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Introduction

In [10] and [11], E. Rees and E. Thomas have studied the divisibility of
some Chern numbers of the complex cobordism classes and the homotopy groups
of MU(n). The purpose of this paper is to study the symplectic cobordism theory
by using their methods.

Let MSp(n) be the Thom space of the universal symplectic vector bundle
over the classifying space BSp(n), and MSp={MSp(n), ¢,} be the Thom spectrum
of the symplectic cobordism theory, where ¢,: Z*MSp(n)->MSp(n+1) is the
structure map. Let b,: MSp(n)—»>Q*"MSp(n+ N) be the adjoint map of the
composition &, y: Z*¥MSp(n)->MSp(n+N) of Zig,.;, where N=n>0. Con-
verting b, into a fibering with fiber F,, we consider the fibering

(1) F, — MSp(n) 2=, Q**MSp(n+N).

Then F, is (8n-2)-connected, and we can determine the cohomology groups of
F, in dimensions less than 12n-2 (see Proposition 2.15).

Let P;e H*(BSp) be the i-th symplectic Pontrjagin class. For a symplectic
cobordism class u € 1, (MSp) and a class P;---P; € H¥*(BSp) with >/, i,=k,
P;,---P; [u] denotes the Pontrjagin number of u for a class P; ---P; .

Our first purpose is to obtain the divisibility of some Pontrjagin numbers of
the symplectic cobordism classes by making use of the cohomology groups of
F,. As a concrete result, we have the following theorem (see Theorem 3.8):

THEOREM 1. Let n=1. Then
(i) P,[u]l=0 mod 8 for any u e rn,,(MSp).
(i) PP, [u]l—((n+4)/2)P,.[u]l=0 mod 24 for any u € 74, . (MSp).

The divisibility of Pontrjagin numbers of some symplectic cobordism classes
has been studied in [14], [13], [3], [6] to investigate the structure of 7, (MSp).
For the divisibility (i) of the above theorem, E. E. Floyd [3] has proved it with
some restriction by using the alternative method, and some application of the
method of Floyd is considered in [4].

The second purpose of this paper is to study the homotopy groups
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Tiga— 1(MSp(n)) and =g, ;(MSp(n)) by using the fibering (1) and some examples
of the symplectic cobordism classes. Our second results are stated as follows
(see Corollaries 4.4, 4.5 and Theorems 4.6, 4.7):

THEOREM II. (i) Let m(n) be the greatest common measure of {(1/8)P,[u]|
uemn, (MSp)}. Then the induced homomorphism

b, : mgs— (MSp(n)) — m4,_(MSp)

of b, in (1) is epimorphic and its kernel is a cyclic group of order 4m(n) gene-
rated by the Whitehead product [i, i] for the homotopy class i of the natural
inclusion S*"— MSp(n).

(ii) If 2m4,_(MSp)=0 and n is not a power of 2, then b, in (i) is split
epimorphic, that is,

nSn—l(MSp(n)) = Z4m(n) @ Tan— I(MSP) .

(iii) m(n) is a power of 2 for n#1, 3, and m(1)=m(3)=3.
@iv) m(n)=1if n=2%+2'—10or 2¥+2! (k, 1Z0) and n#1, 3.

THEOREM III. (i) 7g,. 3(MSp(n))(n=3) has no p-torsion for any odd
prime p.

(ii) The homomorphism b,y: g, 3(MSp(n))—n,,,;(MSp) is epimorphic
for n=1.

Gii) If n=2¢+2'—1(k,1=1), then b, in (ii) is isomorphic, that is,
Tgnt 3s(MSP(n)) X 74y 4 3(MSP).

We notice that the assumption 2n4,_,(MSp)=0 in Theorem II (ii) is valid
for n <8 by the result of D. M. Segal [12].

This paper is organized as follows. In §1 we summarize the necessary
lemmas concerning the iterated cohomology suspension investigated by R.]J.
Milgram [5]. In § 2 we study the cohomology groups of F,, and in § 3 we state
the divisibility of some Pontrjagin numbers and prove Theorem I. In §4 we
consider the homotopy exact sequence concerning ug,_,(MSp(n)) and 7g,.
(MSp(n)) and state Theorems II and III. In § 5 we prepare some symplectic
cobordism classes and prove these theorems.

The author wishes to express his hearty thanks to Professor M. Sugawara for
his valuable suggestions, to Professor S. Oka for his helpful advices and stimulating
discussions; and to K. Morisugi for his useful conversations and encouragement.

§1. Preliminaries

In this section, we summarize some necessary lemmas concerning the iterated
cohomology suspension studied by R. J. Milgram [5].
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Let Y be an (r—1)-connected CW-complex, and j: Y->Q*¥X*Y be the natural
inclusion. Then Milgram [5; Th. 1. 11] proved that the cofiber Q*Z¥Y/Y of j
is homotopy equivalent in dimensions less than 37 —1 to the space S¥~Ip<;YAY,
where S*~1><;YA Y is the quotient space of S¥~!x (Y A Y) by the identification
of (x, ¥y, ¥,) with (—x, y,, y,) and (x, *) with the base point.

When Y=0Q*X for a (k+r—1)-connected CW-complex X, we can consider
the evaluation map e: 2*Q*X — X and the fibering

F AL Zky 2, X  (Y=0'X).

Then the inclusion j: Y->QFX*Y is a section of the fibering QFF 2Xi, Qkyky 2ke, Y,
and we have the maps Fe SkQkF_I*(a4-0%D, yk(Qk¥kY|Y), where q: Q*Z*Y—
QkX*Y[Y is the canonical projection. Since these maps are (k + 3 — 1)-equivalent,
we have the following lemma (cf. Proof of [5; Cor. 4.4]).

LemMA 1.1. In dimensions less than k+3r—1, F is homotopy equivalent
to Z¥(S* 1< QF X A QFX).

Take X to be the Thom space MSp(n+ N) of the universal symplectic vector
bundle over BSp(n+ N). Then we have the fibering

(1.2) F(e) —— Z*NQ*NMSp(n+ N) —*-» MSp(n+N).

Hereafter we shall take integers n and N to satisfy N>n>0. By Lemma 1.1,
we have

COROLLARY 1.3. In dimensions less than 4N +12n—1, F(e) is homotopy
equivalent to Z*NI'(n, N), where we use the notation

I'(n, N) = S*N~1p<; Q*NMSp(n+ N) A Q*"MSp(n+N).
Put A=Z or Z, (p: prime). By this corollary, we have the isomorphisms
Hit4N(F(e); A) = Hi(I'(n, N); A) for i < 12n-2.

Therefore the Serre cohomology exact sequence of (1.2) turns out to the exact
sequence

(1.4) - — H"Y(I(n, N); A) —— H**N(MSp(n+N); A) -2
H{(Q*YMSp(n+ N); A) —L H{((n, N); A) — -+ (i< 12n-2),

where 7, ¢ and j are the transgression, the induced homomorphisms e* and i*
composed with the suspension isomorphisms respectively, and ¢ is known to be
the iterated cohomology suspension.

We shall use the following notations:
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(1.5) (i) By a series R=(r,, r,,...), we mean that r;,’s are non negative integers
with the condition r,;=0 (i = m) for some m =1, and this condition will be denoted
by R<m.

(ii) For a series R=(ry, ry,...), we set |[R|=3 ;5 ir;.

(iii) For series R=(r, r,,...) and S=(s,, 5;,...), R>S means that r;=
s; (i>m) and r,>s,, for some m=1.

Let P,e H*(BSp) be the universal i-th symplectic Pontrjagin class. Then
it is known that H*(BSp(n+N))=Z[P,,..., P,on]. We set PR=Ppps...
€ H*IRI(BSp) for a series R=(r, r,,...).

Let U e H*"*M(MSp(n+ N)) be the Thom class of MSp(n+ N), and consider
the composition

V: H=#"(BSp(n -+ N))—2— H**N(MSp(n -+ N)) —2» H{(Q*MSp(n + N)),

where U is the Thom isomorphism given by U(x)= Ux and o is the iterated coho-
mology suspension in (1.4). Here ¢ is isomorphic for i<8n—1, and
H*(Q*"MSp(n+ N)) for x<8n—1 is the free abelian group with basis {V(PR)|
|R| < n}, where

(1.6) V(PR) = a(UPR) e H*+IRD(Q*NMSp(n+ N)).

The following lemma is an immediate consequence of [5; Prop. 3.1] (cf.
[11; (2.1)]), where (8, 0') and e*- 6®80 are the notations used in [11].

LEMMA 1.7. (i) The cohomology group H(I'(n, N)) for i£12n—-2 is a
direct sum of some copies of Z and Z,. A basis of its free part consists of the
following classes:

(V(PR), V(PS)y € H3"+*4(RI+ISD([(n, N)) with R>S, |R| + |S| £ n—1,
1-V(PR) ® V(PR)e H8"*8IRI(['(n, N)) with 2|R| £ n—1.
A basis of its Z,-summands consists of the following classes:
e?k. V(PR) ® V(PR) e H8"*2k+8IRI(I'(n, N)) with k=1, 2k + 8|R| < 4n—2.

