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§1. Introduction

Let BP denote the Brown-Peterson spectrum at a prime p, whose coefficient
ring BP, =n,(BP) is the polynomial ring

BP, = Z(p)[”p 2,000 (deg v;=2(p'—1))

with Hazewinkel’s generators v; ([2]). Then, we have the Hopf algebroid
(BP,, BP,BP), where BP,BP=BP,[t,,t,,--] (degt;=2(p*—1)) ([1; Part 1],
[5], [8], [6; §1]). For the spectrum BP, we have Novikov’s analogue of the
Adams spectral sequence converging to the stable homotopy ring n,(S) of the
sphere spectrum S. Its E,-term E%* is the cohomology Extyy:gs(BPy, BP,)
(denoted simply by Ext**BP,) of the Hopf algebroid (BP,, BP,BP), (cf. [1;
Part III], [7]). The E,-term Eﬁ’* is determined by S. P. Novikov [7] for any
prifne p, and E%* by H. R. Miller, D. C. Ravenel and W. S. Wilson [6] for any
odd prime p. ’

In this paper, we shall determine E%* for the prime 2, and study the non-
triviality of some elements in n,(S). We notice that the results for E%* is also
obtained by S. A. Mitchell, independently. From now on, we assume that the
prime p is 2.

To state our results, we recall the elements y,ev7!BP, and x;€v3!BP,,
which are denoted by x; ; and x, ; in [6; (5.11)] respectively, given by

(1.1) yo=vy, y, =0} —4dvi'v,, yi=yi, (i22),

Xo =g, Xy = 03 — v}v3'vy, Xy = x} —vivd —vjvy, x;=xE, (123).

By using these elements and the universal Greek letter map # (for the definition,
cf. [6; (3.6)]), we can define the elements

(1.2) o, = n(y/2) for oddm = 1, oy, = n(y,/4), and

Ugimyi+2 = N(YT[21*2) for i 2 1, oddm = 1 with 2im = 4,
which generate Ext!BP, (cf. [6; Cor. 4.23]). Further, we can define the elements
(1.3.1) Banssji+1 = n(x5/2¢+1v]) in  Ext?BP,

for n=0, odds=1, j=1, i=0 with
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n=i,2j,j<a,.; and especially j <2" if s=1 and i =0,

by the same way as the case for the odd prime ([6; p. 483]); and moreover we de-
fine the elements

(1.3.2) Bangjjiv2 = N(x5/2842ym) - (m= j[2F) in Ext2BP,
for n, s, j and i of above with the additional conditions that
nzi+122 j=2and s=23ifn=2,and j<a,_;_, if n=3,

(see Lemma 3.8), where a, (=a,, in [6; (5.13)]) are given by

(1.4) ag=1, a; =2, a,=3.21 kz?2).

For B in (1.3.2) and (1.3.1), we shall see the equalities
Bansjji+2 = Bans/ji+1y+1 under the condition that 2i+1|j,
2Bansjji+2 = Pangjiv1 (see Lemma 3.10).

By using the above elements, our main theorem is stated as follows:

THEOREM 1.5. The 2-line of Novikov’s spectral sequence, Ext?*BP,=
Ext}p. pp(BPy, BP,), for the prime 2 is the direct sum of the cyclic Z 3y-sub-
modules generated by the following elements:

(1.6) oy, for odd m=1, a;0yip);+ o for i21 and odd m21 with 2im24;

(L.7.1)  Bangji+q in (1.3.1) with the additional conditions that s=3 if n=0,
n>i and either j is odd or a,_,_,<j if n=1, and especially s=1 if n=2 and
i=1;

(1.7.2)  Bangji+2 in (1.3.2) with the additional condition that 2*14 j.

The elements in (1.6), (1.7.1) and (1.7.2) have orders 2, 2i*1 and 2i*2, respectively.

After proving Theorem 3.3 which determines Ext°M3 (M3 =uv3;!BP,/(2%, vT)),
we prove the above theorem in §4. (For a BP,BP-comodule M, Ext}p, gp
(BP,, M) will be denoted simply by Ext*M.) Furthermore, by using Theorem
3.3, we can prove Theorem 5.2, which gives a partial information on Ext3BP,,
and the following theorem in §6 by using the result of M. Mahowald (cf. [9;
Cor. 7.6]) that fig,, , is a permanent cycle converging to the element in 7,(S) of
order 4.

