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Introduction

In [10] and [11], E. Rees and E. Thomas have studied the divisibility of
some Chern numbers of the complex cobordism classes and the homotopy groups
of MU(n). The purpose of this paper is to study the symplectic cobordism theory
by using their methods.

Let MSp(n) be the Thorn space of the universal symplectic vector bundle
over the classifying space BSp(n), and MSp = {MSp(n), ε j be the Thorn spectrum
of the symplectic cobordism theory, where εn: Σ*MSp(n)-+MSp(n + l) is the
structure map. Let bn: MSp(n)-+Ω4NMSp(n + N) be the adjoint map of the
composition εnN: Σ*NMSp(ή)->MSp(n + N) of !%+£, where N^.n>0. Con-
verting bn into a fibering with fiber Fn, we consider the fibering

(1) Fn > MSp(ή) - ^ > Ω*NMSp(n + N).

Then Fn is (8n-2)-connected, and we can determine the cohomology groups of
Fn in dimensions less than 12rc-2 (see Proposition 2.15).

Let PiβH^BSp) be the z-th symplectic Pontrjagin class. For a symplectic
cobordism class ueπAk(MSp) and a class P^-'-P^eH^iβSp) with Σ/=iΛ = k>
Pii'-PijLu] denotes the Pontrjagin number of u for a class P f l P i r

Our first purpose is to obtain the divisibility of some Pontrjagin numbers of
the symplectic cobordism classes by making use of the cohomology groups of
Fn. As a concrete result, we have the following theorem (see Theorem 3.8):

THEOREM I. Let n ̂  1. Then
(i) P B [ M ] Ξ 0 mod 8 for any u e π4n(MSp).
(ii) P Λ M - ( ( n + 4)/2)P,1+1[tt]Ξθ mod24for any ueπ4n+A(MSp).

The divisibility of Pontrjagin numbers of some symplectic cobordism classes
has been studied in [14], [13], [3], [6] to investigate the structure of π*(MSp).
For the divisibility (i) of the above theorem, E. E. Floyd [3] has proved it with
some restriction by using the alternative method, and some application of the
method of Floyd is considered in [4].

The second purpose of this paper is to study the homotopy groups
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π8n_1(MSp(n)) and π8n+3(MSp(n)) by using the fibering (1) and some examples
of the symplectic cobordism classes. Our second results are stated as follows
(see Corollaries 4.4, 4.5 and Theorems 4.6, 4.7):

THEOREM II. (i) Let m(n) be the greatest common measure of {(l/8)Pn[w] |
ueπ4n(MSp)}. Then the induced homomorphism

*>„*: π8π_ι(MSp(n)) > π4n_ ^MSp)

of bn in (1) is epimorphίc and its kernel is a cyclic group of order 4m(n) gene-
rated by the Whίtehead product [/, ί] for the homotopy class i of the natural
inclusion S*n-*MSp(ή).

(ii) If 2π4.n_ί(MSp) = 0 and n is not a power of 2, then bn* in (i) is split
epimorphic, that is,

π^.^MSpin)) s Z 4 w ( n ) 0 π^^MSp).

(iii) m(ή) is a power of 2 for nφ\, 3, and m(l) = m(3) = 3.
(iv) m(n) = l i/n = 2fc + 2 ' - l or 2fe + 2< (fc, J^O) and nφ\, 3.

THEOREM III. (i) π8w+3(M5p(n))(n^3) has no p-torsion for any odd
prime p.

(ii) The homomorphism bn#: π8n+3(MSp(n))-*π4n+3(MSp) is epimorphic
forn^l.

(iii) If n = 2k + 2ι — l(k,l^l), then bn* in (ii) is isomorphίc, that is,
π8n+3(MSp(n)) s π4n+3(MSp).

We notice that the assumption 2π4π_1(MSp) = 0 in Theorem II (ii) is valid
for n^8 by the result of D. M. Segal [12].

This paper is organized as follows. In § 1 we summarize the necessary
lemmas concerning the iterated cohomology suspension investigated by R. J.
Milgram [5]. In § 2 we study the cohomology groups of Fn, and in § 3 we state
the divisibility of some Pontrjagin numbers and prove Theorem I. In § 4 we
consider the homotopy exact sequence concerning πg^.^MSpίn)) and π8M + 3

(MSp(n)) and state Theorems II and III. In § 5 we prepare some symplectic
cobordism classes and prove these theorems.

The author wishes to express his hearty thanks to Professor M. Sugawara for
his valuable suggestions, to Professor S. Oka for his helpful advices and stimulating
discussions, and to K. Morisugi for his useful conversations and encouragement.

§ 1. Preliminaries

In this section, we summarize some necessary lemmas concerning the iterated
ςohomology suspension studied by R. J, Milgram [5].
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Let Γbe an (r-l)-connected C^-complex, and j : Y-+ΩkΣkY be the natural

inclusion. Then Milgram [5; Th. 1. 11] proved that the cofiber ΩkΣkYjY of j

is homotopy equivalent in dimensions less than 3r —1 to the space Sk~1xτYΛ Y,

where Sk~1xτYΛ Y is the quotient space of S*-1 X ( 7 Λ Y) by the identification

of (x, yί9 y2) with ( — x, y2, )>i) and (x, *) with the base point.

When Y=ΩkX for a (k + r— l)-connected CW-complex X, we can consider

the evaluation map e: ΣkΩkX-+X and the fibering

F -L> ΣkY-*-> X (Y=ΩkX).

Then the inclusion j : Y-^ΩkΣk Y is a section of the fibering ΩkF-^U ΩkΣk YΩH^ γ9

and we have the maps F+-*-ΣkΩkF Σk(q Ωki\Σk(ΩkΣkY/Y), where ^: ΩfcIkY->

ΩfcΓfc Yj Y is the canonical projection. Since these maps are (k + 3r — l)-equivalent,

we have the following lemma (cf. Proof of [5; Cor. 4.4]).

LEMMA 1.1. In dimensions less than fc + 3r — 1 , F is homotopy equivalent

toΣk(Sk-icxτΩ
kXAΩkX).

Take X to be the Thorn space MSp(n -f N) of the universal symplectic vector

bundle over BSp(n + N). Then we have the fibering

(1.2) F(e) _ U I 4 "Ω 4 *MSX« + JV) - ^ MSp(n + N).

Hereafter we shall take integers n and JV to satisfy N^.n>0. By Lemma 1.1,

we have

COROLLARY 1.3. In dimensions less than 4N+12n — l, F(e) is homotopy

equivalent to Σ4iVΓ(n, N), where we use the notation

Γ(n, N) = S^-tx^MSpin + N) Λ Ω*NMSp(n

Put Λ — Z or Zp (p: prime). By this corollary, we have the isomorphisms

H*+*N(F(e)', Λ) = W(Γ(η, N); A) for ΐ ^ 12n-2.

Therefore the Serre cohomology exact sequence of (1.2) turns out to the exact

sequence

(1.4) ••• > Hi-^Γfa JV); Λ) - ^ > Hi+*N(MSp(n + N); A) -*-*

in + N);Λ)-1-* H^Ffa N) A) > (ί ̂  1 2 n - 2 ) ,

where τ, σ and j are the transgression, the induced homomorphisms e* and i*

composed with the suspension isomorphisms respectively, and σ is known to be

the iterated cohomology suspension.

We shall use the following notations:
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(1.5) (i) By a series R = (rl9 r2,...), we mean that r/s are non negative integers
with the condition ^ = 0 (/^m)for some m^l,and this condition will be denoted
by R<m.

(ii) For a series R = (ru r2,...), we set |# | = Σί^i *r/
(iii) For series R = (rl9 r2,...) and S = (su s2,...), R>S means that rf =

Si (/ > m) and rm> sm for some m ̂  1.

Let PteH4i(BSp) be the universal i-th symplectic Pontrjagin class. Then
it is known that H*(BSp(n + N)) = ZlPu..., Pn+Nj. We set PR = PϊP2*-~
eH*W(BSp) for a series R = (rί9 r2,...).

Let 1/ e H^n+N\MSp(n + AT)) be the Thorn class of MSjp(n + JV), and consider
the composition

V: W-^iBSpin + A/)) - ^ Hi+*N(MSp(n + iV)) -^-> H\Ω^MSp{n + JV)),

where (7 is the Thorn isomorphism given by U(x) = Ux and σ is the iterated coho-
mology suspension in (1.4). Here σ is isomorphic for i^Sn — 1, and
H*(Ω4NMSp(n + N)) for * ^ 8 n - l is the free abelian group with basis {K(PR)|
|.R|<n}, where

(1.6) V(PR) = σ(UPR)eH4(n+W\Ω*NMSp(n + N)).

The following lemma is an immediate consequence of [5; Prop. 3.1] (cf.
[11 (2.1)]), where <0, 0;> and e* 0<g)0 are the notations used in [11].

