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Introduction

L. Ahlfors and A. Beurling [1] gave a characterization of the removable
singularities for the class of analytic functions with finite Dirichlet integral, in
terms of extremal distances on the complex plane. In the N-dimensional eu-
clidean space RY, Viisild [9] introduced the notion of null sets for extremal
distances of order N, namely, NED-sets, and gave measure-theoretic conditions
for NED-sets.

In the present paper, we are concerned with the extremal distances of order 2
in the N-dimensional space RN with N>3 and give several characterizations of
null sets for these extremal distances. More precisely, we shall consider the
following three kinds of null sets. Given a compact set E in RY, denote by
(E‘)Q the Kerékjarto-Stoilow compactification of E¢ (=RN—E) and by (E°),
the Aleksandrov compactification of E¢. Let By, B, be two disjoint closed balls
in E¢, A be the extremal distance of order 2 between B, and B, and A, (resp. Ag, 4;)
be the extremal distance of order 2 between B, and B, relative to E¢—(B,U B,)
(resp. (E€)g—(BoUBy), (E9);—(BoUBy)). If o= (resp. ig=4, g=4;) for
every choice of B, and B,, then we call E an NED,-set (resp. NED%-set, NED%--
set).

Corresponding to these extremal distances, there are notions of 2-capacities
of condenser, which were studied by many authors (for example, see [12], [5],
[11]); and there are also notions of principal functions (see [8]). We shall give
characterizations of NED,-sets, NED$-sets and NED% I-sets in terms of corre-
sponding 2-capacities of condensers and principal functions.

Another characterizations will be given by the removability for certain classes
of harmonic functions (cf. [5], [8], [11] for related results). Let G be a bounded
domain containing E and let HD*(G) (resp. HD*(G—E)) be the class of all har-
monic functions with finite Dirichlet integrals on G (resp. on G—E). We shall
say that E is removable for HD? (resp. KD?; @2; HD?) if every ue HD*(G—E)
with ‘‘vanishing normal derivative along E” (resp. with no flux; with no flux and
‘‘constant value along each component of E”’; with no additional condition) can

be extended to a function in HD?*(G). (For precise definitions of }}‘bz, KD?,
I?D% see §3, as well as the references cited above.) It is well known (see [3])
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that E is removable for HD? if and only if the Newtonian capacity of E is zero.
We shall show that E is an NED,-set (resp. NED%-set; NED$!-set) if and only if
it is removable for HD? (resp. for KD? as well as for I%\bz; for HD?). From the
relations HD? < KD2< HD?, it follows that every NED®-I-set is an NEDZ-set and
every NED%-set is an NED,-set. In the final remark (Remark 7.3), we give ex-
amples which show that these three classes of null sets are actually different.
[Here we note that in the two dimensional case, the classes of NED%-sets and
NED,-sets coincide (see [1], [8]).]

§1. Preliminaries

We shall denote by x=(x,, x5,..., Xy) a point in R¥, and set |x|=(x}+x3}
+--++x%)!/2. The inner product of x and y € RN will be denoted by (x, y). For
a set E in RY, we let OE denote its boundary, E its closure and E° its complement.
The N-dimensional Lebesgue measure of E will be written as V(E). For an open
set G in RV, let L%(G) be the family of real valued measurable functions f on G for
which [f|? is integrable. We denote by C®(G) the family of infinitely differ-
entiable functions on G and by CZ(G) the subfamily consisting of functions with
compact support in G. For a function u defined in G, we let Fu denote the
gradient of u in case it exists.

Let 7 be a C!-surface which divides RY into a bounded domain and an
unbounded domain. In this paper, when we consider the normal derivative d/dv
at a point of 7, the normal is drawn in the direction of the unbounded domain.

Let G be a domain in RY. By a locally rectifiable chain in G we mean a
countable formal sum y=3y, where each 7, is a locally rectifiable curve in G.
If f is a non-negative Borel measurable function defined in G and y=3y; is a

locally rectifiable chain in G, then we set S fds=ZS fds, where ds is the line

7
element. Let I' be a family of locally rectyiﬁable chaihs in G. A non-negative
Borel measurable function f defined in G is called admissible in association with

I if \ fdsz1 for each yeI'. The 2-module M,(I') is defined by inf,\ f2dx,
T )e

Y
where the infimum is taken over all functions f admissible in association with I'
and dx is the volume element. The following properties are well known (see,
e.g., [7, Chapter I]):

(1.1) IfT, < Ty, then My(I'y) < My(T,).
(1.2) Ifeach y, eI, contains a y, € I',, then M,(I'y) £ My(T',).

A property will be said to hold 2-almost everywhere (=2-a.e.) on I' if the 2-
module of the subfamily of exceptional chains is zero. Denote by GQ (resp. G))
the Kerékjarté-Stoilow compactification (resp. the Aleksandrov compactification)
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of G. Incase I is a family of curves in G, or in G, such that the restriction 7|g
is a locally rectifiable chain in G for each y e I, we denote by M,(I*) the 2-module
of {y|g; ye '} Hereafter, by a curve we shall mean a locally rectifiable curve.

A real valued function u defined in a domain G in R -is called 2-precise (or
BLD), if it is absolutely continuous along 2-a.e. curve in G and |Fu|, which is
defined a.e., belongs to L%(G). For a compact subset « of 0G, let ['g(«) be the
family of all curves in G each of which starts from some point of G and tends to
o. A 2-precise function u on G has a finite curvilinear limit u(y) along 2-a.e.
curve y in Ig(a) (see [7, Theorem 5.4]).

§2. Extremal distances and capacities of condenser

Let G be a domain in R¥ and «,, «; be non-empty compact subsets of oG
such that ag N o, =Cf. We denote by I'(ay, a;; G) the family of curves in G each
of which connects a, and a,. The reciprocal of M,(I'(ag, &,; G)) will be called
the extremal distance of order 2 between «, and a; relative to G. Denote by
D(ag, oy ; G) the family of all 2-precise functions u on G such that u(y)=0 (resp.

1) for 2-a.e. ye ['¢(ay) (resp. I'g(a;)). We define the 2-capacity of the condenser
(aO’ ays G) as

Cy(ag, o3 G) = inf{gGqulzdx; ueD(ag, dy; G)}.

LEMMA 2.1 ([11, Theorem 4]). In case M,(I'¢(ao) U F'(2)))>0, there ex-
ists a unique harmonic function ugye 2(ay, o,; G) for which

Coloo, 013 G) = | [Puoldx.
It is characterized by the condition that uye€ 2(a,, o,; G) and
SG(Vuo, Po)dx=0

for every 2-precise function v-on G such that v(y)=0 for 2-a.e. y € [ (o) U Fg(azy).

We call u, the extremal function for C,(ag, a;; G).

The following property is known (see [7, Theorem 6.10] or [12, Theorem
3.8]):

(2.1) Cy(ag, 213 G) = M,y(I'(a, 245 G)).

Let E be a compact set contained in a domain G such that E¢ is a domain.
Let «y, a; be as above. We denote by I'g(xg, &;; G—E) (resp. I'j(xg, @;; G—E))
the family of curves in (E€)y—G¢ (resp. (E°);—G°) each of which connects «,
and o,.
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Let {G,}>., be an approximation of G—E towards E such that each G, is
a subdomain of G—E, each 0G, consists of 0G and a finite number of compact
Ct-surfaces B{,..., Y05y, G,=G,+, UG (n=1,2,...) and U, G,=G—E. De-
note by 2*(ag, o;; G,,, {}) the family of all u € 2(x, a;; G,) such that u(y)
=a; for 2-a.e. y ef‘Gn(ﬂS-")) (j=1,..., j(n)), where each a; is a constant depending
onu. We set

CHaos @15 Gy (8D = inf {{ _ 17ulPdx; ue 9o, oi; Gun (8D}

In the same way as in [11, Theorem 1], we see that if M,(I" 6. (0o) U r 6. (2)>0,
then there exists a unique harmonic function u,, in 2*(xo, ;; G, {[33.")}) for
which

CHeor 315 G (7)) = [ 17ungl?d.

