not depend on the choice of approxi-

mation {Gπ}.
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LEMMA 2.3 ([11, Theorem 2]). (a) In case M2(fG(α0)U fG(α 1))>0, there

exists a unique function uQ harmonic on G—E which satisfies

\FuQ\2dx.
G-E

It satisfies the condition that

(FuQ9 Vφ)dx = 0

for every φeCc0(G — E) such that the support of \yφ\ is compact in G—E and

φ=0 on U Π (G—E) for some neighborhood Uofa0[)<x1.

(b) In case M 2(/ ί

G(α o)ufG(α 1))>0, there exists a unique function Uj

harmonic on G — E which satisfies

CΓ(α0 )αi;C?-E,jS/)=ί \Fuj\2dx.
JG-E

It satisfies the condition that

[ (Ful9 Vφ)dx = 0
JG—E

for every φeC°(G — E) such that φ = const. on V ft (G—E) for some neighbor-

hood U'ofEV {oo} and φ = 0 on U Π (G-E)for some neighborhood U of dG.

We call uQ (resp. Uj) the extremal function for C|*(α0, α x; G—E, βQ) (resp.

Cr(aO 5a i ;G-£5ft)).
The following property is known:

(2.2) CΓ(α0, αx G-E, βQ) = M2(ΓQ(aθ9 a, G-E))

and CΓ(αo> αx G-E, Λ)=M 2(Γ z(α 0, αx G-E)) ([11, Theorem 6]).

Hereafter we shall always assume that £ is a compact set whose complement

is a domain. Suppose that Bo and Bί are two disjoint closed balls in Ec. Set

D=RN-(B0 U Bx) and α, = d£j (ί=0, 1). We consider the families Γ(α0, α ^ D)

and Γ(α0, o^; D-E). Following Vaisala[9], we define the following null set

for extremal distances.

DEFINITION 1. A compact set E is called an NED2-set if M2(Γ(α0, a1;

D-E))=M2(Γ(<xθ9 α x; D)) for all pairs of α0 and α^

Moreover, we consider the families ΓQ(α0, ocί; D — E) and Γj(α0, α x; D—E).

By (1.1) and (1.2), we see

M2(Γ(α0, α,; D - £ ) ) ^ M2(Γ(α0, α x; Z))) ^ M2(ΓQ(α0, α x; / )-£) )
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DEFINITION 2. We say that E is an NED$-set (resp. NED$''-set) if M2(Γ(α0,

α x ; D)) = M 2(ΓQ(α 0, α t ; D-E)) (resp. M 2(ΓQ(α 0, α t ; D - £ ) ) = M2(Γ /(α0, ax\ D -

£))) for all pairs of α0 and α x.

The property (2.1) allows us to replace the equality M2(Γ(α0, α^, D—£)) =

M2(Γ(α0, αx £>)) by the equivalent equality C2(α0, α t ; D - £ ) = C 2 ( α 0 , α x ; D).

Thus we have the following definition which is equivalent to Definition 1.

DEFINITION Γ. A compact set E is called an NED2-set if C2(α0, α x ; D - £ )

= C2(α0, α t D) for all pairs of α0 and α x.

Similarly, by virtue of (2.2) we have

DEFINITION 2'. A compact set E is called an MEDf-set (resp. NEDψJ-set)

if C 2 (α o ,αi ;/)) = C r ( α o , α i ; β - ^ / » o ) ( r e s P C * * ( α 0 , «i5 / > - £ , βQ)=CΓ(«θ9

<xί; D — E, βj)) for all pairs of α 0 and α^

§ 3. Classes of Dirichlet-finite harmonic functions

Let £ be a compact set such that Ec is a domain and G be a domain con-

taining E. We denote by HD\G) the class of all functions u harmonic on G

such that its Dirichlet integral \ \Fu\2dx is finite.

Let {ΩJJLi be an approximation of Ec towards E, that is, each Ωn is an

unbounded subdomain of Ec, each dΩn consists of a finite number of compact

C^surfaces such that the interior of each surface of dΩn contains at least one point

of E9 UnaΩn+ί (n = l, 2,...) and \J™=1Ωn = Ec. Let G be a domain such that

G=>£ and G^>dΩn for all n. Let g and u be harmonic functions in HD2(G — E).

Then the limit of \ g(dujdv)dS exists and does not depend on the choice of
JdΩn

approximation {Ωn}9 where dS is the surface element. Therefore we use the

symbolic expression

We denote by HD2(G-E; E) (resp. KD2(G-E; £)) the class consisting of

all ueHD2(G-E) each of which satisfies

( (Fw, Vφ)dx = 0
JG-E

for every φeCco(G—E) such that 0 = 0 outside some compact set contained in

G and \Fφ\ e L\G — E) (resp. for every φ e CQ(G) such that Vφ vanishes on some
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open neighborhood of E). We denote by KD2(G-E; E) the class consisting of

all u e KD2(G-E; E) each of which satisfies

J dv

for every g eKD2(G-E; E). We note that HΪ)2(G-E; E)czKD2(G-E; E)

and \ (du/dv)dS = 0 for any ueKD2(G-E; E) and for any compact (^-surface

τ in G-E which is homologous to zero in G. In case G = RN, we write KD2(EC)

for KD2(RN-E\E).

DEFINITION. We say that a compact set E is removable for HD2 (resp.

HD2, KD2, KD2) if for some bounded domain G containing E every function in

HD\G-E) (resp. HD\G-E E), KD2(G-E E), KD2(G-E £)) can be ex-

tended to a function in ffD2(G),

The following lemma which relates the removable sets for KD2 to the

extremal distances is known.

LEMMA 3.1 ([11, Theorems 7 and 13]). For E to be removable for KD2

it is necessary and sufficient that M2(Γ(α0, ccx; D—E)) = M2(ΓQ(OIO, OL1; D — E))

for all pairs of ά0 andau where\D = RN — (BQDB^ and <xi*=dBi(i = Q9 I) for two

disjoint closed balls Bo, Bt contained in Ec.

LEMMA 3.2. \ g(βuldv)dS.=O for any geHD2(G-E) and for any
- ^ JδE

ueHD\G-E\E),

PROOF. Take any \l/eC%(G) such that ι/r = l on some neighborhood of E.

By Green's formula we have

PROPOSITION 3.1. Let G be a domain containing E and ocθ9oci be non-

empty compact subsets of dG such that α0 Π αx = 0 and M2(ΓG(αo) U ΓG(oc1))>O.

