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§ 1. Introduction

Let BP denote the Brown-Peterson spectrum at a prime p, whose coefficient
ring BP*=π*(BP) is the polynomial ring

BP* = Z ,̂ ι>2,.. ] (degι?l = 2(pl-l))

with HazewinkeΓs generators vt ([2]). Then, we have the Hopf algebroid
(BP^BP*BP\ where BP*BP = BP*ίtί9 f2, ] (degί,= 2(^-1)) ([1; Part II],

[5], [8], [6; §1]). For the spectrum BP, we have Novikov's analogue of the
Adams spectral sequence converging to the stable homotopy ring π*(S) of the

sphere spectrum S. Its E2-term £*'* *s the cohomology E\t%£Bp(BP*9 BP#)
(denoted simply by Ext*'*£P*) of the Hopf algebroid (BP*, BP*BP)9 (cf. [1;
Part III], [7]). The £2-term £J»* is determined by S. P. Novikov [7] for any

prime p, and £^»* by H. R. Miller, D. C. Ravenel and W. S. Wilson [6] for any

odd prime p.
In this paper, we shall determine E%>* for the prime 2, and study the non-

triviality of some elements in π*(S). We notice that the results for E%>* is also
obtained by S. A. Mitchell, independently. From now on, we assume that the
prime p is 2.

To state our results, we recall the elements y^υ^BP^ and xiet?i15P+,

which are denoted by xίti and x2,ι
 m [6; (5.11)] respectively, given by

(1.1) y0 = vί9 yλ = υ\ - 4v^lv2, yt = y^ (i ̂  2),

X0 = V2, X\=V2- ^2^3» X2 = Xl - Vlv% - V\V^ X f = χf_ t (ί ̂  3) .

By using these elements and the universal Greek letter map η (for the definition,
cf. [6; (3.6)]), we can define the elements

(1.2) αm = φy/2) for odd m JS> 1, α2/2 = η(yJ4), and

α2ίm/ί+2 = η(yf/2i+2) for i ̂  1, odd m ̂  1 with 2'm § 4,

which generate Ext^P* (cf. [6; Cor. 4.23]). Further, we can define the elements

(1.3.1) /W*+ι=^M/2ί+M) in Ext'BP,

for n^O, odd s^l,;^!, i^O with
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n ^ i, 2* 1 7, 7 :g #„_;, and especially 7 g 2n if 5 = 1 and * = 0,

by the same way as the case for the odd prime ([6; p. 483]); and moreover we de-
fine the elements

(1.3.2) 02Πl/ΛI+2 = η(xs

n/2i+2yγ) (m = j/2ί) in

for n, s,j and i of above with the additional conditions that

n ^ i 4- 1 ̂  2, 7 = 2 and s ̂  3 if n = 2, and 7 ̂  0 n _ f _ x if n ̂  3,

(see Lemma 3.8), where ak ( = α2,fc in [6; (5.13)]) are given by

(1.4) α0 = l, α 1 = = 2 , α f c = 3 2fc-1 ( fc£2) .

For β in (1.3.2) and (1.3.1), we shall see the equalities

β2»s/j,i+2 = β2»,/j,a+i)+ι under the condition that 2ί+1 | j,

2β2»s/j,i+2 = β2»s/j,i+ 1 (see Lemma 3.10) .

By using the above elements, our main theorem is stated as follows :

THEOREM 1.5. The 2-line of Novikov's spectral sequence, Ext2 *BP# =
Extβ'ptBpφP*, BP*\ for the prime 2 is the direct sum of the cyclic Z(2)-swfc-
modules generated by the following elements:

(1.6) <Xι<xmfor oddm^l, α1α2.m/ί+2 for i^l and oddm^l with

(1.7.1) β2»s/j,i+ι in (1.3.1) with the additional conditions that s^3 if n = 0,
n>i and either j is odd or α n _ ί _ 1 < 7 // n^l, and especially 5 = 1 if n = 2 and

i=i ;
(1.7.2) β2»Sfj,ί+2 ^ (1.3.2) with the additional condition that 2i+1J(j.

The elements in (1.6), (1.7.1) and (1.7.2) have orders 2, 2ί+1 and 2ί+2, respectively.