THEOREM 1.8. For any t21, the elements «;fs;/3,15 %4/aBst3,1 and oy,
Bst/a,2 in EXt3BP, are nontrivial permanent cycles converging to the homotopy
elements in n,(S) of orders 2, 2 and 4, respectively.
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§2. Preliminaries

For the right unit #5: BP,—BP,BP, we see easily the following formulae by
[6; (1.1), (1.3)] (cf. also [1], [2], [8D):

(2.1) nva = Dl + 2[1 >
2.2) NRU2 = vy — 012 + v3t, + 2t, mod(4),
2.3) NRU3 = 03 + 05t + v3t, + 0,13 + viv,t? + v31] mod(2, v}).

ng induces the map #g: v;!BP,—>v;'BP,/J ®gp, BPLBP for any ideal J of
BP, such that (2, v,,:*, v, ,)*<J for some positive integer k. In this section
we shall compute the image of the elements y,ev7!BP, and x;ev;1BP, given in
(1.1) by the map

d=ng—id ®1: v;'BP, —> v;1BP,/J ® yp, BP4BP (n=1, 2)

for some ideal J of above. Here we shall say that x € v;!BP, is invariant mod J
if dx=0 (cf. [4]).
For the elements y; e v7'BP,, we recall the following

(2.4) ([6; Lemma 4.12], cf. [4; p.504]) For i=1, y, is invariant mod(2'*2).
More precisely,

dy; = 2"*2v}'p;  mod(2!*3),
where p, e v7'BP.BP is given by
(2.5) p1 =073t — 1)) + vi%,ty (cf. [6; Prop. 3.18]).

For the elements x;ev;1BP,, we have the following lemmas, where a; is the
integer given in (1.4).

LemMa 2.6 (cf. [6; Prop. 5.14]). For i=0, x; is invariant mod(2, v¢:).
More precisely, we have the following congruences mod(2, v3+4:):

v,82 + v3t, (i=0),
dx; ={ v}p; + vivyl, (i=1),

s T (22),
Here j, € BP,BP and {, e v;!BP,BP are given by

2.7 pr=vipy = v(t,—1) + v,ty,
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2.8) {, = v3't, + v32(13—15) — v33v483 (cf. [6; Prop. 3.18]).

ProoF. The congruence follows from (2.2) for i=0 and is given in [6;
(5.15)] for i=1.
We notice the following which is seen easily:

2.9 If dx=y mod (2, u), then dx? = y2* mod(2, u?').
By the congruence for i=1 in the lemma and (2.9),
dx? = viv3td + 0§18 + v§13 + v§v3(3 mod(2, v}).
Also by using (2.1-3), we see the following mod (2, v$):
dvivd = vioit} + viv,tt + vivdt, + 0§ + v]s + viv, 83,
dvivy = viv,1} + vivdt, + 0§83 + viv, 3 + V)8 .

Collect terms to obtain the case i=2. For i=3, use x;=x?_, in (1.1), (2.9) and
the inequality 2-2.8>2+3.2i"1, q.e.d.

LEMMA 2.10. Let s be any odd integer. Then

(i) dx$ =200 mod(22, v3),

(ii) dx3=0 mod (23, v}),

(iii) dxs =2""13v3"s"1(, mod(2", v}) for n=2,3,4,

(iv) dxs = 2ripgwdts=2i TN mod(20TiHY, p2tan) for 2ZiZn.

Proor. (i) and (ii) follow from (1.1), (2.1) and (2.2).
Recall here that

(2.11) ([6; p. 498]) If L is any ideal with y*>€ L, and if dx=y mod(2, L), then
dxi=jxi~1y mod(2i*!, L) for any integer j=1 and i=0 with 2t|j.

(iii) for n=2 follows from (1.1), (2.1), (2.2), Lemma 2.6 and (2.11), and (iii)
for n=3, 4 follows from (iii) for n=2, (1.1) and (2.11).
(iv) follows from (1.1), Lemma 2.6 and (2.11). q.e.d.

§3. Ext°M2 and Ext°N}
In [6; §3], the BP,BP-comodules N$ and M5 are defined inductively by
setting N9=BP,/(2, vy,-*-, v, 1), M5 =v,1,NS and by the short exact sequence

3.1 0— NS L, Ms _*, Nst1__, 0.
n n n
C

Their coactions are induced from the right unit #g: BP,—BP,BP. Further the
sequence
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(3.2) 0— M3y Ly M3 Uy Ms 0

is exact, where i(x)=x/v, (with vy =2) (cf. [6; (3.10)]).