Let u0 and uQ be extremal'functionsfor C2(α05
 αi? (* —E|j and C|*(α0, α x; G —£,

^Q) respectively. Then u0 (resp. uQ) belongs to HD\G-E; E) {resp. KD2(G-E;

£)).

PROOF. The fact that u0 belongs to HD2(G—E; E) is a simple consequence

of Lemma 2.1. By Lemma 2.2, UQEKD2(G -E E). Let {Gn}*=1 be an ap-

proximation of G-E towards E as in §2. Let wwQ be the harmonic function

which is extremal for Cf(α0, α x ; Gn, {β(jn)}). We shall show that «n > Q=const, on

each β(jn\ Take a bounded domain G such that Ecz&^G hold, dG is a compact
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(^-surface and \jjίnί β(jn)czG for all n. We know (cf. [8, p. 239]) that there

exists a unique harmonic function ύnQ on Gΐ)Gn such that untQ = untQ on dG,

un,Q = const, on each /5< rt) and \ ( n ) (dϋntQldv)dS-0 for each j = l,..., j(n). By

using Green's formula, we obtain

The function ύnQ which is equal to ύnΛ in G n Gπ and to untQ on G—δ belongs to

^ * ( α 0 , (Xi GΛ, {J3jn)}). By the uniqueness of uΛ>Q, wW)Q = βπ>Q i n ^« Hence

WΠ,Q=const, on each β(jn). As stated in the proof of Lemma 2.2, we see that

Therefore, MrtQ converges to uQ uniformly on every compact subset of G—E.

Take any g e KD\G - £ ; £ ) . We have

because wm,Q=const, on each β^m) and \ ( m ) (%/5v)dS=0. Hence

WdS = lim

,Fg)dx.

Letting n->oo we conclude that \ uQ(dgldv)dS=O. Accordingly uQeKD2(G—

J dE

E\ E) and thus our proposition is proved.

REMARK. Let G be an unbounded domain such that dG is compact. Let

uQ be the extremal function for C$*(α0, ocx; G-E, jSQ). By Lemma 2.3 (a), we

have uQeKD2(G — E; £). Moreover, as in the proof of Proposition 3.1 we

h a v e u β e J O ) 2 ( G - £ ; E ) .

We take two bounded domains Ωo and Ωx such that

and each of dΩ0 and dΩx consists of a single compact C^surface. For any

u in HD2(G-E), we set
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where r denotes the distance from a point x to the variable on dΩi9 σ is the surface

area of the unit sphere in RN. Each uf is harmonic in RN — dΩi (i=0, 1). When

x lies in the domain Ω1 — Ωo, the equality tι(x) = wί(x) — u%(x) holds. Moreover,

if we define a harmonic function Hu by

ί wg(x) if xeRN-Π0

Hu(x) =
[ u*(x)-u(x) if xeΩ0-E,

then it is easy to see that Hu is a harmonic function with finite Dirichlet integral

in Ec and regular at infinity, that is, l im^.^ i/M(x) = 0. We note that if we

KD2(G-E; E), then HueKD2(Ec).

Let G be an unbounded domain such that dG is compact and let u e HD2(G).

Then there is a constant c such that u + c is regular at infinity. Moreover, we

know that |x|(w + c) and \x\N~1(du/dxι) (i = l,...9 N) are bounded as |x|->oo.

Hence we have

(3.1) j ^ (u+c)j^dS—*0 (as /z—ex)),

where veHD\G) and {Gn}^=ί is an approximation of G towards {oo}.

§4. Principal functions

Let £ be a compact set such that Ec is a domain. Take any distinct two

points x°, x1 in Ec and open balls Fo, Vί centered at x°, x1 with disjoint closures

in £ c . Let {#„}?= 1 be an exhaustion of Ec

9 that is, each Dn is a bounded sub-

domain of Ec

9 each dDn consists of a finite number of C^surfaces jSj π ) (7 = 1,...,

j(ή))9 DnczDn+ί (π = l, 2,...) and W*=1DΠ = JEC. We may assume that Dn con-

tains F0U V1 for all n. We know (cf. [8, p. 242]) that there exist the principal

functions POtΛ9 P?>π and P{tΛ with respect to x°, x1 and Dn9 which are character-

ized by the following properties:

(1) POtH9 JP?>Π and P[n are harmonic on Dn-({x 0} U {x1}) and continuous

on dDn;

iί?,» = ^ 1 | x - x Ί 2 " Λ r + Λ?,n on Fo,

iJί,Λ = σ " 1 | ^ - ^ Ί 2 " Λ r + M,Λ on Fo,

where /IO,«J ^?,n a n d ^ί,π a r e harmonic on F o ;

W/ ^O.π = ~ o |Λ — X I "Γ/θ,n o n κl>

, on K,
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, on Vl9

where /<,,,,,/?,„ and f[>n are harmonic on Vt and fo^x^finW^fU*1)^

(4) % ^ = 0 on δZ)π,

P?n = const, on each Λπ ) and ( , ,^^-dS = 0

l,...,j(n),

p{ π = const, on dDn.

We see that the limits

P 0 = limπ-.0 0P0,n 5 P? = lim/ l^0 0P?> n, P{ = li

exist and the convergences are uniform on every compact subset of Ec. These

limit functions do not depend on the choice of exhaustion (see [8, p. 246]).

Further we define a harmonic function P on RN — ({x0} U {x1}) by

P(x) = σ-Klx-x0!2-" - \x-xι\2-N - Ix0-*1!2"*).

Set

h(x) = - σ-Hlx-x1!2"^ + Ix0-*1!2"*),

/(x) = σ-Hlx-x0!2^ - I x ^ x 1 ! 2 ^ ) .

Then h (resp. / ) is harmonic on some neighborhood of x° (resp. x1), and / ( x 1 ) = 0 .

For the purpose of obtaining a relation between null sets and principal

functions, we consider the following quantities which are similar to the span

(cf.[8,p.247]):

SQ''(x°, x1) = ft?(x°) - h[(x°).

LEMMA 4.1.

(a) ( g(dP0/dv)dS = 0 for any g e HD2(G - E).
JdE

(b) ( P<}(dgldv)dS = 0 for any ge KD\G - £ ; £ ) .
JdE
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(c) [ (P[ + c)(dg/dv)dS= 0 for any geHD2(G-E\ where c is a con-
J dE

slant such that P[ + c is regular at infinity.