LEMMA 1.7. (i) The cohomology group //f(Γ(n, JV)) for ί<^12n-2 is a
direct sum of some copies of Z and Z2. A basis of its free part consists of the
following classes:

(V(PR\ V(Ps)}eH*n+*(\R\+\s\\Γ(n, N)) with R>S, \R\ + \S\ g n - 1 ,

1 V(PR) ® F(PR)6H8"+8lRl(Γ(n, N)) w/ίh 2|R| ^ w-1.

v4 feί75/5 o/ /is Z2-summands consists of the following classes:

e2k-V(PR) ® V(PR)eHSn+2k+*\R\(Γ(n, N)) with fc^l, 2fc + 8|Λ| ^ 4π-2.

(ii) A basis of WfJΓin, JV); Z2) /or i^Yln-2 consists of the mod2 re-
ductίons of the classes given in (i) and moreover the classes

Λ0; Z2)

wίίft fc^O, 2fc + 8|Λ| ^ 4n-4.

We remark that the classes u 0® Θ in [11 (2.1)] do not appear in Hι(Γ(n, N))
for i^ l2n-2, since N^n.
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By the above lemma, we have HJ(Γ(n, N)) = 0 ifj is odd and j<12n — 2, and

the following

LEMMA 1.8. (i) The sequence (1.4) for Λ = Z and i^l2n-2 is short exact:

0 > Hi+4N(MSp(n + N)) -£-> H\Ω^MSp(n + N)) -±-> H\Γ(n, N)) > 0.

(ii) H\Q^MSp(n + N)) = 0 if i is odd and ί£12n-2.

For the maps j and τ in (1.4), we have the following lemma by [5; Th. 4.6]

(cf. [11; (2.10), (2.5)]):

LEMMA 1.9. (i) In the integral cohomology groups,

), V(PS)} if R> S,
j(V(PR)V(Ps)) =

( 2(1 V(PR) ® F(PΛ)) if R = S.

(ii) /n ί/î  mod 2 cohomology groups,

V(PR)
The next lemma can be proved by a similar argument to E. Rees and E.

Thomas [11; 2.4, 2.6, 2.8].

LEMMA 1.10. For i<3n, the cohomology group H4i(Ω*NMSp(n

is a free abelian group.

PROOF. H4i{ΩAΉMSp{n + N)) has no odd torsion by Lemma 1.7. We

prove that

(*) τ: H"-\Γ(n, N); Z2) > H^+4ί(MSp(n + N); Z2)

is monomorphic if ί < 3n.

Then H*i-1(Ω*NMSp(n + N); Z2) = 0 by the exact sequence (1.4), and hence

H4i(Ω4NMSp(n + N)) has no 2-torsion by the universal coefficient theorem.

Thus we have the lemma.

Now we prove (*). A basis of H4i~ι(Γ(n, N); Z2) (i<3ή) consists of the

classes α R = = ^-8(»+|R |)- i . v(PR)®V(PR) with 4i-8(n + | Λ | ) - l > 0 by Lemma

1.7 (ii), and

τ ( α Λ ) = Sq4<(UP*\ t = ί-n-\R\,

by Lemma 1.9 (ii). We have SqiU=UPj if i = 4j, =0 otherwise. Hence, by the

Cartan formula, the Wu formula Sq4 sPj=Σι(^~S+ί"l)Ps-ιPj+ι a n d the

condition 2(n + \R\)<ί<3n, we see that
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τ(αΛ) = Sq*<(UPR) = UPtP
R + Σs<t ™SP

S, R < t = i - n - \R\,

for some integers ms, where < is the notation in (1.5) (i). Therefore we see

that τ is monomorphic and (*) is proved. q. e. d.

The formulas for the cohomology operations on H*(Γ(n, N) Z 2) are given

by Milgram [5; Th. 3.7.] (cf. [11; (2.3)]) as follows:

LEMMA 1.11. (i) Sq*\V(PR),

SqJ\V(PR), V(PS)> = 0 if j φ 0 mod 4.

(ii) Sq*\\ V(PR) ® V(PR)) = Σoir<i

SqJ(ί V(PR) ® F(PΛ)) = 0 if j φθ mod 4.

(iii) Fork^l,

SqKek - V(PR) ® V{PR))

Especially, we have

COROLLARY 1.12. For k^> 1,

S4 V F(P Λ ) ® F(PK)) = /cefc+1 F(PΛ) ® V(PR),

Sq2(ek - V(PR) ® V(PR)) = Γ^)

Let X be a (k + r— l)-connected space and r ^ 2 . The evaluation map

et: ΣWX-^X is the composition of the evaluation maps e':

( i ^ j ^ l ) , and we have the commutative diagram

F(ek) • ΣkΩkX βk > X

(1.13) J/i je- I
F(e k_!) > Z * - ^ * - 1 ^ ^ ^ > Z,

where F(ef) (ί = k — 1, fe) are the fibers of the respective fiberings and ft is the

restriction of e' to the fiber. If we identify F(ef) with I ' i ( S i - 1 x Γ Ω i Z Λ ί 2 i Z )

in dimensions less than i + 3r— 1 by Lemma 1.1, then we see t h a t / t is identified

with the composition of
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XTY Λ 7) -ϋli-» ΣkΩ(Sk~2xτΣY A ΣY)

-L> Σk-\Sk-2xτΩ
k'ιX Λ Ω

where Y=ΩkX and ^ is the natural map Ω ^ Y / F ^ Ω ^ - ^ - ^ Y ) / ^ ) (see

[5; §2]) with the identifications Ω^W/W^S^XTW A W(W=Y, ΣY) and e

is the map induced by the evaluation maps.

In the diagram (1.13), set X = MSp(n + N) (N^n + 2) and /e = 4N,..., 4 N - 3

to obtain the commutative diagram

Σ4NΩ4NMSp(n + N) 6iN > MSp(n

where e" = (e')4 and f=(fiΫ- Let σ': Hi+4N

(n + ΛΓ)) be the iterated cohomology suspension. Then, by using the identifications

of F(e4N) with Σ4NΓ(n, N), F(β 4 N _ 4 ) with i;4 i v-4Γ(n + l, N - l ) and Λ with

as is stated above, we have the following lemma by [5; Th. 3.8] on τ1:

LEMMA 1.15. Set V'(x) = σ'(Ux). Then

f*{ek V'(PR) ® V'(PR)) = ek+* - V(PR) ® V(PR) for any k ^ 0,

*), V'(PS)» = 0.

§ 2. The cohomology groups of Fn

The structure map εn: Σ4MSp(n)->MSp(n + l) in the Thorn spectrum

MSp = {MSp(n), εM} of the symplectic cobordism theory is defined to be the map

induced by the bundle map of ξn®\ to ξn+ί9 where ξi is the universal symplectic

vector bundle over BSp(ί) and 1 means the trivial symplectic line bundle. Con-

sider the composition εnN: Σ4NMSp(n)-^MSp(n + N) of Σjεn+i, and its adjoint

map bHtN: MSp(n)-+Ω4NMSp(n + N). Converting bnN into a fibering with fiber

FnN, we consider the fibering

(2.1) FnN > MSp(n) bn'N > Ω4NMSp(n + N).

For any N'>N^n^l, the homotopy groups, the cohomology groups of FnN

and FnN. are naturally isomorphic in dimensions less than 12n —2, because

εn+N is (8n + 8iV + 6)-equivalent. Therefore, for a positive integer n, we shall

take an integer N large enough to satisfy N^n; and we denote simply by

bn = bnN and Fn = FntNί
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and investigate the cohomology groups of Fn in dimensions less than 12n —2.

We remark that Fn is (8n — 2)-connected.

Let Inc:H*(BSp) be the ideal generated by {Pt\i>n}9 and

(2.2) UIJ

n c H^n+N^J'(MSp(n + N)) be the subgroup generated by {UPR\PR

eli = Inf)HJ(BSp)}.

Then we have

LEMMA 2.3. (i) The composition

e(Σ4Nbn): I 4 N MSp(n) > Σ*N Ω4NMSp(n + N) > MSp(n + N)

is homotopic to εM>ΛΓ, where e is the evaluation map in (1.2).

(ii) The following commutative diagram of four short exact sequences

holds for igl2n-2:

!-* #'(/>, N))

Hi+*N(Σ*NMSp(n)) <—^—

Here the central horizontal sequence is the one in Lemma 1.8 (i), the central

vertical sequence is the Serre cohomology exact sequence of the fiber ing (2.1),

where τ denotes its transgression, σ is the restriction of σ, and] is the composition

PROOF, (i) is clear by definition.

(ii) The left hand vertical sequence is exact by the definition (2.2) of UIJ

n.

By (i), the lower square commutes. Since ε*jiV is epimorphic, so is b*, and the

central vertical sequence is short exact. Since the central horizontal sequence is

short exact as is shown in Lemma 1.8 (i), so is the upper one by the 9 lemma.

q. e. d.

Consider the central vertical exact sequence in Lemma 2.3 (ii):

0 > Hi-^Fn) - L * HXΩ^MSpin + N)) -*L Hl(MSp(n)) > 0.