(ii) A basis of H(I'(n, N); Z,) for i<12n—2 consists of the mod2 re-
ductions of the classes given in (i) and moreover the classes
e2k+l . V(PR) ® V(PR) € H8n+2k+1+8|R|([‘(n, N); ZZ)
with k20, 2k + 8|R| < 4n—4.

We remark that the classes u-0®60 in [11; (2.1)] do not appear in H}(I'(n, N))
for i£12n—-2, since N=n.
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By the above lemma, we have H/(I'(n, N))=0 if j is odd and j<12n—-2, and
the following

Lemma 1.8. (i) The sequence (1.4) for A=Z and i<12n—2 is short exact:
0 — H+*NMSp(n+ N)) -2 H(Q*YMSp(n+ N)) </ H{(I'(n, N)) — 0.
(i) HY{Q*"MSp(n+ N))=0if i is odd and i<12n-2.

For the maps j and 7 in (1.4), we have the following lemma by [5; Th. 4.6]
(cf. [11; (2.10), (2.5)]):

LeEMMA 1.9. (i) In the integral cohomology groups,

V(PR), V(PS . s,
J(V(PRYV(PS)) = VPR, V(P zf R >
21-V(PRY® V(PR))  if R=S.

(i) In the mod 2 cohomology groups,
1(e*~1. V(PR) ® V(PR)) = Sq*(»+i*IRD(UPR),

The next lemma can be proved by a similar argument to E. Rees and E.
Thomas [11; 2.4, 2.6, 2.8].

LemMa 1.10. For i<3n, the cohomology group H*(Q*"MSp(n+ N))
is a free abelian group.

PrROOF. H4(Q*"MSp(n+N)) has no odd torsion by Lemma 1.7. We
prove that

(%) T: H¥"Y([(n, N); Z;) — H*N**(MSp(n+N); Z,)

is monomorphic if i < 3n.

Then H4-1(Q*"MSp(n+ N); Z,)=0 by the exact sequence (1.4), and hence
HY(Q*"MSp(n+ N)) has no 2-torsion by the universal coefficient theorem.
Thus we have the lemma.

Now we prove (*). A basis of H*~(I'(n, N); Z,) (i<3n) consists of the
classes op=e*"8FIRD-1. (PRYQV(PR) with 4i—8(n+|R))—1>0 by Lemma
1.7 (ii), and

t(ag) = Sq*(UPR), t=1i—n—|R|,
by Lemma 1.9 (ii). We have SqU=UP, if i=4j, =0 otherwise. Hence, by the

Cartan formula, the Wu formula Sg*P;= Z,(j -5 :'1_ 1>Ps_,P ;+1 and the
condition 2(n+|R|)<i<3n, we see that
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(ag) = Sq**(UPR) = UP,PR + Y 5., msP5, R<t=i—n—|R|,

for some integers mg, where < is the notation in (1.5) (i). Therefore we see
that 7 is monomorphic and () is proved. g.e.d.

The formulas for the cohomology operations on H*(I'(n, N); Z,) are given
by Milgram [5; Th. 3.7.7 (cf. [11; (2.3)]) as follows:

LemMa 111, (i) Sg<V(PR), V(PS)> = o <peij2 {Sq* V(PX),
Sq*DV (),
Sqi<V(PR), V(PS)> =0 if j#0 mod4.
(i) Sg*(1-V(P®) ® V(PR)) = ¥ o<,<ij2 {Sq*V(PR), Sq*C~nV(PR))

+ Epo ("I etisisqriven) @ sqrv e,

Sq/(1-V(PH) @ V(PR)) =0 if j# 0 mod4.
(iii) For k =1,
Sqi(e*- V(P®) @ V(PR))

_ Zj,r;O(f) (4(:11',[5'831)) ek+i=8i . Sq4iV(PR) ® Sq*/V(PR).

Especially, we have
COROLLARY 1.12. For k=1,

Sq'(e*- V(P®) ® V(PR)) = kek*!- V(PF) ® V(PF),

Sq(et - V(PR ® V(PR) = (§) e v(Pm) @ V(PY),

Sq4(e* - V(PR) ® V(PR)) = ((’j) +n+ |R|) 4. V(PR) @ V(PR).

Let X be a (k+r—1)-connected space and r=2. The evaluation map
e;: XIQIX — X is the composition of the evaluation maps e': Z/Q/ X —»X/~1Qi-1X
(iz j=1), and we have the commutative diagram

Fley) — Z¥QkX %, X

(1.13) | [ “

Fley;) — Zk1Qk-1x ezt X,

where F(e;) (i=k—1, k) are the fibers of the respective fiberings and f, is the
restriction of e’ to the fiber. If we identify F(e) with X% (S 1< Q'X A Q1X)
in dimensions less than i+3r—1 by Lemma 1.1, then we see that f, is identified
with the composition of
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Tk(Sk o<, Y A Y) 25T, SRQ(SE25< TY A ZY)
&, BR1(SK2e QK1X A QK-1X),

where Y=0X and 7, is the natural map Q*X*Y/Y—-Q(Q*1Z*1(2Y)/ZY) (see
[5; §2]) with the identifications Q!Z'W/W~Si~lo<, W A W(W=Y,2Y) and &
is the map induced by the evaluation maps.

In the diagram (1.13), set X=MSp(n+ N) (N=n+2) and k=4N,..., 4N -3
to obtain the commutative diagram

Flesy) — ZVOQNMSp(n+N) —2¥ , MSp(n+N)
(1.14) |7 e H
Flegn_4) —> ZN"4QWN4MSp(n+ N) -242=4, MSp(n+N),

where e¢"=(¢’)* and f=(f))*. Let o': H**N=4(MSp(n+ N))—»H!(Q*N-*MSp
(n+ N)) be the iterated cohomology suspension. Then, by using the identifications
of F(e,y) with X*¥I'(n, N), F(eyy-4) Wwith Z4V*I'(n+1, N—1) and f, with
é(Z*ty) as is stated above, we have the following lemma by [5; Th. 3.8] on 7,:

Lemma 1.15. Set V'(x)=0'(Ux). Then

f*(e*- V'(PR) ® V'(PR)) = ek++. V(PR) ® V(PR) for any k =0,
f*V'(PR), V'(P5))) = 0.

§2. The cohomology groups of F,

The structure map ¢g,: 2* MSp(n)>MSp(n+1) in the Thom spectrum
MSp={MSp(n), ¢,} of the symplectic cobordism theory is defined to be the map
induced by the bundle map of £,@®1 to &, , where ¢; is the universal symplectic
vector bundle over BSp(i) and 1 means the trivial symplectic line bundle. Con-
sider the composition &, y: Z*YMSp(n)>MSp(n+N) of Xig,.;, and its adjoint
map b, y: MSp(n)—>Q**MSp(n+ N). Converting b, y into a fibering with fiber
F, x, we consider the fibering

2.1 F,y —> MSp(n) 2n2, Q*NMSp(n+N).

For any N'>Nz=nz21, the homotopy groups, the cohomology groups of F,y
and F,y. are naturally isomorphic in dimensions less than 12n—2, because
&,+n is (8n+8N +6)-equivalent. Therefore, for a positive integer n, we shall
take an integer N large enough to satisfy N=n; and we denote simply by

bn = bn,N and Fn = Fn,N’
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and investigate the cohomology groups of F, in dimensions less than 12n—2.
We remark that F, is (8n—2)-connected.
Let I,= H*(BSp) be the ideal generated by {P;|i>n}, and

(2.2) UIi c H*"*M+i(MSp(n+ N)) be the subgroup generated by {UPR|PR
eli =1, n Hi(BSp)}.

Then we have
LeEmmA 2.3. (i) The composition
e(Z4Nb,): 24N MSp(n) — 24N Q"M Sp(n+ N) — MSp(n+ N)

is homotopic to &, y, where e is the evaluation map in (1.2).
(i) The following commutative diagram of four short exact sequences
holds for i<12n—2:

Ul s 5 HN(F,) —L sy HIT(n, N))
v
[ [ ]
H*N(MSp(n+ N))>—2 HI(Q*MSp(n+N)) —L> HI(I'(n, N))
152,1\7 lbi

HN(ZWMSp(n)) 2 HI(MSp(n)).

Here the central horizontal sequence is the one in Lemma 1.8 (i), the central
vertical sequence is the Serre cohomology exact sequence of the fibering (2.1),
where T denotes its transgression, 6 is the restriction of ¢, and j is the composition

jt.

PRrROOF. (i) is clear by definition.

(i) The left hand vertical sequence is exact by the definition (2.2) of UI.
By (i), the lower square commutes. Since &} y is epimorphic, so is b¥, and the
central vertical sequence is short exact. Since the central horizontal sequence is

short exact as is shown in Lemma 1.8 (i), so is the upper one by the 9 lemma.
q.e.d.

Consider the central vertical exact sequence in Lemma 2.3 (ii):
0 — Hi"'(F,) -~ H{(Q*"MSp(n+ N)) 2%, H{(MSp(n)) — 0.

LEMMA 2.4, In HE*4(Q*"MSp(n+ N)) for i<n, the following elements
belong to Ker bf=Im t:

1) V(PRYV(PS)—V(P,PRPS) for any series R and S with |R|+|S|=1,

(2) V(P,+«PR) for any k and any series R with k=1 and k+|R|=1.
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ProOF. (1) Let U denote the Thom class of MSp(n). Then, by Lemma 2.3,
by (V(PR)V(P?) = bifa(UPF)- bya(UP®) = (Z*N)'ey \(UPR) - (2*N)'ef M(UPS)
= UPR.(0JPS = UP,PRPS = b¥(V(P,PRPS)).
(2) By the condition, x=P,,,PRel, and V(x)=0(Ux)=16(x)eIm .
q.e.d.