PROOF, (a) and (b) are seen in the same manner as Proposition 3.1 (cf.
[8, p. 58]). To show (c), we consider the harmoniό Function Hg which is defined
in § 3. By using Green's formula and (3.1) we have

By the definition, Hg=g% — g in Ωo—E for some domain Ωo containing E and
is harmonic on Ωo. It is easy to see that

Hence, ( (fί+c)(%/δv)ίίS=O.
J dE

Using Green's formula and Lemma 4.1, we have the following

LEMMA 4.2.

(a) ^Ec\F(P0-P)\2dx = (N-2)S(x°, x1) -

(b)

(c) ( \7(P$-P[)\2dx = (ΛΓ-2)SQ>*(x0, x1).

PROOF. Let c0 and c be constants such that P0 + c0 and P+e are regular
at infinity. By using Green's formula and Lemma 4.1 (a), we obtain

JdE °dv ) d E

We take a sufficiently small>>0 such that En(Bo U Bx) = 0 and Biaΐ\Bί-0,
where Bi={x; Ix-x'l^r} (i=0, 1). Let αf = δBf (ΐ=0, 1). By using Green's
formula and Lemma 4.1 (a) we have
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SE δv J«ou«

Letting r-+0, we see

Thus we obtain (a). By similar arguments we obtain (b) and (c).

From this lemma we can derive that the property S(x°, xι) = 0 means Po —
=0 in Ec. In fact, since P is harmonic on E, by Green's formula we obtain

f p<&ds=[ \rP\2dx.
JdE dv )E1 '

If S(x°, x1)=0, then (a) of the above lemma implies

0 ^ ( \F(P0-P)\2dx = - ( \FP\2dx ^ 0,
JEC JB

so that P 0 -P=const. in Ec. Since./oCx1)^/^1)^^ ^ 0 - ^ = 0 in Ec. More-
over, since V({x | ΓP{x)\ = 0})=0, it follows that V(E)=0. Thus we have

COROLLARY 4.1. J/S f(x°,x1)=0, then P0-P=0 in Ec and F(£)=Ό. If
Po-P=0 in £ c , then S(x°, x1) = 0 and F(£) = 0.

Similarly, we obtain

COROLLARY 4.2. 7/§Q(x°, x1)=0, then P-P<} = 0 in Ec and Y(E)=0. If
P-P<2 = 0 in Ec

9 then S<*(x°, xι) = 0 and V(E) = 0.

We prove

PROPOSITION 4.1. // E is an NED2-set (resp. NED%-set9 NED^f-set),
then 5(x°, x1) (resp. £β(x°, x1), S^ ̂ x0, x1)) is equal to zero for all distinct
ίwo points x°, x1 in Ec*

PROOF. Take any distinct two points x°, x1 in Ec and mutually disjoint
closed balls Bθ9 Bγ in Ec of radius r and with centers at x°, x1 respectively. Set
D=RN-(B0\jBί) and α^δBj (t"i=.Q, .1), As in the latter half: of the! proof of
[11, Theorem 13], for sufficiently small r we have the following inequalities:

(4.1) max^A - min^ /0 ^ - ^ ^ - — - - J ^
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(4.2) maxΛ e α o R - minxeoi l / ^ 5 " ^ . m " 2

(4.3)

^ minX6αoA? - max^e,,/?;

(4.4) maxxeαoh[ - min^,, /{ g ^ 7 n _ F ΛΛ "

^ h\ - maxΛ e α i /{.

If E is an NED2-sot, then the equality

C2(α0, α x ; D - £ ) = C2(α0, α ^ D)

holds. By (4.1) and (4.2) we see that

Since / 0 ( x 1 ) = / ( ^ 1 ) = 0 , letting r->0 we have 5(x°, x 1 ) = 0 . The results for

NED$-set and NEDψ1-set are established in the same manner.

REMARK 4.1. In the above proof we showed that if C2(α0, α x ; RN —

(Bo U J3 1 )-£) = C2(α0, α ^ RN-(B0 U 5 0 ) for any mutually disjoint closed balls

Bo and Bx in E c with respective centers x° and x1, then S(x°, x1) = 0. Similar

facts are true for S<>(x0

9 x1) and S^^x0, x1).

In view of Corollaries 4.1 and 4.2 we have

COROLLARY 4.3 (cf. [9, Theorem 1]). If E is an NED2-set or an NED$-set,

then F(£)=0.

REMARK 4.2. We shall show later in Remarks 5.2 and 6.1 by examples

that the converse of Corollary 4.3 is not always true.

§5. NED2-sets and removable sets for HZ)2

Let G be a domain containing a compact set E. Let α0, oci be non-empty

compact subsets of dG such that α 0 Π OLX = 0. We say that a compact set E is

an JVED2-set with respect to G if M2(Γ(α0, α x ; G))=M 2(Γ(α 0, OLX\ G-E)) for
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every disjoint compact subsets α0, cc1 of dG. By (2.1) we see that E is an NED2-

set with respect to G if and only if C2(α0, ccί; G) = C2(α0,
 α i ί G—E) for every

α0 and α t.

A bounded domain R is called a ring domain if its complement consists of

two components.

In this section we shall show the following theorem.

THEOREM 5.1. For a compact set E in RN, the following statements are

equivalent to each other:

(1) E is an NED2-set;

(2) S(x°, x1) is equal to zero for all distinct two points x°9 x
1 in Ec;

(3) S(x°9 x
1) is equal to zero for all x° in a non-empty open set in Ec and

some x1 in Ec;

(4) For any bounded domain G containing E, every u in HD2(G — E; E)

can be extended to a function in HD2(G);

(5) E is removable for HD2;

(6) E is an NED2-set with respect to every domain G containing E\

(7) The equality C2(α0, oc1; R — E) = C2(oίo, α x ; R) holds for every ring

domain R containing E, where α 0 and OL1 are two boundary components of R;

(8) The equalities C2(α&, αj; Ω - £ ) = C2(αj, αj; Ω), i = l , . . . , N, hold for

some N'dimensional open rectangle Ω=>£ with sides parallel to the coordinate

axes, where OL1

Q and a[ are the sides of Ω parallel to the coordinate plane x f = 0 .

REMARK 5.1. For a result related to the equivalence between (1), (4), (5)

and (6), see [10, Theorem 3.1].

To prove this theorem we prepare some propositions.