We call u,, , the extremal function for C¥(a, &5 G,, {B§}). It is characterized
by the condition that u, o € 2*(xo, @;; G,, {B"}) and

XG (P g, P9)dx = 0

for every 2-precise function v on G, such that v(y)=0 for 2-a.e. yel’ 6, (a) U
I («;) and v(y)=a;, for 2-a.e. ye [ (B) (j=1,..., j(n)). Note that C¥(ao, a,;
G, (BN C¥(0t, 015 Gpyys {BY*V}) (cf. [11, §1]). Therefore the limit

C;*(“o, I G- E’ BQ) = limn—’oo C;(aOa ®y5 Gm {ﬂ_(l")})
exists and does not depend on the choice of approximation.

LEMMA 2.2. In case M,(Fg(ap) U Fg(x,))>0, there exists a unique har-
monic function ug on G—E such that

$*(0 25 G — B, Bp) = | [Puqlds

and ugy(y)=0 (resp. 1) for 2-a.e. ye['¢(xy) (resp. [g(y)). It satisfies the con-
dition that

S (Pug, Pd)dx = 0
G—E

for every ¢ e C°(G—E) such that |V ¢| e LG—E), V¢ vanishes on some neigh-
borhood of E and ¢(y)=0 for 2-a.e. y € ['g(ap) U Fg(ay).

Proor. Let {G,};X, be an approximation of G—E towards E as above.
Let u,, be the harmonic function which is extremal for C3(a, a,; G,, {B{}).
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As in the proof of [11, Theorems 1 and 2] we see that there exists a unique har-
monic function u, on G—E such that

Ct*o 3 G— B fiy = | 1Pugld
and
lim, .., SG |7 (.0 —tig)l2dx = O.

Let ¢ be a function of C®(G— E) such that |F ¢| e L3(G—E), F¢ vanishes on an
open neighborhood U of E and ¢(y)=0 for 2-a.e. ye[s(ao) U Fg(ey).  For n
such that 0G,—0G < U, we'have

(. g 7drax=o0.
By letting n— oo we see that SG E(V ug, V¢)dx=0.

We call u,, the extremal function for C3*(«, o;; G—E, ﬂQ).

In case G is an unbounded domain such that 0G is compact, we define the
following capacities of the condenser of E. Let {G,}3, be an approximation
of G—E towards E U {o0} such that each G, is-a bounded subdomain of G—E,
each 0G, consists of 0G and a finite number of compact C!-surfaces g{",..., Bi7),,
G,=G,,,U0G (n=1,2,..) and \U%, G,=G—E, where oo means the point at
infinity of R¥. Denote by 2*(xg, &3 G,, {#"}) the family of all ue D(ay, a,;
G,) such that u(y)=a; for 2-a.e. yelg (B) (j=L1,..., j(n)), where each a; is a
constant depending on u. Denote by 2*(ao, a; G,, f™) the family of all
ue D*(do, ay; G {B)) such that u(y)=const. for 2-a.e. ye\UIWF; (Bm).
We set

C3(xo, a1 Gy {Igf,")}) = inf {SG [Pul|?dx; ue 2%, 1; Gy, {BS")})},

C3(ao, 215 Gy, B™) = inf {SG [Pul?dx; ue 2*(ay, ay; G,, ﬁ(n))}_
We know (cf. [11, §1]) that
Cg*(“o, o5 G_E’ ﬁQ) = limn—voo C:(“o, A5 Gm {ﬂ_(]")})’
C?“(Q‘o» o5 G—E’ ﬁl) = limn-hoo C:(“Oa ®y15 Gm ﬁ(n))

exist and these capacities of condenser do not depend on the choice of approxi-
mation {G,}.
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LemMA 2.3 ([11, Theorem 2]). (a) In case My(Fg(0o) U Fg(2))>0, there
exists a unique function ug harmonic on G—E which satisfies

C1* (0o, 043 G—E, Bg) = | _ [Pugldx.
G—
It satisfies the condition that
[ (ug 7o)z =0
G-E

for every ¢ € C*°(G—E) such that the support of |p¢| is compact in G—E and
¢=0 on U N (G—E) for some neighborhood U of ay U a;. ,

(b) In case My(F4(oo) U Fg(e)))>0, there exists a unique function u,
harmonic on G— E which satisfies

CE*@or a3 G=E, ) = | IPuildx.

It satisfies the condition that

S (Puy, P$)dx = 0
G—-E

for every ¢ € C*(G—E) such that ¢=const. on U' N (G—E) for some neighbor-
hood U’ of EU {0} and ¢=0 on U n(G—E) for some neighborhood U of 0G.

We call ug (resp. u;) the extremal function for C3*(ay, ay; G—E, By) (resp.
C3*(20, #15 G—E, By)).
The following property is known:

(2.2) C3*(ap, @5 G—E, BQ)=M2(FQ(“0, ay; G—E))
and  C3*(ao, ; G—E, f;)=M (I (%, a;; G—E)) ([11, Theorem 6]).

Hereafter we shall always assume that E is a compact set whose complement
is a domain. Suppose that B, and B, are two disjoint closed balls in E°¢. Set
D=R¥—(ByUB,) and a;=0B; (i=0, 1). We consider the families I'(ay, ®,; D)
and I'(2y, «,; D—E). Following Viisild [9], we define the following null set
for extremal distances.

DEerFINITION 1. A compact set E is called an NED,-set if M,(I'(a, a;;
D —E))=M,(I'(ap, 2, ; D)) for all pairs of &, and «,.

Moreover, we consider the families I'g(xtg, @y; D—E) and I'f(xg, oy ; D—E).
By (1.1) and (1.2), we see

My(I'(2g, 13 D—E)) < M(I'(29, 245 D)) < Mz(rq(ao, a;; D—E))
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< M,(I'(2, a;; D—E)).

DEFINITION 2. We say that E is an NEDZ-set (resp. NED$!-set) if M ,(I'(cto,
ay; D)=M,(I'g(0g, 213 D—E)) (resp. My(I'g(atg, &y ; D—E))=M (I' (et, &y; D—
E))) for all pairs of oy and a;.

The property (2.1) allows us to replace the equality M,(I'(ag, &t;; D—E))=
M,(I'(ag, ay; D)) by the equivalent equality C,(eg, y; D—E)=C,(ag, ®;; D).
Thus we have the following definition which is equivalent to Definition 1.

DEFINITION 1’. A compact set E is called an NED,-set if C,(ag, &,; D—E)
= C,(a, & ; D) for all pairs of a, and ;.

Similarly, by virtue of (2.2) we have

DEFINITION 2’. A compact set E is called an NED%-set (resp. NED%:-set)
if Cy(ag, 23 D)=C3*(2g, ¢y D—E, ng) (resp. C3*(2g, @y; D—E, Bo) = C3*(a,
oy; D—E, B))) for all pairs of ag and a;.

§3. Classes of Dirichlet-finite harmonic functions

Let E be a compact set such that E¢ is a domain and G be a domain con-
taining E. We denote by HD*(G) the class of all functions u harmonic on G
such that its Dirichlet integral SGlV u|2dx is finite.

Let {Q,}2., be an approximation of E¢ towards E, that is, each Q, is an
unbounded subdomain of E¢, each 09, consists of a finite number of compact
C!-surfaces such that the interior of each surface of 09, contains at least one point
of E, ,cQ,,; (n=1,2,...) and \U®, Q,=E°¢. Let G be a domain such that
GoE and Go0Q, for all n. Let g and u be harmonic functions in HD*(G—E).
Then the limit of San g(0u/ov)dS exists and does not depend on the choice of

approximation {Q,}, where dS is the surface element. Therefore we use the
symbolic expression

U ;o _ 1: ou
SaEngs = hm,,_,wgmngwd&

We denote by HD? (G—E; E) (resp. KD*(G—E; E)) the class consisting of
all u € HD*(G —E) each of which satisfies

SG_E(Vu, P é)dx = 0

for every ¢ € C*°(G—E) such that ¢ =0 outside some compact set contained in
G and |F ¢| € LG —E) (resp. for every ¢ € C3(G) such that ¢ vanishes on some
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open neighborhood of E). We denote by _Ia)Z(G—E; E) the class consisting of
all ue KD¥G—E; E) each of which satisfies

: o9
—-2dS =0
§ pas =
for every ge KD*(G—E; E). We note that H’\DZ(G E; EYce KD¥(G—E; E)
and S(au/av)dS 0 for any ue KD*G—E; E) and for any compact Cl-surface

7 in G—E which is homologous to zero in G. In case G RY, we write KD?*(E®)
for KD¥(RN—E; E).