LEMMA 2.4*. In H8n+4i(Ω4NMSp(n + N)) for i<n, the following elements

belong to Kerfr* = I m τ :

(1) V(PR)V(Ps)-V(PnP
RPs) for any series R and S with \R\ + \S\ = i,

(2) V(Pn+kP
R)for any k and any series R with k^l and fc+|JR| = ϊ.
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PROOF. (1) Let U denote the Thorn class of MSp(n). Then, by Lemma 2.3,

b*(V(PR)V(Ps)) = b*σ(UPR) b*σ(UPs) = (£ 4 ΛT'β* N(UPR) ( Γ ^ ε *

= ΰpR. UPS = ΰpnp
RPs = b*(V(pnp

RPs)).

(2) By the condition, x = Pn+kP
ReIn and V(x) = σ(Ux) = τσ(x)eImτ.

q.e.d.

Especially, (V(PR))2-V(Pn(PR)2) (2|Λ|<n) is contained in Kerfc* by the
above lemma for R = S. On the other hand, its y-image is 2(1 V(PR)®V(PR))
by Lemma 1.9 (i). Therefore, by the commutative diagram in Lemma 2.3 (ii),
we see the following

(2.5) For any series R with 2|Λ| < n, there are elements V e H*in+lRtt-χ(Fn)
and υ' eI*»+*\*\ such that ]{b') = 1 V(PR)® V(PR) and

V(v') = σ{Uv') = 2τ(b') - (V(PR))2 + V(Pn(PR)2).

LEMMA 2.6. For any series R with 2\R\<n, we can take elements

b(R)( = bn>N(R))eH^(Fn) and υn(R)( = υn,N(R))elV+*\R\ (ί = n + \R\)

such that

( i ) j(b(R)) = 1 V(PR) ® V(PR) + α ίors/on element,

(ii) τ ( ^ ) ) = (l/2){(F(PΛ))2-F(Pn(PΛ)2)+F(ί;π(Λ))} m H

(n + N))9 and that υn(R) for 0 < 2 | Λ | ^ n - 3 satisfies the conditions

(iii) υn(R) = Pn+mPR + Σs<n+\R\ msP
s for some integers ms,

(iv) Uvn(R) = Sq^(UPR) + UPn(PR)2 in H4N+8i(MSp(n + N) Z2).

PROOF. By the Cartan formula, we have

=Ux+ UPn(PR)2, x = PtP
R + Σl^f1 Pi-tSq4l(PR).

Hence we can take an element vn(R)eI*i+4\R\ such that its mod 2 reduction is
x and that it satisfies (iii), and then it satisfies (iv) also.

Now, let bfeH8i(Fn) and t/e/£ i+4l*l be elements in (2.5). Then we can
prove the lemma by showing

(2.7) V(υ') = V(vn(R)) mod 2 for R Φ 0 (the 0-series) with 2\R\ ̂  n - 3.

In fact, there is an element y = (ll2){V(v')-V(vn(R))} by (2.7), and fe*(y) = 0
since HSi(MSp(n)) has no torsion. Thus we see that b(R) = bf — τ-1(y) and
vn(R) satisfy (i) and (ii) by (2.5). When R = 0 or 2\R\>n-3, b{R) = bf and
υn(R) = v' are the desired element.
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To show (2.7), consider the commutative diagram (8 ι^ l2n —9, n ^

n, N) Z2) — ^ H8i+*N(MSp(n + N) Z 2 )

HSi-5(Γ(n-l, N+l); Z2) - C H8i+4N(MSp(n + N); Z2)

σ > H8i(Ω*NMSp(n + N); Z 2 )

; Z2).

Here two exact sequences are the ones in (1.4) for Λ = Z2, f* is the homomorphism

in Lemma 1.15, and σ, σ', σ" are the iterated cohomology suspensions. Since

(V(PR))2-V(Pn(PR)2)+V(vf)=:0 in H8i(Ω4NMSp(n + N); Z2) by (2.5), we have

V'(Pn(PR)2)+Vf(υ') = 0 where V\x) = σt(Ux). Hence there is a class zeH8i~5

( Γ ( n - 1 , N + l); Z2) satisfying τ'(z)= t/PM(PR) 2+ Uυ'. Since i;' ε /„, we have

z = e2>VXPR)®V'(PR)+Στ,ι*i λliTe
8l+3 VXPT)®V'(PT) for some λuτeZ2,

by Lemmas 1.7 (ii) and 1.9. These two equalities imply

UPn(PR)2 + Uv' = Sq4i(UPR) + τ(z') (z' = Σ r , ^ i ^z,^ 8 ' " 1 ^ ( ^ Γ ) ® ^(^ Γ ))

by Lemmas 1.15 and 1.9. Therefore the mod 2 reduction of Uv' — Uvn(R) is

equal to τ(z') by (iv), and hence that of V{v')—V(υn{R)) is equal to στ(z') = 0.

Thus we see (2.7). q. e. d.

LEMMA 2.8. Assume N^3n — 2. Then, for any integer fe^l and any

series R with k + 2\R\<*n-l, there is an element c(4fc, R)eH8<n+lR^+4-k-ί(Fn)

satisfying

τ(c(4/c, R)) = (1/2) { - V(Pn+k(PR)2) + V(υn+1c(R))},

where vn+k(R) = vn+kfN_k(R)e I*{γk)+8\R\ is an element in Lemma 2.6 and it

satisfies

vn+k(R) = Pn+k+wP
R + Σs<n+k+\R\ ™SP

S for some integers ms.

PROOF. Consider the commutative diagram

Fn >MSp(ή) £2

Ω*kFn+k > Ω4kMSp(n

where b is the restriction of bn>k. Then we have the commutative diagram
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where σ's are the iterated cohomology suspensions. Furthermore,

σ{(V'(PR))2 - V'(Pn+k(PR)2) + V'(υn+k(R))} = - V(Pn+aP*)*) + V{υn+k(R))9

where vn+k(R) satisfies (iii) in Lemma 2.6, i.e., the last equality in the lemma, since

2|Λ|^w + fc-3. Thus c(4k, R)=b*σ(bn+ktN_k(R)) satisfies the desired equality

by Lemma 2.6. q. e. d.

Now we can define the following classes a(R, 5), b(R), c(2i, R) and d(ky R) in

(2.9) a(R, S)e#8"+ 4(lRl+ls |)-i(77π) for s e r i e s R ^ 5 w j t h # > s and

^n — 1 satisfying

τ(α(/?, 5)) = F(P*)F(PS) - F(P n P Λ F s ) , (cf. Lemma 2.4).

(2.10) W e ^ " ' 1 1 5 ^ 1 ^ ) in Lemma 2.6 for a series R with

satisfying

= (1/2) {(V(P*))2 - V(Pn(PR)2) + V(vn(R))} .

(2.11) c(4fe, R)eH^n+\R^+4k-1(Fn) in Lemma 2.8 for an integer fc^l and a

series R with /c + 2|i^|gn —1 satisfying

τ(c(4/c, R)) = (1/2) { - V(Pn+k(P«y) + V(vn+k(R))}, (N7ϊ3n-2).

(2.12) c(4/c + 2, JR)eH8(w +lRl)+ 4 f c + 1(iΓ«) for an integer k^O and a series P with

k + 2\R\Sn-l satisfying

j(c(4fc + 2, Λ)) = e4 f c + 2 F(P Λ ) ® V(PR),

where j=jτ: Hi~ι(Fn)-^Hi(Γ(n9 N)) in Lemma 2.3 (ii) is isomorphic if ΐ = l

mod 4.

(2.13) d(fc,φeH 8 f I + 4 | Λ | + 4 f c - 1 ( i Γ , ,) for an integer fe^l and a series R with
n - l - f e satisfying

τ(d(k, R)) = V(Pn+kP
R), (cf. Lemma 2.4).

For the epimorphism j=jτ: W-^F^HKΓin, N)) ( i ^ l 2 n - 2 ) in Lemma

2.3 (ii), we have the following

LEMMA 2.14. (i) ](a(R, S)) = <K(P*), K(P5)>,

j(fc(K)) = l.]/(P^)®K(P R ) + fl //near combination of e*1 V(PS)®V(PS) ( / ^ l ) ,

i(c(4fe, K)) = e4fc F(P Λ )®K(P Λ ) + a /mear combination of
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Especially, for the case R = 0 (the O-series),

(ii) The set of d(k, R) in (2.13) and 2c(4k, T) of c(4k, T) in (2.11) forms

a basis o/Ker].

PROOF, (i) By (2.9) and Lemma 1.9, we have

](a(R, S)) = j(V(PR)V(Ps) - V(PnP
RPs)) = <F(P*), F(PS)> .

The second equality is in Lemma 2.6 (i). By the definition of/ in (1.14), we have

the commutative diagram

^ , N-k))

n, N))

for i-^Hn — 2, where N^3n — 29 j ' s are the homomorphisms in (1.4) and σ is the

iterated cohomology suspension. By (*) in the proof of Lemma 2.8, this diagram,

Lemmas 2.6 (i) and 1.15, we have

j(c(4/c, R)) = jστ(bn+k(R)) = (f*)k](bn+k(R))

= (/*)*(1 V\PR) ® V'(PR) + - . ) = e4k - V(PR) ® V(PR) + •••.

(ii) It holds that d(k, R) = σ(ΌPn+kP
R) where n + feg n + \R\ by (2.13). Also,

2c(4fc, .R) = σ( ί/P Λ + f e + | R |P R + Σs<n+k+\R\™sUPs) for some integers m s,

where n + k+\R\>n + \R\ by (2.11) and Lemma 2.8. Since σ is monomorphic

and Kery=Imσ, these facts and the definition of UIn imply (ii). q. e. d.