After proving Theorem 3.3 which determines Ext°M§ (M§ = u2"
15PJ|t/(200, ι?f)),

we prove the above theorem in §4. (For a BP^J5P-comodule M, ExtJpj,BP

(BP#, M) will be denoted simply by Ext*M .) Furthermore, by using Theorem
3.3, we can prove Theorem 5.2, which gives a partial information on Ext3£P*,
and the following theorem in §6 by using the result of M. Mahowald (cf. [9;

Cor. 7.6]) that /?8ί/4j2 is a permanent cycle converging to the element in π*(S) of
order 4.

THEOREM 1.8. For any t^l9 the elements Xiβst/s,!* α4/4/?8f/3,ι and #4/4
βst/4,2 in Ext3BP^ are nontrivial permanent cycles converging to the homotopy
elements in π*(S) of orders 2, 2 and 4, respectively.
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§ 2. Preliminaries

For the right unit ηR: BP*-+BP*BP9 we see easily the following formulae by
[6; (1.1), (1.3)] (cf. also [1], [2], [8]):

(2.1)

(2.2) ηRυ2 = v2 - vrf + Φi + 2f 2 mod(4),

(2.3) ηRv3 = v3 + ι?2ίf + v^tί + Ό^l + v\υ2tl + v\t\ mod(2, uf).

;/Λ induces the map τ/ Λ : v~lBP*-*υ~iBP*IJ ®BP+BP*BP for any ideal J of
#P* such that (2, IΊ,-", tfπ_ι)fec:J for some positive integer /c. In this section
we shall compute the image of the elements yiev^BP* and x^v^BP^ given in
(1.1) by the map

d = ifo - id ® I: i -^P* - > v^BP^J ®BP.BP*BP (n = l, 2)

for some ideal J of above. Here we shall say that x e v~lBP# is invariant mod J
if dx = 0(cf. [4]).

For the elements y{ e vΐίBP*, we recall the following

(2.4) ([6; Lemma 4.12], cf. [4; p. 504]) For ί^l, yt is invariant mod(2ί+2).
More precisely,

dyi = 2ί+2t;fpι mod(2ί+3),

where ρ1 ev~[ίBP^tBP is given by

(2.5) Pi = v',\t2 - tl) + vϊ*v2t, (cf. [6; Prop. 3.18]) .

For the elements Xiev^BP*, we have the following lemmas, where a{ is the
integer given in (1.4).

LEMMA 2.6 (cf. [6; Prop. 5.14]). For i^O, xt is invariant mod(2, i fO
More precisely, we have the following congruences mod(2, v\+ai)\

+ vlti (/=0),

+ vlv2ζ2 (/ = !),

Here pi e BP*BP and ζ2 e v^BP^BP are given by

(2.7) pl = v\Pl = υ&2 - ί?) +
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(2.8) C2 = υ?t2 + vϊ2(t2

2-t*) - vϊ*v3t
2 (cf. [6; Prop. 3.18]).

PROOF. The congruence follows from (2.2) for ι = 0 and is given in [6;
(5.15)] for /=!.

We notice the following which is seen easily :

(2.9) If dx = y mod (2, u), then dx2i = y2* mod(2, u2') .

By the congruence for ί = l in the lemma and (2.9),

dx\ ΞE φίίf + Φ? + φj 4 ϋfϋiCi mod(2, ι>|) .

Also by using (2.1-3), we see the following mod (2, i f).:.

dυ\υl = v\v\t\ 4 ι?f ι?2ίf 4- pfϋ^! -I- v\t\ -f ι;]ίf

= i f t;2ίf 4- v\v2

lt1 4- vfίi .4- ufoί? + ^ϊ^i -

Collect terms to obtain the case 1 = 2. For f^3, use xt = xi-i in (1.1), (2.9) and
the inequality 2l~2 - 8^2 + 3 .2'"1. q.e.d.

LEMMA 2.10. Let s be any odd integer. Then

(i) dxs

ί = 2v1v$'-1tl mod(22, t??),
(ii) c/x |Ξθ mod(23, t?f),
(iii) dx; Ξ 2n-1vlύ%H8-1ζ2 mod(2", ί f) /or n = 2, 3, 4,
(iv) dx s

wΞ2w- ίy?^ins-2ί 1Ci ί"1 mod(2"-ί+1, v\+a^ for 2^ί^n.

PROOF, (i) and (ii) follow from (1.1), (2.1) and (2.2).
Recall here that

(2.11) ([6; p. 498]) If L is any ideal with y2 eL, and if dx = y mod(2, L), then
dxj=jxj~ly mod(2ί+1, L)for any integer j^l and i^O with 2i \j.