DErFINITION. We say that a compact set E is removable for HD? (resp.
HD2 KD?, KD"') if for some bounded domain G contalmng E every function in

HD*G—E) (resp. HD¥G—E; E), KDXG—E; E), KDXG—E; E)) can bé ex-
tended to a function in HD*(G).

The following lemma which relates the removable sets for KD? to the
extremal distances is known.

LemMa 3.1 ([11, Theorems 7 and 13]). For E to be removable for KD?
it is necessary and sufficient that M,(I'(a, 13 D—E))=M,(I'o(%o, &1 ; D—E))
for all pairs of &y and a,, where D=R¥—(B, U B,) and a;=0B; (i=0, 1) for two
disjoint closed balls By, By contained in E°. \

LemMA 3.2, S Eg(au/av)dS-—-O for any geHD*G—E) and for any
~ 0
ue HD¥G—E; E).

Proor. Take any ¥ € C3(G) such that Y =1 on some neighborhood of E.
By Green’s formula we have

S glvl s = - SG_E(V“, F(¥g)dx =0

ProrosITION 3.1. Let G be a domain containing E and oy, oy be non-
empty compact subsets of dG such that agNo; = and My (Fo(ato) U Fg(ey))>0.
Let uq and ugy be extremal functions for Cy(ay, @y; G—E) and C¥*(ao, o; G—E,
ﬁQ) respectively. Then uq (resp. ug) belongs to I?DZ(G—E; E) (resp. I’(\DZ(G—E ;
E)).

Proor. The fact that u, belongs to I-}\bz(G—E ; E) is a simple consequence
of Lemma 2.1. By Lemma 2.2, uye KDXG—E; E). Let {G,}©; be an ap-
proximation of G—E towards E as in §2. Let u,, be the harmonic function
which is extremal for C¥(«g, a;; G,, {8%”}). We shall show that u, o=const. on
each {». Take a bounded domain G such that EcG <G hold, G is a compact
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C'-surface and \U{®) B <G for all n. We know (cf. [8, p.239]) that there

exists a unique harmonic function #,, on G n G, such that i, ,=u,, on G,

i, o=const. on each B and Sﬂ(“) (0i1,,o/0v)dS =0 for each j=1,...,j(n). By
< :

using Green’s formula, we obtain

SGnG.. IVﬁ"’QIde = anGanu"’QIde.

The function #,, ; which is equal to #, 4 in G n G, and to u,, on G—G belongs to
D*(ag, 015 Gy, {fY}). By the uniqueness of u,q, u,o=f,o in G, Hence
u, o=const. on each f. As stated in the proof of Lemma 2.2, we see that .

lim,._.mSG P (uy g—ug)2dx = O.

Therefore, u, o converges to uy uniformly on every compact subset of G—E.
Take any g e KD¥(G—E; E). We have

% 45 = lim, .. | | 99
.gacn—acua 3 dsS = lim,,_, 0Gn-t?Gum'Q 7y ds

‘ 0
um’Q—a%dS,

= lim,_.,, g
‘7(Gm_Gn)

because u,, o =const. on each ¢ and SB (aglav)dS=O. Hence

(m)
J

m

qu—g—dS = lim,0 S G"(Vu,,,,Q, Vg)dx

SBGn—ﬁG

= g (Pug, Vg)dx.
G—E~-Gn

Letting n—oo we conclude that S ug(dg/av)dS=0. Accordingly uge KD¥(G—
JE
E; E) and thus our proposition is proved.

REMARK. Let G be an unbounded domain such that G is compact. Let
ug be the extremal function for C3*(ao, @y; G—E, f5). By Lemma 2.3 (a), we
have uy,e KD¥(G—E; E). Moreover, as in the proof of Proposition 3.1 we

have uge KD¥G—E; E).

We take two bounded domains Q, and @, such that EcQ,cQ,cQ, <0,
=G and each of 8Q, and 0Q, consists of a single compact C!-surface. For any
u in HD*(G —E), we set

__ 1 1 du _ 0/ 1 _
W16) = S =2y o (772 G 3y () Jas. a=o0n,
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where r denotes the distance from a point x to the variable on 09Q;, ¢ is the surface
area of the unit sphere in RY. Each u} is harmonic in R¥ —0Q; (i=0, 1). When
x lies in the domain Q, — Q,, the equality u(x)=u%¥(x)—u¥(x) holds. Moreover,
if we define a harmonic function H, by

u¥(x) if xeRV-Q,
H/(x) = _
u¥(x)—u(x) if xeQ,—E,

then it is easy to see that H, is a harmonic function with finite Dirichlet integral
in E°¢ and regular at infinity, that is, lim,_, H,(x)=0. We note that if ue
KD*G—E; E), then H,€ KD*(E®).

Let G be an unbounded domain such that 6G is compact and let u € HD*(G).
Then there is a constant ¢ such that u+c is regular at infinity. Moreover, we
know that |x|(u+c) and |x|N~1(du/dx;) (i=1,..., N) are bounded as |x|—oco.
Hence we have

(3.1) Sw" w+c)dlds—0  (as n—> ),

where ve HD*(G) and {G,}2, is an approximation of G towards {c0}.

§4. Principal functions

Let E be a compact set such that E¢ is a domain. Take any distinct two
points x°, x! in E¢ and open balls V,, V; centered at x°, x! with disjoint closures
in E¢. Let {D,}2., be an exhaustion of E¢, that is, each D, is a bounded sub-
domain of E¢, each oD, consists of a finite number of Cl-surfaces g (j=1,...,
jn), D,cD,,; (n=1,2,...) and \UX, D,=E°. We may assume that D, con-
tains V, U V; for all n. We know (cf. [8, p. 242]) that there exist the principal
functions P, ,, P¢, and P, with respect to x°, x! and D,, which are character-
ized by the following properties:

(1) Py, P¢,and P], are harmonic on D,—({x°} U {x!}) and continuous
on 0D,;

@ Py, =0"Yx—=x>N+ by, on V,,
P?,=0"Yx—x>¥+h¢, on V,
P{, =07 x—x°*N + h{, on V,,
where hy ,, h%, and hi , are harmonic on Vy;
(3 Pop=—0tx=x'P"N+f, on Vy,

P2,=—oYx—x>¥Y+f¢  on V,
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VP{,n = - o-—llx_x1|2—N +f{,n on Vl’

where f, ., f%,, and f{, are harmonic on ¥, and f, (x1)=f¢ (x")=f] (x")=0;

0P, _
©) 3y =0 on 0D,

0P¢
mdS =0
M ov

P2, = const. on each Bi” and S
for j=1,..., j(n),
P{, = const. on 0D,
We see that the limits
Py =1lim,., Py, P¢%=1im,.,P¢, P}=1Iim,.,P],;
ho = lim,, ho,, he =lim, o h$, hi=1lim,,,h,;
o =lim, o form fE=lim,.fP, fl=lim,.fl,

exist and the convergences are uniform on every compact subset of E¢. These
limit functions do not depend on the choice of exhaustion (see [8, p. 246]).
Further we define a harmonic function P on RN —({x°} U {x!}) by

P(x) — 0.—1(|x_x0|2—N —_ Ix__xllz—N — |x°-—x1|2"").
Set
h(x) = — o7 1(Jx—x! "N + |x0—x!|2~¥),
F@) = 071 (x—x0 — [x0—x1[2¥).

Then h (resp. ) is harmonic on some neighborhood of x° (resp. x1), and f(x!)=0.

For the purpose of obtaining a relation between null sets and principal
functions, we consider the following quantities which are similar to the span
(cf. [8, p. 247]):

S(x°, x1) = ho(x°) — h(x°),

§o(x0, x1) = h(x°) — hY(x°),

S21(x°, x') = h§(x°) — h{(x°).
LeMMA 4.1.

(@) SaEg(aPolav)dS =0 for any g HD¥G—E).