Now, by using the upper short exact sequence in Lemma 2.3 (ii) and Lemmas

1.7 and 2.14, we see immediately the following

PROPOSITION 2.15. Let j^n-1. Then

( i ) H8n+4J~ί(Fn) is a free abelian group with basis consisting of the

following classes:

a(R, S) in (2.9) with \R\ + |S| =/, b(R) in (2.10) with 2\R\ =j,

c(4fe, jR) in (2.11) with k + 2\R\=j9 d(k, R) in (2.13) with k+\R\=j.

(ii) H8n+4j+1(Fn) is isomorphic to a direct sum of some copies of Z 2 with

basis consisting ofc(4k + 2, R) in (2.12) with k + 2\R\=j.

(iii) H 8 n + 4 ''-2(F/l) = i ί
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For the mod 2 cohomology of Fn9 we can define the class

(2.16) c(4k+l,R)eHs(n+\RU+4k(Fn;Z2) for an integer /c = 0 and a series R
with fc + 2 | £ | ^ n - l satisfying

)(c(4k + 1, R)) = e*k+1 V(PR) ® V(PR),

where j : H^^F^ Z2)-*Hi(Γ(n, N); Z2) is isomorphic for z = l mod4.

By the same way as the above proposition, we have

LEMMA 2.17. The mod 2 reductions of a(R, S), b(R), c(2k, R), d(k, R) in
(2.9-13) and c(4/c+l, R) in (2.16) form a basis of H\Fn\ Z2)for z^l2rc-3.

We can study the cohomology operations on #*(F n; Zp) for *fΠ2n — 3.
We remark that the transgression τ: W-\Fn\ ZJ-^H^Q^MSpin + N); Zp)

is monomorphic for if^Hn — 2, by the proof of Lemma 2.3 (ii).
When p is an odd prime, the operation P* on H*(Fn; Zp) for * + 2zQ?— 1)^

12n — 3 is completely determined by Proposition 2.15 and (2.9-13), because we
can compute τ(Pix) = Piτ(x) for any xeH*(Fn; Zp) and τ is monomorphic.
Consider the operation Sq* on H*(Fn; Z2) for * + /^12n —3. Then we can
determine Sq*x for x = a(R, S), d(k, R), by the same way as above. For x =
c(4k+j\ R) 0 = 1, 2), we can compute](Sqix) = Sqrj(x) by Lemma 1.11 (iii), (2.16)
and (2.12). For y = b(R), c(4/c, R), we have XSqiy) = Sqί](y) = Q if ΐ # 0 mod4,
by lemmas 1.11 (ii), (iii) and 2.14. Since ]: H^F^ Z2)-^H\Γ{n, JV); Z2)
(ΐ_42π — 2) is monomorphic if iψO mod4, Sq^iAk+j, R) for 7 = 1,2 and z +
ψ0 mod 4 can be determined and Sqιb{K) = Sq^ίAk, R) = 0 if i φ0 mod 4.

Consequently we have the following

LEMMA 2.18. (i) S<f α(K, S) = Sq^R) = Sq^k, R) = Sq\d{K R)) = 0 if
mod4.

(ii) S

In the case R = 0 (the O-series), we have the following

LEMMA 2.19. (i) Sq4b(O) = α((l), 0) + nc(4, 0),

Pib(θ) = -(α((l), 0) + (« + l)c(4, 0)) for p = 3.

(ii) S^c^/c+l, 0) = c(4/c + 2, 0) if i = 1,

= 0 ΐ / i = 2, =(n + /c)c(4/c + 5, 0) if ί = 4,

, 0) = 0 z/ i = 1, = c(4/c + 4, 0) if i = 2, = (n + fc)c(4/c + 6, 0) z/ z = 4,

, 0) = 0 if i = 1, 2, = (n + fc)c(4/c + 4, 0) + σiUP^,) if i = 4,
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where σ is the homomorphίsm in Lemma 2.3 (ii).

PROOF. First, we prove the formula for P1b(0). When ρ = 3, it holds
p i F = - F ( F 1 ) and ^ ^ ( w + l f t + r ^ A where F=F(1). By (2.9-11),
τ(α((l), 0)) = V(PX)V- F^P,,), τ(fo(0)) = (1/2) (F 2 - F(Pn)) and τ(c(4,0)) =
(1/2) F(PW + 1). By these relations, we have τ(P1ft(0))=-τ(α((l), 0) +
(rc + l)c(4, 0)). Since τ is monomorphic, we have the desired formula for P^O).

Next, by using Lemmas 1.11, 2.14 and (2.16), we have j(Sq4b(O)) =
< V(Pλ\ F> + ne4 V® V=j'(α((l), 0) + nc(4,0)) and we can compute j{Sqlc(k9 0)) =
Sqrj(c(k, 0)) for ί = l, 2, 4 and fc=l, 2. Since j : H1'1^; Z2)-*Hί(Γ(n, N); Z2)
is monomorphic for ί^8n + 6, we have the desired formulas for Sq4b(0),
Sqιc{K 0) (i = l, 2, 4 and fc=l, 2).

To obtain the formulas for Sqic{Ak-\-j,ϋ)9 consider the commutative dia-
gram (*) in the proof of Lemma 2.8. Then, we see that

(2.20) S*σ(b'(0)) = c(4/c, 0), 5*σ(c'(ϊ, 0)) = c(4k + ί, 0) (i ^ 1),

6 ) , 0)) = -ί(

where f>'(0), c;(ι, 0) and α'((l), 0) are the classes in H*(Fn+k). In fact, the first
equality is seen there. We have the second equality for ι = 0 mod 4 and the last
equality by considering τβ*σ(x) = στ(x) for x = c'(4j, 0), α'((l), 0) and by Lemma
2.8 and (2.9). By considering jτb*σ(cf(i, 0)) for i = l, 2 mod 4 and by using the
commutative diagram in the proof of Lemma 2.14 (i), we have the second equality
for i = l, 2 mod4 by Lemma 1.15. In (2.20), we have Sq4c'(l, 0) = (n + fc)c'(5, 0),
for example, by the formula for Sg4c'(l, 0). Thus, by the naturality of the coho-
mology operation, we obtain the desired formulas for S^ic(4/c+m/, 0). q. e. d.

§ 3. Symplectic Pontrjagin numbers

For a symplectic cobordism class u e π^MSp) and a class y e HJ(BSp), let
y\u] be the Pontrjagin number of u for the class y.

To study the divisibility of some Pontrjagin numbers, consider a fixed element

(0) xQ = x + x' e H'iFn) (t = Sn + 4/ - 1 with j < ή),

where Λ: is one of the classes a(R, 5), b(R), c(4k, R) and d(k, R) given in Pro-
position 2.15 (i) and xf is a linear combination of another classes. Then we can
take the following steps (l)-(4):

(1) Take a basis {xj of Hf(FM) which includes x0, and let {3cf} be the dual
basis of Ht(Fn).

(2) Take a suitable cell decomposition of FM, and denote its i-skeleton by
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(3) For an integer /^2 and the Hurewicz homomorphism
ι ) J ί » ) t f ά set

Hω(v) = Σι k\ι\ϋ)xt for v e πf(FM/F<<-'>),

where k\l\v) are integers.

(4) Let α(/) be the greatest common measure of {k(

o

ι\υ) \ v e πt{FnjF^"~ι))}.

Now we have the following basic lemma.

LEMMA 3.1. Assume that the class xo = x + x' e i f ^ F J in (0) satisfies

= Έτ(λτβW(Pτ) + X for some integers λτ,

where τ : Ht(Fn)->Ht+1(Ω*NMSp(n + N)) is the transgression in Lemma 2.3 (ii),

and X is a sum of decomposable terms. Then

Σ T λτP
τ[u] = 0 mod 2α(0 for any u

where <x(l) is the integer given in the step (4).

PROOF. Consider the following commutative diagram:

πt_4n+1(MSp) • = - πt+ί(Ω*«MSp(n + N)) -L> πt(Fn)

(3.2) J# J ^ \H
Ht_4n+ί(MSp) ^ _ Ht+1(Ω*»MSp(n + N)) -L-> Ht(Fn)

Here d and τ are the connecting map and the transgression of the fibering (2.1)

respectively, σ is the iterated homology suspension, q is the natural projection

and H's are the Hurewicz homomorphisms. For any class u eπt-4n+1(MSp),

let u'eπt+ί(Ω4NMSp(n + N)) be the class corresponding to u under the isomor-

phism in (3.2). By the above step (3), Hωq*d(u')= ΣMι) te*S(ti'))*i. Taking

the Kronecker pairing, we have

(Hωq*d(u'l xo> = 4 n (<?*ΦO) = 0 mod α(l).

On the other hand, by (3.2) and the assumption, we have

2<tf<'>0φ3(u'), *o> = 2<H(u'), <xo)> = Στλτ<H(u'l σ(UPτ)> = Στ

Thus we have the lemma. q. e. d.