(iii) for n = 2 follows from (1.1), (2.1), (2.2), Lemma 2.6 and (2.11), and (iii)
for n = 3, 4 follows from (iii) for n = 2, (1.1) and (2.11).

(iv) follows from (1.1), Lemma 2.6 and (2.11). q.e.d.

§3. Ext°Λf I and Ext<Wg

In [6; §3], the BP^BF-comodules Ns

n and M* are defined inductively by
setting NQ

n = BP*l(2, vί9~ 9vn-ι)9 Ms

n = v~£sN
s

n and by the short exact sequence

(3.1) 0 - > N*n J-* Ms

n -*-» N*+ 1 - > 0 .

Their coactions are induced from the right unit ηR: BP*^BP*BP. Further the
sequence
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(3.2) 0 — -> MΓ+\ -U M\ -?=-> Ml — » 0

is exact, where i(χ) = x/vn (with ι>0 = 2) (cf. [6; (3.10)]).
For the BP*BP-comodule M = Ns

n or Mj, Ext*M = ExtiPφBP(BPJ|{, M) is the
homology of the cobar complex Ω*M (cf. [6; (1.8-10)]). Especially the differ-
ential d: Ω0M = M-+Ω1M = M®BptBP#BP is given by d = ηR-iά®l and
Ext°M = Kerd. In this section we shall determine Ext°Mg and Ext°ΛΓg. Our
results are stated in the following theorems :

THEOREM 3.3. Ext°Mg is the direct sum of the cyclic Z(2)-submodules gener-
ated by the following cycles:

(3.3.1) xs

n/2i+lv{for n^O, odd s, z^O and j = l such that

j ̂  an and either j is odd or an-l<j if i = 0,

n — 2^i, 2l \j and an_i_i<j^an_i otherwise',

(3.3.2) xs

nl2
i+2y* for n^2, odd s, i^l and odd m^l such that

ϊ = m = l if n = 2, 3, n — 2>i and 2 ί m ^ α w _ / _ 1 ϊ/n^4;

(3.3.3) \ l 2 v f f o r odd m^l, and l/2i+2yf for i^l and odd m^l .

THEOREM 3.4. Ext0Ng is the direct sum of the cyclic Z(2)-submodules
generated by the cycles in (3.3.3),

(3.4.1) the ones in (3.3.1) with s^l and j^2n if s = \ and ϊ = 0,

(3.4.2) the ones in (3.3.2) with s^l and especially s^3 if n — 29 and the cycle

x2/22yί-=2(x2/23yl) = x2/22v2

1 (see Lemma 3.10).

PROOF OF THEOREM 3.4 FROM THEOREM 3.3. We have the exact sequence

(3.5) 0 - > Ext°JVg -ύ Ext°M§ -̂  Ext°N3

0

associated to the exact sequence (3.1) for 5 = 2, n = 0. By the definition of Λfg,
the /c-image of z\2lv{ (^O)eMg with zev2

1BP^t/(2i

9 υ{) (/', j>0) is zero if and
only if z e BPHc/(2ί, ι?{). We see also by (1.1) that

(3.6) x; = v\ + 2i(i$lv$-6lv%1 + t??1^-' + ϋf'^"41^) mod(2ί+1, »?»-*)

(/c = 2Λs, / = 2M-f-2) for n = 2 and n-2 = ϊ = 0,

xf = ι?§- mod(2, t f), xs

0 = υs

2,

where s is any odd integer. Further (1.1) implies the equality

(3.7) l/2i+2yf = (l/2i+2t;{) + m(v2/2v{+3) (j = 2lm) in M§ for i = 1, m = 1.
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Then for any cycle g in (3.3.1-3), we can write g = Σijzij/2ivi with zu ev^
(2l, v{) by using (3.7); and we see by (3.6) that all z,/s belong to £P*/(2', υ{) if

and only if g is the one in (3.3.3), (3.4.1-2), except g = x2/23yί. Thus, we see the

kernel of k in (3.5) at any degree other than 20 by using Theorem 3.3. On the

other hand, we see that k(x2/23y1) = v%l2v1v2(^Q) by (1.1) and (3.7). Thus, at

the degree 20, x2/22y t is the generator of Ext°N§. Therefore Theorem 3.4 follows

from Theorem 3.3. q. e. d.

To prove Theorem 3.3, we prepare several lemmas, (cf. [4] for the definition

and the properties of invariant ideals).