LEMMA 5.1. Let G be a bounded domain containing E and u be a function

inHD2(G-E;E). Then

, Γ(P0-P))dx = (N-2)(Hu(x°)-Hu(χi))

for any distinct two points x°, x1 in Ec, where Hu and ύ\ are harmonic functions

defined in §3.

PROOF. By using Green's formula and Lemma 4.1 (a), we obtain

We take a sufficiently small r>0 such that £ n ( £ o u 5 1 ) = 0 and Bo(]Bί=09

where Bt={x\ \x-x*\^r} (i=0, 1). Let αj=d£j(ί=O, 1). By using Green's



452 Hiromichi YAMAMOTO

formula we have

JdE "dv sE J OV JαoUα

where c is a constant such that P+c is regular at infinity. Since Hu^u%-u in

Ωo-E for some domain Ωo containing E and u% is harmonic on Ωo>

Jeε dv ) d E dv ) d E

Since ueHD2(G — E; E), by Lemma 3.2 we have

[
dE

Thus,

Letting r->0, we obtain the required equality.

PROPOSITION 5.1. Let G be a bounded domain containing E and u be a

function in HD2(G — E; E). If Po — P = 0 in Ec for any x° in a non-empty open

set Ω in Ec and some x1 in Ec

9 then u can be extended to a function in HD2(G).

PROOF. Let x° e Ω and xι e Ec. By Lemma 5.1 we have

Since P and u\ are harmonic functions with finite Dirichlet integrals on some

neighborhood of £ and F(£) = 0 by Corollary 4.1, using Green's formula we have

dE
= ( (FP, VuX)dx = 0.

Hence, Hu(xι)=Hu(x°). Letting x° vary in Ω, we obtain Hu-const, in Ec.

Therefore M = M^+const, in Ωo--E for some domain Ωo containing E. Thus

we conclude that u can be extended to a function in HD2(G).

PROPOSITION 5.2. Let G be a domain containing E and α0, αx be disjoint

compact subsets of dG. Let u0 be an, extremal function for C2(XQ,AU G—JE).

// V(E) = 0 and u0 can be extended to a harmonic function ύ0 on G, then the

equality

C2(α0, α x ; G-E) = C2(α0, α x ; G)
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holds.

PROOF. Since M o e ^ ( α o , α̂  .G) and F(£)==0, we have

C 2 (α 0 , α, G) g,\ \Zao\*dx = \ \Γuo\
2dx = C2(α0, OL, G-rE).

JG JG-E

The converse inequality being valid, the equality follows.

LEMMA 5.2. Let G be a bounded domain containing E and let R be a

ring domain of the form R = {x; ro<\x — x°\<r1} with R=>G. Let u0 and u0

be extremal functions for C2(α0, o^; R)and C2(αo, α x ; R — E) respectively, where

α . = {χ; \x-χ°\ = ri} (i=0, 1). Then

(5.1) \ (ΓHu,Γ(u0-u
JR-E dE

for any u in HD2(G — E; E), where Hu and u? are harmonic functions defined in

§3.

PROOF. We note that u0 — u0 is harmonic on R — £ and ύ0 — u0=0 on qc0 U

ctί. By using Green's formula we have

(5.2) \ (FHuinuo-uo))dx= - \ {uo-uoΆdS.
JR-E JdE CV

By the definition we can take a bounded domain Ωo such that G^Ω0=>E and

Hu = u\-u in Ωo-E. Since u eHD2(G-E\E\ by Lemma 3.2 we have

JdEQdv

Hence,

(5.3) \ M0 * "ύ = \ UQ—^-aS.
' JdE dv j δ E

 υ dv

On the other hand, Green's formula gives

Since u0 e H£)2(G -E;E),[ Hu(duoldv)dS=0 by Lemma 3.2. Hence,
JdE

JdE dv Jαi OV Jαo-αi " OV

Since αx is homologous in Ec to some β consisting of a finite number of C1-
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surfaces in Ωo—E,

)aι OV )β OV )β ΰV )β CV

Since M? is harmonic on Ωo and u belongs to HD2(G — E; E), it follows that

Thus,

(5.4)

By (5.2), (5.3) and (5.4), we obtain (5.1).

PROPOSITION 5.3. Let G be a bounded domain containing E and u be a

function in HD2(G — E; E). If C2(α0, <xί; R — JB) = C2(α0, α t ; R) for every ring

domain R of the form R = {x; r o < | x - x ° | < r 1 } with R=>G9 where α4 = {x; | x-x° |
= ri} 0" = 0> 1)> ίΛ̂ w w can be extended to a function in HD2(G).

PROOF. Let ύ0 and u0 be the same as in Lemma 5.2. By assumption we

see that ύo = uo in R — E and F(£) = 0. It is known that ύ0 is given by

(5.5) UO(X) = (\X-

By Lemma 5.2 we have

Since ύ0 and u? are harmonic on some neighborhood of E and F(£)=0, we see

that

Thus we have

(5.6)

Since

and Hu is harmonic on {x; \x—x°|^

=\ Hu

κ-ri-H)-1 on α0

by the mean value property we have
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< 5 7 >

On the other hand, by a straightforward computation we have

\Fΰo\
2dx = (N-2)σr2ΓN(rl-N-rZ-Nr2,

JΛt

where At = {x; \x—x°\ ^ r j . Using Green's formula and the Schwarz inequality,

we obtain

r
where c = (\ \VHu\

2dxj'2 < oo. By (5.6) and (5.7) we have

\Hu(x°)\ ^

Since this is valid for arbitrarily large rί9 Hu(x°)=0. Letting x° vary in some

open set in (G)c, we conclude that Hu=0 in Ec. Therefore M = MJ in Ωo — E for

some domain Ωo containing E. Thus we conclude that u can be extended to a

function in HD2(G).

PROPOSITION 5.4. // the equalities

C2(μl αj; Ω - £ ) = C2(α£, α{; Ω)9 i = 1,..., N,

hold for some open rectangle Ω containing E with sides parallel to the coordi-

nate axes, where αj and a{ are the sides of Ω parallel to the coordinate plane

x f = 0 , then S(x°9 x
1) is equal to zero for all distinct two points x°9 x1 in

PROOF. Let ύ{ and uι be extremal functions for C2(αj, αj; Ω) and C2(α&,

a[; Ω-E) respectively. It is well known that ul is of the form ax^b. From

assumption it follows that F(£)=0 and for each i9 i = l,..., N9 ui = aixi-
stbi in

Ω-E. Denote by s/i the class of all 2-precise functions v on Ω-E such that

ι?(y)=0 for 2-a.e. yeFΩ(cc})) U FQ(OI[). By Lemma 2.1, uι satisfies the variation-

al condition that

( (Fu\ Vv)dx = 0
Ω-E
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for every v in j/K Hence we derive that

(5.8) { M
JΩ-Έ

O x i

for every v\n stf1.