By this lemma, if we can take a basis of H ^ F J in (1) and a cell decomposition

of Fn in (2) which enable us to compute k[ι\v) in (3) and α(Z) in (4) for a fixed

element x0 in (0), then we have the divisibility of some Pontrjagin number. Here

we shall consider the case x o = α((l), 0) + (n + 4)c(4, 0) or c(4, 0).
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We remark that Fn is (8n —2)-connected. By Proposition 2.15 and Lemmas

2.18 and 2.19, we have

LEMMA 3.3. (i) For n ^ l ,

H*»-\Fn) = Z<6(0)>, H8»(Fn) = 0, H8»+\Fn) = Z2<c(2, 0)> .

(ii) Forn^ly

H8n+2(Fn) = H8n+\Fn) = 0, H*»+\Fn) = Z(a'> ® Z<c(4, 0)>,

where α' = α((l), 0) + (n + 4)c(4, 0).

(iii) Sq*b(Q) = a'9 P1b(0)=-af for p = 3,

Sqib(0) = 0 ίfl^i^Ί and i

Sqic(2,0) = 0ifί = l, = c ( 4 , 0 ) i / i = 2, = nc(6, 0) if ί = 4,

S^rί(α/) = 5^ίc(4, 0) = 0 ί / l g i ^ 3 .

By this lemma, we have immediately the following

LEMMA 3.4. Let n ^ 2 . Then we can take a complex K given by

K=S*»-i \jφo e*n \Jφι e8n+ί VJφίvψ2 (eln+3 v e*2

n+3) \JΦA e*»+* \Jφs e8n+5

and a mapf: K-*Fn, which satisfy the following (i)-(ii):

(i) /*: HiiKj-tHiiFn) is isomorphic for i ^8n + 4.

(ii) The cells efn+3 and eln+3 correspond to the cohomology classes /

andf*(c(4, 0)) respectively.

PROPOSITION 3.5. Let n ^ 2 . Then

(i) π8 r t_1(FM) = Z, π8n(Fn) = π8n + 1(Fn) = Z2®Z2, π8n + 2(Fn) = 0,

π8n+3(Fn) = Z@Z (resp. Z@Z@Z2) if n is odd (resp. even).

(ii) We can take a basis {w(3), v(3)} of a free part of π8n+3(Fn) to satisfy

H(u(3)) = 24a' and H(v(3)) = 4c(4,0)9 where H: π8n+2(Fn)->H8n+3(Fn) is the

Hurewicz homomorphism and {#', c(4, 0)} is the dual basis of {a\ c(4, 0)} in

Lemma 3.3.

PROOF. By Lemma 3.4, we prove the proposition for K in Lemma 3.4

instead of Fn.

It is obvious that π 8 n _ 1 (K) = Z and X(8") = S 8 w " 1 v S 8 w . If q±: K<8n>-+

S 8 "" 1 and q2: K(8n) ^S8n are the respective projections, then qxφx is homotopic
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to the constant map and deg q2φ1 = 2 since Sq2b(0) = 0 and Sq1^, 0) = c(2, 0) by

Lemma 3.3 (iii). Hence we have K/ = K(8"+1> = iC(8n+2) = S8«-1 v(5 8 w W 2

e 8 π + 1 ), and the split exact sequence

(*) 0 — > π8H+i(S*»-i) 7=1 π8n+i(Kf) -*U π8n+i(S8» \J2 e
8"^) _ > 0

q*

where p and q are the projections. Therefore π 8 χK) = π 8 π + 1(lC) =

Furthermore

(3.6) π8n+2(Kf)^π8rt+2(S8^)®π8n+2(S8nKJ2e
8^) = Z24®Z4 (cf. [2; 4.1]),

and for the attaching maps \l/1 and ψ29 q^ψx and p*ψ2 generate the first and

second summands respectively, and the orders of p^ψi and q*ψ2 are divisors

of 2 and 4 respectively.

To prove the latter half of (3.6), we consider the commutative diagram

£8n+2 > g8n-l > £8/1-1 yj e8n+3

II . ί l ; "
l« I*

£8n+2 ^ £8n+l y £8n + l \ ι g8n+3

for k—\ and 2, where π is the natural projection, and q and π are the maps de-

fined by q and π respectively. Consider the mod 2 and mod 3 cohomology groups

of this diagram. Then, since SqArb(ϋ) = ar and Pίb(0)= —a' for p==3 by Lemma

3.3 (iii), we see that q^φi is a generator of π 8 π + 2 (S 8 w ~ 1 ) = Z 2 4 and the order of

q*ψ2 is a divisor of 4. Since Sq2c(29 0) = c(4, 0) by Lemma 3.3 (iii), π*\j/1=0

and π*!/^ 7^0 in π 8 n + 2 (5 8 / I + 1 ) = Z 2 . Hence the order of p*ψι is at most 2 and

p # ^ 2 is a generator of πSn+2(Kf/S8n-ί) = π8n+2(S8n \J2e
8n+1) = Z2, by the fact

that π'*: π8n+2(S8n+2 \J2e
8n+ί)-+π8n+2(S8n+1) is epimorphic, where π' is the

restriction of π (cf. [2; 4.1]). These imply the latter half of (3.6).

πSn+2(K) = 0 follows immediately from (3.6).

Consider the exact sequence

8n+2 w e8/j+2\ _ll^lY_^*_v rr ( Y*\
l V ύ 2 ) > π8+3\Λ- )

r (
8n+3\

(O8/I+2
8n+2

(O8/I+2
2 W l

Then I m 3 = Ker(ι/r1 vι^2) ί l ί = Z<24ί1>©Z<4r2> by (3.6), where ti is a generator

of π 8 n + 2 ( 5 ^ + 2 ) ϋ = l,2). On the other hand, pm: π8n+3(K')-*π8n+3

(S8n \J2 e8n+ί) in (*) for i = 3 is isomorphic since π 8 / l + 3 (S 8 r t ~ 1 ) = 0. Furthermore

n8n+3(S8n \J2e
8n+1) = Z2®Z2 and one of its generators is ήη, where ήeπ8n+2
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(S8n \J2e
8n+1) = Z4 and ^ e π 8 n + 3 ( S 8 r t + 2 ) = Z 2 are generators (cf. [2; 4.1]). By

(3.6), we can take ή=zp*ψ2

 a n c * then p*ψ1=2εή. Thus p*ψί*(η1) = 2εήη = 0 and

P*^2*(*72) = W f° r foe generator ^eπ 8 M + 3 (S® n + 2 ) = Z 2 . These imply that

lmU = Z2 and π8 B + 3(X<8 l l + 3>) = Z Θ Z φ Z 2 .

Now, the attaching map φ4 is contained in Ker d = Im i* = Z 2 by the last

two equalities in Lemma 3.3 (iii). Furthermore, since Sq4c(l9 0) = nc(5, 0) by

Lemma 3.3 (iii), we see that φ4Φ 0 if n is odd and φ4 = 0 if n is even. Thus we see

that the desired results for π8n+3(K).

By the above exact sequence, we can take a basis {u(3), ^(3)} of πSn+3(K)l

Tor = π 8 π + 3 (K( 8 w + 3 ) )/Tor to satisfy du(3) = 24cί and dv(3) = 4c2. These imply

that H(u(3)) = 24a\ and #(ι;(3)) = 4c(4, 0), and we complete the proof. q. e. d.

REMARK 3.7. For n = 1, π8 M + ί(FΠ) (ί = — 1, 0, 1) are the same as the ones given

in Proposition 3.5.

By Lemmas 3.1, 3.3 and Proposition 3.5, we have the following

THEOREM 3.8. Let n ^ 1. Then

(i) Λ i M ^ 0 mod 8 for any ueπ4n(MSp).

(ii) P ! P n M ~ ( ( n + 4 ) / 2 ) P n + 1 M = 0 mod24 for any u eπAn+A.(MSp).

PROOF. For n — 1, (i) and (ii) follow from the results of [7], [6] on π^MSp)

and πs(MSp). Let n ^ 2 . We consider the case that xo = a' or c(4, 0) and / = 5

in Lemma 3.1. By Lemma 3.3 (ii), we can take a basis {a\ c(4, 0)} of H8n+3(Fn).

When xo = c(4, 0), we see that α(5) is a multiple of 4 by Proposition 3.5 and

τ(c(4,0)) = (l/2)F(PM + 1) by (2.11), hence (i) follows from Lemma 3.1. When

jco = α',α(5) is a multiple of 24 by Proposition 3.5 and τ(a')= - V(P1Pn) +

((n + 4)/2)F(Pw + 1)+ F(P x )Fby (2.9) and (2.11), hence (ii) follows from Lemma 3.1.

q.e.d.

REMARK 3.9. In addition to Proposition 3.5 (i), the homotopy groups

πi(Fn) can be determined for fg8n-f6 by the results due to S. Oka.

§ 4. Homotopy groups of MSp(ή)

In the rest of this paper, we study the homotopy groups n^^^MSpin)) and

π8n+3(MSp(n)) for n^l.