LEMMA 3.8. Let α0, α l 5 α2 be given as follows, where s is any integer:

(1) α0 = 2ί+1, a! = υ{9 α2 = xs

n for 0 ̂  ί ̂  n, 1 g j ^ an.t with 2i \j\

(2) α0 = 2ί+2, α j = y f , α2 = x* for (a) / = m = 1 if n = 2, 3,

and for (b) 1 ̂  ί g n-2, m ̂  1 wiί/i 2l'm g α π _ί_ι if n^4.

Then α2/α0α1 is α cyc/e and /ϊencβ α2/α0α1 eExt°M§. More precisely, ϊ/α0, α1?

α2 are m (1) or (2) for (b), ί/ien (a0, a l s a2) is an invariant ideal of

PROOF, (1) If 0<Ξn- i^ 1, then (a0, a1? a2) is equal to (2, vl9 vs

2\ (2, i?!, xf),

(2, i f, xf) or (22, vl, x2). These are invariant by Lemmas 2.6 and 2.10 (iii).

Since 2i \j, (2ί+1, υ{) is invariant. If n- 1^2, then xs

n is invariant mod(2ί+1,

f{) for j^an-.t with 2f |; by Lemma 2.10 (iv).

(2) for (b) We use the following which is seen easily :

(3.9) // x Ξ y mod(2, u), then x2i* = y2is mod(2ί+1, 2u, w2ί) for i ^ 1.

Applying this to Lemma 2.6, we obtain that x*=x2^Ls! in (1.1) is invariant

mod(2l+2, 2f?f, ι?f l + lβ), where a = an_i_1. Since υlim = 2i+1mυ^m"3v2 mod(2ί+2,
y?) by (1.1), both 2t?f and v\^la belong to the ideal (2ί+2, yψ). Hence xs

n is

invariant mod(2ί+2, yf ).

(2) for (a) By (2.4) and (3.7), we have

d(**J2*yί) = d(x^2^vl + d(x*n)v2/2vl .

Further d(xs

n) = 0 mod(23, t?f) by Lemma 2.10 (ii) and (iii), and d(xs

n) = Q mod(2,

vl ) by Lemma 2.6. Therefore d(xs

n/23yi) = 0. q. e. d.

LEMMA 3.10. For any cycle α2/α0αx = xs

n/2i+2y1ll of type (2) in Lemma 3.8,

(3.11) α2/α0α1 = xs

n/2i+2v?m if m is even,

2(α2/α0α1) = x^^f™.

Furthermore, the cycles given in Theorem 3.3 are linearly independent.
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PROOF. (3.11) follows immediately from (3.7). Moreover, we see easily
that (3.11) is the only relations between the cycles in Lemma 3.8 for s = 0 or odd s,
by comparing their degrees. Thus the latter half follows. q. e. d.

Now consider the exact sequence

(3.12) Ext°M} -*-> Ext1^ -ί-> Ext1M} -̂ -» Ex^Λ/}

associated to the exact sequence (3.2) for s=l and n = l , where the first two
modules are given as follows:

(3.13) ([6; Prop. 3.18]) ExtxM§ is the F2\_v2, υ^-vector space generated by
the four elements /ι0 = {r1}, ki = {t\}, ζ2 0/(2.8) and p2.

(3.14) ([6; Th. 5.10]) Ext°M} is the direct sum of F2[vl9 v^l']/F2[vi'] and the
cyclic F^v^-submodules generated by xf/t?f* for i^O and odd s.

LEMMA 3.15. The kernel of i^: Ext1M}-^Ext1M} in (3.12) is the F2-vector
space generated by the elements represented by the following cycles:

for any integers s, t and k with s=£l mod 4 and fc^O.

PROOF. We study the cokernel of δ: Ext°M\-+ExtlM% in (3.12). We see

easily that d(l/ι>{) = 0 by (2.1), which implies δ(F2[υl9 ^Γ1]/^2C
ί;ι]) = 0 By

Lemma 2.6,

0Γ1*? (ι' = 0),

In the last term, ζ^ 1 is homologous to ζ2 by [6; Lemma 3.19]. Therefore,
(3.13), (3.14) and the above equalities imply that Coker£ is the F2-vector space

spanned by

and

for any integers s, t and k with 5^1 mod 4 and /c^O. Furthermore, by using
Lemma 2.6, we see that

Therefore v^pjυl is homologous to i(v^+ίζ2) = v^t+lζ2lvi. Since Kerι;1 =
i (Coker δ) by the exact sequence (3.12), these imply the lemma. q. e. d.