For the BP,BP-comodule M = N3 or Ms, Ext*M =Ext}p,gp(BPy, M) is the
homology of the cobar complex Q*M (cf. [6; (1.8-10)]). Especially the differ-
ential d: QM =M->QPM=M ®pgp, BP,BP is given by d=nz—id® 1 and
Ext®M =Kerd. In this section we shall determine Ext°M3 and Ext°N3. Our
results are stated in the following theorems:

THEOREM 3.3.  Ext°M3 is the direct sum of the cyclic Z,,-submodules gener-
ated by the following cycles:

(3.3.1) x3/2i*1p{ for n20, odd s, i=0 and j=1 such that
j=Za, and either j is odd or a,_,<j ifi=0,
n—22i,2jand a,_;_,<jZa,.; otherwise;

(3.3.2) x3/2i*2y? for n=2, 0dd s, i=1 and odd m=1 such that
i=m=1ifn=2,3, n—2>iand 2'm=<a,_;_, if n24;

(3.3.3) 1/2v7 for odd m=1, and 1/2*2y? for iz 1 and odd m=1.

THEOREM 3.4. Ext®Nj3 is the direct sum of the cyclic Z,,-submodules
generated by the cycles in (3.3.3),

(3.4.1) the ones in (3.3.1) with s21 and j<2" if s=1 and i=0,
(3.4.2) the ones in (3.3.2) with s=1 and especially s=3 if n=2, and the cycle

X,/22y, =2(x,/23y,)=x,/2%v? (see Lemma 3.10).
ProOOF OF THEOREM 3.4 FROM THEOREM 3.3. We have the exact sequence
(3.5) 0 —» Ext'N2 —J, ExtoM2 %, ExtON3

associated to the exact sequence (3.1) for s=2, n=0. By the definition of N3,
the k-image of z/2iv{ (#0)e M3 with zev;!BP,/(2, v)) (i, j>0) is zero if and
only if z € BP,/(2}, vj). We see also by (1.1) that

(3.6) x5 = vk + 2(vH ok 03! + vitvkl + v}k T4l)  mod(2i+, vin-i)
(k=2"s,1=2""1"2) for n=2 and n—22=2i 20,

x{ =03 mod(2, v}), x§=uv3,
where s is any odd integer. Further (1.1) implies the equality

(3.7)  1/2%2ym = (1/22p]) + m(v,/201*3) (j=2'm) in M3 for i=1,m = 1.
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Then for any cycle g in (3.3.1-3), we can write g=3; ; z,;/2'v] with z;;€V3'BP,/
(2, v{) by using (3.7); and we see by (3.6) that all z;;’s belong to BP,/(2}, v{) if
and only if g is the one in (3.3.3), (3.4.1-2), except g =x,/23y,. Thus, we see the
kernel of k in (3.5) at any degree other than 20 by using Theorem 3.3. On the
other hand, we see that k(x,/23y,)=03/2v,v,(#0) by (1.1) and (3.7). Thus, at
the degree 20, x,/22y, is the generator of Ext°N3. Therefore Theorem 3.4 follows
from Theorem 3.3. q.e.d.

To prove Theorem 3.3, we prepare several lemmas, (cf. [4] for the definition
and the properties of invariant ideals).

LemMma 3.8. Let ay, o, o, be given as follows, where s is any integer:
¢)) do =21 a; =vf, 0, =x5 for 0Li<n, 1=<j<a,; with 2t|j;
2 oo =22, oy =y, a,=x5 for (@) i=m=1if n=2,3,
and for(b)1<i<n-2,m=1 with 22m=<a,_;_, if n24.
Then a,jage, is a cycle and hence ayfaqn, € Ext°M2. More precisely, if aq, o4,
o, are in (1) or (2) for (b), then (oy, a4, &,) is an invariant ideal of BP,,.

Proor. (1) If 0=<n—i<1, then (ao, o, ®,) is equal to (2, vy, v8), (2, vy, x3),
(2, v3, x3) or (22, v2, x3). These are invariant by Lemmas 2.6 and 2.10 (iii).