Especially, (V(PR))2—V(P,(PR)?) (2|R|<n) is contained in Ker b¥ by the
above lemma for R=S. On the other hand, its j-image is 2(1- V(PR)® V(PR))
by Lemma 1.9 (i). Therefore, by the commutative diagram in Lemma 2.3 (ii),
we see the following

(2.5) For any series R with 2|R|<n, there are elements b’ € H8("*IRD-1(F )
and v’ € I4"*8IR such that j(b')=1- V(PR)@V(PR) and

V() = a(Uv") = 27(b") — (V(PR))? + V(P,(PR)?).

LEMMA 2.6. For any series R with 2|R|<n, we can take elements

b(R)(=b, x(R)) € H¥~!(F,) and v,(R)(=v, x(R)) e I}}**IRl (i = n + |R])
such that

(i) j(b(R)) =1-V(PR) ® V(PR) + a torsion element,

(i) =(b(R)) = (1/2{(V(PR)? — V(P,(P*)?) + V(v (R))} in HSHQ*"MSp
(n+N)), and that v,(R) for 0<2|R|<n—3 satisfies the conditions

(iii) v, (R)=P,4 g/PR+ Xs<n+|r| MsP® for some integers my,

(iv) Uv,(R)=Sq*(UPR)+ UP,PR)? in H*N+*8{(MSp(n+ N); Z,).

Proor. By the Cartan formula, we have

Sq*(UPR) = Ux + UP,(PR)?, x = P,PR + ¥ [RI-1 P, Sq*(PR).

Hence we can take an element v,(R)e [4*4IRl such that its mod 2 reduction is
x and that it satisfies (iii), and then it satisfies (iv) also.

Now, let b’ e H8(F,) and v’ e I¢+4IRl be elements in (2.5). Then we can
prove the lemma by showing

27 V@)=V(@w(R)mod2 for R #O0 (the O-series) with 2|R| < n — 3.

In fact, there is an element y=(1/2) {V(¥)—V(v,(R))} by (2.7), and b¥(y)=0
since H8(MSp(n)) has no torsion. Thus we see that b(R)=b'—1"!(y) and
v,(R) satisfy (i) and (i) by (2.5). When R=0 or 2|R|>n-3, b(R)=b" and
v,(R)=1" are the desired element.
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To show (2.7), consider the commutative diagram (8i<12n—9, n=2)
H¥"N(I (1, N); Zy) — s HY*N(MSp(n+N); Zs)
I |
HS=5(M(n—1, N+1); Z,) = HS*4N(MSp(n+N); Z,)
—2 > H8(Q*"MSp(n+N); Z,)

I
<, HE-4(Q*N*4MSp(n+ N); Z,).
Here two exact sequences are the ones in (1.4) for A=Z,, f* is the homomorphism
in Lemma 1.15, and o, ¢/, " are the iterated cohomology suspensions. Since
(V(PR)2—V(P,(PR)?)+ V(v')=0 in HE(Q*"MSp(n+N); Z,) by (2.5), we have
V'(P(PR)?)+ V'(v')=0 where V'(x)=a'(Ux). Hence there is a class z e H8"5
(F'(n—1, N+1); Z,) satisfying t'(z)=UP,(PR)2+Uv'. Since v'el,, we have
z=e3- V' (PRYQV'(PR)+ X121 Are® - V' (PT)QV'(PT) for some A, reZ,,
by Lemmas 1.7 (ii) and 1.9. These two equalities imply
UP,(PR)? + Uv' = Sq*(UP®) + ©(2') (z' = X121 A,re® ™1 - V(PT) @ V(PT))

by Lemmas 1.15 and 1.9. Therefore the mod 2 reduction of Uv'—Uv,(R) is
equal to 7(z’) by (iv), and hence that of V(v")—V(v,(R)) is equal to o1(z")=0.
Thus we see (2.7). q.e.d.

LemmAa 2.8. Assume N=3n—2. Then, for any integer k=1 and any
series R with k+2|R|Sn—1, there is an element c(4k, R)e H8n*IRD+4k-1(F )

satisfying
©(c(4k, R)) = (1/2) { = V(Py+x(P*)?) + V(0p+(R)},

where v, (R)=0,4 .y (R) € [4{++8IRI s an element in Lemma 2.6 and it
satisfies
Up1k(R) = Pyiyis R PR + Xs<n+i+|r) MsPS  for some integers ms.
Proor. Consider the commutative diagram
Fy—— MSp(n) —2», Q*"MSp(n+ N)
113 box “
Q*F,,, — QUMSp(n+k) —220nsk , Q4N MSH(n+ N),

where b is the restriction of b,;. Then we have the commutative diagram

H*4=1(F, ) —2— Hi"|(Q%F,,,) -2 HI-\(F,)
AV

(x) I° Iy
HH+4(Q4N- MSp(n+ N)) -2 HY(Q*NMSp(n+ N)),
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where o’s are the iterated cohomology suspensions. Furthermore,
o{(V'(PR)? = V(P l(PR)?) + V' (04 i(R)} = — V(P11 (P*)?) + V(v,+(R)),

where v, . (R) satisfies (iii) in Lemma 2.6, i.e., the last equality in the lemma, since
2|R|En+k—3. Thus c(4k, R)=5*a(b,,+k,N_k(R)) satisfies the desired equality
by Lemma 2.6. q.e.d.

Now we can define the following classes a(R, S), b(R), ¢(2i, R) and d(k, R) in
H*(F,) (*x<12n-3):

(2.9) a(R, S)e H8"+4URIFISh-Y(F ) for series R and S with R>S and |R|+|S|
<n-—1 satisfying

t(a(R, S)) = V(PR)V(PS) — V(P,PRPS), (cf. Lemma 2.4).

(2.10) b(R)e H3+IRD-Y(F ) in Lemma 2.6 for a series R with 2|R|Sn—1
satisfying

2(b(R)) = (11 {(V(PR))* — V(P,(P*)) + V(v/(R))}.

(2.11) c(4k, R)e H8(+IRD+4k=1(F y in Lemma 2.8 for an integer k=1 and a
series R with k+2|R|<n—1 satisfying

©(c(4k, R)) = (1/2) { = V(P, 1 (PF)?) + V(v,4(R))}, (N 2 3n —2).

(2.12) c(4k+2, R) e H3(+IRD+4k+1(F § for an integer k=0 and a series R with
k+2|R|=n—1 satisfying

J(c(4k+2, R)) = e*+2. V(PR) ® V(PR),

where j=jt: H-Y(F,)->HI'(n, N)) in Lemma 2.3 (ii) is isomorphic if i=1
mod 4.

(2.13) d(k, R) e H8"*4IRI+4k-1(F y for an integer k=1 and a series R with
k=Z|R|<n—1—k satisfying

t(d(k, R)) = V(P,.+PR), (cf. Lemma 2.4).

For the epimorphism j=jt: Hi=Y(F,)-»H!I'(n, N)) (i<12n—2) in Lemma
2.3 (ii), we have the following

LemMA 2.14. (i) j(a(R, S))=<{V(PR), V(P5)),
J(b(R)=1-V(PR)@V(PR)+a linear combination of e* -V(PS)QV(PS)(I=1),
j(c(4k, R))=e* . V(PR)Q V(PR)+a linear combination of

e*EtD  V(PHQV(PS) (Iz1).



162 Mitsunori IMAOKA

Especially, for the case R=0 (the 0-series),
JOO)=1-V®V, jc(4k, 0)=e*-VRV (V=V(1)).

(ii) The set of d(k, R) in (2.13) and 2c(4k, T) of c(4k, T) in (2.11) forms
a basis of Ker j.
ProoF. (i) By (2.9) and Lemma 1.9, we have
J(a(R, 8)) = j(V(PR)V(PS) — V(P,PRPS)) = CV(PR), V(P5)).

The second equality is in Lemma 2.6 (i). By the definition of fin (1.14), we have
the commutative diagram

Hi+4(Q4N=0 MSp(n+ N)) —L H+**((n+k, N—k))

l" l(f*)"

H{(QMSp(n+N)) —I_, Hi(I'(n, N))

for i£12n—2, where N =23n—2, j’s are the homomorphisms in (1.4) and o is the
iterated cohomology suspension. By () in the proof of Lemma 2.8, this diagram,
Lemmas 2.6 (i) and 1.15, we have

J(c(4k, R)) = jou(by 4 (R)) = (f*)*}(by+1(R))
= (ML VPR Q@ V'(PF) +-) = e**- V(PR) ® V(PF) +---.
(ii)) It holds that d(k, R)=6(UP, . PR) where n+k=<n+|R| by (2.13). Also,
2¢(4k, R) = G(UPy 4 r|PR + Zs<n+r+rymsUPS) for some integers myg,

where n+k+|R|>n+|R| by (2.11) and Lemma 2.8. Since & is monomorphic
and Ker j =Imé, these facts and the definition of UJ, imply (ii). g.e.d.