Next consider the exact sequence



506 Katsumi SHIMOMURA

(3.16) 0 — > Ext°M } -U Ext°Λf g -?U Ext°M2

associated to the exact sequence (3.2) for s = 2 and «=0.

On the boundary homomorphism δ in (3.16), we have the following

LEMMA 3. 17. The δ-image of the cycle α2/α0α1 e Ext°Mg in (3.3.1-3) is

given as follows:

(3.17.1) For the cycles xs

n/2i+1v{ in (3.3.1),

(a)

(c)

(d)

(3.17.2) 5(xs

M/2ί+2yf) = MpJϋΓ4 +-} (fe = 2"s, 7 = 2'm)/or ί/ze cyc/es in
(3.3.2).

(3.17.3) (5(1/2^) = {fJuΓ*-1}, 5(l/2ί+2>;f) = {p!/ί;{+4} (j = 2im) for the cycles in

(3.3.3).

Here {x} means the cohomology class of x, and ••• denotes an element of Ω1M{

killed by a lower power ofυl than those shown.

PROOF. By the definition of <5, we see that

(3.18) ί(α

On the d(\l2aQUL^ in the second term of the right hand side of (3.18), we have the
following by (2.1) and (2.4):

(3.19) (i) d(l/2M)=Λ/2^ί+ 1 'for 7 ^ 1 ;

(ii) d(\βMv{)=j(tl + υιtdl2Mυ{+2 for i ̂  1, 2* |;' ̂  1;

(iii) d(l/2i+*yψ) = mp^vi*4 (j = 2im) for i ̂  1, m ̂  1.

By Lemmas 2.6, 2.10, (3.19) and (3.18), we see the lemma as follows.

(3.17.1) By (2.2) and (3.19) (i), we see that

These imply (a). By Lemma 2.10,

d(x\)l22vί = 0, d(xί)/22t;2 = v

d(xs

n)l2i+2vi = vk

2-
lζl

2/2v{-31 for n-2 ̂  ί ̂  0, 0 < j ^ α M _ f with 2i \J9
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Also by (1.1), Lemma 2.6 and (3.19),

ηR(x*n)d(l/22v{) = Λ(Φι/2f>ί+1) + -) (fc = 2»s) for n £ 1,

for w-2;>ΐ>0, 0<jgα M _ f w i t h 2 f | Λ because φ§+1/2ϋί+3) = t?5(ίf4 t;1ί1)/2t;{+2

-f 5B,3i?Is-7il6/2t>i~5 by (2.2) (δΛf3 is the Kronecker <5). These imply (b)-(d).
(3.17.2) In the right hand side of (3.18) for the cycle α2/α0α1 in (3.3.2), we

see that the power of i^ in the denominator of the first term is less than that of the
second term by using (1.1), Lemma 2.10 and (3.19) (iii). Now (3.17.2) follows
from (1.1), (3.18) and (3.19) (iii).

(3.17.3) The equality follows immediately from (3.19) (i), (iii). q.e.d.

COROLLARY 3.20. For every cycle # = α2/αoαι ίn (3.3.1-3), there is a non-
negative integer l(g) such that v[^δ(g) is a generator of the kernel of vί given
in Lemma 3.15. More precisely, we have the following equalities:

(3.20.1) (a) v^v^vj = {v^tJvΛ for s = = - l mod 4,

SfallOj = {t ΓViM} for s = 1 mod 4,

(b) δ(xl/2v*) = {v^ti/vj ,

(c) viδ(x*J2vί) = {vϊtJvΛ (/e = 2»s) for n £ 1, odd j^an9

(d) v{-u-iδ(x*n/2ί+ίvi) = [υϊ-tζM (fc = 2»s, ί = 2»--2)

for the other cycles in (3.3.1).

(3.20.2) v{+2δ(xs

n/2i+2yγ) = {v^pjvl} (k = 2nsj = 2im) for the cycles in (3.3.2).

(3.20.3) ι^δ(l/2ϋΓ) = [ t j Ό i ] , vi+2δ(l/2i+2yf) = {pjv*} (j = 2*m)

for the cycles in (3.3.3) .