Since 2¢|j, (2i*1, v{) is invariant. If n—i>2, then x$ is invariant mod(2i*!,
v)) for j<a,_; with 2¢|j by Lemma 2.10 (iv).

(2) for (b) We use the following which is seen easily:

(3.9) If x =y mod(2, u), then x?'s = y2's mod(2i+!, 2u, u?') for i = 1.

+1g

Applying this to Lemma 2.6, we obtain that x5=x2'%!s, in (1.1) is invariant
mod(2i+2, 2v4, v3'*'e), where a=a,_;_;. Since v¥m=2i*1mp?m-3p, mod(2i+2,
y7) by (1.1), both 2v¢ and v?'*' belong to the ideal (2i+2, y). Hence x5 is
invariant mod(2i+2, yp).

(2) for (a) By (2.4) and (3.7), we have

d(x3/2%y1) = d(x3)[2%0} + d(x})v,/20}.

Further d(x$)=0 mod(23, v?) by Lemma 2.10 (ii) and (iii), and d(x$)=0 mod(2,
v}) by Lemma 2.6. Therefore d(x$/23y,)=0. q.e.d.

LEMMA 3.10. For any cycle a,fago; =x5/2i*2y™ of type (2) in Lemma 3.8,
(3.11) ayfaga, = x5/2i+202'm if m is even,

2(tyfopty) = x§/2i+lv%im~

Furthermore, the cycles given in Theorem 3.3 are linearly independent.
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Proor. (3.11) follows immediately from (3.7). Moreover, we see easily
that (3.11) is the only relations between the cycles in Lemma 3.8 for s=0 or odd s,
by comparing their degrees. Thus the latter half follows. q.e.d.

Now consider the exact sequence
(3.12) ExtoM1 -2, Ext'M9 L, Ext!M! %, Ext'M!

associated to the exact sequence (3.2) for s=1 and n=1, where the first two
modules are given as follows:

(3.13) ([6; Prop. 3.18]) Ext'MY is the F,[v,, v;']-vector space generated by
the four elements ho={t}, hy={t3}, {, of (2.8) and p,. ‘

(3.14) ([6; Th. 5.10]) Ext°M} is the direct sum of F,[v,, v7']/F,[v,] and the
cyclic F,[v,]-submodules generated by x§/v$: for i20 and odd s.

LeMMA 3.15. The kernel of v,: Ext!tM1->Ext'M1 in (3.12) is the F,-vector
space generated by the elements represented by the following cycles:

vstyfvy, V3718 oy, U%k(‘“ﬂ)é‘z/”b v3'p,1/v}, and vhp,[v,
for any integers s, t and k with s#1 mod 4 and k=0.

ProOF. We study the cokernel of é: Ext°M{—->Ext'M9 in (3.12). We see
easily that d(1/v{)=0 by (2.1), which implies &(F,[v,, v71]/F,[v;])=0. By
Lemma 2.6,

svsn (i=0),
O(xifvgr) =( sv3*ly @i=1),
sp{ps=D2t i (iz2).
In the last term, ¢(3'~* is homologous to {, by [6; Lemma 3.19]. Therefore,

(3.13), (3.14) and the above equalities imply that Coker é is the F,-vector space
spanned by

2~142 2k (4t- 4+
vsty, 03T}, 0D, vtti, and  vhp,

for any integers s, t and k with s=1 mod4 and k=0. Furthermore, by using
Lemma 2.6, we see that

dvitx,[vt = v§'p,[v} + v, v, .

Therefore v3'5,/v? is homologous to i(v§'*1{,)=v4**1{,/v,. Since Kerv,=
i(Coker d) by the exact sequence (3.12), these imply the lemma. q.e.d.

Next consider the exact sequence
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(3.16) 0 — ExtoM?! 1, ExtoM2 2, ExtoM3 -3, Ext'M!

associated to the exact sequence (3.2) for s=2 and n=0.
On the boundary homomorphism ¢ in (3.16), we have the following

LemMa 3.17. The S-image of the cycle a,/oga, € Ext®M3 in (3.3.1-3) is
given as follows:

(3.17.1) For the cycles x5/2i*1v] in (3.3.1),

(a) Oo(v3/2v,) = {v571p,/v}}, (b)) O(xy/2v]) = {v3't}/v,s},

(c) 8(x3/20)) = {vht fo{*t +--} (k=2"s) for n21, odd j £ a,,

(d) 8(xs/2t+10]) = {v§5~ 1L /vf~3 + .-} (k=2"s, I=2""i"2) for the other cycles.