(b) SaEP?(aglav)dS =0 for any ge KD¥G—E; E).
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© gaE(P{+C)(6g/6v)dS =0 for any ge HDXG—E), where c is a con-

stant such that P! +c is regular at infinity.

Proor. (a) and (b) are seen in the same manner as Proposition 3.1 (cf.
[8, p. 58]). To show (c), we consider the harmoni¢ function H, which is defined
in §3. By using Green’s formula and (3.1) we have

S (Pl+ ) o g5 — o,
OE ov

By the definition, H,=g%}—g in Q,—E for some domain Q, containing E and g3
is harmonic on ©,. It is easy to see that

[ 1+ o%las=o.
0E ov
Hence, | _(Pl+¢)(@g/ov)ds =0,

Using Green’s formula and Lemma 4.1, we have the following

LeEMMA 4.2.

@ { 1P =w-2800, 2 - ( PeLas.

® ( 1r@-rprar = (v-28%,x) - | PPas.
E¢ o OV

© |, IPPg=PhIdx = (N-2)521(x%, x1).

'PROOIF_. Let ¢o and & be constants such that Py+c, and P+2 are regular
at infinity. By using Green’s formula and Lemma 4.1 (a), we obtain

SEC 7 (P~ B)|2dx = '—: S”(Po—m co—z)_————?(”gv“ﬁ) ds

=,SBE(‘P6—F+ Co— E)gg-ds :
oP oP
=Sab_ Poa—vdS - Swﬁm—ds.

We take a sufficiently small >0 such that En (B, UB,)=C and By B, =,
where B;={x; |[x—x!<r} (i=0,1). Let o;=0B, (i=0,1). By using: Green’s
formula and Lemma 4.1 (a) we have
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ap — ~ aP() » 13 -~ 5P0 _ aﬁ
SGEPOWdS-—SbE(F+C) o 45 + S“UM((P+C) P (po+co)a_v>ds

— D ~ aPO _ aF
N Saan;((P+C) ov (P0+CO)_37->dS.

Letting r—0, we see

g Po—g—EdS — (N=2)3(x°, x1).
o0E V. .

Thus we obtain (a). By similar arguments we obtain (b) and (c).

From this lemma we can derive that the property S(x°, x!)=0 means P,— P
=0in E°. In fact, since P is harmonic on E, by Green’s formula we obtain

S g—ﬁdS=S 7 Bl2dx.
oE v E

If §(x°, x!)=0, then (a) of the above lemma implies ‘

0< SE |P(Po—P)|2dx = — SEIVﬁlzdx <0,
so that P,—P=const. in E¢. Since fo(x!)=f(x1)=0, P,—P=0 in E°. More-
over, since V({x; |F P(x)|=0})=0, it follows that V(E)=0. Thus we have

COROLLARY 4.1. If §(x°, x1)=0, then Po—P=0 in E¢ and V(E)=0. If
Po—P=0 in Ec, then §(x°, x')=0 and V(E)=0.

Similarly, we obtain

COROLLARY 4.2. If §9(x°, x')=0, then P—P%=0 in E° and V(E)=0. If
P—P$¢=0 in E°, then §%(x°, x!)=0 and V(E)=0.

We prove

PROPOSITION 4.1. If E is an NED,-set (resp. NED%-set, NED%I-set),
then S(x°, x!) (resp. 82(x°, x1), S21(x, x!)) is equal to zero for all distinct
two points x°, x! in E°.

Proor. Take any distinct two points x°, x! in E¢ and mutually disjoint
closed balls By, B, in E° of radius r and with centers at x%, x! respectively. Set
D=RN—(B,UB,) and o;=0B, (i =0, 1). As in the latter half of the: proof of
[11, Theorem 13], for sufficiently small r we have the following inequalities: .

N=2
> —_
o2 Ciag, ay; D=E) " or

Z o

“4.1) MaXyeqo Ao — Millyey,

-2
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g min,,, hO — MaXycq, fO;

~ . N-2 2
—_ > —
4.2) max,.,, # — min,, f = C0 2, D) ~ or¥2

g minxsao ﬁ — MaXycq, i;

Q_ . Qs N-=2 2
@3 Mo BT~ Wi ST 2 oy, a1 D, ) a7

2 minxeao hClZ - maxxea;f‘lz;

_ N-2 2
I_ I > -
4.4) MaXyeqo Al — Millyeq, f1 2 C3*(a0, 0y D—E, B;) or"?

2 Miflyey, B — MXyeq, 1.
If E is an NED,-set, then the equality
Ca(%o, 215 D—E) = Cy(atg, 3; D)
holds. By (4.1) and (4.2) we see that
MAXyeqy ho — Millyy, fo 2 MiNygy B — MaX,g,,
Max,,, h — min,,, f = min,, hy — max,,, fo.

Since fy(x)=f(x!)=0, letting r—0 we have S(x° x!)=0. The results for
NED%-set and NED%:!-set are established in the same manner.

REMARK 4.1. In the above proof we showed that if Cy(eo, a;; RN —
(Bo U B))—E)=C,(ag, ¢ ; RN—(B, U B,)) for any mutually disjoint closed balls
B, and B, in E° with respective centers x° and x!, then S(x°, x!)=0. Similar
facts are true for §2(x?, x') and S2:7(x°, x1).

In view of Corollaries 4.1 and 4.2 we have
COROLLARY 4.3 (cf. [9, Theorem 1]). If E is an NED,-set or an NED%-set,
then V(E)=0.

REMARK 4.2. We shall show later in Remarks 5.2 and 6.1 by examples
that the converse of Corollary 4.3 is not always true.

§5. NED,-sets and removable sets for HD?

Let G be a domain containing a compact set E. Let a,, «; be non-empty
compact subsets of dG such that ag Na;=¢F. We say that a compact set E is
an NED,-set with respect to G if M,(I'(a, ®;; G))=M,(I'(ag, @, ; G—E)) for
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every disjoint compact subsets a,, ¢, of 0G. By (2.1) we see that E is an NED,-
set with respect to G if and only if C,(ag, o;; G)=C,(, ®,; G—E) for every
oo and a;.

A bounded domain R is called a ring domain if its complement consists of
two components.

In this section we shall show the following theorem.

THEOREM 5.1. For a compact set E in RV, the following statements are
equivalent to each other:

(1) E is an NED,-set;

(@) 8(x°, x1) is equal to zero for all distinct two points x°, x! in E¢;

(3) S(x°, x?) is equal to zero for all x° in a non-empty open set in E° and
some x! in E°¢;

(4) For any bounded domain G containing E, every u in I’J\bz(G—E; E)
can be extended to a function in HD*(G);

(5) E is removable for I%Z;

(6) E is an NED,-set with respect to every domain G containing E;

(7) The equality C,(og, @45 R—E)=Cy(tg, ®;; R) holds for every ring
domain R containing E, where a, and o, are two boundary components of R;

(8) The equalities C,(ab, at; Q—E)=C,(od, ai; Q), i=1,..., N, hold for
some N-dimensional open rectangle Q> E with sides parallel to the coordinate
axes, where b and o} are the sides of Q parallel to the coordinate plane x;=0.

REMARK 5.1. For a result related to the equivalence between (1), (4), (5)
and (6), see [10, Theorem 3.1].

To prove this theorem we prepare some propositions.

LeMMA 5.1. Let G be a bounded domain containing E and u be a function
in ITDZ(G—E ; E). Then

B oE v

for any distinct two points x°, x! in E¢, where H, and u% are harmonic functions
defined in § 3.

ProoOF. By using Green’s formula and Lemma 4.1 (a), we obtain

S (PH,, 7 (Py—B))dx = —S Hi(—P_O“—P)dS=S 1P s
Ec OE

s * OV vov

We take a sufficiently small >0 such that En (B, UB;)={ and B, N B,=,
where B;={x; |x—x!<r} (i=0,1). Let o;=0B;(i=0,1). By using Green’s
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formula we have

oP
“ v

S gP, s=g (P+c) uds+§“ ( )ds,

v ov

where ¢ is a constant such that F +c is regular at infinity. Since H,=u¥—u in
Q,—E for some domain Qo containing E and u?} is harmonic on Q,

H, pout 4o _ S u
S (P+eyPfags = 3 PUgs( (Brofias
Since u eHDz(G—E; E), by Lemma 3.2 we have

S (P+c) 44§ = 0.