Now we are ready to prove Theorem 3.3, by using the following fact which

is an immediate consequence of [6; Remark 3.11]:

(3.21) In the exact sequence (3.16), let B be a Z^-submodule of Ext°Mo such
that B contains both 2B and the image of ί: Ext°M}->Ext°M§, and that the

sequence

(3.22) B-^B -1* Ext1MJ

is exact. Then B = Ext°M§.

PROOF OF THEOREM 3.3. Let B be the submodule generated by the cycles in
(3.3.1-3). Then by Lemma 3.10 and (3.14), we see that B^2B and
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Thus it suffices to show that the sequence (3.22) is exact. By Lemma 3.17, it is
clear that the composition of 2 and δ in (3.22) is zero.

Now, take a homogeneous element β e B and write β=Σλgg as a linear com-
bination of the generators of B. Assume β^2B9 and consider /(/?) = max {/(#):
λg=l mod2}, where l(g) is the integer given in Corollary 3.20. Then we see

easily that v[(β)δ(β)=Σi(g)=i(β) v[(g)δ(g) is not zero by the definition of /(/?), Lemma
3.15 and Corollary 3.20. Hence δ(β)^Q. Therefore δ(β) = Q implies βe2B, as

desired. q. e. d.

§4.

In the first place, we notice the following

PROPOSITION 4.1. The boundary homomorphism

δ0 : Ext'ΛfJ

associated to the exact sequence O-^JVg-^Mg-^J-^O 0/(3.1), is an isomorphism
for ί>0.

This follows immediately from the fact that Ext'M8 = 0 for ί>0 ([5; Th.
2.10], [6; Th. 3.15]).

To study Ext1JVJ«Ext2

JBP#, we consider the exact sequence

(4.2) Ext°Mj -£-> Ext0^2, Jl> Ext^J -1±> Ext1M J -**

associated to the exact sequence (3.1) for s = l and n=0. Here, the module
Ext°ΛΓg is given in Theorem 3.4 and the modules Ext°Mj and Ex^Mj are given
in [6; Th. 4.16] as follows:

(4.3.a) Ext°Mj ί's the direct sum of (1) the cyclic Z(2)-modules generated by
ι f/2, ysJ2ί+2for i^l and odd 5, and (2) β/Z(2) generated by \βi for fel.

(4.3.b) Ex^MJ is the direct sum of (1) Z/2 generated by pJ2, rJf j/2, v\
for odd s, and (2) β/Z(2) generated by zj such that 2jzj = {pί/2} for j^l.

LEMMA 4.4. The image AQ of k*:ExtQMk-+Ext°N% in (4.2) is the sub-
module generated by the cycles in (3.3.3) and v2/2v1.

PROOF. For the generators given in (4.3.a), we see that

0

1/2VΓ
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O 0*^3 or /^2),

These imply the lemma. q. e. d.

LEMMA 4.5. (a) The image of k*: Ext1MJ-^Ext1Ng in (4.2) is the direct

sum of (1) Z/2 generated by ρJ2ιή[9 v2tί/2vi, tjlv?*1 and p^2v2t~l for ί^O,

and (2) β/Z(2) generated by &*(*,) /orj'g l.

(b) 77ιe fcerne/ A t o/ fc* : Ext1MJ-^Ext1Ar§ m (4.2) is ίfce direct sum of Z/2

generated by υ^Ή^β and

(4.6)

PROOF. For the generators given in (4.3.b), we see that

Ό

Since Ext1^?^Ext2^^^ by Proposition 4.1 and Ext^P* is 3-connected by [6;

Lemma 1.16], Ex^NJ is also 3-connected. Therefore the elements pJ2, vlt~ίtί/2

(ί^O), ί;2ί+1pι/2 (^0) and zy (j^l) of degree less than 3 do not belong to the
image of j* in (4.2). Hence pJ2v^ tJ2υ^2t+ί (t^0), p^Γ2*'1 (ίgO) and fc^ίz^)

(j^ 1) are not zero by the exact sequence (4.2).

Next consider the exact sequence

(4.7) Ext°M§ JL+ Ext<Wg -21» Ext^g

associated to the exact sequence (3.1) for s = 2 and n = 0. We see that δ'(v3/2vίv2)

= {v2tί/2vί} by (2.2) and (2.3). Further Theorem 3.3 implies that v3/2v1v2 does

.not belong to the image of k in (4.7). Therefore v2t1/2vi ^ 0. Hence (a) is proved.

(b) follows immediately from (a) and (4.6). q. e. d.