Now, we take any two disjoint closed balls Bθ9 Bx in RN-Ω. Set Z> =

^-(BQUB^ and•αis=35, (i==0, 1). Let u be the extremal function for C2(α0,

α x ; D — E). We shall show that w can be extended to a 2-ρrecise function on D.

Let M = w on D-E and w = 0 on £ ; U^iβujdx^ on β-JB and l/1 = 0 on £, i =

1,..., N. Then u is locally integrable in D and l/ f6L 2(D), i = l,..., iV. For any

φ G C?(Ω), since wφ | Ω _ £ e ΛjLi J^*, (5.8) implies

Ω-E

This means that Ui—ίδϋjdxϊ) on Ω in the distribution sense. By [7, Theorem

4.21], there exists a 2-precise function ύ on D such that ύ = u a.e. on Ω. Ob-

viously, we may take ύ = u on Ω—E.

Next, since ύ e @(<xθ9 αx D) and F(£) = 0, we have

= C2(α0, α x ; / ) - £ ) .

Since the converse inequality is trivial, we conclude that

C2(α0, ocx D) = C2(α0, αx D - £ ) .

As stated in Remark 4.1, 5(x°, x1) is equal to zero for all distinct two points

x°, x1 in RN — Ω. The proof is thus completed.

PROOF OF THEOREM 5.1. By Proposition 4.1, (1) implies (2). Clearly (2)

implies (3). If (3) is true, then from Corollary 4.1 and Proposition 5.1, (4)

follows. Clearly (4) implies (5).

Suppose (5) is valid. Let G be some bounded domain containing E such that

every u in HD2(G—E; E) can be extended to a function in HD2(G). For two

points x°, x1 in (G)c, let P o be the principal function with respect to x°, x1 and

Ec. It is easy to see that the restriction of P o to G-E belongs to HD2(G-E; E).

Hence, Po~-P=0 in Ec, so that (3) holds.

By Proposition 5.2 and Corollary 4.1, (3) and (4) imply (6). By Proposition

5.3, (7) implies (4). Clearly (6) implies (1), (7) and (8). Finally by Proposition

5.4, (3) follows from (8). The proof is completed.

By the equivalence between (1) and (8), we have
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COROLLARY 5.1 (cf. [10, Property 3.3]). Any compact subset of an NED2-

set is an NED2-set.

By the equivalence between (1) and (4), we have

COROLLARY 5.2 (cf. [10, Corollary 3.5]). If Eu...,Em are mutually dis-

joint NED2-sets, then W™=1 En is an NED2-set.

REMARK 5.2. It may occur that the equality C2(α0, ocί; D—E) = C2(α0, α x ;

D) holds for some disjoint closed balls Bo, Bί in Ec even though E is not an

NED2-set. For example, let R""1 be the hyperplane {xeRN;xN=0} and let

£ = { x e ^ - 1 ; M ^ l } . It is easy to see that E is not an NED2-set. If we let

B0 = {x; | x-x ° |^ l } and B^ix; I x - x ^ l } , where x° = (3, 0,...,0) and xί =

( - 3 , 0,..., 0), then C2(α0, α t ; D - £ ) = C2(α0, α x ; D), since the extremal function

for C2(α0, otί; D) is symmetric with respect to RN~X, and hence it is extremal for

C2(α0, αx ; / ) - £ ) .

Similarly, if we consider the ring domain JR = {X; l < | x —x°|<5}, then C2(α0,

α t ; R — £) = C2(α0, cc1; R) for the above £. Thus the property that C2(α0, α x ;

Λ — £) = C2(α0, α x ; R) for some ring domain R=>E does not imply that E is an

N£Z)2-set.

This example also shows that the converse of Corollary 4.3 is not always

true, that is, there exists a compact set E with F(£) = 0 which is not an NED2-set.

REMARK 5.3. We can easily see that if the (N— l)-dimensional HausdorfF

measure of E is zero, then E is an NED2-sGt (cf. [9, Theorem 2] and [7, Theorem

2.13]). Now we show that the converse is not always true.

Let E be an iV-dimensional symmetric generalized Cantor set such that the

(N— l)-dimensional Hausdorff measure of E is infinite and the projection of E

on each of the coordinate axes has one-dimensional measure zero (see [4, p. 375]).

Let Ω be an iV-dimensional open rectangle containing E with sides parallel to the

coordinate axes and αj, oc[ be the sides parallel to the coordinate plane xf = 0.

Since the projection of £ on αj (i = l,..., N) has the (N— l)-dimensional Lebesgue

measure zero, we can show that

M2(Γ(αj, αί; Ω-E)) = M2(Γ(al αί; Ω)) (i = 1,..., N).

By Theorem 5.1 ((8)=>(1)), we see that E is an iV££)2-set.

§ 6. NEDQ-sets and removable sets for KD2

The main purpose of this section is to prove that the class of NED%-sets is

identical with the class of removable sets for KD2.

THEOREM 6.1. For a compact set E in RN, the following statements are
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equivalent to each other:

(1) E is an NED%-set;

(2) SQ(x°, x1) is equal to zero for all distinct two points x°, x1 in Ec\

(3) SQ(x°, x1) is equal to zero for all x° in a non-empty open set in Ec and

some x1 in Ec

(4) For any bounded domain G containing E, every u in KD2(G — E; E)

can be extended to a function in HD2(G);

(5) E is removable for KD2;

(6) The equality C2(α0, α x ; G) = Cf*(α0, α x ; G - £ , βQ) holds for every

domain G containing E and every mutually disjoint compact subsets α0, ocί of

dG;

(7) The equality C2(α0, α x ; #) = C2*(α0, α x ; R — E, βQ) holds for every ring

domain R containing E, where α0 and ocί are two boundary components of R;

(8) The equalities C2(αJ, αj; Ω) = C5*(αJ, a\; Ω-E, βQ\ i = l,..., N, hold

for some N-dimensional open rectangle Ω=>E with sides parallel to the coordi-

nate axes, where αj and cc\ are the sides of Ω parallel to the coordinate plane

*i = 0;

(9) E is removable for KD2.

