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The notion of excellent quadratic forms was first introduced in [3] by M.
Knebusch and some basic properties were investigated there. However it seems
to the authors that the most important theorem, so to speak ‘the structure theorem
of excellent forms’, has not been known yet. The main purpose of this paper is
to give theorems of this sort (cf. Theorem 2.1, Theorem 2.4).

§1. Definitions and notations

Throughout this paper, a field always means a field of characteristic different
from 2. Let k denote the multiplicative group of a field k. The Witt decom-
position theorem says that any quadratic form ¢ is decomposable into ¢,L¢,,
where ¢, is anisotropic, and ¢,=~mH is hyperbolic. Here, ¢, is uniquely deter-
mined up to isometry by ¢, and so we speak of ¢, as the ‘anisotropic part’ of ¢.
The integer m above is also uniquely determined by ¢, and will be called the
‘Witt index’ of .

For a form ¢ over k and an element a € k, we shall abbreviate (a)®¢ to
ag if there is no fear of confusion. For any form ¢ over k, we denote the set
{a e k|p represents a} by D,(¢) and the set {a€ klap=¢p} by G(p). The latter
is always a subgroup of k. When ¢ and ¥ are similar, namely ¢ =ay for some
ack, we write o ~y. We say that y is a subform of ¢, and write Y < ¢, if there
exists a form y such that o~y Ly. We say that ¢ divides ¢, and write ¥ | ¢, if
there exists a form y such that o=y ®y.

For an n-tuple of elements (a,,..., a,) of k, we write {ay,..., a,) to denote
the 2"-dimensional Pfister form ®;., ..,{1, a;>. Since any Pfister form ¢
respresents 1, we may write ¢={1)>L¢’. The form ¢’ is uniquely determined
by ¢, and we call ¢’ the pure subform of ¢. A form ¢ over k is called a Pfister
neighbour, if there exist a Pfister form p, some a in k, and a form y with dim 5 <
dim ¢ such that ¢ Ln=~ap. The forms p and 5 are uniquely determined by ¢.
We call p the associated Pfister form of ¢, and n the complementary form of ¢,
and we say more specifically that ¢ is a neighbour of p. A form ¢ over k is called
excellent if there exists a sequence of forms ¢ =n,, 1,,..., 1, (¢20) over k such that
dim#n,<1 and 5,(0<i<t—1)is a Pfister neighbour with complementary form
Ni+1. Each n, with 0=r=t is uniquely determined by ¢, and we call #, the r-th
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complementary form of ¢. The sequence of forms ¢ =n,,..., n, (t=0) is called
the chain of complementary forms of ¢.

DEerINITION 1.1, Let ¢ be an excellent form and ¢ =n,,..., #, be the chain
of complementary forms of ¢. If p,(0<r=<t—1) is the associated Pfister form
of n,, then the sequence of Pfister forms p,..., p,_, is called the chain of Pfister

forms of .

DEerINITION 1.2.  For a form ¢ and its subform ¢,, there exists a unique form
@, such that p=~¢, L¢p,. We then write ¢, =<{p—¢,).

Lemma 1.3. Let g, ¢4,..., ¢, (t=1) be a sequence of forms over k such that
@;> @4, for any i=0,...,t—1. Then the following statements hold:

(1) @ =<Lpo—@) Loy~ L Lo 1= L @y
(2) Iftis an odd number, then

{@o = K@1=92) LLo3—04) L Lo 3= 01D L @)
= po—@ 1) L<Lpr—p3) L Lo 1=

(3) Iftis an even number, then

Kpo — K@ =02 LLp3—0 )L L@ 1 — @)
= Po—@1) L@, =3 L L=, 1> Lo,

ProoOF. The assertion (1) is proved easily by induction on ¢, and the other
assertions are clear from (1). Q.E.D.

REMARK 1.4. For a sequence of Pfister forms py,..., p,_; (t=1), we consider
the following two conditions (e,) and (e,).

(eg) p;<pi_y,dimp, <dimp;_, for any i=1,...,t—1 and dimp,_, >
2dimp,_, = 4.

(e)) pi<pi—i,dimp;, <dimp;,_, forany i =1,...,t—1 and dim p,_, = 4.
Let ¢ be an excellent form over k and py,..., p,_; be the chain of Pfister forms of
¢. By [3], Lemma 7.16, p;<p;_,, dim p;<dimp;_, for any i=0,...,t—1.
Moreover if dim ¢ is even, then dim p,_,>2 dim p,_, =4 and if dim ¢ is odd, then
dim p,_,=4. These facts are easily shown by the definition of excellent forms.
Thus, for the chain of Pfister forms of an excellent form ¢, if dim ¢ is even then
the condition (e,) is satisfied and if dim ¢ is odd then the condition (e, ) is satisfied.