PROOF OF THEOREM 1.1. By the exact sequence (4.2) and the isomorphism

(50: Ex^JVJί^Ext^P* in Proposition 4.1, we have the short exact sequence

(4.8)

where A0 = Im{k*: Ext°MJ->Ext°Ng} and A^K&fr*: Ext^^Ext1^}. By

Lemma 4.5(b), we can define naturally a right inverse h: Ai->Ext2BP.¥ of j^o1

by h(x) = δΌ(x) for xeAi(j'i1(x)=xeExilNQ. Thus (4.8) is a split exact

sequence.
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By the definition of the universal Greek letter map η (cf. [6; (3.6)]), we see
that η(x) = δ0δ'(x) if xeExt°N§. Thus we deduce from (1.3.1-2) that the δ0δ'-
image of E\t0Nl/AQ given by Theorem 3.4 and Lemma 4.4 is the submodule
generated by the elements in (1.7.1-2). For αeEx^BP* given in (1.2), we see by
(2.4) that

(4.9) OmSϋΓ 1*!, «2im/i+2 = VΪmPl ™θd(2)

since η(x) = δQ(x) if x e Ext°NJ (cf. [6; (3.6)]). Hence we obtain

in

These and Lemma 4.5(b) give the elements in (1.6). Thus we obtain the theorem.
q.e.d.

§ 5. Some relations in Ext3JBP*

By the exact sequence (4.2) and Lemma 4.5(a), the sequence

(5.1) 0 - > Z/2 -̂ U Ext1^2, -21+ Ext27Vj

is exact in positive degree, where Z/2 is generated by v2ti/2vί.
In this section we study some relations in Ext3βPHί by the exact sequence

(5.1) whose last term is isomorphic to Ext3BPH. by Proposition 4.1.

THEOREM 5.2 (cf. [9; Th. 7.9]). Let n^O, s^l and j^l be integers such
that s is odd,j^an9 and especially j^2n if s=l. Then

( i ) <*ιβ2"S/j,ι =£ 0 in Ext3BP* if and only if

(a) n = 0, j = 1 and s = — 1 mod 4, (b) n — 1 and j = 1, or
(c) n ̂  2 and either j is odd or j—1 > 3 2M~2.

(ii) α4/4/?2"s/./,ι ^ 0 m Ext3BP# if and only if

(a) n = 0, 1 and j = 1, (b) w ^ 2 and either j = 4 or j is odd ^ 3, or
(c) n ̂  3, 0ttdj is even > max{6, 3 2"~ί~3H-4}, where

j ~ 4 Ξ 2 ί mod2 ί+1.

(iii) 7

j' - ί + 1 , 1 »' 2 *ί/ί + 2 2 " s / j , 1 ̂  4 / 4 2 » s / J - 2fί + 4,1

/or odd ί ;> 1 and ί ̂  0 with 2lt ^ 4,

PROOF. By (4.9) and (1.2.1), we obtain

(5.3) og32«s/JM =
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where δ0 and δ' are the boundary homomorphisms in Proposition 4.1 for t = 2
and in (5.1), respectively. These imply (iii) immediately.

For n, 5 and j in the theorem, (5.3) implies that the elements α1jS2"S/j,ι and
α4/4/?2"s/j,ι are the (50(5'-images of the elements

b(n, 5, j) = x HtJ2υ{ and φi, s, j) = x^p^v^ (= x ftβi ί by (2.7))

in Ω1N%, respectively. By Lemmas 2.6, 2.10 and (3.19), we have the following in

(5.4) b(0, 5, 1) = d(x('+l>'2l2υl) for s ^ 3 with s == 1 mod 4,

Kl,s,2) =

i(n, 5, 7) =

(fc = 2ns, / = 2n-2), for H ̂  2 and even j;

(5.5) c(n, 5, 2) = φf s+1/22^ι) for n ̂  1,

c(n, 5, 1) = d(jqf"'le+1/2i??) for n ^ 2,

c(n, s, 6) = rf(xs

n/24j;1) for n = 2, 3,

c(n, 5, 7) = d(x*n/2^yT) 4- c', c' = (^^Ci^Γ4-^ +...),

(m = (j-4)/2i where 7~4 = 2ί mod2ί+1, and k = 2ns, / = 2n~f-3)

for n~i ^ 3, and 6 ̂ j g «„_;_! + 4.

In the above (5.4) and (5.5), ••• denotes an element of ΩWg killed by a lower power
of v^ than those shown.