Thus,
: aﬁ> ds.

S (VH,, V(PO—P))dx=S F‘?a_”’deJrS
E€ oE v aanu

Letting r—0, we obtain the required equality.

PROPOSITION 5.1. Let G be a bounded domain containing E and u be a
function in HD’(G E;E). IfP,—P=0in E¢ for any x° in a non-empty open
set Q in E° and some x! in E°, then u can be extended to a functwn in HDZ(G)V

Proor. Let x°eQ and x' e E°.. By Lemma 5.1 we have

(N=2)(H,(x")— H,(x%) = S P out s,

Since P and u} are harmonic functions with finite Dirichlet mtegrals on some
nelghborhood of E and V(E)= 0 by Corollary 4.1, using Green’s formula we have

S p ‘96“? ds = S (B, Pu*)dx =0
oE v E

Hence, H,(x!)= H, x%). Letting x° vary in Q, we obtain H,=const. in E°.
Therefore u= u¥+const. in Q,—E for some domain €, containing E. Thus
we conclude that u can be extended to a function in HD*(G).

PROPOSITION 5.2. ' Let G be a domain containing E and oo, &; be disjoint
compact subsets of 0G. _Let uy be an extremal function for. Cy(xy, a;; G— E).
If V(E)=0 and ug.can be extended to a harmonic function ii, on G, ‘then the
equality

Cy(0g, 2013 G—E) = Cy(eg, 55 G)
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holds.

Proor. Since iy € 2(a, o,; G) and V(E)=0, we have .
Calto 415 G) S | IPiofdx = IPuoldx = Cy(ao, 23 G=E).

The converse inequality being valid, the equality follows.

LeEMMA 5.2. Let G be a bounded domain containing E and let R be a
ring domain of the form R={x; ro<|x—x% <r,} with RoG. Let i, and u,
be extremal functions for C,(ag, o1 ; R).and Cy(aty, oy; R—E) respectively, where
o;={x; |[x—x°=r} (i=0, 1). Then

(5.1) SR (VH,, V(ﬁo—-uo))dx=g H, %0 g5 Swao‘a“’fds.

ao—ﬁl u a a

for any u in HD2(G E; E), where H and u} are harmonic functions defined in

§3.

Proor. We note that @iy —uq is harmonic on R—E.and .fig—u,=0 on oy U
®;. By using Green’s formula we have

(5.2) SR_E(VH,,, P (i — ug))dx = —S‘_’E(u0 ug) g,

By the definition we can take a bounded domain @, such that GoQy>E and
H,=u¥—uin Q,—E. Since u eI-’I\I)Z(G—E; E), by Lemma 3.2 we have

S 1,9 45 = 0.
Hence,
OH, ;o ( . Out
(5.3) Swuo B, s = S”uo 1t gs.

On the other hand, Green’s formula gives

0H, ou
- H, O)ds 0.
San %o 6E< Y75y ov 0

Since u, elﬁ)z(G—E ; E), SaEH,,(auo/av)dS =0 by Lemma 3.2. Hence,

0H, ;o _( O0H, Y L
S uo?He g5 = S A dS+S¢6_; 1, %%0ds.

Since o, is homologous in E°¢ to some f consisting of a finite number of C!-
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surfaces in Q,—E,

0H, ,« _( 0H, ;o _ ( Ouf _S Ou
S“ A dS—Sp £ dS—Sp solas — | Zuas.

Since u¥ is harmonic on Q, and u belongs to I-?b%G——E; E), it follows that

OH, o
Sa, B, 45 =o.

Thus,

81‘[,, _ auo
(5.4) Su_uo B, g5 = Sao—unHu o s,

By (5.2), (5.3) and (5.4), we obtain (5.1).

PROPOSITION 5.3. Let G be a bounded domain containing E and u be a
function in Iﬁ)z(G—E; E). If Cy(0g, @13 R—E)=C,(0tg, ®1; R) for every ring
domain R of the form R={x; ro<|x—x° <r,} with R>G, where a;={x; |x—x°|
=r;} (i=0, 1), then u can be extended to a function in HD*(G).

Proor. Let ii, and u, be the same as in Lemma 5.2. By assumption we
see that #i,=u, in R—E and V(E)=0. It is known that i, is given by

(5.5) 1(x) = (5= xRN =13 N3N 13 ).

By Lemma 5.2 we have

o, _g _ out
Sm_MH,, B gs = (a9 as.

Since i, and u¥ are harmonic on some neighborhood of E and V(E)=0, we see
that

S i, 0ut dS=S (Piiy, Pu¥)dx=0.
oE = OV E

Thus we have

Oty e S o,
(5.6) S“Hua_vds_ _H,%oas.

Since

___6(;7‘,0 =QR=N)r§Nei¥=r3™™1  on a

and H, is harmonic on {x; [x—x° <r,}, by the mean value property we have
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.7) SH o4, ds=(2—N)a(r§-~—rg-~)-l{ 1 S“H,,ds}

v ory!
= (2-MN)o(r{™—r§™¥)" H,(x°).
On the other hand, by a straightforward computation we have

[ 1picrax = W=2erteiv—rgm,
1

where A; ={x; |x—x° =r;}. Using Green’s formula and the Schwarz inequality,
we obtain

Oy gs| = 'SA‘(VH,,, Pig)dx|

1/2 1/2
g(g |VH,,|2dx) (S |Vﬁo|2dx>
Ay Ay

£ c«(N=2)ori™ M) 2|riN—rg~N7,

).

where c=(SE |VH,,|2dx)l/2<oo. By (5.6) and (5.7) we have

|H(x9)| £ o((N—2)ar}-2)-1/2,

Since this is valid for arbitrarily large r,, H,(x%°)=0. Letting x° vary in some
open set in (G)¢, we conclude that H,=0 in E¢. Therefore u=u% in Q,—E for
some domain Q, containing E. Thus we conclude that u can be extended to a
function in HD*(G).

PROPOSITION 5.4. If the equalities
Ca(oh, af; R—E) = Cy(ah, @13 Q), i=1,.,N,

hold for some open rectangle Q containing E with sides parallel to the coordi-
nate axes, where ab and o} are the sides of Q parallel to the coordinate plane
x;=0, then §(x°, x!) is equal to zero for all distinct two points x°, x! in (2)°.

Proor. Let @ and u' be extremal functions for Cy(ad, af; Q) and C,(af,
ol; Q—E) respectively. It is well known that #? is of the form ax;+b. From
assumption it follows that V(E)=0 and for each i, i=1,..., N, u'=a;x;+b; in
Q—E. Denote by ¢ the class of all 2-precise functions v on Q—E such that

v(y)=0 for 2-a.e. yelg(ad) U Fg(al). By Lemma 2.1, u! satisfies the variation-
al condition that

S (Ful, Pv)dx =0
-E
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for every v in /. - Hence we derive that

v
(5.8) SQ—E' 0x;

for every v in &%
Now, we take any two disjoint closed balls By, B, in R"—Q. Set D=
RN —(ByU By) and o;=0B; (i=0, 1). Let u be the extremal function for C,(«,,
o,; D—E). We shall show that u can be extended to a 2-precise function on D.
Let #=u on D—E and @#i=0 on E; U;=(0u/0x;) on D—E and U;=0 on E, i=
1,..., N. Then 1 is locally integrable in D and U,e L3(D), i=1,..., N. For any
¢ € CF(Q), since u¢ |g_pe N, &%, (5.8) implies

_ Ju _ oo . _ _ 5 a ¢
SQU,-qbdx = SQ—E—ax; dx = g ax, dx oFox idx
This means that U;=(dii/dx;) on Q in the distribution sense. By [7, Theorem
4.21], there exists a 2-precise function i on D such that 4= a.e. on Q. Ob-
viously, we may take #=u on Q—E. '
Next, since 2 € D(xg, ; D) and V(E)=0, we have

Cy(o, @15 D) < gblVﬁlzdx = S \Pul?dx = Cy(so, ay; D—E).
D-E :

-Since the converse inequality is trivial, we conclude that
Cy(ag, ;3 D) = Cy(cty, 0;; D—E).