Now, by using the upper short exact sequence in Lemma 2.3 (ii) and Lemmas
1.7 and 2.14, we see immediately the following

PROPOSITION 2.15. Let j<n—1. Then
(i) H8**4i-Y(F,) is a free abelian group with basis consisting of the
Jfollowing classes:
a(R, S) in (2.9) with |R|+|S|=], b(R) in (2.10) with 2|R|=},
c(4k, R) in (2.11) with k+2|R| =], d(k, R) in (2.13) with k+|R|=j.
(ii) HB&»+4+1(F)) is isomorphic to a direct sum of some copies of Z, with

basis consisting of c(4k+2, R) in (2.12) with k+2|R|=].
(iii) HS"+4i=2(F,)=H8"*4i(F,)=0.
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For the mod 2 cohomology of F,, we can define the class

(2.16) c(4k+1, R)e H3(+IRD+4k(F - 7.) for an integer k=0 and a series R
with k+2|R| <n—1 satisfying

j(c(4k+1, R)) = e**+1. V(PR) ® V(PR),
where j: Hi"!(F,; Z,)=»HI'(n, N); Z,) is isomorphic for i=1 mod 4.
By the same way as the above proposition, we have

LEmMMA 2.17. The mod 2 reductions of a(R, S), b(R), c(2k, R), d(k, R) in
(2.9-13) and c(4k+1, R) in (2.16) form a basis of H«(F,; Z,) for i<12n—3.

We can study the cohomology operations on H*(F,; Z,) for *<12n-3.

We remark that the transgression t: H'"X(F,; Z,)->H(Q*"MSp(n+N); Z,)
is monomorphic for i<12n—2, by the proof of Lemma 2.3 (ii).

When p is an odd prime, the operation P on H*(F,; Z,) for *+2i(p—1)<
12n—3 is completely determined by Proposition 2.15 and (2.9-13), because we
can compute t(Pix)=Pit(x) for any xe H*(F,; Z,) and t is monomorphic.
Consider the operation Sqi on H*(F,; Z,) for *+i<12n—3. Then we can
determine Sgix for x=a(R, S), d(k, R), by the same way as above. For x=
c(4k+j, R) (j=1, 2), we can compute j(Sq'x)=Sq'j(x) by Lemma 1.11 (iii), (2.16)
and (2.12). For y=b(R), c(4k, R), we have j(Sq'y)=Sq'j(y)=0 if i#0 mod 4,
by lemmas 1.11 (i), (iii) and 2.14. Since j: H~!(F,; Z,)-»>H!(I'(n, N); Z,)
(i£12n—2) is monomorphic if i#£0 mod 4, Sq'c(4k+j, R) for j=1,2 and i+
j#0 mod 4 can be determined and Sq*b(R)=Sq’c(4k, R)=0 if i#£0 mod 4.

Consequently we have the following

LemMma 2.18. (i) Sqfa(R, S)=Sq'b(R) = Sq’c(4k, R) = Sqi(d(k, R))=0 if
i#0 mod 4.

(i) Sqlc(4k+1, R) = c(4k+2, R).

In the case R=0 (the O-series), we have the following

LemMaA 2.19. (i) Sq*b(0)=a((1), 0)+ nc(4, 0),

P1p(0) = —(a((1), 0) + (n+1)c(4,0))  for p=23.
(i) Sqic(4k+1,0) = c(4k+2,0) if i =1,
=0 ifi=2, =m+k)(dk+5,0) if i=4,

Sqic(4k+2,0)=0if i=1, =c(4k+4,0) if i =2, =(n+k)c(4k+6,0) if i=4,
Sqic(4k,0) =0 if i=1,2, = (n+k)c(4k+4,0)+ 6(UP,P,.)) if i=4,
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where & is the homomorphism in Lemma 2.3 (ii).

Proor. First, we prove the formula for P'b(0). When p=3, it holds
PWY=-Vv(P,) and P'P,=(n+1)P,,,~P,P, where V=V(1). By (2.9-11),
wa((1), ) =V(P)V-V(P,P,), w(b(0)=(1/2)(V?~V(P,)) and t(c(4,0)=
(1/2)V(P,+;). By these relations, we have t(P'b(0))=—1(a((1),0)+
(n+1)c(4, 0)). Since 7 is monomorphic, we have the desired formula for P!b(0).

Next, by using Lemmas 1.11, 2.14 and (2.16), we have j(Sq*b(0))=
{V(P,), V) +ne* - VQV=j(a((1),0)+nc(4,0)) and we can compute j(Sqic(k, 0)) =
Sq'j(c(k, 0)) for i=1,2,4 and k=1,2. Since j: H"\(F,; Z,)-H!(I'(n, N); Z,)
is monomorphic for i<8n+6, we have the desired formulas for Sq*b(0),
Sqic(k, 0) (i=1, 2, 4 and k=1, 2).

To obtain the formulas for Sgic(4k+j, 0), consider the commutative dia-
gram (*) in the proof of Lemma 2.8. Then, we see that

(2.20) b*a(b'(0)) = c(4k, 0), b*a(c'(i, 0)) = c(4k+i, 0) (i = 1),
b*a(a’((1), 0)) = —G(UP,P,,,),

where b'(0), ¢'(i, 0) and a’((1), 0) are the classes in H*(F,,,). In fact, the first
equality is seen there. We have the second equality for i=0 mod 4 and the last
equality by considering th*a(x)=0o1(x) for x=c'(4j, 0), a’((1), 0) and by Lemma
2.8 and (2.9). By considering jth*a(c'(i, 0)) for i=1, 2 mod 4 and by using the
commutative diagram in the proof of Lemma 2.14 (i), we have the second equality
for i=1,2 mod 4 by Lemma 1.15. In (2.20), we have Sq*c'(1, 0)=(n+k)c'(5, 0),
for example, by the formula for Sq*c’(1, 0). Thus, by the naturality of the coho-
mology operation, we obtain the desired formulas for Sqic(4k +j, 0). qg.e.d.

§3. Symplectic Pontrjagin numbers

For a symplectic cobordism class u € 7(MSp) and a class ye H/(BSp), let
y[u] be the Pontrjagin number of u for the class y.
To study the divisibility of some Pontrjagin numbers, consider a fixed element

0) Xo = X + x" € H(F,) (t=8n+4j—1with j < n),

where x is one of the classes a(R, S), b(R), c(4k, R) and d(k, R) given in Pro-
position 2.15 (i) and x’ is a linear combination of another classes. Then we can
take the following steps (1)—(4):

(1) Take a basis {x;} of H!(F,) which includes x,, and let {X,;} be the dual
basis of H/(F,).

(2) Take a suitable cell decomposition of F,, and denote its i-skeleton by
F,
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(3) For an integer [=2 and the Hurewicz homomorphism H®: n(F,/
F=V) - H(F,/Fi~ D)= H(F,), set
HV(v) = ¥, kiP)X;  for ven(F,/F{™),

where k{"(v) are integers.
(4) Let a(l) be the greatest common measure of {k§(v)|v e n(F,/F{¢=1)}.

Now we have the following basic lemma.
LemMA 3.1. Assume that the class x,=x+x' € H'(F,) in (0) satisfies
(xo) = 21 (A¢/2)V(PT) + X  for some integers Ar,

where t: H'(F,)—»>H'""Y(Q*"MSp(n+ N)) is the transgression in Lemma 2.3 (ii),
and X is a sum of decomposable terms. Then

>7ArPT[u]l =0 mod2x(l)  for any uen(MSp),
where a(l) is the integer given in the step (4).

Proor. Consider the following commutative diagram:

Trant1(MSP) <= 1, (Q¥MSp(n+N)) L m,(F,) -2 m,(F,|F¢D)
(3.2) yf J’H lH le
H,_4,+1(MSp) < H, . ,(Q*"MSp(n+N)) AN H,(F, I, Hz(Fn/Fp(.t_l))-

Here 0 and t are the connecting map and the transgression of the fibering (2.1)
respectively, ¢ is the iterated homology suspension, g is the natural projection
and H’s are the Hurewicz homomorphisms. For any class u e n,_,+,(MSp),
let u' en,, (Q*"MSp(n+ N)) be the class corresponding to u under the isomor-
phism in (3.2). By the above step (3), HPq,0(u")= X kP (q+0(u")x;. Taking
the Kronecker pairing, we have '

CHWq0(u'), xo) = ki’(g40(u")) =0 mod a(l).
On the other hand, by (3.2) and the assumption, we have
2HP gy d(u'), xo) = 2{HW"), w(x0)> = L1 ArCH('), s(UPT)) = T3 ArPT[u].
Thus we have the lemma. q.e.d.