Assume that (a)-(c) in (j) do not hold. Then we see that fr'=0 in (5.4) and
hence b(n, s,j) = 0 except fe(0, 1, 1). Further, δ0δ'(b(Q, 1, 1)) = 0 by the exact
sequence (5.1). Hence the sufficiency in (i) is proved. The sufficiency in (ii) is
proved similarly by (5.5) without exception.

To prove the necessity, consider the diagram

Ext1^2,

k [/*

Ext°Λf § JU ExtW} -A* ExϊM §

Assume that one of (a)-(c) in (i) holds, and consider δ = i?(n, s, 7) (resp. b' in (5.4))
in ΩlMl and t=j-l (resp.7'-2-3 2w-2) if either n=0, 1 or j is odd (resp. n^2
and j is even). Then we see that riίϊ1(δ) (eKer υ^) does not belong to v{lm δ by
(3.20.1). Thus φCfy&Imδ and B is not zero in Ext1M§. Therefore fc(n, s, j)
is not zero in Ext1^ by (5.4), and is not also equal to v2ti/2vi clearly. Thus its

<50<5'-image αi/^s/Λi is not zero by the exact sequence (5.1) and Proposition 4.1.
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The necessity in (ii) can be proved similarly. q. e. d.

§ 6. Some elements in π#

In this section, we prove Theorem 1.8 by showing the following

THEOREM 6.1. The elements β8ί/3jl eExt2'48ί-6BP* for ί^l in Theorem 1.5
are all nontrίvial permanent cycles converging to the homotopy elements in
π+(S) of order 2.

PROOF. Let M(2) be the mod 2 Moore spectrum and S -?-> S -̂ -> M(2) -̂ -»
IS the cofiber sequence. Recall ([9; Th. 5.13]) that ΌleExt° 2BPJ(2) is a
permanent cycle converging to the element αeπsiί(M(2)) such that £α? = 2α and
πα = αx (ocί is the generator of πx(5)).

Also, recall the following result due to M. Mahowald:

(6.2) (cf. [9; Cor. 7.6]) The elements β8t/4>2eExt2>48t-8BP* for all ί>0 are
nontrίvial permanent cycles and the corresponding homotopy elements have
order 4.

Let ξ e π*(S) be an element detected by j88f/4f2 Then 2ξ e π*(S) has order 2
by (6.2), and it extends to a map (2ξ)~: M(2)-»S; and we see easily that ξ' =
(2ξ)~oίeπ#(S) is detected by β8ί/3jl from the Geometric Boundary Theorem ([3;

Th. 1.7]). Clearly 2ξ' = 2ξα? = 0. On the other hand, j88ί/3fl (f^l) is nontrivial
in the £2-term by Theorem 1.5, and there is no Novikov differential hitting it
since 0-line is trivial in positive dimension. Thus ξ' has order 2. q. e. d.

PROOF OF THEOREM 1.8. By Theorem 5.1, a4/4/?si/3,i^O and α4/4j88f/4fl^0.
Also 2α4/4/?8f/4>2 = α4/4/?8ί/4jl by (3.11). It is well known that oq and α4/4 are
nontrivial permanent cycles (cf. [9; Th. 5.8]). Therefore by Theorem 6.1 and

(6.2), we see that ct^8t/3tl, α4/4j88ί/3tl, a4/4β8t/4tί and α4/4β8ί/4,2 are also permanent
cycles. By sparseness, a Novikov differential hitting any of them would have to
originate on 0-line which is trivial in positive dimensions. Hence they are non-

trivial permanent cycles, and the theorem is proved since α l 5 /?8ί/3>1 and /?8f/4)2

have orders 2, 2 and 4, respectively. q. e. d.

Finally, we notice the following remark which follows from [9; Th. 7.9].

REMARK 6.3. βst/2,ι e Ext2'48ί~4BPHs for t^l in Theorem 1.5 are also non-
trivial permanent cycles and the corresponding homotopy elements have order 4.

PROOF. By continuing the proof of Theorem 6.1, we see similarly that ξ'

extends to a map (£')~: M(2)-»S and that ξ"=(O~αeπ*(S) is detected by β8ί/2,ι.
Furthermore, 2£" = £'α? is detected by αfjS8f/3>1 eExt4βP* which is shown to be
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nontrivial in [9; Th. 7.9]. Thus we see similarly that ξ" has order 4. q. e.d.
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