As stated in Remark 4.1, S(x°, x!) is equal to zero for all distinct two points
x%, x! in R¥—Q. The proof is thus completed.

ProoF oF THEOREM 5.1. By Proposition 4.1, (1) implies (2). Clearly (2)
implies (3). If (3) is true, then from Corollary 4.1 and Proposition 5.1, (4)
follows. - Clearly (4) implies (5)..

-Suppose (5) is valid. - Let G be some bounded domain containing E such that
every u in Ig\bz(G E; E) can be. extended to a function in HD*G). .For two
points x°, x* in (G)“ let Po be the principal function with respect to x9 x! and
Ec. Ttis easy to see that the restriction of P, to G—E. belongs to HDZ(G E; E).
Hence, Po—P=0 in E¢, so that (3) holds. v

By Proposition 5.2 and Corollary 4.1, (3) and (4) imply (6). By Proposition
5.3, (7) implies (4). ~Clearly (6) implies (1), (7) and (8). Finally ‘by Proposition
5.4, (3) follows from (8). ' The proof is completed. '

By the equivalence between (1) and (8), we have
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CoroOLLARY 5.1 (cf. [10, Property 3.3]). Any compact subset of an NED,-
set is an NED,-set.

By the equivalence between (1) and (4), we have

CoroLLARY 5.2 (cf. [10, Corollary 3.5]). If E,,..., E, are mutually dis-
joint NED,-sets, then \U™.., E, is an NED,-set.

REMARK 5.2. It may occur that the equality C,(ag, ay; D—E)=C,(ag, %;;
D) holds for some disjoint closed balls By, B; in E¢ even though E is not an
NED,-set. For example, let R¥~1 be the hyperplane {x e R¥; xy=0} and let
E={xeRVN-1;|x|£1}. It is easy to see that E is not an NED,-set. If we let
By={x; |x—x°| <1} and B,={x; |x—x!|=1}, where x°=(3,0,...,0) and x'=
(=3,0,...,0), then Cy(ao, ot;; D—E)=C,(ag, a3 D), since the extremal function
for Cy(ag, ®;; D) is symmetric with respect to RV~1, and hence it is extremal for
Ca(ao, o5 D—E).

Similarly, if we consider the ring domain R={x; 1 <|x—x% <5}, then C,(«,,
o,; R—E)=C,(a, @43 R) for the above E. Thus the property that C,(a,, «;;
R—E)=C,(0g, o;; R) for some ring domain R>E does not imply that E is an
NED,-set.

This example also shows that the converse of Corollary 4.3 is not always
true, that is, there exists a compact set E with V(E)=0 which is not an NED,-set.

REMARK 5.3. We can easily see that if the (N —1)-dimensional Hausdorff
measure of E is zero, then E is an NED,-set (cf. [9, Theorem 2] and [7, Theorem
2.13]). Now we show that the converse is not always true.

Let E be an N-dimensional symmetric generalized Cantor set such that the
(N —1)-dimensional Hausdorff measure of E is infinite and the projection of E
on each of the coordinate axes has one-dimensional measure zero (see [4, p. 375)).
Let Q be an N-dimensional open rectangle containing E with sides parallel to the
coordinate axes and aj, af be the sides parallel to the coordinate plane x;=0.
Since the projection of E on aj (i=1,..., N) has the (N —1)-dimensional Lebesgue
measure zero, we can show that

MZ(r(a(i)a Cli, Q_E)) = MZ(F(a(ih ai’ ‘Q)) (l = 19"-’ N)‘
By Theorem 5.1 ((8)=-(1)), we see that E is an NED,-set.

§6. NED?-sets and removable sets for KD?

The main purpose of this section is to prove that the class of NED%-sets is
identical with the class of removable sets for KD?2.

THEOREM 6.1. For a compact set E in RN, the following statements are
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equivalent to each other:

(1) E is an NED%-set;

(2) S2(x°, x!) is equal to zero for all distinct two points x°, x! in E°;

(3) 82(x°, x1) is equal to zero for all x° in a non-empty open set in E and
some x! in E°;

(4) For any bounded domain G containing E, every u in I&\Dz(G—E; E)
can be extended to a function in HD*(G);

(5) E is removable for I?f)z;

(6) The equality C,(o, ay; G)=C%*(oty, o0,; G—E, ﬁQ) holds for every
domain G containing E and every mutually disjoint compact subsets oq, ot; of
aG;

(7) The equality Cy(atg, ®1; R)=C%¥*(atg, ;; R—E, ﬂQ) holds for every ring
domain R containing E, where o, and o, are two boundary components of R;

(8) The equalities Cy(ab, of; @)=C4*(ch, ai; Q—E, Byp), i=1,..., N, hold
for some N-dimensional open rectangle Q> E with sides parallel to the coordi-
nate axes, where a and o} are the sides of Q parallel to the coordinate plane
x;=0;

(9) E is removable for KD?.

To prove this theorem we prepare some propositions.

ProPOSITION 6.1. Let G be a domain containing E and u be a function in
127)2(6—15; E). If P—=P%=0 in E° for any x° in a non-empty open set Q in
Ec and some x! in E°, then u can be extended to a function in HD*(G).

Proor. We may assume that the distance between Q and E is positive.
Let H, be the harmonic function defined in §3. Let x°eQ, x! € E° and P% be
the principal function with respect to x°, x! and E¢. As in the proof of Lemma
4.2, we have

6.1) SEC(VH,,, y (P~ P9)dx

= (N—2)(H,(x!)— H,(x)) + SaE(Hu5£ ¢ _ f’?{)“)d&

By assumption, (6.1) implies

6.2) (N—=2)(H,(x°) = H(x")) = SaE<H"%I:_? - PgCge)as.

Since the restriction of H, to G— E belongs to KD*(G—E; E), by Lemma 4.1 (b)
we have

u —
Sa Pl av dS—O.
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By the definition, H,=u%—u in Q,— E for some domain Q, containing E. There-
fore,

0 0
g H,,aPldS=g uf@ds—g w9P1 s,
o ov oE = OV E OV

Since u* and P are harmonic on Q, and V(E)=0 by Corollary 4.2, we see that

S 1% as = S (PP, Pu*)dx = 0.
oE v E

Take a bounded domain G, such that EcG,=G and QU {x!}=(G,)°. Since

the restriction of P (resp. u) to G,— E belongs to KD*G,—E; E) (resp. 151’)2(60

Q
S uag’lds= 0.
oE v

Thus (6.2) implies that H,(x®)=H (x'). Letting x° vary in 2, we conclude that
H,=const. in E¢. This implies that u can be extended to a function in HD?*(G).

PROPOSITION 6.2. Let G be a domain containing E and let ay, o, be dis-
joint compact subsets of 0G. Let uy be an extremal function for C%*(ag, o;;
G—E, 39). If V(E)=0 and ug can be extended to a harmonic function iiy on G,
then the equality

C3*(ap, %45 G—E, ﬁQ) = Cy(ag, 25; G)
holds.

ProOF. We may assume that M,(Fg(ao) U Fg(a,))>0, for otherwise, the
constant 0 is extremal for C%¥*(e«g, ;3 G—E, BQ) so that the assertion is trivial.
Let i be the extremal function for C,(xg, ¢;; G). Let Y be a function of C*(G)
such that =0 on some neighborhood of E and =1 outside some compact set
contained in G. By Lemma 2.2 we have

[ wiq PLw@o-aDax = | (Pug, PTG dDdx = 0.
Since (1—y)(fip—1) € C3(G) and il is harmonic on G,
SG(VaQ, PI(L =) (@g—@)])dx = 0.
Hence,

SG(VaQ, P(iig—@))dx = 0.



460 Hiromichi YAMAMOTO
On the other hand, by Lemma 2.1 we have

[, pag-anax = o.
Therefore

[ Ir@e—mpax = o.

It follows that &, =1 and hence i, is extremal for C,(ao, a;; G). Since V(E)=0,
we have '

Calo, 033 6) = | IPitgldx = _ [Pugldx = Ci*(ao, 2,5 G~E, .