To prove this theorem we prepare some propositions.

PROPOSITION 6.1. Let G be a domain containing E and u be a function in

KD2(G-E; E). 7 / P - P ? = 0 in Ec for any x° in a non-empty open set Ω in

Ec and some xι in Ec, then u can be extended to a function in HD2(G).

PROOF. We may assume that the distance between Ω and E is positive.

Let Hu be the harmonic function defined in §3. Let x°eΩ, x1 eEc and P? be

the principal function with respect to x°, x1 and Ec. As in the proof of Lemma

4.2, we have

(6.1) \ (ΓHU,Γ(P-P?))dx

By assumption, (6.1) implies

(6.2) {N

Since the restriction of Hu to G-E belongs to KD\G-E\ E\ by Lemma 4.1 (b)

we have

JdE
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By the definition, Hu = u? — u in Ωo — E for some domain Ωo containing E. There-

fore,

-~ WO — \ U Λ M O .

Since wf and P are harmonic on Ωo and V(E) = 0 by Corollary 4.2, we see that

= ( (FP, Vu\)dx = 0.
dE OV JE

Take a bounded domain Go such that EaGoc:G and ΩU { ^ ^ ( G Q ) 0 . Since

the restriction of P?(resp. u) to Go-E belongs to KD\G0-E\ E) (resp. KD2(G0

-E; E)\

p
dE OV

Thus (6.2) implies that iiM(x°) = iiu(x1). Letting x° vary in Ω, we conclude that

Hu = const, in £ c . This implies that w can be extended to a function in HD2(G).

PROPOSITION 6.2. Lei G be a domain containing E and let α0, αx fee d/s-

joinί compact subsets of dG. Let uQ be an extremal function for C**(α0, α x ;

G — E, fto). If V(E) = 0 and uQ can be extended to a harmonic function ύQon G,

then the equality

C*2*{OLO, ax G-E, βQ) = C2(α0, αx G)

holds.

PROOF. We may assume that M2(ΓG(α0) U ΓG(α 1))>0, for otherwise, the

constant 0 is extremal for C^*(α0, OL1; G —£, βQ) so that the assertion is trivial.

Let ύ be the extremal function for C2(α0, oq; G). Let ^ be a function of C^ζG)

such that ι̂  = 0 on some neighborhood of E and φ = l outside some compact set

contained in G. By Lemma 2.2 we have

(ΓuQ, F|JKδQ-fl)])Λc = 0.
G—E

Since (1 -ψ)(uQ-ϋ)e CQ(G) and MQ is harmonic on G,

Hence,
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On the other hand, by Lemma 2.1 we have

( (Γfi, Γ(uQ-u))dx = 0.
JG

Therefore

It follows that ύQ = ϋ and hence ύQ is extremal for C2(α0, αx G). Since F(£)=0,
we have

C2(α0, α i ; G) = ^G\VύQ\2dx = $ J F « f l |
2 d x = Cί*(α0, α t ; G - £ , £ β ) .

Let Ω be an ΛΓ-dimensional open rectangle with sides parallel to the coordi-
nate axes, £ be a compact set in Ω (possibly an empty set) and G be a bounded
domain containing Ω. We set

M 2(Ω-£) = inf. [ \Pφ\2dx (i = 1,..., N),
JΩ-E

where the infimum is taken over all φ e CQ(G) such that Pψ vanishes on some
neighborhood of E, φ(x) = 0 on αj which is one of the sides of Ω parallel to the
coordinate plane xf = 0, and ψ(x) = l on <x{ which is the opposite side of αj.

PROPOSITION 6.3 ([5, Theorem 4] and [11, Theorem 11]). A compact set
E is removable for KD2 if and only if the equalities Mi

2{Ω — E) = Mi

2{Ω), ί = l,...,
JV, hold for some open rectangle Ω D £ .

Now we shall show

PROPOSITION 6.4. With the same notation as above, if Ω D £ , then M2(Ω
S, αi; Ω-E, βQ)for every i = l,..., N.

PROOF. We denote by ^ * * the family of all we^(αj, α{; Ω) such that
u = const, on each component of some neighborhood of E. We observe that

C!*(αδ, αj; Ω-E, βQ) = inf {\^£\Fu\2dx; u

Denote by ® the family of all we^αj, U dG, αj; G-α^-αί) such that u =
const, on each component of some neighborhood of E. As in the proof of [11,
Theorem 10] we have

\Γu\2dx;ue$>\.
Ω-E )
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Since the restriction ofue&to'Ω-E belongs to ^**, Cf*(αj, oc{; Ω-E, βQ)<L
M2(Ω — £). On the other hand, for each u e &**, there exists a 2-precise function
ύ in RN such that u = ύ in Ω (see [7, Theorem 5.8]). Let Ωo and Ωx be bounded
domains such that ΩCZΩCZΩQCIΩOCIΩ^^CIΩ^^CIG and each of dΩ0 and dΩί

consists of one compact C^surface. Take a function φeC^iβ) such that 0 = 1
on (20 and φ = 0 on G — Ωίt It is easy to see that φu belongs to 3, Therefore,

- £ ) ^ ί \F(φu)\2dx = |
Ω-E

Since this is valid for any ue@**, we have Mj(β-£)<;Cf*(αj, αj; Ω-JB, ^ Q ) .
Thus we obtain the required equality.

LEMMA 6.1. Let R = {x; r o <|x-x° |<r 1 } , (Xi = {x; |x-x o | = r j (i = 0, 1) and
E be a compact subset of R. Let ύ and uQ be extremal functions for C2(α0,
(x^R) and C5*(α0, α x ; R-E9 βQ) respectively. If C2(α0, α x ; JR) =

8 u = uQin R-E and

PROOF. Note that ύ is harmonic on R and uQ belongs to KD\R-E\ E)
by Proposition 3.1. By using Green's formula we have

From assumption it follows that

(6.3)

and

(6.4)

Therefore, ύ = uQ in JR — E by (6.3). On the other hand, u is given by the right-
hand side of (5.5). Hence, |Fu |#0 on K. Thus we conclude that V(E)=0 by
(6.4).