By this lemma, if we can take a basis of H*(F,) in (1) and a cell decomposition
of F, in (2) which enable us to compute k{¥(v) in (3) and «(I) in (4) for a fixed
element x, in (0), then we have the divisibility of some Pontrjagin number. Here
we shall consider the case xo=a((1), 0)+(n+4)c(4, 0) or ¢(4, 0).
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We remark that F, is (8n—2)-connected. By Proposition 2.15 and Lemmas
2.18 and 2.19, we have

LemMmA 3.3. (i) Fornzl,
H®~1(F,) = Z<{b(0)y, H®'(F,) =0, HP""'(F,) = Z,{c(2,0)).
(ii) Fornzx2,
H&*2(F,) = H¥*4(F,) = 0, HS"*3(F,) = Z{a") @ Z{c(4, 0)),
H8"*3(F,) = Z,{c(6, 0)),
where a’' =a((1), 0)+(n+4)c(4, 0).
(i)  Sg*b(0)=a’, Pb(0)=-—a’ for p=3,
Sq'b(0)=0 if 1<i<7 and i#4,
Sqic(1, 0)=c(2,0) if i=1, =0ifi=2, =nc(5,0)ifi=4,
Sqic(2,0)=0ifi=1, =c(4,0)ifi=2, =nc(6,0)if i=4,
Sqi(a)=Sq'c(4,0)=0if 1<i<3.
By this lemma, we have immediately the following

LEMMA 3.4. Let n=2. Then we can take a complex K given by
K=S8n"1 U¢0 edn U.m e8ntl le‘/!ﬁz (e?n+3 v egn+3) U¢4 e8nta U¢s e8nts

and a map f: K—F,, which satisfy the following (i)-(ii):

(i) fu: H(K)>H{F,) is isomorphic for i<8n+4.

(i) The cells e8"*3 and e§"*3 correspond to the cohomology classes f*(a’)
and f*(c(4, 0)) respectively.

PROPOSITION 3.5. Let n=2. Then
(1) nSn—1(Fn)=Z9 7TSn(Fn)=Tc8n+I(Fn)‘_—-ZZQ')ZZ’ T[8n+2(Fn)=0’
Tgnt3(F)=Z®Z (resp. ZOZ®Z,) if n is odd (resp. even).
(ii) We can take a basis {u(3), v(3)} of a free part of ng,.3(F,) to satisfy
H(u(3))=24a’" and H(v(3))=4c(4,0), where H: mg,,s(F,)—>Hg,+5(F,) is the

Hurewicz homomorphism and {a’,c(4,0)} is the dual basis of {a’, c(4,0)} in
Lemma 3.3.

ProOOF. By Lemma 3.4, we prove the proposition for K in Lemma 3.4

instead of F,.
It is obvious that mg,_;(K)=Z and K® =881y S8 If g,: K&
S8n-1 and q,: K —S8" are the respective projections, then g,¢; is homotopic
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to the constant map and deg g,¢, =2 since Sq2b(0)=0 and Sqlc(1, 0)=c(2, 0) by
Lemma 3.3 (iii). Hence we have K'=K®@"D)=[K@En+2)=g81—1y (S8n/,
e8"*1) and the split exact sequence

(%) 0 — Mgyti(S8"™Y) T2 mgyei(K7) 255 mg,4,(S8" Uy e87F1) — 0
dx

where p and q are the projections. Therefore 7g,(K)=mg,, (K)=Z,DZ,.
Furthermore

(3.6)  Tgni2(K) = Mgys 2(SB )@ 7g, 1 (S U, 8 ) =2Z,,0Z, (cf. [2; 4.1]),
and for the attaching maps , and V,, q4«¥,; and p.¥, generate the first and
second summands respectively, and the orders of p.i¥, and q.¥, are divisors
of 2 and 4 respectively.

To prove the latter half of (3.6), we consider the commutative diagram

S8n+2 5 S8n~1 N S8n—1 thllkesn+3

¥ fe

§8n+2 Ve K(8n+1) K(8n+1) Uy, e8nt3

s I

S8n+2 N S8n+1 5 S8n+1 Unwk38"+3

for k=1 and 2, where = is the natural projection, and § and # are the maps de-
fined by g and = respectively. Consider the mod 2 and mod 3 cohomology groups
of this diagram. Then, since Sq*b(0)=a’ and P'b(0)= —a’ for p=3 by Lemma
3.3 (iii), we see that g,V is a generator of ng,,,(S®""1)=Z,, and the order of
qs¥, is a divisor of 4. Since Sg2c(2, 0)=c(4,0) by Lemma 3.3 (iii), 7.y, =0
and w,,#0 in 7wg,,,(S8"*1)=Z,. Hence the order of p.,Y, is at most 2 and
DY, is a generator of mg,, (K'/S¥" " V)=mng,,,(S8"\U, ed"*1)=Z, by the fact
that 7wy : mg,4(SB"2 U, 8"t )1y, . ,(S8"*1) is epimorphic, where #n' is the
restriction of 7 (cf. [2; 4.1]). These imply the latter half of (3.6).

g+ 2(K)=0 follows immediately from (3.6).

Consider the exact sequence

Tgnsa(S§"H2 v §57+2) ——*(WIVWZ)* Tgnt3(K') x, Tgnsa (K (87+3)
2, Tgn+2(S§"H2 v §§7*2) M" Tgn+2(K').
Then Im d=Ker (/1 V ¥,)s =Z{24¢,) DZ{4¢,) by (3.6), where ¢; is a generator
of 7g,42(S8%*2) (j=1,2). On the other hand, py: 7g,43(K')>7g,43
(587 \U, €8"*1) in () for i=3 is isomorphic since ng,, (S8 1)=0. Furthermore
Tgn+3(S8" U, 8"t)=Z,PZ, and one of its generators is #jn, where feng, .,
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(S8 U, et ) =7, and ne g, ;(S"2)=Z, are generators (cf. [2; 4.1]). By
(3.6), we can take 7j=p4/, and then p,, =2¢f. Thus pyy,4(n,)=2¢fn=0 and
DsW2x(ny)=7n for the generator n;€mg,,3(S4"*?)=2Z,. These imply that
Imi,=Z, and ng,, ;(K&"*3NN=ZDZDZ,.

Now, the attaching map ¢, is contained in Kerd=Imi,=Z, by the last
two equalities in Lemma 3.3 (iii). Furthermore, since Sqg*c(1, 0)=nc(5, 0) by
Lemma 3.3 (iii), we see that ¢4#0if nis odd and ¢,=01if nis even. Thus we see
that the desired results for 7g, . ;(K).

By the above exact sequence, we can take a basis {u(3), v(3)} of mg,;(K)/
Tor=rg,,3(K®*3)/Tor to satisfy ou(3)=24¢, and ov(3)=4¢,. These imply
that H(u(3))=24a’, and H(v(3))=4¢(4, 0), and we complete the proof. q.e.d.

ReMARK 3.7. Forn=1, ng,(F,) (i=—1,0, 1) are the same as the ones given
in Proposition 3.5.

By Lemmas 3.1, 3.3 and Proposition 3.5, we have the following
THEOREM 3.8. Let n=1. Then

(i) P,[ul=0 mod8  forany uemn,, (MSp).
(i) P,P,[ul—(n+4)/2)P,,.[ul=0 mod24 for any uemn,, (MSp).

Proor. For n=1, (i) and (ii) follow from the results of [7], [6] on n,(MSp)
and ng(MSp). Let n=2. We consider the case that x,=a’ or ¢(4,0) and /=5
in Lemma 3.1. By Lemma 3.3 (ii), we can take a basis {a’, ¢(4, 0)} of H8"*3(F,).
When x,=c(4,0), we see that «(5) is a multiple of 4 by Proposition 3.5 and
t(c(4, 0))=(1/2)V(P,.,) by (2.11), hence (i) follows from Lemma 3.1. When
xo=a’, a(5) is a multiple of 24 by Proposition 3.5 and t(a’)=—V(P,P,)+
(n+4)/2)V(P,+1)+V(P,)Vby (2.9) and (2.11), hence (ii) follows from Lemma 3.1.

q.e.d.

REMARK 3.9. In addition to Proposition 3.5 (i), the homotopy groups
n(F,) can be determined for i <8n+ 6 by the results due to S. Oka.

§4. Homotopy groups of MSp(n)

In the rest of this paper, we study the homotopy groups 7g,_ (M Sp(n)) and

Tgn+3(MSp(n)) for n2 1.
Consider the homotopy exact sequence of the fibering (2.1):

4.1 «+s — n(MSp) "'a—-’ Tt an—1(Fp) — Ty 40— 1(MSp(n))

bet, i \(MSp) 2 Mg o(F) — - (1< 81-2),
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where we identify w(MSp) with =;, ,(Q*YMSp(n+ N)) since N=n. Because
F, is (8n—2)-connected, b,, is isomorphic for i<4n—1 and epimorphic for
i=4n.

ProrosiTION 4.2. (i) For 0: m,,(MSp)~ng,_(F)=Z (n=1) (see Pro-
position 3.5 (i) and Remark 3.7), it holds that

ou = +(1/2)P,[u] forany uemn,(MSp).

(i) For 0: m4nss(MSpP)—> g, 3(F,)=Z<u(3)y®Z{v(3))@Tor (n=2) (see
Proposition 3.5), it holds that

ou = ((1/24)(— P P,[u] + (n+4)/2)P,+ 1 [u]), (1/8)P,, 1 [u])
for any ueny,, ,(MSp), where (k, l)=ku(3)+ Iv(3)+a torsion element.

Proor. We shall prove (ii). (i) can be proved similarly.