Let Q be an N-dimensional open rectangle with sides parallel to the coordi-
nate axes, E be a compact set in Q (possibly an empty set) and G be a bounded
domain containing 2. We set

My(Q—E) = inf,,,g Pyl2dx  (i=1,..., N),
Q—-E

where the infimum is taken over all ¥ € C¥(G) such that Fy vanishes on some
neighborhood of E, y(x)=0 on o which is one of the sides of Q parallel to the
coordinate plane x;=0, and ¥(x)=1 on ai which is the opposite side of aj.

ProrosiTION 6.3 ([5, Theorem 4] and [11, Theorem 11]). A compact set
E is removable for KD? if and only if the equalities Mi(Q— E)=ML(Q), i=1,...,
N, hold for some open rectangle Q> E.

Now we shall show

PROPOSITION 6.4. With the same notation as above, if Q>E, then M4(Q
—E)=C¥*(d, ai; Q—E, BQ)for every i=1,..., N.

Proor. We denote by 2** the family of all ue 2(af, al; Q) such that
u=const. on each component of some neighborhood of E. We observe that

C*(ob, al; Q—E, fo) = inf{g (Pul?dx; ue 9**} .
Q-E
Denote by & the family of all ue D(«h UG, ai; G—ab—ai) such that u=
const. on each component of some neighborhood of E. As in the proof of [11,

Theorem 10] we have

My(Q—E) = inf{g \Pul?dx; ue .d?)} .
Q—-E
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Since the restriction of ue 9 to Q—E belongs to @2**, C¥*(od, ai; Q—E, Bo) <
Mi(Q—E). On the other hand, for each u € 2**, there exists a 2-precise function
@ in RY such that u=4 in Q (see [7, Theorem 5.8]). Let Q, and 2, be bounded
domains such that QcQ<cQ,cQ,=Q,cQ,=G and each of 0Q, and 9Q,
consists of one compact C!-surface. Take a function ¢ € C*(G) such that ¢=1
on O, and $=0 on G—Q,. It is easy to see that ¢i belongs to &. Therefore,

Mi(Q—E) < SQ_EW(qsa)de - Sn_Equlzdx.

Since this is valid for any u € 2**, we have M4(Q—E)<C3*(od, ai; Q—E, Byp).
Thus we obtain the required equality.

LeEMMA 6.1. Let R={x; ro<|x—x°<r;}, a;={x; [x—x°|=r;} (i=0, 1) and
E be a compact subset of R. Let @i and uy be extremal functions for C,(a,,
oy ; R) and C%*(ag, ay; R—E, BQ) respectively. If C,(ag, 13 R)=C%*(ag, %y}
R—E, ﬁQ), then i=uy in R—E and V(E)=0.

Proor. Note that @ is harmonic on R and u, belongs to K‘\ﬁz(R—E ; E)
by Proposition 3.1. By using Green’s formula we have

C5*(2o, ¢33 R—E, BQ) — Cy(20, 255 R)
=S P (ug—)|dx + g 7 i|2dx.
R-E E

From assumption it follows that

(6.3) S P (ug—d)2dx = 0
R-E
and
(6.4) g \Pa2dx = 0.
E

Therefore, i=ugy in R—E by (6.3). On the other hand, @ is given by the right-
hand side of (5.5). Hence, |Fii|#0 on R. Thus we conclude that V(E)=0 by
6.9).

By the method similar to the proof of Lemma 5.2, we can show

LeEMMA 6.2. Let G be a bounded domain containing E and let R be a ring
domain of the form R={x;ro<|x—x°<r;} with RoG. Let @ and ugy be
extremal functions for Cy(ag, o33 R) and C%*(ag, ¢y; R—E, BQ) respectively,
where a;={x; |x—x°=r;} (i=0, 1). Then
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o _ ot u oil
{ _om, ra—ugax = S_ 28 gs - S + 98 s
for any u in I?D%G—E; E), where H, and u* are harmonic functions defined
in §3.

PROPOSITION 6.5. Let G be a bounded domain containing E and u be a
function in KND/Z(G—E; E). If Cy(og, 13 R)=C%*(oty, 004; R—E, BQ) for every
ring domain R of the form R={x; ro<|x—x° <r,} with R>G, where o;={x;
|x—x°|=r;} (i=0, 1), then u can be extended to a function in HD*(G).

Proor. Let @ and u, be the same as in Lemma 6.2. By Lemma 6.1,
i=ugy in R—E and V(E)=0. For u in Ia)Z(G—E; E), applying Lemma 6.2 we
have

oi u oil
Sal—aoHu a dS S 6v dS
Since u% and @ are harmonic on some neighborhood of E and V(E)=0, we see

that
S w9 g — S (Put, Pd)dx = 0
0E E

Hence

6u ol
S Gy ——dS = S lH,,—a—v—alS.
As in the proof of Proposition 5.3, we see that H,=0in E¢. Therefore, u can be
extended to a function in HD*G).

Proor oF THEOREM 6.1. By Proposition 4.1, (1) implies (2). Clearly (2)
implies (3). If (3)is true, then from Corollary 4.2 and Proposition 6.1, (4) follows.
Clearly (4) implies (5).

Suppose (5) is valid. Let G be some bounded domain containing E such
that every u in Ia)z(G—E ; E) can be extended to a function in HD?*(G). For
two points x°, x! in (G)¢, let P¢ be the principal function with respect to x°, x!
and E¢. Since the restriction of P to G— E belongs to I’<\l/)2(G——E; E), we have
P%—-P=0in Ec. Hence we have (3) by Corollary 4.2. By Propositions 3.1 and
6.2, (4) implies (6). . v

Clearly (6) implies (7) and (8). By Proposition 6.5, we see that (7) implies
(4). Suppose (8) is valid. Since the equality Mi(Q)=C,(xd, ai; Q) holds,
from Propositions 6.3 and 6.4 it follows that E is removable for KD2. Thus (9)
follows. If (9) is true, then from Lemma 3.1, (1) follows. The proof is com-
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pleted.

ReMARK 6.1. Let R be a ring domain containing E. We shall show that
if R and E are suitably chosen, then C,(xq, ®,; R)=C%*(a, ay; R—E, 5Q) even
if E is not removable for KD2. Let R={x; 1<|x|<2}, ap={x; |x|=1} and
o, ={x; |x]=2}. Seta=(3/2,0,...,0)and

E = {x;|x—al £1/2, |x|=3/2}.

Obviously, RoOE. The extremal function # for C,(ay, o,; R) is given by ii(x)=
(|x|>"¥=1)/(22"¥—1). It is easy to show that the restriction of # to R—E is
extremal for C%*(ag, ¢;; R—E, 3Q). Therefore C,(0tg, o;; R) = C5* (0o, 043
R—E, o).

Next, we shall show that E is not removable for KD2?. If E is removable for
KD?, then so is for D>, By Theorem 5.1 ((5)=(7)) C,(ag, ay; R—E)=C,(a,
oy; R). Therefore it is enough to show that C,(a, a;; R—E)< Cy(ag, ®;; R).
We introduce the polar coordinates (r, 6,..., Oy_,) in RY, that is, r=|x|, x, =
rcosfy,..., xy=rsin6,---sin y_, sin Oy _,, for x=(x4,..., xy). Let

Q={x;3/2<|x| <2, cosf, >17/18},
Gy = {x; |x| =2, cos0, 217/18} U {x; 3/2 < |x]| £2, cosh, = 17/18}
and
& = {x; |x—a| = 1/4, |x| = 3/2}.

Take ¢ € C(RQ) such that ¢>0 in Q, [Fd|e LA(Q) and lim,_; ¢(x)=i for every
X ed; (i=0,1). We extend ¢ by the constant 0 to a 2-precise function on R—E.
Then we have that

7 —_ -N -1 26¢
SR_E(Vu, F$)dx = (2— N)(22¥—1) SIXI:lgla—rdrdS

= (N—2)(22‘N—1)‘ISE¢dS <o.

From Lemma 2.1, it follows that the restriction of @i to R—E is not extremal for
Cy(0tg, %;; R—E). On the other hand, the restriction of # to R—E belongs to
9D(ag, ;3 R—E). Thus we conclude that C,(etg, ;5 R—E)<Cy(0g, @13 R).

§7. NEDZ-I-sets and removable sets for HD?