Consider the homotopy exact sequence of the fibering (2.1):

(4.1) ... > niMSp) -A+ π ί + 4 n _ ^FJ -—• π ί + 4 r t _ ^MSpin))

ίUπi+4n_2(Fn) • ••• (i ^ 8 n - 2 ) ,
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where we identify π^MSp) with πi+4n(Ω4NMSp(n + N)) since N^n. Because

Fn is (8n — 2)-connected, bn* is isomorphic for i^4n — 1 and epimorphic for

PROPOSITION 4.2. (i) For d: π4 / I(MSp)->π8 n_1(Fn) = Z (rc^l) (see Pro-

position 3.5 (i) and Remark 3.7), it holds that

du = ± (l/2)PΠ[w] /or any w e π4n(MSp).

(ii) For a : π 4 Λ

Proposition 3.5), iί ZioWs ί/iaί

1 [ M ]), (1/8)PM + 1M)

/or £m>> we7r4n + 4(M5p), w/iere (k, /) = ku(3) + /ϋ(3)4- a torsion element.

PROOF. We shall prove (ii). (i) can be proved similarly.

For u e π4n+4(MSp) = π8n+4(Ω*NMSp(n + N)), set du = (k9 I). Then H(du) =

' + 4/c(4, 0) by Proposition 3.5 (ii). Thus, by taking the Kronecker pairing,

we have

24/c = <H(du), a'} =

4/ = <if(5u), c(4, 0)> = (H(u\ τ(c(4, 0))> = (1/2)P M + 1 M,

since τ ( α O = K ( P 1 ) K - n P i ^ ) + ((n + 4 ) / 2 ) n ^ + i ) , and τ(c(4, 0)) = (l/2)K(PM + 1)
by (2.9) and (2.11). Hence we have the desired result. q. e. d.

The Pontrjagin number Prt[w] is a multiple of 8 for any u e nAn{MSp) (n ^ 1)

by Theorem 3.8 (i). Thus we set

(4.3) m(n) = g.c.m. {(l/8)PΠ[ι/]|Weπ4 r t(M5p)} for n ^ l .

COROLLARY 4.4. The kernel of the epίmorphism bn*\ π%n_x(MSp{n))-*

π^-iiMSp) is a cyclic group of order 4m(n) generated by the Whitehead product

[i, Qfor the homotopy class i of the natural inclusion i: S4n-^MSp(n).

PROOF. By Proposition 4.2 (i), the definition (4.3) and the exact sequence

(4.1), we see that Kerb,,* is a cyclic group of order 4m(n). Consider the com-

mutative diagram

F(ix) JU S4n ίί • ΩS4n+ι

l> l I"
Fn -L+ MSp(n) -A* Ω*NMSp(n + N).

Here it denotes the natural inclusion and F(i t ) is the fiber, and ϊ is the com-
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position Ω5 4 λ l + 1 -^β 4 N S 4 ( ' ι + N ) ^Ω 4 N MSp(n + iV) of the natural inclusions. It

holds that π 8 n - 1 (F(/ 1 )) = Z and j ; ( l ) = ί [ ί , ί ] for a generator ceπAn(S4n) by

the definition of the Whitehead product. Since /*: π 8 r t _ 1 (F(/ 1 ))^π 8 n _ 1 (F Π ) is

isomorphic, the kernel of bn*\ π8 M_1(M5p(/i))^π4 n_1(M5]?) is generated by

[/, /] by the naturality. q.e.d.

Let MU(2n) be the Thorn space of the universal complex vector bundle over

BU(2n), and consider the map c: MSp(n)-^MU(2n) induced by the inclusion

Sp(n)czU(2n). Then we have the following corollary, where v2(y) is the ex-

ponent of 2 in the prime power decomposition of a positive integer y:

COROLLARY 4.5. Assume that

(a) n is not a power of 2 and 2π4 M_1(MS/?)=0, or

(b) v2(m(n)) + 2 = v 2( |π 8 n_ 1(M[/(2n)) |).

Then the epimorphίsm bn%: π8n_ί(MSp(n))-+π4n-.ι(MSp) is split, that is,

s Z 4 m ( I I ) θ n^

PROOF. Let F2n^MU(2n)^>Ω4NMU(2n + 2N) be the fibering defined by

the same way as (2.1), and consider the commutative digaram

Fn > MSp(n) - ^ Ω4NMSp(n

\c' \c \ΩiN

F2n > MU(2n) AZL, Ω*NMU(2n

induced by c. We remark that F2n is (8n — 2)-connected. Then we have the

commutative digaram

π4n(MSp) -*-+ n^x(Fn) > πBH-x(MSp(n)) ^ π^MSp) > 0

Γ* Γ* f* f *
π4n(MU) -L π8n^(F2n) —> πSn^(MU(2n)) -***-> 0.

In the first place, we notice that c'* is isomorphic. By E. Rees and E. Thomas

[11 § 2], H*n-\F2t) is Z generated by a1 which satisfies

where τ: H*n-\F2ύ-»H*n(Ω4NM) and σ: H8n+*N(M)-+H8n(Ω*NM) are the

transgression and the iterated cohomology suspension respectively, and ΰe

H4n+4N(M) is the Thorn class (M = MU(2n + 2N)). The above equality and

τ(b(0)) = ( l/2)(F 2 -F(P Π )) of (2.10) imply τc\ocί)= -τ(b(0)) and so 0'*^) =

— b(0), because c*(c2n)=±Pn, c*(U)= ±U and τ is monomorphic. Thus c'*:
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H8n-1(F2n)-:>HSn~1(Fn) is isomorphic and so is c% in the diagram.

Furthermore π8n-.ί(MU(2n))^Coker3 is a cyclic group of order 2β where

β = po(2n)—l by [11; Th. A], and Coker d — Z4m(n) by Corollary 4.4. Thus we

have the commutative diagram

0 > Coker d( = Z4m(n)) > n%n.x{MSp(n)) ^ πAn-t(MSp) > 0

Coker d( = Z2β) ^ π8n_1(MU(2n)),

where c" is the epimorphism induced by c*.

When (b) holds, c" induces the isomorphism of the 2-torsion parts, hence the

upper sequence in (*) splits because n^n^x(MSp) is a 2-torsion group (cf. [15;

20. 40]).

Now we assume that (a) holds. Then βΦO by the definition of po(2n)

([11; Th. A]) and π 4 r t _ 1 (MSp)®Z 2 = π 4 n_ 1(MSp). Hence, by tensoring Z 2 to

(*), we have the split exact sequence 0->Z 2->π 8 Λ_ 1(M5p(n))®Z 2-^π 4 n_ 1(MSp)

-»0. Therefore the upper sequence in (*) splits as desired. q. e. d.

We shall prove the following theorems in the next section by preparing some

symplectic cobordism classes.

THEOREM 4.6. For the integer m(ή) in (4.3), the following (i) and (ii) hold:

(i) m(n) is a power of 2 for nφ\, 3, and m(l) = m(3) = 3.

(ii) m(n)=l z/tt = 2fc + 2 / - l or 2k+2ι (fe, J^O) and n # l , 3.

THEOREM 4.7. (i) π^MSpin)) ( i^8n + 3) /iαs no p-torsion for any odd

prime p, except for (n, i) = (l, 7), (1, 10), (1, 11), (2, 19) and (3, 23).

(ii) bΠϊK: πSn+3(MSp(n))-+π4.n+3(MSp) is epimorphic for n ^ l .

(iii) 7/ n = 2* + 2' — 1 (/c,/^l), ί/ien bn* in (ii) is isomorphic, that is,

π8n+3(MSp(n))^π4n+3(MSp).

§ 5. Symplectic cobordism classes

In this section, we examine the characteristic numbers of some symplectic

cobordism classes to prove Theorems 4.6 and 4.7.

Let ξ = ξχ be the universal symplectic line bundle over the quaternion pro-

jective space HP°° = BSp(l)9 and ξ®cί®cί ^ e the tensor product of ξ over

HP 0 0 x HP 0 0 x #P°° by taking ξ as the complex vector bundle. Then it is a sym-

plectic vector bundle ξ3 (cf. [14]), and so we denote its classifying map by

(5.1) . φ: Y = HP 0 0 x HP 0 0 x HP 0 0

Let PfsPeMSp*(BSp) be the universal first Pontrjagin class and Pf
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be the Euler class of ξ in the symplectic cobordism theory. By

using the projection q{\ Y-^HP™ (i = l,2, 3) onto the /-th factor, we set Xt —

qfPfsP(ξ)sMSp\Y). Then MSp*(Y) = MSp*{Xu X2, X 3I, and we have an
expansion

(5.2)

for some cobordism classes

(5.3) aijk e π4(i+j+k_, }(

We shall consider the Pontrjagin numbers Pj+j+fc.^α^] and P 1 P i + J - + j t _ 2

Consider the classes x ^ ^ f P ^ O e H ^ T ) (i = l,2, 3) where Y=HPQOx

HP^xHP™. Then //*(7) = Z[[x1, x2, x 3 j , and we have the following lemma,

where PΔi eH4i(BSp) denotes the primitive class defined inductively by P J * =

l)i+1iPi, and C(r,s,t) denotes (r + s + ί)!/r!s!ί!:

LEMMA 5.4. For ίΛe induced homomorphism φ*: H*(BSp)->H*(Y) of

in (5.1),

0 (P^) = 4 Σ k + i + «=ι C(2fe, 2/,

PROOF. Let cfG//2i(5(7) be the /-th Chern class, and c^eH2i(BU) be

the primitive class defined inductively by c J | = ΣJ=i (—l) / + 1 c J c
J |-<' + (—l) ί + 1ic i.