By the method similar to the proof of Lemma 5.2, we can show

LEMMA 6.2. Let G be a bounded domain containing E and let R be a ring
domain of the form R = {x; r o <|x — x°|<r1} with R^>G. Let u and uQ be
extremal functions for C2(α0, α^l ί) and C|*(α0, a^R — E, β^) respectively,
where <Xi = {x; |x-x°| = Γi} (i = 0, 1). Then
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for any u in KD2(G — E; £), where Hu and wf are harmonic functions defined

in%3.

PROPOSITION 6.5. Let G be a bounded domain containing E and u be a

function in KD2(G-E; E). If C2(α0, α x ; JR) = C|*(α 0, a^R-E, βQ) for every

ring domain R of the form R = {x; r o < | x —x°|<r 1} with R=>G, where αf = {x;

\x — χθ\ = ri} (7 = 0, 1), then u can be extended to a function in HD2(G).

PROOF. Let ύ and uQ be the same as in Lemma 6.2. By Lemma 6.1,

ύ = uQ in R-E and V(E) = 0. For u in KD2(G-E; £), applying Lemma 6.2 we

have

dE

Since wf and ύ are harmonic on some neighborhood of E and F(£) = 0, we see

that

f uX^-dS = f (Ft/*, Vu)dx = 0.
JdE OV JE

Hence

As in the proof of Proposition 5.3, we see that Hu = 0 in Ec. Therefore, u can be

extended to a function in HD2(G).

PROOF OF THEOREM 6.1. By Proposition 4.1, (1) implies (2). Clearly (2)

implies (3). If (3) is true, then from Corollary 4.2 and Proposition 6.1, (4) follows.

Clearly (4) implies (5).

Suppose (5) is valid. Let G be some bounded domain containing E such

that every u in KD\G-E\ E) can be extended to a function in HD2(G). For

two points x°, x1 in (G)c, let Pf be the principal function with respect to x°, x1

and Ec. Since the restriction of P? to G-E belongs to KD2(G-E; E\ we have

p Q - P = 0 in Ec. Hence we have (3) by Corollary 4.2. By Propositions 3.1 and

6.2, (4) implies (6).

Clearly (6) implies (7) and (8). By Proposition 6.5, we see that (7) implies

(4). Suppose (8) is valid. Since the equality Mi(Ω) = C2(α&, oc[; Ω) holds,

from Propositions 6.3 and 6.4 it follows that E is removable for KD2. Thus (9)

follows. If (9) is true, then from Lemma 3.1, (1) follows. The proof is com-
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pleted.

REMARK 6.1. Let R be a ring domain containing E. We shall show that

if R and E are suitably chosen, then C2(α0, α x ; R) = C%*(<xθ9 ocί; R — E, βQ) even

if E is not removable for KD2. Let R = {x; l < | x | < 2 } , αo = {x; |x| = l} and

α1=={χ; |x |=2}. Set α = (3/2, 0,..., 0) and

E = { x ; | x - α | £ l / 2 , |x| = 3/2} .

Obviously, #=>£. The extremal function ύ for C2(α0, OL1; .R) is given by ύ(x) =

(\x\2-N-l)/(22-N-l). It is easy to show that the restriction of ύ to R~E is

extremal for Cξ*(α0, αx R - E, βQ). Therefore C2(α0, αx #) = Cf *(α0, αx

Next, we shall show that E is not removable for KD2. If E is removable for

KD2, then so is for HD2. By Theorem 5.1 ((5)=>(7)) C2(α0, α t ; i ^ - £ ) = C2(α0,

α x ; R). Therefore it is enough to show that C2(α0, cc1; R — E)<C2(cc0, oc1; R).

We introduce the polar coordinates (r, θί9...9 ΘN_1) in RN, that is, r = | x | , xx =

..., xN = r sin ^ ^ -sin 0^.2 sin ΘN_U for x=(x l 5 . . . , xN). Let

Ω = {x; 3/2 < |JC| < 2, cos 0X > 17/18},

α0 = {χ; |JC| = 2, cosθi ^ 17/18} U {x; 3/2 ^ |x| ^ 2, cosθi = 17/18}

and

^ ^ { x lx-fll^l/4, |x| = 3/2}.

Take φeC^iΩ) such that φ>0 in Ω, |Γψ| eL2(Ω) and limx_>jϊφ(x) = i for every

x eαf (i = 0, 1). We extend $ by the constant 0 to a 2-ρrecise function on R — E.

Then we have that

(Pfi, F^>)i/x = ( 2 Λ Γ ) ( 2 1 ) ^ [ ^ -
R-E J j j c | = i J i or

= (N-2)(22~N- I)-1? 0 /̂5 < 0.

From Lemma 2.1, it follows that the restriction of ύ to R — E is not extremal for

C2(αo, αt R-E). On the other hand, the restriction of w to £ - £ belongs to

0(αo, αx; R-E). Thus we conclude that C2(α0, αx; JR-£)<C 2(α 0, α t ; Λ).

§7. NEDQ^-sets and removable sets for H D 2

It is well known that a compact set E is removable for HD2 if and only if

the Newtonian capacity of E is equal to zero (see, e.g., [3, §VII, Theorem 1],

[5, Theorem 2]). In this section we shall prove that the class of NED%'J-sets
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is identical with the class of removable sets for HD2.

If any two functions in HD2(EC) which differ by a constant are identified,

then HD2(EC) becomes a Hubert space with norm | | t ι | | = Π JFu\2dxj and

inner product (u, υ)=\ (Fu, Fv)dx. We note that KD\EC) is a closed linear

subspace of HD2(EC).

Let Ω be a regular domain in Ec, that is a bounded subdomain of Ec for

which dΩ consists of a finite number of compact (^-surfaces βu...,βk and no

component of £ c — Ω is relatively compact in Ec. Denote by HM2(Ω) the class

of all u in HD2(Ω) such that u = const, on each βj (j = 1,..., k). Let HM2(EC) be

the class of all w in HD2(EC) with the following property:

For every ε > 0 and every compact set K in Ec there exist a regular domain

Ω=>K and a function uΩeHM2(Ω) such that \ \F(u-uΩ)\2dx<ε.
JΩ

The following orthogonal decomposition of the space HD2(EC) follows in

the same manner as in [2, p. 295].

LEMMA 7.1. HD2(EC) = KD2(EC) © HM2(EC).

The following lemma is proved by using Green's formula and Lemma 4.1.

LEMMA 7.2. Let Po and P[ be principal functions with respect to x°, x1

and Ec. Let u be a harmonic function in HD2(EC). Then

(Fu, F(P0-Pl))dx = (iV-2)(W(x°)~M(x1)).
EC

We shall give some equivalent conditions for E to be removable for HD2.