For u € my, 4 4s(MSp)=ng,, 4(Q*"MSp(n+ N)), set du=(k, ). Then H(Ou)=
24ka’ +41c(4, 0) by Proposition 3.5 (ii). Thus, by taking the Kronecker pairing,
we have

24k = (H(0u), a’) = <{H(u), ®(a’)) = — P,P,[u] + (n+4)[2)P,,,[u],
41 = CH(0u), c(4, 0)> = CH(u), w(c(4, 0))> = (1/2)P, 4 [u],

since (a’)=V(P)V=V(P,P,)+(n+4)[2)V(P,+,), and t(c(4,0))=(1/2)V(Py+ )
by (2.9) and (2.11). Hence we have the desired result. q.e.d.

The Pontrjagin number P, [u] is a multiple of 8 for any u e n,,(MSp) (n=1)
by Theorem 3.8 (i). Thus we set

4.3) m(n) = g.c.m. {(1/8)P,[u] |u € n,,(MSp)} for n=1.

COROLLARY 4.4. The kernel of the epimorphism b,,: ng,_(MSp(n))—
Tan— 1(MSp) is a cyclic group of order 4m(n) generated by the Whitehead product
[i, i] for the homotopy class i of the natural inclusion i: S*"—MSp(n).

ProOOF. By Proposition 4.2 (i), the definition (4.3) and the exact sequence
(4.1), we see that Ker b,, is a cyclic group of order 4m(n). Consider the com-
mutative diagram

F(y) L 50 i1, ggentt

P g
F, —L MSp(n) L=, QW MSp(n+ N).

Here i, denotes the natural inclusion and F(i,) is the fiber, and i’ is the com-
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position QS*"t1 o QANS4(HN) L OANMSp(n+ N) of the natural inclusions. It
holds that mg,_(F(i;))=Z and ji(1)= +[¢, ¢] for a generator ¢em,,(S*") by
the definition of the Whitehead product. Since iy: mg,_ (F(i;))—7ng,— (F,) is
isomorphic, the kernel of b,,: 7g,_,(MSp(n))—n,,_(MSp) is generated by
[i, i] by the naturality. g.e.d.

Let MU(2n) be the Thom space of the universal complex vector bundle over
BU(2n), and consider the map c¢: MSp(n)—MU(2n) induced by the inclusion
Sp(n)=U(2n). Then we have the following corollary, where v,(y) is the ex-
ponent of 2 in the prime power decomposition of a positive integer y:

COROLLARY 4.5. Assume that
(a) nis not a power of 2 and 2r,,_,(MSp)=0, or

(b) vy(m(n)+2=v,(Ing,— 1 (MU(2n))|).
Then the epimorphism b,y : ng,_(MSp(n))—>n,,_ (MSp) is split, that is,
Tgn— (MSP(n)) & Zsminy ®© 7gn—1(MSP).
ProoF. Let F,,»>MUQ2n)2b22, Q*"MU(2n+2N) be the fibering defined by

the same way as (2.1), and consider the commutative digaram

F, — MSp(n) b=, Q*"MSp(n+ N)

k/ lc lguvc

Fy, — MUQ2n) 222, Q*VMUQ2n+2N)

induced by c. We remark that F,, is (8n—2)-connected. Then we have the
commutative digaram

Tan(MSp) —2s 7g_1(F,) — Tgn_y(MSp(n)) 22%, 7y, (MSp) — 0

lc* l”;‘ l"* lc*

T[4"(MU) '—g—’ nSn—l(FZH) I ”8»;—1(MU(271)) —>b2n* 0.

In the first place, we notice that cj is isomorphic. By E. Rees and E. Thomas
[11; § 2], H8Y(F,,) is Z generated by «, which satisfies

H(a,) = (1/2)(6(Tcyy) — (6(0))Y),

where 7: H8" 1(F,)—->H8"(Q4NM) and &: H8"+*4N(M)—H®"(Q*NM) are the
transgression and the iterated cohomology suspension respectively, and Ue
H4"+4N(M) is the Thom class (M=MU(2n+2N)). The above equality and
1(b(0))=(1/2) (V2—-V(P,)) of (2.10) imply zc'(a;)=—7(b(0)) and so c'*(a;)=
—b(0), because c*(c,,)=+P,, ¢*(U)=+U and 7 is monomorphic. Thus c¢'*:
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H8»=1(F, ) H8~1(F,) is isomorphic and so is cj in the diagram.

Furthermore 7g,_(MU(2n))=~Cokerd is a cyclic group of order 2 where
B=po(2n)—1 by [11; Th. A], and Coker 0=Z,,,, by Corollary 4.4. Thus we
have the commutative diagram

0 —— Coker 3(= Zamemy) —— Tgn_1(MSp(n)) 22% mq,_ (MSp) — 0

(*) J(c" lc*

Coker 5(= Zzﬁ) = ﬂgn_l(MU(zn))a

where ¢” is the epimorphism induced by c.

When (b) holds, ¢” induces the isomorphism of the 2-torsion parts, hence the
upper sequence in (x) splits because m,,_(MSp) is a 2-torsion group (cf. [15;
20. 40]).

Now we assume that (a) holds. Then S+#0 by the definition of py(2n)
([11; Th. A]) and n,,_(MSp)®Z,=mn,,_,(MSp). Hence, by tensoring Z, to
(), we have the split exact sequence 0-Z,—ng,_ (MSp(n))®Z,—n4,— (MSp)
—0. Therefore the upper sequence in () splits as desired. q.e.d.

We shall prove the following theorems in the next section by preparing some
symplectic cobordism classes.

THEOREM 4.6. For the integer m(n) in (4.3), the following (i) and (ii) hold:
(i) m(n) is a power of 2 for n#1, 3, and m(1)=m(3)=3.
(i) m(n)=1if n=2k4+21—10r 2¥+2! (k, 120) and n#1, 3.

THeoreM 4.7. (i) 7(MSp(n)) (i=<8n+3) has no p-torsion for any odd
prime p, except for (n, i)=(1, 7), (1, 10), (1, 11), (2, 19) and (3, 23).

(i)  byx: Tgys 3(MSp(n))—m,, . s(MSp) is epimorphic for n=>1.

(iii)) If n=2¥+2'—1 (k,1=1), then b,, in (ii) is isomorphic, that is,
Tgn+ s(MSP(n)) = 74p+ 3(MSP).

§5. Symplectic cobordism classes

In this section, we examine the characteristic numbers of some symplectic
cobordism classes to prove Theorems 4.6 and 4.7.

Let £=¢, be the universal symplectic line bundle over the quaternion pro-
jective space HP*=BSp(1), and (@ £®E be the tensor product of & over
HP* x HP* x HP® by taking & as the complex vector bundle. Then it is a sym-
plectic vector bundle &3 (cf. [14]), and so we denote its classifying map by

5.1 ¢: Y= HP® x HP* x HP® — BSp.

Let PY¥S»e MSp4(BSp) be the universal first Pontrjagin class and PY52(¢)e



172 Mitsunori IMAOKA

MSp*(HP®) be the Euler class of ¢ in the symplectic cobordism theory. By
using the projection ¢;: Y->HP® (i=1, 2, 3) onto the i-th factor, we set X;=
q¥PY5p(&)e MSp*(Y). Then MSp*(Y)=MSp*[X,, X,, X3], and we have an
expansion

(5.2) P*(PYSP) = PYSP(E}) = Zi+j+kgl aiijiX£X§
for some cobordism classes
(5.3) iji € Tagi+ j+i-1)(MSP).

We shall consider the Pontrjagin numbers P, ;. [a;3] and PPy ;iy_»
Laijul-

Consider the classes x;=q¥P,({)e HXY) (i=1,2,3) where Y=HP®x
HP*x HP*. Then H*(Y)=Z[x,, x,, Xx3], and we have the following lemma,
where P4ie H*(BSp) denotes the primitive class defined inductively by P4i=
Yz (= 1)7*1P;P4-i 4 (—1)*1iP;, and C(r,s, t) denotes (r+s+1)!/ris!t!:

LEMMA 5.4. For the induced homomorphism ¢*: H¥(BSp)->H*(Y) of
¢ in (5.1),
¢*(P4) = 4 Xt 1o m=i C2K, 21, 2m)x§xbxy.

PROOF. Let ¢;e H?(BU) be the i-th Chern class, and c¢4ie H*(BU) be
the primitive class defined inductively by c4:= 3 i} (—1)7*1icjcdi-s +(—1)*tic,.
Then, for the canonical map c¢: BSp—BU, it holds c*(c42¢)=2P4: by the de-
finitions of P4: and c4s. Hence, by the definition of ¢,

20*(P4) = 2P4i(&%) = ¢*2({ ® £ ® &) in HH*(Y).