Then, for the canonical map c: BSp-+BU, it holds c*(c j 2 i) = 2P J ί by the de-

finitions of PΔi and cA*. Hence, by the definition of φ,

2φ*(PA 0 = 2PΔ iξ3) = cΔ 2 iξ ® cξ® cξ) in H4 /( 7).

Let // be the canonical complex line bundle over CP00, and η be the conjugate

bundle of η. Then η®ή is a symplectic line bundle over CP00, and we denote its

classifying map by q: CP"0 -+HP00. Set Z = CP00 x CP00 x CP00. Then H*(Z) =

Z I j ^ j 2 , ^3], where y^qfc^^eH^Z) (/ = !, 2, 3) for the projection gf: Z->

CP00 onto the ΐ-th factor. For the homomorphism (qxqxq)*: H*(Y)^H*(Z),

we see that

(qxq

= 8 Σ*+!+m-i C(2fe, 2/,

by using the equality cJi(ΣfcCfc)=Σfc(ci(Cfe))ί for line bundles ζk. Since

(qxqx q)* is monomorphic and (qxqx q)*(x^ = yl for /c= 1, 2, 3, we have the

desired result by the above equalities. q. e. d.
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Now, for E = H or MSp, let β] EE^HP™) be the dual class of (
where Pf(ξ) is the Euler class of ξ. Then the following holds (cf. [8], [15;
§ 16]):

(5.5) £*(#P°°) is a free π*(E)-module with basis {β? | j^0}, and

£*(MSp)^π*(£)[bf, 6f,...], bj = i*fij+1eE^MSp);

where i: HPco-+Σ4MSp is the natural inclusion.

Let (b)feH4£MSp) denote the 4/-dimensional component of bk = (l + b1 +
b2 + -)\ i.e.,

(5.6) (l + bίx + b2x
2"\—)k = Σιzo(b)lιXι, where bj = bίf in (5.5),

and let H: π*(MSp)-*H*(MSp) be the Hurewicz homomorphism.

PROPOSITION 5.7. For any non negative integers r, s, t with

where the summation is taken over all i9j, k^O with i^rj^s, k^t.

PROOF. Consider the commutative diagram

MSp*(BSp) -L> (HAMSp)*(BSp) £ H*(MSp) ® H*(BSp)

\Φ* \Φ* li

MSp*(Y) ——> (HΛMSP)*(Y) S H*(MSp) ®

where E denotes the Boardman homomorphism. Then we have

(5.8) (l®0*)fi(Pfs*) = Eφ*(P^sP).

The following relation holds (cf. [1], [8; (5.1)]):

where PΔi is the primitive class in Lemma 5.4. By (5.9) and Lemma 5.4,

(l®φ*)B(PfSp) = 4Σ r+s+ί=i^i C(2r, 2s,

On the other hand, by (5.9) and (5.6),

KXt) = (Σizibi-ΛV = Σszjib

By (5.2) and this equality, we have

Therefore, we have the proposition by (5.8). q.e.d.



174 Mitsunori IMAOKA

For any class u e π4n(MSp), its Hurewicz image H(u) can be written as

H(u) = Σ Kur2_ bϊb?. .eH*(MSp) = Z[bu 6 2 , . . . ] .

For our purpose, we denote simply the coefficient λn of b*ί by (w) ( n ^ l ) and

λn.2Λ of bΓ2b2 by (u>(n^2).
Then we have

(5.10) Λ [ U ] = ( I I ) , P 1 P I I _ 1 M = <II> + II(M) for n £ 1.

These formulas can be proved by the same proof as that for MU given in [1;

pp. 10-11], [15; pp. 401-402].

By comparing the coefficients of fr;+*+ί-1 or br

ί

+s+t~3b2 in the both sides

of the equality in Proposition 5.7, and by the above notations ( ) and < >, we

have the following

LEMMA 5.11. For r, s, ί^O, the following hold, where summations are taken

over ί,j, /c^O with i^r,j^s, k^t.

k , 2s, 2t) if

ί 4C(2r, 2 J , 2/) //

[ 0 otherwise.

PROPOSITION 5.12. (i) For i,j^l,

( 8 mod 16 if i and j are powers of 2,

0 mod 16 otherwise.

(ii) For i, j , k^l, (aijk) =

{ 8 mod 16 // i, j , k are powers of 2,

0 mod 16 otherwise.

We shall prove Proposition 5.12 by preparing the following two lemmas:

LEMMA 5.13. (i) (aijk) = 0 if i, j, k^l.

ί 360 // r = s = t=l,

I 0 otherwise,
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for r, s, ί ^ l , where the summation is taken over all i,j, k ^ l with i ^ r , jrgs,

PROOF, (i) By Lemma 5.11 (i), Σ (**;*)( , . 1 / ) L _ ) U _ & ) = 0 f o r a n y r>

5, ίΞ>l, where the summation is taken over all /, j , /c^l with ί g r , j ^ s , A:^ί.

Therefore we see (i) by the induction on /-hj + fc.

(ii) (i) and Lemma 5.11 (ii) imply (ii). q. e. d.

LEMMA 5.14. (i) <αίjfc> is a multiple o/<α 1 1 1 > = 360/or any i9j9 fcg l.

(i i) ^ijky = ζaVjΎy for any permutation ( i ' , / , k') of (i, j , /c).

(ΠΌ Σ i = i (^isίM _ ) = 0 for r^.2 and s, ί ^ l .

(iv) S e ί r n i j k = ( a i j k y i 3 6 0 . T h e n m r s t = mrίίmslίmtίίfor r , 5, f Ξ > l .

. _ j 1 mod 2 // r is a power of 2,

I m n i ~ lO mod 2 otherwise.

PROOF. By Lemma 5.13 (ii), we can prove (i) and (ii) by the induction on

ϊ + j + /c, and (iii) by the induction on s-fί. We can prove (iv) inductively on

r + s + t by using (iii) and (ii), and (v) inductively on r by using (iii) and the fact

that (r^2i)
 f o r r > 2 i i s o d d i f a n d o n l y i f r = 2i+ί' q.e.d.

PROOF OF PROPOSITION 5.12. (ii) The first equality is proved in Lemma

5.13 (i). The second equality is an immediate consequence of Lemma 5.14

(iv), (v).
(i) By Lemma 5.11 (i), we see that for r, s ^ l ,

24 if r = s = l

0 otherwise.

By using this equality instead of Lemma 5.13 (ii), we can prove (i) by the same

way as the above proof of the second equality in (ii). q. e. d.

Now we consider another example of symplectic cobordism classes defined

by R. E. Stong [14] and N. Ray [9]. We follow the methods due to N. Ray.

The complex projective space CP21'1 is a weakly almost symplectic manifold

(see [14]), and so is the product Π?=i CP2rti~ι. Consider the composition

/ : Π?=i CP2ni~l -J-> (CP°°)2 r -2L> CP™ -£-» HP°°,

where j and q are canonical maps and m is the classifying map of the tensor

product of 2r copies of the canonical complex line bundle η over CP™. Then

we have a bordism class
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for n — Σf=i «t . By (5.4), we have an expansion

for some classes

(5.15) α fc(n1?..., n 2 r)eπ 4 ( / J_ r_ f c )(MSp) (n = Σ?=i "*> ty ^ 1).

By the result of N. Ray [9; (3.1), (3.2)] for the computation of the Hurewicz

image of these classes α fc(n l5..., n 2 r ), we have the following proposition, where

PROPOSITION 5.16. For the Hurewicz homomorphism H: π4 ( f t_ r_ f c )(MSp)-

HMn.r_k)(MSp)9 it holds

H(ak(nu..., n2r)) = j r

where rc=Σ?=i n» y = Σ?=i Ji> 7i = 2(nf— 7*f)~ 1 α ^ ^ ^ summation is taken over

We notice that the coefficients of b[ and b[~2b2 in the 4Z-dimensional com-

ponent of (b)~m are ( - l ) ' ^ ^ ^ 1 ) and ( - l ) ' " ^ - ! / ^ ^ 2 ) respectively.

Therefore, by comparing the coefficients of bl~r~k and b\~r~k~2b2 in the both

sides of the above equality, and by using the notations ( ) and < > in (5.10), we

see the following

LEMMA 5.17. The following (i) and (ii) hold, where n = Σ?=i nh J = Έ2=iJh

ji = 2(ni—ji) — 1, m = n — r — k—j and the summations are taken over j^O with

(i) (**("!,.., κ2,)) = Σ ( - i ) ^ ^

(ii) (α^nj,..., n2r)> is equal to

When fe=l, we have the following

PROPOSITION 5.18. (i) Pn-I -i[fli(

V un2*29 or r =

otherwise.
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(ii) P Λ - a l α ^ n ! , n2K = {-iy+\n-

ifnu n2^2.