(3.17.2) 6(x5/2i+2ym) = {vkp,[vi** +---} (k=2"s, j=2'm) for the cycles in
(3.3.2).

(3.17.3)  8(1/2v7) = {t,[vp*1}, 8(1/2i*2ym) = {,/vi*4} (j=2im) for the cycles in
(3.3.3).

Here {x} means the cohomology class of x, and --- denotes an element of Q'M}
killed by a lower power of v, than those shown.

Proor. By the definition of J, we see that
(3.18) 0(0p/ogety) = {i71{d(ax2)/20t00t1 + Mr(otx)d(1/20001)}} .

On the d(1/2a40,) in the second term of the right hand side of (3.18), we have the
following by (2.1) and (2.4):

(3.19) (i) d(1/22v)) = jt,20i*t for j=1;
(i) d(1/2*2]) = j(B3+v.t,)/27 {2 for i21,2'|j21;
(i) d(1/2*3ym) = mp,20i** (j=2im) for i=1,m=1.

By Lemmas 2.6, 2.10, (3.19) and (3.18), we see the lemma as follows.
(3.17.1) By (2.2) and (3.19) (i), we see that

d(v3)/2%v, = v 11,/20y, NR(v8)d(1/2%vy) = (v3ty +v 05 113)/20F .
These imply (a). By Lemma 2.10,
d(x$)/2%v; = 0, d(x§)/2%v} = v3*~14}/2v,,

d(xs)/2t*20] = v~ 1L /20573 for n—22i20,0<j < a,_; with 2i|j,

(k=2"s, 1=2n"i~2),
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Also by (1.1), Lemma 2.6 and (3.19),
nr(x3)d(1/2%0]) = j(v§t,/20{*") +--) (k=2"s) for n21,
G127 20])} = (jos™ (- vy1) 2 10f 230y (=272
for n—22i>0,0< j<a,_; with 2¢|j, because d(vi"!/20i*3)=0vk(t2+v,t,)[2vi*2
+38,,30877116/20{5 by (2.2) (5,5 is the Kronecker ). These imply (b)-(d).
(3.17.2) In the right hand side of (3.18) for the cycle a,/ay0, in (3.3.2), we
see that the power of v, in the denominator of the first term is less than that of the
second term by using (1.1), Lemma 2.10 and (3.19) (iii). Now (3.17.2) follows

from (1.1), (3.18) and (3.19) (iii).
(3.17.3) The equality follows immediately from (3.19) (i), (iii). g.e.d.

COROLLARY 3.20. For every cycle g=o,jaq; in (3.3.1-3), there is a non-
negative integer I(g) such that v}95(g) is a generator of the kernel of v, given
in Lemma 3.15. More precisely, we have the following equalities:

(3.20.1) (a) v,6(v3/2v,) = {v$t,/v;} for s=—1 mod4,
o(vs/2vy) = {v571p,/v3} for s=1 modd4,
(b) o(x§/2v) = {v3*~'1}/v},
(C) D{(S(x‘:,/zl){) = {Ulzctl/vl} (k—__-2"s) for h ; 1’ Odd ]é Ay,
(@) o[ 802 10) = (o5 oo, (=20, 1=2172)
for the other cycles in (3.3.1).
(3.20.2) vi*t25(xs/2i+2ym) = {vhp,/v?} (k=2"s, j=2'm) for the cycles in (3.3.2).
(3.20.3) vr8(1/207) = {t;/v,}, v{*28(1/2"*2y1) = {5/v?} (j=2'm)
for the cycles in (3.3.3).

Now we are ready to prove Theorem 3.3, by using the following fact which
is an immediate consequence of [6; Remark 3.11]:

(3.21) In the exact sequence (3.16), let B be a Z,,-submodule of Ext®M} such
that B contains both 2B and the image of i: ExtOM}—Ext®M3, and that the
sequence

(3.22) B-2,B %, ExtM!
is exact. Then B=Ext°M3.

ProoF OF THEOREM 3.3. Let B be the submodule generated by the cycles in
(3.3.1-3). Then by Lemma 3.10 and (3.14), we see that Bo2B and BoImi.
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Thus it suffices to show that the sequence (3.22) is exact. By Lemma 3.17, it is
clear that the composition of 2 and ¢ in (3.22) is zero.