It is well known that a compact set E is removable for HD? if and only if
the Newtonian capacity of E is equal to zero (see, e.g., [3, § VII, Theorem 1],
[5, Theorem 2]). In this section we shall prove that the class of NED%:I-sets
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is identical with the class of removable sets for HD?.
If any two functions in HD?(E°) which differ by a constant are identified,

1/2
then HD?(E€) becomes a Hilbert space with norm |lul|=(SE |Vu|2dx) and

inner product (u, v)=SEc(V u, Pv)dx. We note that KD?(E¢) is a closed linear
subspace of HD?(E). _

Let Q be a regular domain in E°, that is a bounded subdomain of E°¢ for
which dQ consists of a finite number of compact C!-surfaces §,,..., f, and no
component of E°—Q is relatively compact in E. Denote by HM?(Q) the class
of all u in HD*(Q) such that u=const. on each g; (j=1,..., k). Let HM?(E°) be
the class of all u in HD?(E¢) with the following property:

For every ¢>0 and every compact set K in E° there exist a regular domain

Q> K and a function u, € HM?(Q) such that S 7 (u—ugp)l?dx<e.
Q2

The following orthogonal decomposition of the space HD?*(E¢) follows in
the same manner as in [2, p. 295].

LemMma 7.1. HD?(E) = KD?*(E°) ® HM?*(E°).
The following lemma is proved by using Green’s formula and Lemma 4.1.

LemMA 7.2. Let P, and P be principal functions with respect to x°, x!
and E¢. Let u be a harmonic function in HD*(E®). Then

[, .7 P(Po—PD)Ix = (N -2) uix®) —u(xt).

We shall give some equivalent conditions for E to be removable for HD?2.

THEOREM 7.1. For a compact set E in RN, the following statements are
equivalent to each other:

(1) Eis an NED%!-set;

(2) S2I(xO, x') is equal to zero for all distinct two points x°, x! in E€;

(3) S2I(x% x!) is equal to zero for all x° in a non-empty open set Q in
E¢ and some x! in E¢;

(4) The equality HD*(E¢)= KD?(E*) holds;

(5) For any domain G containing E, the equality HD*(G—E)=KD* G—E,;
E) holds;

(6) E is removable for HD?;

(7) The equality C,(og, oty; D—E)=C%*(0ty, &ty ; D—E, B;) holds for every
two mutually disjoint closed balls By, B, in E°, where a;=0B; (i=0, 1) and
D=RN—(B, U B,).

ProoF. By Proposition 4.1, (1) implies (2). Clearly (2) implies (3). Sup-
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pose (3) is valid. Let x°eQ and x! e Ec. Let Py, P and P! be the principal
functions with respect to x°, x! and E°. By Lemma 4.2 (c), we have P¢—P!=0
in E€. For any u in HM?(E¢), we shall show that u=const. in E¢. We see that

S (Pu, P(PI—Py))dx + S (Pu, P(Py— PD)dx = 0.
E° E°
From Lemma 7.2 it follows that

(N=D @) —ue) = | (7u, P(Po—PE)ax.

Since P,—P%e KD?*(E) and HM?(E¢) and KD?(Ec) are orthogonal to each
other,

SEC(Vu, 7(Po— P2))dx = 0.

Hence, u(x®)=u(x!). Letting x° vary in @, we obtain u=const. in E. Since
this is valid for any u in HM?(E*), (4) follows from Lemma 7.1.

Suppose (4) is valid. Take any domain G containing E. Let ue HD*(G—
E). Then the function H, defined in §3 belongs to HD?*E¢). Hence H,e
KD?*E°). Therefore ue KD¥(G—E; E). Thus (4) implies (5). If E is not
removable for HD?, then the Newtonian capacity of E is positive. Let u be the
equilibrium mass-distribution on E and consider the potential

S du(y)

Elx—y[?"

For any domain G containing E, this function belongs to HD?(G—E) but does
not belong to KD¥G—E; E). Thus the inclusion HD*G—E)> KD*G—-E;
E) is proper. Hence (5) implies (6).

Suppose (6) is valid. Since the Newtonian capacity of E is equal to zero,
for any bounded domain G containing E every function in HD*(G—E) can be
extended to a function in HD?*(G). Take two mutually disjoint closed balls
By, B; in E¢. Set D=RN—(ByUB,) and o;=0B; (i=0,1). Let u, and u; be
extremal functions for C,(ag, ;; D—E) and C3¥*(ag, «,; D—E, B;) respectively.
Take a bounded domain G with EcG<D. Since the restriction of ug—u; to
G —E belongs to HD*(G —E), there exists a harmonic function h in HD?*(G) such
that uo—u;=h in G—E. By Lemma 2.1 and Lemma 2.3 (b), we easily see that

S a”°d5'=g 9ur 45— 9.

aoVUay ov aoUay d

By using Green’s formula we have

0< S |7 (o — uy) [2dx
D—-E
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- g (uo—u,+c)-a(u%;"’)d5
aoUaiUGE v

- _ O(ug—uy) _ g Q’L
h cgaoum av as oE (h+c) ov as

- S \Ph2dx < 0,
E

where ¢ is a constant such that uy—u;+c is regular at infinity. Therefore uy=u,
and we obtain (7). Since

Cy(ao, #y; D—E) = C¥*(ag, ay; D—E, o) < C3*(0t, 213 D—E, Bp),
(7) implies (1). The proof is completed.

ReEMARK 7.1. The results on the equivalence between (1), (4), (6) and (7)
are the euclidean space version of Minda’s results on Riemann surfaces ([6,
Theorem 9 and its corollary]).

ReMARK 7.2. Let R be a ring domain {x; ro<|x—x° <r,} containing E.
Let o;={x; |[x—x° =r;} (i=0,1). If E is removable for HD?, then M,(I'(x,,
oy; R—E))=M,(I' (g, %;; R—E)) for every ring domain R containing E; how-
ever, we do not know whether the converse is true or not.

REMARK 7.3. We denote by Ngp2, Ngp: and Ngp: the classes of remova-
ble sets for I-’I\bz, KD? and HD?, respectively. For any bounded domain G
containing E, we see that Iﬁ)z(G—E; E)cKD*(G—E; E)Yc HD*(G—E) so that
Ngp2> Ngp2> Nyp.. We show by examples that Ngp:=2 Ngp2 and Ngp22 Ngpea.

Let Ey, be an N-dimensional symmetric generalized Cantor set such that
the Newtonian capacity of Ey, is positive and V(E,)=0 (see [3, § IV, Theorems
3 and 4]). By [5, Corollary 2 to Theorem 4] and [11, Theorem 11] we have
Eny€ Ngp:. Since Eyy¢& Nyp2, the inclusion Ngp22 Ngp: is proper.

Let Ey_y be an (N —1)-dimensional symmetric generalized Cantor set such
that the Newtonian capacity of Ey_;,x{0}<RN is positive and the (N-—1)-
dimensional Hausdorff measure of E_,, is zero (see [3, §IV, Theorems 3 and
4], [4, p.373]). Set E=Ey_,,x[0,1]. Let Q be an N-dimensional open
rectangle containing E with sides parallel to the coordinate axes and of, o} be
the sides of Q parallel to the coordinate plane x;=0. Since the projection of E
on o} (i=1,..., N) has the (N—1)-dimensional Lebesgue measure zero, we can
show that

M,(I'(sh, of; 2= E)) = My(I'(sh, o1 Q) (i =1,..., N).

By Theorem 5.1 ((8)=>(5)) we obtain E € Nyp:.
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Next, let E;=Ey_yx{i} (i=0, 1). Since the Newtonian capacity of E; is
positive, there exists the equilibrium mass-distribution y; on E; (i=0, 1). Con-
sider the function

u<x>=§ dpo(y) _S dpy(»)

Eo [Xx—y|¥72 B [x—y|N"2"

It is easy to show that u belongs to KD*(Q—E; E) but can not be extended to a
function in HD*(Q). This implies that E& Ngp.. Thus the inclusion Ngp:>
Ngp2 is proper.

Thus in the N-dimensional space R¥ (N = 3), the classes of NED,-sets, NED$-
sets and NED%-!-sets are actually different.
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