Let n be the canonical complex line bundle over CP*, and # be the conjugate
bundle of n. Then n@®7 is a symplectic line bundle over CP®, and we denote its
classifying map by q: CP*—>HP®. Set Z=CP*xCP®xCP*. Then H*(Z)=
Z[y., y2» ¥3l, where y,=q¥c,(n)e HX(Z) (i=1, 2, 3) for the projection ¢;: Z—
CP* onto the i-th factor. For the homomorphism (g x g x g)*: H¥(Y)—>H*(Z),
we see that

(@xgx@*(c*2((® &R ) = c42((nDi) ® (D) ® (MD7))
=2{(n 1+ Y2+ Y32+ i+ Y=Y+ (Vi =Y+ 93)? + (11— Y2 —Y3)*i}
=8 3 i+ 1+m=i C(2k, 21, 2m)yi*y3'y3m,

by using the equality ¢4« ¢)=>:(c:({x) for line bundles {,. Since
(g x g x @)* is monomorphic and (g x g x q)*(x,)=y2 for k=1, 2, 3, we have the
desired result by the above equalities. q.e.d.
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Now, for E=H or MSp, let Bt eE,(HP®) be the dual class of (P§(£))/
where PE(¢) is the Euler class of ¢. Then the following holds (cf. [8], [15;
§ 16]):

(5.5) E«(HP*) is a free ny(E)-module with basis {%|j=0}, and
E(MSp)=n(E)[b}, b5,...], bf = i*ﬁ?+] e E,(MSp),
where i: HP*—X*MSp is the natural inclusion.

Let (b)f € H,(MSp) denote the 4/-dimensional component of b*=(1+b;+
by+--)k ie,

(5.6) (14byx+byx?>+-- k=350 (b)fx!, where b;=b¥ in (5.5),
and let H: n,(MSp)—H.(MSp) be the Hurewicz homomorphism.
PROPOSITION 5.7. For any non negative integers r,s,t with r+s+t21,
S H (a;) (0)i-i(b)- (b)-y = 4C(2r, 25, 20)by 4 g1,
where the summation is taken over all i, j, k=0 with i<r, j<s, kZt.

Proor. Consider the commutative diagram

MSp*(BSp) s (H A MSp)*(BSp) = H,(MSp) ® H*(BSp)

b b Jies

MSp*(Y) —"— (HA MSp)*(Y) = H,(MSp) ® H*(Y),

where & denotes the Boardman homomorphism. Then we have

(5.8) (L®@*)h(PYSP) = hp*(PYSP).
The following relation holds (cf. [1], [8; (5.1)]):
(5.9) h(P}¥57) = 351 by P4,

where P4+ is the primitive class in Lemma 5.4. By (5.9) and Lemma 5.4,
(1@ PN(PYS?) = 4% 151 imiz1 CQ2r, 25, 20)b;_ 1 X x3x5.
On the other hand, by (5.9) and (5.6),
hXD = (Ziz1 bio 1k = Top; (B)- x5
By (5.2) and this equality, we have
hp*(PYS?) = 3, 1 srrz1 (ZH (@) (B)i-B)L- (b)e- 1)x7x5x5.
Therefore, we have the proposition by (5.8). q.e.d.
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For any class u € n,,(MSp), its Hurewicz image H(u) can be written as
H(u) = X A.,,,.. bi'by--- € HS(MSp) = Z[b,, by,...].

For our purpose, we denote simply the coefficient 4, of b? by (u/) (n=1) and
A1 Of bY2b, by (u) (n22).
Then we have

(5.10) P,[u] = (u), PP,_,[u] = {u) + n(u) for n=1.

These formulas can be proved by the same proof as that for MU given in [1;
pp. 10-11], [15; pp. 401-402].

By comparing the coefficients of bj*s*t=! or b;*s*t=3p, in the both sides
of the equality in Proposition 5.7, and by the above notations ( ) and { >, we

have the following

LEmMMA 5.11. Forr,s, t20, the following hold, where summations are taken
over i, j, k=0 with i<r, j<s, k<t.

(1) Z("”")Cii)(sij)(tfk):[:C(zr’ 2 Zhe::;:téz’

@ = e (L)L) E) + @ (G551 () E)
1)) A+ L)L) GE L)

{ 4C(2r, 2s, 2t) if r+s+1=3,

0 otherwise.

PrROPOSITION 5.12. (i) For i, j=1,
_ 8 mod 16 if i and j are powers of 2,
(o) = [ 0 mod16  otherwise.
(ii) Fori,j, k=1, (a;3)=0 and
8 mod16 if i, j, k are powers of 2,
{aiy = [

0 mod 16 otherwise.
We shall prove Proposition 5.12 by preparing the following two lemmas:

Lemma 5.13. (1) (a;)=0if1i,j, k=1.

(ii) 2 <aiji (rl_ i) (s i]) (tfk) - [ 360 ioj;herr::s‘e:,tz )
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for r, s, t=1, where the summation is taken over all i,j, k=1 with i<r, j<s,
k=<t

ProOF. (i) By Lemma 5.1 (i), 3 (a,.jk)(ril.> (S{ J.) ( K k):o for any r,
s, t=1, where the summation is taken over all i, j, k=1 with i<r, j<s, k<t
Therefore we see (i) by the induction on i+j+ k.

(ii) (i) and Lemma 5.11 (ii) imply (ii). q.e.d.

LemMma 5.14. (1) <a;j» is a multiple of {a,,,) =360 for any i, j, k=1.
(ii) <a;py=<apjpy for any permutation (i’,j', k') of (i, j, k).
Giiy S, (a,-s,>(rl_i>=0 for r=2 and s, t21.
(iv) Set m;;=<a;j»(360. Then m,,=m, ;mg m, forr,s, t=1.
_ {1 mod2 ifrisa power of 2,
(V) g = {0 mod 2 otherwise.

ProoF. By Lemma 5.13 (ii), we can prove (i) and (ii) by the induction on
i+j+k, and (iii)) by the induction on s+t. We can prove (iv) inductively on
r+s+t by using (iii) and (ii), and (v) inductively on r by using (iii) and the fact
that (r E'zi) for r>2! is odd if and only if r=2i+1, g.e.d.

PROOF OF PROPOSITION 5.12. (ii) The first equality is proved in Lemma
5.13 (i). The second equality is an immediate consequence of Lemma 5.14

@iv), (V).

(i) By Lemma 5.11 (i), we see that for r, s =1,

i j 24 if r=s5s=1
21§i§r,l§j_s_s (aij0)<r_i><s_j> = 0

otherwise.

By using this equality instead of Lemma 5.13 (ii), we can prove (i) by the same
way as the above proof of the second equality in (ii). q.e.d.

Now we consider another example of symplectic cobordism classes defined
by R.E. Stong [14] and N. Ray [9]. We follow the methods due to N. Ray.

The complex projective space CP?'~! is a weakly almost symplectic manifold
(see [14]), and so is the product [ ]2z, CP?":=1, Consider the composition

F:TIZ, CP2mi-t L, (cp=)>r ™, cp~ 9, HP>,

where j and g are canonical maps and m is the classifying map of the tensor
product of 2r copies of the canonical complex line bundle # over CP®. Then
we have a bordism class

[T1x, cpmmt, fle MSpyn—n(HP®)
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for n=3 72, n,. By (5.4), we have an expansion
[TT2, CP2"71, f] = 3450 ap(Ny,..., nz)BYUSP
for some classes
(5.15) ay(ny,e.ns Ny,) € Tyn—p-1y(MSp) (n=X#kn,n=1).

By the result of N. Ray [9; (3.1), (3.2)] for the computation of the Hurewicz
image of these classes ay(n,..., n,,), we have the following proposition, where

C(jl,---,]:1)=(Zf=1ji)!/l_ﬁ=1 (ji)!~

PROPOSITION 5.16.  For the Hurewicz homomorphism H: myy,_,_(MSp)—
Hyn-r—1(MSp), it holds

H(ak(nl"“! n2r)) = Z C(jls“"er)(b)j (b)anr(b)n —r—k—j>

where n=Y2. n;, j=32, j, j;=2(n;—j)—1 and the summation is taken over
all j;=0.

We notice that the coefficients of b} and b{~2b, in the 4/-dimensional com-
ponent of (b)™™ are (— 1),<m+l 1) and (—1)'"(I— 1)<m+l 2) respectively.
Therefore, by comparing the coefficients of b7~"~* and b} ""*~2p, in the both

sides of the above equality, and by using the notations ( ) and ¢ ) in (5.10), we
see the following

LeEMMA 5.17. The following (i) and (ii) hold, where n=Y%2, n,, j=> 2, j;
Jji=2n;—j)—1, m=n—r—k—j and the summations are taken over j;=0 with
Jism—1 (1=i2r):

(D) @i m2)) = E (=1 (E)CG s Jad TR ("I TL).

(i) <ay(ny,..., ny)) is equal to

_1 J 3 < _ k _ k 2r . .
2(=1DIC( s jar) {m—1) m—1 m 2 Gi— Vil
(nirii= D} T (417 1),
When k=1, we have the following

PROPOSITION 5.18. (1) P,_,_i[a;(ny,...,ny)](n=32, n;2r+2) is equal to

(—1)"*’(2r)!l’]§;1<2n'?"_—12) if r=1landny,n, 22, or r=2,

0 otherwise.
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@) PiPysfar(m, m))=(= 0 =) (2T 2) =ity

nl"l n2_1
if ny, ny=2.

Proofr. (i) The equality in Lemma 5.17 (i) for k=1 is

(@ 120) = D= DIC e o) T (M),

where the summation is taken over j; =0 (1<i<2r) with j;<n;—1and j=n—r—1,
n—r—2. Therefore the left hand side is 0 if =3, because j=n—2r.

Letr=1. Ifn,, n,=2,then the summation in the above equality is taken over
(J1j2)=(n;=1,n,—1), (n;—1,n,—2) and (n, -2, n,—1), and then C(j,, j,)=
2, 4 and 4 respectively. Hence we have

n-1r (201 —2\(2n,—2
@, m) = (=122 F) (T F)  for mumz2.