Now, take a homogeneous element € B and write f=>"A,g as a linear com-
bination of the generators of B. Assume f&2B, and consider I(f)=max{l(g):
4,=1mod 2}, where I(g) is the integer given in Corollary 3.20. Then we see
easily that v} #8(8)= X 1,)=1s) Vi@8(g) is not zero by the definition of I(8), Lemma
3.15 and Corollary 3.20. Hence 6(8)#0. Therefore §(f)=0 implies S €2B, as
desired. q.e.d.

§4. Ext2BP,

In the first place, we notice the following
ProrosITION 4.1. The boundary homomorphism
d9: Ext'N} — Ext**'NJ = Ext'*1BP,,

associated to the exact sequence 0—N3—M3—N3—0 of (3.1), is an isomorphism
for t>0.

This follows immediately from the fact that Ext!MJ=0 for t>0 ([5; Th.
2.10], [6; Th. 3.15)).
To study Ext!Nj~Ext2BP,, we consider the exact sequence

(4.2) ExtoM} -, Exton2 %, Bxt! N I*, Extt M3 K=, Bxt! N2 20, Ext2 N}

associated to the exact sequence (3.1) for s=1 and n=0. Here, the module
Ext°N3 is given in Theorem 3.4 and the modules Ext°M} and Ext!M3} are given
in [6; Th. 4.16] as follows:

(4.3.2) Ext°M{} is the direct sum of (1) the cyclic Z,y-modules generated by
v§/2, y§/2i*2 for i=1 and odd s, and (2) Q/Z ;) generated by 1/2J for j=1.

(4.3.b) Ext'M} is the direct sum of (1) Z/2 generated by p,[2, vit,[2, v5p,/2
for odd s, and (2) Q/Z ;) generated by z; such that 2iz;={p,[2} for j=1.

LEMMA 4.4. The image A, of ky: Ext°M{—Ext°N3 in (4.2) is the sub-
module generated by the cycles in (3.3.3) and v,[2v,.

Proor. For the generators given in (4.3.a), we see that

) 0 (s>0),
ka(1/2) =0, ky(v3[2) ={ Jror (5<0)
1 ’
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0 (s=3o0riz2),
kx(§/242) =( v,/20, (s=1,i=1),
1/2%2y7s (s<0,i21).
These imply the lemma. g.e.d.

LEMMA 4.5. (a) The image of ky: Ext!M{—Ext!N3 in (4.2) is the direct
sum of (1) Z/2 generated by p,[2v%, vyt,/2v,, t;/203* and p,[2v3*"! for t=0,
and (2) Q/Z ,y generated by k,(z)) for j=1.

(b) The kernel A, of ky: Ext'M}—Ext'N3 in (4.2) is the direct sum of Z|2
generated by v3*~1t,/2 and v3**3p,/2 for t=1.

PrROOF. For the generators given in (4.3.b), we see that

(4.6) kx(p1]2) = pi/2v%,  ky(vi™'2,/2) ={ ’ =0,
t2072% (1£0),

0 (tz2),

kx(01'*1py[2) ={ vat1/20 (z=1),

pq/20731 =0).

Since Ext!N}=~ Ext2BP, by Proposition 4.1 and Ext?BP, is 3-connected by [6;
Lemma 1.16], Ext! N{ is also 3-connected. Therefore the elements p,/2, v3*~1¢,/2
(t<0), v3**1p,/2 (t<0) and z; (j=1) of degree less than 3 do not belong to the
image of j, in (4.2). Hence g,/2vf, t;/2072*1 (t£0), p,/207%71 (t<0) and ky(z))
(j=1) are not zero by the exact sequence (4.2).

Next consider the exact sequence

4.7 Ext'M3 %, Ext°N3 -2, Ext'N3
(4]

associated to the exact sequence (3.1) for s=2 and n=0. We see that §'(v;/2v,v,)
={v,t,/2v,} by (2.2) and (2.3). Further Theorem 3.3 implies that v;/2v,v, does
.not belong to the image of k in (4.7). Therefore v,t,/2v, #0. Hence (a)is proved.

(b) follows immediately from (a) and (4.6). g.e.d.