THEOREM 7.1. For a compact set E in RN, the following statements are

equivalent to each other:

(1) E is an NEDψt-set;

(2) SQ'J(x°9 x1) is equal to zero for all distinct two points x°, x1 in Ec\

(3) SQ'7(x°, x1) is equal to zero for all x° in a non-empty open set Ω in

Ec and some x1 in Ec;

(4) The equality HD\EC) = KD\EC) holds

(5) For any domain G containing E, the equality HD2(G-E) = KD2(G-E;

E) holds;

(6) E is removable for HD2;

(7) The equality C2(α0, αx; D ~ £ ) = Cf *(α0, a^D-E, &) holds for every

two mutually disjoint closed balls Bo, Bx in Ec, where αj = d£f (i = 09 1) and

D^RH-iBoVBJ.

PROOF. By Proposition 4.1, (1) implies (2). Clearly (2) implies (3). Sup-
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pose (3) is valid. Let x°εΩ and xι eEc. Let P o , P? and P{ be the principal

functions with respect to x°, xι and Ec. By Lemma 4.2 (c), we have P? — P[ — 0

in £ c . For any u in HM2(EC), we shall show that M = const, in £ c . We see that

(Fu9F(Pί-P0))dx + [ (Fu9

From Lemma 7.2 it follows that

Since P o - P? e KD2(£C) and HM2(EC) and KD\EC) are orthogonal to each

other,

Hence, M(X°) = M(X1). Letting x° vary in Ω, we obtain u = const, in Ec. Since

this is valid for any u in HM2(EC), (4) follows from Lemma 7.1.

Suppose (4) is valid. Take any domain G containing E. Let u eHD2(G—

£). Then the function Hu defined in §3 belongs to HD2(EC). Hence Hue

KD2(EC). Therefore ueKD2(G-E\ E). Thus (4) implies (5). If E is not

removable for HD2, then the Newtonian capacity of E is positive. Let μ be the

equilibrium mass-distribution on E and consider the potential

f _dμ
J E | Λ "™"

dμ(y)

For any domain G containing E, this function belongs to HD2(G—E) but does

not belong to KD2(G-E;E). Thus the inclusion HD2(G-E)^KD2(G-E;
E) is proper. Hence (5) implies (6).

Suppose (6) is valid. Since the Newtonian capacity of E is equal to zero,

for any bounded domain G containing E every function in HD2(G—E) can be

extended to a function in HD2(G). Take two mutually disjoint closed balls

Bo, Bί in Ec. Set D=RN-(B0 UBX) and oίi = dBi(i=O, 1). Let u0 and Uj be

extremal functions for C2(α0, otί; D-E) and C|*(α 0, α x ; Z ) - £ , /?7) respectively.

Take a bounded domain G with EaGczD. Since the restriction of UQ-UJ to

G - £ belongs to HD2(G — E)9 there exists a harmonic function /ι in HD2(G) such

that wo-M/=/i in G - £ . By Lemma 2.1 and Lemma 2.3 (b), we easily see that

d S {

By using Green's formula we have

\
D-E
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= f d s {h + c)

JαoUαt dv ) δ E OV

= - { \Vh\2dx ^ 0,
JE

where c is a constant such that u0 — Uj + c is regular at infinity. Therefore uQ = uI

and we obtain (7). Since

C2(α0, α x ; D - £ ) g Cf*Oo> «i5 * > - £ , £Q) ^ Cϊ*(μθ9 ax; D-E, &),

(7) implies (1). The proof is completed.

REMARK 7.1. The results on the equivalence between (1), (4), (6) and (7)

are the euclidean space version of Minda's results on Riemann surfaces ([6,

Theorem 9 and its corollary]).

REMARK 7.2. Let R be a ring domain {x; r o < | x - x ° | < r 1 } containing E.

Let (Xi = {x; \x-x°\ = ri} (i = 0, 1). If E is removable for HD2, then M2(Γ(α0,

α x ; R-E)) = M2(ΓI(oc0, α x ; R-E)) for every ring domain JR containing E; how-

ever, we do not know whether the converse is true or not.

REMARK 7.3. We denote by NtfD2, NKD2 and NHD2 the classes of remova-

ble sets for HD2, KD2 and HD2, respectively. For any bounded domain G

containing £, we see that HD2(G-E; E)cKD2(G-E; E)aHD2(G-E) so that

NtfD2^>NKD2^NHD2. We show by examples that NJ?D2Ξ£NKD2 and NKD2=£NHD2.

Let E(N) be an iV-dimensional symmetric generalized Cantor set such that

the Newtonian capacity of Em is positive and V(E(N)) = 0 (see [3, §IV, Theorems

3 and 4]). By [5, Corollary 2 to Theorem 4] and [11, Theorem 11] we have

EmeNKD2. Since EiN)^NHD2, the inclusion NKD2^NHD2 is proper.

Let £(#-1) be an (N— l)-dimensional symmetric generalized Cantor set such

that the Newtonian capacity of £ ( j v - i ) x W c ^ N is positive and the (N— 1)-

dimensional Hausdorίf measure of £(#-1) is zero (see [3, §IV, Theorems 3 and

4], [4, p. 373]). Set E = E(N_1)x [0, 1]. Let Ω be an N-dimensional open

rectangle containing E with sides parallel to the coordinate axes and αj, cc[ be

the sides of Ω parallel to the coordinate plane Xj = 0. Since the projection of E

on αj (i = l,..., N) has the (N— l)-dimensional Lebesgue measure zero, we can

show that

M2(Γ(αδ, αi Ω-E)) = M2(Γ(αj, α< Ω)) (i = 1,..., N).

By Theorem 5.1 ((8)=>(5)) we obtain EeN^D2.
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Next, let jBί = £ ( N _ 1 ) x{i} (ΐ = 0, 1). Since the Newtonian capacity of Et is

positive, there exists the equilibrium mass-distribution μf on E( (i = 0, 1). Con-

sider the function

u(χ) =
\x-y\N~2 ) E ι \x-y\-y\N'2

It is easy to show that u belongs to KD2(Ω — E; E) but can not be extended to a

function in HD2(Ω). This implies that E^NKD2. Thus the inclusion NJJ-D2^>

NKD2 is proper.

Thus in the N-dimensional space RN (iV^3), the classes of iV£D2-sets, NED%-

sets and NED%»7-sets are actually different.
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