REMARK 1.5. For two Pfister forms ¢ and y, it is well known that ¢ <y if
and only if there exists a Pfister form y such that ¢ ® y =~y (cf. for example, [1] or
[4], Exercise 8 for Chapter X). So if a sequence of Pfister forms py,..., p,—;
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satisfies (ey) or (e,), then for any i=1,..., t—1 there exists a Pfister form t; such
that p,®1,=p; ;.

The following two lemmas follow immediately from [3], Proposition 7.18
and Corollary 7.19. However these lemmas are easily verified and in order to
make our discussions self-contained, we give proofs of them.

LEMMA 1.6. Let ¢ be an excellent form over k, and ¢=n,,...,n, be the
chain of complementary forms of . If t=2 then ny>1s,.

Proor. Let pq,..., p,—, be the chain of Pfister forms of ¢. Let ¢ be an ele-
ment of D(y,). Then we have cnolen,=p, and cn, Len,=p,. It follows from
Remark 1.4 that cngLen, =py>p, =cn,Len,, which implies that ny>n,.

Q.E.D.

For any form ¢ over k, we denote by det (¢) the determinant of ¢.

LeEMMA 1.7. Let ¢ be an odd-dimensional excellent form, and @ =n,,..., 1,
be the chain of complementary forms of ¢. If t is even, then ¢ represents
det (o).

PROOF. We proceed by induction on m, where t=2m. First suppose m=0,
so t=0 and dim@=1. Then we have p={det(¢)) in this case. Now assume
m=1. Our inductive hypothesis (applied to the form n,) implies that det (y,) e
D(n,). The facts noLln,~p, and n,Ln,~p, imply that det (n,) det(n,)=1 and
det (n,) det (n,)=1 respectively. Hence we have det (,)=det(n,). By Lemma
1.6, we see that det (p)=det (n,) € D(n,) < D(¢). Q.E.D.

§2. Main theorems

In §1 we remarked that the chain of Pfister forms of an excellent form ¢
satisfies the condition (e,) or the condition (e,). In this section, we shall rewrite
¢ explicitly by its chain of Pfister forms.

THEOREM 2.1. Let @ be an odd-dimensional excellent form, and pg,..., p;—,
be the chain of Pfister forms of ¢. Then the following statements hold:
(1) Iftisodd, then

@ xLpo—p1> L<p2—p3> L Lp— —=<1).
(2) Iftis even, then
¢ = po—p1> LLpr—p3) L Lpoz—p-1> L)

Conversely, let py,..., p,—, be a sequence of Pfister forms which satisfies the
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condition (e,). Then the form ¢ constructed as above is excellent, and the
chain of Pfister forms of @ is pg,-.., Pr—1-

PrOOF. We first show that the statements (1) and (2) hold. We proceed
by induction on t. If t=0, then dim ¢ =1 and hence @p~<{1). Now assume
t=1. Let ¢=n,,..., n, be the chain of complementary forms of ¢. We consider
the case where t is odd. By the induction hypothesis, we have n,~{p;—p,>L
p3—padL-L{p,_3—p,_>L{1). Thereexists a € k such that an, ={p, —p,> L
{p3—payLl-Lp—3—p,—>L1). Then, we have ae D(n,). The fact ny,Ln,
~p, implies that anoLlan,=p,. Hence, an,={po—an;)={po—(Kp1—p2>L
p3—pa>L--Lp—y—p,—1>L1})). By Lemma 1.3, we have o =no~<{po—p>
L<py—psd Lo Llppy —<1D).

We now consider the case where t is even. By the induction hypothesis
m~Lp1—p2>Lps—psdLl--L{p,——<1>> and therefore an,={p;—py>L
{p3—padL-L{p,_—<1>) for some aek. The determinant of the right hand
side is 1. Hence det(an,)=1. Since the dimension of the form #, is odd, we
have det (an,)=adet(n,), so a=det(n,). It follows from Lemma 1.7 that a=
detn, =detny, € D(n,). Hence anylan,=~p,, and we have any={po—an,)=
po—(Kp1—p2>Llps—pad>L---L{p,—y—<1})))>. By Lemma 13, o¢=no%
po—p1>Llpa—p3d>L-Lp_y—p,— 1> LT,

Conversely, let py,..., p,_, be a sequence of Pfister forms which satisfies the
condition (e,). In order to show that ¢ ={py—p,>L{p,—p;3> L is excellent,
we define a sequence of forms n,,..., 1, as follows. no=p={po—p,;>L<{p,—p3>
Loy vy mi=LPi=Pis 1D LLPis 2= Pisad Loy s Moy =P — P 1D LD, My
={p,_;—<K1>>, n,={1)>. We shall show that ¢=p,,..., 5, is the chain of com-
plementary forms of ¢. For any i=0,...,t—1 we have n;Ln;,, 2(Kpi—pi+1)
Lpiv2=pirad L)L piv 1 —Pis 2> LPis3—Pisa>L--)=p; Since dimp;<
dim p;_, forany i=1,..., t—1 and dim p,_, =4, we have dim ;>dim 5, , , for any
i=0,...,t—1. This shows that ¢ is an excellent form, ¢ =n,,..., , is the chain

of complementary forms of ¢ and p,,..., p,_ is the chain of Pfister forms of ¢.
Q.E.D.