If n;=1, then n,=2 and the summation is taken over (j,,j,)=(0, n,—1) and
(0, n,—2). Hence we see that (a;(1, n,))=0. (a,(n,,1))=0 holds similarly.
Thus we have the desired equality for P,_,[a,(n, n,)] by (5.10).

For the case r=2, the summation in the first equality is taken over j;=
n;—1 (15i<4) only, and then C(ji,...,j,)=24. Thus we have the desired
equality for P,_s[a,(ny, n,, ns, ny)l.

(i) By the equality in Lemma 5.17 (ii), and by a similar argument to (i),
we see that

<a,(ny, np)y = (— 1)"(’14‘1)(2,1}11:12) (2,:;2__12> if ny, ny22.

By (5.10), P, P, _3[as(ny, ny)]=<a,(ny, ny)> +(n—2)(ay(ny, ny)) forn=3. Hence
we have (ii) by the above equalities for {a,(n,, n,)) and (a,(n, n,)). q.e.d.

COROLLARY 5.19. P,_,_,[a,(ny,..., ny,)] (n—r=2) is congruent to
8 mod 16 if r=1andn,—1, n,—1 are powers of 2, or
r=2and n; =n, =n; =n, =1,
0 mod16 otherwise.

Proor. It is sufficient to prove the corollary for the first two cases in Pro-
position 5.18 (i). We notice that v2<<’:>>=oc(n)+oz(m—n)—a(m) (cf. [10;

(6)]), where a(y) is the number of 1I’s in the dyadic expansion of y. Thus, by
Proposition 5.18 (i), we have

vo(IPy-slay(n, n))I) =1+ a(ny—1) + a(n,—1) if ny, ny 22,
Vo(IPy-slay(ny, nyy ns, n)1) =3 + iy a(m—1).
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Hence v,(|P,-,[a(ny, n,)]|) is at least 3, and is 3 if and only if n, —1 and n,—1
are powers of 2. Also v,(|P,-5[a,(ny, n,, ns, ny)]|) is 3 if and only if n;=1
(1£i<4). Thus we have the corollary. q.e.d.

REMARK 5.20. In addition to Proposition 5.18, we can prove the following
equalities by (5.10), Lemma 5.17 and routine computations:

. 2n; —
@ PiPrpa[@Ones m)] = AT (V7)) (=Siamzr+2),

where A=(—1)"*(n-5) if r=1 and n,, n, =2, =(—-1)"12(n—-41-2) if r=2
(1 is the number of i’s with n;=2), =(—1)"720 if r=3, =0 otherwise.

i) PyosLas(ny, m)] = (= 1)™122=Tn=3)/2n, —3) @, =3} (21 77)

2n2—2
n2—1

) (n=ny+n,) if ny, n,=3.
Now we can prove the following theorem which is Theorem III (i):
THEOREM 5.21. 7g,.3(MSp(n)) (n=3) has no p-torsion for any odd prime p.
Proor. Let Q,={l/m|(m,p)=1}<=Q. Tensoring Q, to (4.1) for i=
4n+4 (n=2), we have the exact sequence

n4n+4(MSP) ® Qpa@l_) Qp ® Qp —_ 7r8n+3(MSp(n)) ® Qp — 0,

since g, 3(F,)®Q,=0,®0, (n=2) by Proposition 3.5 (i) and n,,,3(MSp) is a
2-torsion group. Therefore it is sufficient to show that

(5.22) 0®1: My (MSP)®Q,— 0, ®Q, is epimorphic for n = 3.

Set y;=a,(1,1,1,1), y;=a,(2,i) 2<i<6) and z=a,(3, 3). Then, by using
Proposition 4.2, the equalities
(5.23) Py y[uv] = P lulP[v],
PPy i[uv] = Py Py [u]P[v] + P LulPP,_4[v]

for u e m (MSp), ven,y(MSp)(k,1=1) and Proposition 5.18, we see the following
equalities for k=0, where (a, b)=au(3)+ bv(3)+a torsion element:

Ay1y ) = (—1)FH18k-4.(3k+5), (—1)k+igk+1.3),
5(y’§+2) — ((—1)"8" .4.(k+3), (—1)"8"“),
o(ykz) = ((—1)¥*18%1.4.9.(k+2), (—1)k*18k.9),

oot = (o2t (F070), (comase(P07)) a23),
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where <%i__12)=6ifi=3, —4.5if i=d4, =2.5.7if i=5, =4.32.7if i=6.

Therefore, for d®1 in (5.21), we have the following equalities:
When n=2k—1 with k=2 and p+#35,

(=10 @ H{(1/82-4)yk + (1/8+2-5)y52y,} = (1, 0),
(= 1¥*10 ® L{(k/8* 1)y + ((k+1)/8¥72.2-5)y572y,} = (0, 1);
when n=2k—1 with k=3 and p=S5,
(=1)*0 ® 1{(1/8¥ )y — (1/872-2-7-9)y5 3y} = (1, 0),
(=110 @ H{((k—1)/8*71-2)y% — ((k+1)/8*72-4-7-9)y573yc} = (0, 1) ;
when n=3 and p=>5,
0@ 1{(1/4)y3 + (2/9)z} = (1,0), 0 ® L{—(1/4)y3 — (1/3)z} = (0, 1);
when n=2k with k=2,
(=110 @ 1{(1/8¥1 - 4)y,yh + (1/8572-4)yh~1y5} = (1, 0),
(—1)*0 ® 1{((k+36)/8 )y, ¥ + ((k+24)/8* 1) y4~ y; — (1/8%2)y~2y5} = (0, 1).
These equalities imply (5.22), and we have the desired result. q.e.d.
Now we prove Theorems 4.6 and 4.7.
PROOF OF THEOREM 4.6. (i) In the above proof, we have seen that
Pylay(2,2) 1= (=8 (i21), Pyiv1[as(2, 2)"ay(2, 3)] = (- 1)I"13-81(i21),
Py 1[a:(2, 2)2a,(2, 5)] = (—1)!35-8i-1(i=2).

Therefore the definition (4.3) of m(n) implies that m(2i)(i=1) is a power of 2 by
the first equality, and so is m(2i+1)(i=2) by the last two ones. m(1)=m(3)=3
follows from the result of [7], [6] on 7,(MSp) and =, ,(MSp).

(i) The desired result for n=2k+2!—1 (resp. 2*+2?) follows immediately
from (i) and the fact that P,[a,x,10] (resp. P,[a;(2¥+1, 2! +1)]) is not a multiple
of 16 by (5.10) and Proposition 5.12 (i) (resp. Corollary 5.19). q.e.d.

REMARK 5.24. Let n#1, 3. Then by Theorem 4.6 (ii), m(n)=1 if a(n)<2
or o(n+1)=2 («(?) is the number of I’s in the dyadic expansion of f). In general,
the exponent v,(m(n)) of m(n)=2v2("(") can be estimated by the inequality

Po(Zn)—3 = vy(m(n)) = min {a(n), a(n+1)} =2 if a(n), a(n+1) =3,

where po(2n)=min {r|a(2n+r)<2r} is the number given in [11; Th. A]. But
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this inequality does not determine v,(m(n)), since py(2n)<min {a(n), a(n+1)}
there.

In fact, the first inequality is seen by () in the proof of Corollary 4.5. We
note that for any t with a(f)=2, a(f)<o(t,)+a(t,) if t=t;+1¢, and there are
t,, t,=1 with t=t¢;+1¢, and a(t)=o(t,)+(t,). Thus we see the second inequality
by () in the proof of Corollary 4.5 and by the equality v,(|P,[a,(t;, t,)])=1+
at))+a(ty) (¢, +t,=n+1;1t,,t,=2) for odd n, which follows from Remark 5.20
(ii). The last inequality is seen easily.

PrOOF OF THEOREM 4.7. (i) By Proposition 3.5 (i) and Remark 3.7, n,(F,)
has no p-torsion for i<8n+3if n=2and fori<9if n=1. Furthermore n,(MSp)
has no p-torsion. Thus (i) holds for i #8n—1, 8n—3 by the exact sequence (4.1).
For i=8n—1, (i) follows from Corollary 4.4. For i=8n+3, (i) is proved in
Theorem 5.21.

(ii) If n=1, then n,(MSp)=0 by [7], and (ii) is trivial. If n=2, then
Tgns 2(F,)=0 by Proposition 3.5 (i). Thus (ii) follows from the exact sequence
4.1).

(iii) Consider the exact sequence (4.1) for i=4n+4 and n=2F+2'—1
with k, 1>1:

Teant a(MSP) 25 Z® Z — 7g,, s(MSp(n)) 225, 74, 5(MSpP) — 0,

where we identify mg,,;(F,) with Z@®Z by Proposition 3.5 (i). By Propositions
4.2 (ii), 5.12 (ii) and Corollary 5.19, we have

0(azesry) = (x,0) and d(a,(2¥+1,2'+1)) = (', y)

for some integer x’ and some odd integers x and y. These imply that Coker 0
is a finite group and has no 2-torsion. By Theorem 5.21, Coker é has no p-
torsion for any odd prime p, hence Coker d=0, and b, is isomorphic. q.e.d.
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