ProOF oF THEOREM 1.1. By the exact sequence (4.2) and the isomorphism
do: Ext! N{ ~ Ext?BP, in Proposition 4.1, we have the short exact sequence

(4.8) 0 — ExtON2/4, %%, Ext2BP, %", 4, , 0

where Ag=Im{k,: Ext®M{—Ext°N3} and A,;=Ker{k,: ExttM{—>Ext!N3}. By
Lemma 4.5(b), we can define naturally a right inverse h: A; >Ext?2BP, of j,d5!
by h(x)=0y(x) for xe A, (j3!(x)=xeExtIN{§). Thus (4.8) is a split exact
sequence. "
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By the definition of the universal Greek letter map #n (cf. [6; (3.6)]), we see
that n(x)=0,6'(x) if x € Ext°N3. Thus we deduce from (1.3.1-2) that the §,6'-
image of Ext°N3/A, given by Theorem 3.4 and Lemma 4.4 is the submodule
generated by the elements in (1.7.1-2). For a € Ext!BP, given in (1.2), we see by
(2.4) that

4.9) U =OT My, Ggigyisz = 03™p; moOd(2)
since 7(x)=0q(x) if x € ExtON{ (cf. [6; (3.6)]). Hence we obtain
10y, = Oo(VT'11/2),  010tmji+2 = 6o(0}™*1py/2) in Ext?BP,.

These and Lemma 4.5(b) give the elements in (1.6). Thus we obtain the theorem.
q.e.d.

§5. Some relations in Ext3BP,

By the exact sequence (4.2) and Lemma 4.5(a), the sequence
5.1 0—> Z/2 F, Ext'N2 %, Ext2N}

is exact in positive degree, where Z/2 is generated by v,t,/2v,.
In this section we study some relations in Ext3BP, by the exact sequence
(5.1) whose last term is isomorphic to Ext3BP, by Proposition 4.1.

THEOREM 5.2 (cf. [9; Th. 7.9]). Let n=0,s=1 and j=1 be integers such
that s is odd, j< a,, and especially j<2" if s=1. Then

(i) oyPongj1 #0 in Ext3BP, if and only if

(a) n=0,j=1ands= -1 mod4, (b) n=1andj=1, or
(c) n=2and either j is odd or j—1 > 3.2""2,

(ii) o4/4Pangj1 # 0 in Ext3BP, if and only if

(a) n=0,1landj=1, (b)n=2andeitherj=4orjisodd =3, or
(c) n=3,andjis even > max{6, 3-2""i=3+4}, where
j—4=2" mod?2i*!,

(iii) In Ext3BP,,
UBangijt = X1 Bansjj-r 41,15 Upuesi+ 2Banssjt = %ajaBans)j— 2104 4,1

forodd t =1 and i 2 0 with 2it = 4,
Proor. By (4.9) and (1.2.1), we obtain

(5.3) 0B angj1 = 606’(xf,t1/20{"+1), Rgigji+ 2Bans)ji1 = 000 (X5 /20172')
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where 8, and ¢’ are the boundary homomorphisms in Proposition 4.1 for t=2
and in (5.1), respectively. These imply (iii) immediately.
For n, s and j in the theorem, (5.3) implies that the elements o, f,x,;; and
t4/aB2nsj,1 are the §o6’-images of the elements
b(n, s, j) = x5t,/2v{ and c(n, s, j) = x3p;/20{~* (= x3p,/20]{ by (2.7))

in QUN3, respectively. By Lemmas 2.6, 2.10 and (3.19), we have the following in
QM3
(5.4) b(0, s, 1) = d(x{s*V/2/213) for s = 3 with s =1 mod 4,

b(1, s, 2) = d(x{/2%v,),

b(n, s, j) = d(x3/220]1) + b, b’ = (0h~1L/20071-30 -0,

(k=2"s, I=2""2), for n = 2 and even j;

(5.5) c(n, s, 2) = d(v3"st1/22v,) for n 2 1,
c(n, s, 1) = d(x3"""'s*1/20}) for n = 2,
c(n, s, 6) = d(x5/2%y,) for n =2, 3,
o(n, s, j) = d(x3/23yT) + ¢, ¢’ = (0§71 20]7473 + ),
v(m=(j—4)/2‘ where j—4=2! mod2i*!, and k=2"s, [=2""1"3)
for n—i=z3, and 6j<a,_;_{+4.