PROOF, (i) The equality in Lemma 5.17 (i) for /c= 1 is

where the summation is taken over j^O (l^i^ 2r) with ji g wf — 1 and 7' = n — r — 1,

n — r — 2. Therefore the left hand side is 0 if r^3, because j^n — 2r.

Let r = 1. If π j , n2 ^ 2, then the summation in the above equality is taken over

(Λ»Λ) = ( n i - l > n 2 - l ) > ( n i - l > n 2 - 2 ) and («i-2, n 2 - l ) , a n d t n e n

2, 4 and 4 respectively. Hence we have

If Πi = l, then n2^2 and the summation is taken over (jl9 j2) = (fi, n2 — ϊ) and

(0, n2-2). Hence we see that (α^l, ji2)) = 0. (fliί^, l)) = 0 holds similarly.

Thus we have the desired equality for Pn-2Laί(nί9 «2)] by (5.10).

For the case r = 2, the summation in the first equality is taken over j~

nt— 1 ( l g i ^ 4 ) only, and then C(y1}...,74) = 24. Thus we have the desired

equality for i V 3 0 i 0 i , n2, n3, n4)].

(ii) By the equality in Lemma 5.17 (ii), and by a similar argument to (i),

we see that

<ai(nl9 n2)} = ( - ! ^^)^^)

By(5.10),P1P/,_3[fli(π1,n2)] = <α1(n1 ?n2)> + (n~2)(α 1 (n 1 ,n 2 ))forn^3. Hence

we have (ii) by the above equalities for (at{nu n2)> and (a1(nl9 n2)). q.e. d.

COROLLARY 5.19. Pn-r-il<*i(nw-9 W2r)] (n-r^2) is congruent to

8 mod 16 if r = 1 αnd π t — 1, n2 — 1 are powers of 2, or

r = 2 and «! = n2 = n3 = n 4 = 1,

0 mod 16 otherwise.

PROOF. It is sufficient to prove the corollary for the first two cases in Pro-

position 5.18 (i). We notice that v / ( ^ ) ) = α(n) + α(m-n)-α(m) (cf. [10;

(6)]), where oc(y) is the number of Γs in the dyadic expansion of y. Thus, by

Proposition 5.18 (i), we have

v2(|i5»-2[fli(wi^2)]l) = l + α ( n 1 - l ) + α ( n 2 - l ) if nu n2 ^ 2,

( | P [ > ( n29 n3i n4)]|) = 3



178 Mitsunori IMAOKA

Hence v2(|Pw-2[^i(wi, rc2)]|) is at least 3, and is 3 if and only if n1 — 1 and n2 — 1

are powers of 2. Also v 2(|PM_ 3[α 1(n 1, n2i n3, n4)]|) is 3 if and only if n f = l

(1 <Ξ i ̂  4). Thus we have the corollary. q. e. d.

REMARK 5.20. In addition to Proposition 5.18, we can prove the following

equalities by (5.10), Lemma 5.17 and routine computations:

(i) PΛ^fofo,..., n2r)] =

where ^ = (~l)"+ 1(n-5) if r = l and nun2^2, = (-l)nl2(n-4l-2) if r =

(/ is the number of i's with nt ^2), = ( - l)M720 if r = 3, =0 otherwise.

(π) P»-3l>2θi

Now we can prove the following theorem which is Theorem III (i):

THEOREM 5.21. πSn+3(MSp(n)) (n^3) has no p-torsionfor any odd prime p.

PROOF. Let Qp = {//m|(m, p) = l } c β . Tensoring Qp to (4.1) for i =

4n + 4 (π^2) , we have the exact sequence

p Qp ® Qp _ π 8 B + 3 (MSKn)) ® β p — 0,

since π8n+3(Fn)(g)Qp^Qp®Qp (n^2) by Proposition 3.5 (i) and π 4 n + 3 (MSp) is a

2-torsion group. Therefore it is sufficient to show that

(5.22) d ® 1: π 4 / ί + 4(MSp) ® Qp • Qp © Qp is epimorphic for n ^ 3.

Set j ^ 1 = α 1(l, 1, 1, 1), ^ = flx(2, i) ( 2 ^ i ^ 6 ) and z = α1(3, 3). Then, by using

Proposition 4.2, the equalities

Pk+ιίuv] = Pk[u]PJiv]9

for w e π4k(MSp), v e π4Z(MSp) (fc, / ^ 1) and Proposition 5.18, we see the following

equalities for A ̂ O, where (a, b) = au(3) + bv(3) + a, torsion element:
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where 0 zJ7j 2) = 6 if i = 3, =4 5if i = 4, = 2 5 7if ί = 5, = 4 32 7 if ί =

Therefore, for 3®1 in (5.21), we have the following equalities:
When n = 2k-l with fc^2 and pΦ5,

^ 4 } = (1, 0),

.5M-2y4} = (o, l);

when n = 2k— 1 with /c^3 and p = 5,

6} = (1, 0),

*.4.Ί.9)yk

2-*y6} = (0, 1)

when n = 3 and p = 5,

d ® 1{(1/4)̂ 1 + (2/9)2} = (1, 0), d ® l{-(l/4)3>2 - (l/3)z} = (0, 1)

when n = 2/c with k^2,

= (1, 0),

y3 - {\βk-2)yk

2-
2y5} = (0, 1).

These equalities imply (5.22), and we have the desired result. q. e. d.

Now we prove Theorems 4.6 and 4.7.

PROOF OF THEOREM 4.6. (i) In the above proof, we have seen that

P2ilaί(2,2y] = (-Sy(ί^l), P 2 i + 1 [ Λ l (2, 2 ) ^ ( 2 , 3)] = ( - 1 ) ^

, 2 ) ^ ( 2 , 5)] = ( - l ) ' 3 5 . 8 " ( i £ 2 ) .

Therefore the definition (4.3) of m(n) implies that m(2ι)(ί^l) is a power of 2 by
the first equality, and so is m(2/ + l)(ιΊ>2) by the last two ones. m(l) = m(3) = 3
follows from the result of [7], [6] on π4(MSp) and π12(MSp).

(ii) The desired result for n = 2* + 2*-l (resp. 2*+ 2*) follows immediately
from (i) and the fact that Pn[a2u2ι0~\ (resp. Pπ[α1(2fe + 1, 2Z + 1)]) is not a multiple
of 16 by (5.10) and Proposition 5.12 (i) (resp. Corollary 5.19). q. e. d.

REMARK 5.24. Let nφ\, 3. Then by Theorem 4.6 (ii), m(n)=l if
or α(n+1)^2 (α(ί) is the number of Γs in the dyadic expansion of t). In general,
the exponent v2(m(n)) of m(n) = 2V2<m<w)) can be estimated by the inequality

po(2n)-3 ^ v2(m(n)) ^ min{α(/i), α(n + l)}-2 if α(n), α(n + l) ^ 3,

where po(2π) = min{r|α(2n + r)^2r} is the number given in [11; Th. A]. But
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this inequality does not determine v2(m(n)), since p o(2n)<min {α(n), α(n + l)}

there.

In fact, the first inequality is seen by (*) in the proof of Corollary 4.5. We

note that for any t with α(0^2, α(ί)^α(ίi) + α(ί2) if t = tί + t2 and there are

t u t2^.l with t = t1 + t2 and α(ί) = α(ί1) + α(ί2). Thus we see the second inequality

by (*) in the proof of Corollary 4.5 and by the equality v2QPn[a2(tu

 ί2)3l) = l +

α(ί1) + α(ί 2 )(ί 1 + ί2 = n + l ; tl9t2^2) for odd n, which follows from Remark 5.20

(ii). The last inequality is seen easily.

PROOF OF THEOREM 4.7. (i) By Proposition 3.5 (i) and Remark 3.7, π f(Fn)

has no j?-torsion for i ̂  8n + 3 if n ̂  2 and for i ̂  9 if n = 1. Furthermore π^(MSp)

has no p-torsion. Thus (i) holds for iΦ%n—\, 8n —3 by the exact sequence (4.1).

For i = 8n — 1, (i) follows from Corollary 4.4. For i = 8n + 3, (i) is proved in

Theorem 5.21.

(ii) If w = l, then πΊ(MSp) = 0 by [7], and (ii) is trivial. If n^2, then

π 8 n + 2 ( F n ) = 0 by Proposition 3.5 (i). Thus (ii) follows from the exact sequence

(4.1).

(iii) Consider the exact sequence (4.1) for i = 4n + 4 and n = 2k+2ι — l

withfe, J ^ l :

π 4 n + 4 (MSp) -L>Z®Z > π8n+3(MSp(n)) *=*> π^n+3(MSp) > 0,

where we identify π 8 n + 3 ( F n ) with Z@Z by Proposition 3.5 (i). By Propositions

4.2 (ii), 5.12 (ii) and Corollary 5.19, we have

d(a2k2lί) = (x, 0) and 5(^(2*4-1, 2* + l)) = (x\ y)

for some integer x' and some odd integers x and y. These imply that Coker d

is a finite group and has no 2-torsion. By Theorem 5.21, Coker d has no p-

torsion for any odd prime p, hence Coker d = 0, and brtHc is isomorphic. q. e. d.
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