In the above (5.4) and (5.5), :-- denotes an element of Q! N3 killed by a lower power
of v, than those shown.

Assume that (a)-(c) in (i) do not hold. Then we see that b’'=0 in (5.4) and
hence b(n, s, j)=0 except b(0, 1, 1). Further, 6,6'(b(0, 1, 1))=0 by the exact
sequence (5.1). Hence the sufficiency in (i) is proved. The sufficiency in (ii) is
proved similarly by (5.5) without exception.

To prove the necessity, consider the diagram

Ext!M] Ext! N3

R

ExtoM3 -2, Ext'M1 2+, Ext'! M3

Assume that one of (a)-(c) in (i) holds, and consider b=b(n, s, j) (resp. b’ in (5.4))
in Q'1M3 and t=j—1 (resp. j—2—3-2""2) if either n=0, 1 or j is odd (resp. n=2
and j is even). Then we see that v}iz!(b) (e Ker v,) does not belong to v4Im § by
(3.20.1). Thus iz'(b)&Imé and b is not zero in Ext!M3. Therefore b(n, s, j)
is not zero in Ext!NZ by (5.4), and is not also equal to v,t,/2v, clearly. Thus its
dp0’-image a;fi,n;,1 is nOt zero by the exact sequence (5.1) and: Proposition 4.1.
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The necessity in (ii) can be proved similarly. q.e.d.

§6. Some elements in 7, (S)

In this section, we prove Theorem 1.8 by showing the following

THEOREM 6.1.  The elements fg,3,, € Ext2:48~6BP, for t=1 in Theorem 1.5

are all nontrivial permanent cycles converging to the homotopy elements in
74(S) of order 2.

PROOF. Let M(2) be the mod 2 Moore spectrum and S —2» S —— M(2) -*—
ZS the cofiber sequence. Recall ([9; Th. 5.13]) that v, € Ext%2BP,/(2) is a
permanent cycle converging to the element « € 7, (M(2)) such that ¢a?=2a and
na=a, («, is the generator of n,(S)).

Also, recall the following result due to M. Mahowald:

(6.2) (cf. [9; Cor. 7.6]) The elements fg,,, , € Ext>*8:=8BP, for all t>0 are
nontrivial permanent cycles and the corresponding homotopy elements have
order 4.

Let ¢ e m,(S) be an element detected by fg,4 5. Then 2£ € n,(S) has order 2
by (6.2), and it extends to a map (2£)~: M(2)—S; and we see easily that &=
(28~ e my(S) is detected by fg,3,, from the Geometric Boundary Theorem ([3;
Th. 1.7]). Clearly 2¢'=2¢a2=0. On the other hand, fg,5,; (t=1) is nontrivial
in the E,-term by Theorem 1.5, and there is no Novikov differential hitting it
since O-line is trivial in positive dimension. Thus &’ has order 2. q.e.d.

ProOF OF THEOREM 1.8. By Theorem 5.1, ay/4f8,/3,1 70 and o4/4Bs/4,1 #0.
Also 204,4B8s/a,2=0%4/aBssa,1 by (3.11). It is well known that a; and a,, are
nontrivial permanent cycles (cf. [9; Th. 5.8]). Therefore by Theorem 6.1 and
(6.2), we see that o, fg,/3,1, %4/aBse/3,1> %4/aPsija,1 and 04,4 Pg; 4,2 are also permanent
cycles. By sparseness, a Novikov differential hitting any of them would have to
originate on O-line which is trivial in positive dimensions. Hence they are non-
trivial permanent cycles, and the theorem is proved since ay, fig;3,1 and Bgy 4,2
have orders 2, 2 and 4, respectively. q.e.d.

Finally, we notice the following remark which follows from [9; Th. 7.9].

REMARK 6.3. g5 1 € Ext2:48:=4BP, for t=1 in Theorem 1.5 are also non-
trivial permanent cycles and the corresponding homotopy elements have order 4.

Proor. By continuing the proof of Theorem 6.1, we see similarly that &'
extends to a map (£)~: M(2)—S and that &"=(&')~« € n,(S) is detected by Bg,/2,1-
Furthermore, 2¢"=¢'a? is detected by «?fs,s,; € Ext*BP, which is shown to be
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nontrivial in [9; Th. 7.9]. Thus we see similarly that &” has order 4. q.e.d.
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