REMARK 2.2. Let ¢ be an odd-dimensional excellent form, and py,..., p,—
be the chain of Pfister forms of ¢. By Theorem 2.1, there exists a € k such that
ap={po—p.>L{p,—p3>L---. By calculating the determinants of both sides,
we have a=det (¢).

COROLLARY 2.3. Let ¢ be an odd-dimensional excellent form. Let @o=
Hos-+-» N, be the chain of complementary forms of ¢ and p,,..., p,—, be the chain
of Pfister forms of @. Then for any i=0,...,t, det(Qn;=<{p;—pPi+1yL
Piv2a—pPivad Lo
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Proor. It is easy to show that det(¢p)=det(y,) for any i=0,...,¢t. Then
the assertion is clear from Theorem 2.1 and Remark 2.2. Q.E.D.

THEOREM 2.4. Let ¢ be an even-dimensional excellent form, and py,..., p,—,
be the chain of Pfister forms of ¢. Then the following statements hold :
(1) Iftisodd, then

@~ <po—p1)L{py—p3> L LLp_3—pi—2> Lp—y.

(2) Iftis even, then

@ = {po—p> LLpa—p3> L L<p—2—pi-1>.

Moreover, in both cases, we have ap=~{po—p,>1<{p,—p3>L-- for any ae
D(n,_,), where n,_, is the (t—1)th complementary form of ¢. Conversely, let
Pos--+s Pr—1 be a sequence of Pfister forms which satisfies the condition (eg).
Then the form @ constructed as above is excellent, and the chain of Pfister forms
of @ is pos--es Pr-1-

PrOOF. We first show that the statements (1) and (2) hold. We proceed
by induction on t. Let ¢=n,,..., n,=0 be the chain of complementary forms of
o. Ift=1, we have nyLln,=no~p,. Then for any a e D(n,_,)=D(no), ane=p,.
We now assume that t>1. We first consider the case where t is even. By the
induction hypothesis, for any aeD(n,_,), an,=<{p,—p>L{ps3—psyL---L
{Pi—3—pPe-2yLp—y. We have n,>n,_, by Lemma 1.6, so aeD(n,). This
implies that anolan,=p,, and so any={po—an,;y={po—({py—p>L-1L
{pi-3—pr-2>Lpe-1)>. Using Lemma 1.3, we have p =no={po—p > L{ps—p3>
Lo L4prma=Pim1-

We now consider the case where ¢ is odd. By the induction hypothesis,
for any aeD(n,-1), an,=<{py—p>L{p3—pa>L - L{p—2—p,—1>. We have
No>Mn,—, by Lemma 1.6, so ae D(n,). This implies that an,Llan, =~p,, and so
ano={po—an) ={po—(Kp1—p>L--1<{p_—p,-1>)>. By Lemma 1.3, we
have o=no~<{po—p1> L L{p3—pi—2>Lp, 1.

Conversely, let py,..., p,—; be a sequence of Pfister forms and suppose that
the condition (e,) holds. We have to show that ¢ ={py—p,>L{p,—ps> L is
excellent. We define a sequence of forms #,,..., , as follows:

No=@ =<Kpo—p1) LLpa—p3> Looe, sy = pi—=Pis1) L piva—pPivs Lo,
vy Mpmn = Proa=Pr=1)s Ni—1 = Pe—1> N, = 0.

We shall show that ¢ =n,,..., 1, is the chain of complementary forms of ¢. For

any i=0,...,t—1, we have n; L. =({pi—pi+ 1D Lpiv2—pir3> L) L(pis1 —
Pir20LpPir3—pPira)L-)=p;. Since dimp;<dimp;,_, for any i=1,...,1—1
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and dim p,_,>2dimp,_, =24, we have dimn,>dim#;,, for any i=0,...,t—1.
This shows that ¢ is an excellent form, ¢ =#,,..., 1, is the chain of complementary
forms of ¢ and p,,..., p,_, is the chain of Pfister forms of ¢. Q.E.D.

COROLLARY 2.5. Let ¢ be an even-dimensional excellent form. Let @=
No»---» Ny be the chain of complementary forms of ¢ and p,..., p,_, be the chain
of Pfister forms of ¢. Then for any ae D(n,_,) and any i=0,...,t—1, we have

an; = {pi—pPi+1? L Piva—pPivs> L.

REMARK 2.6. In the above situation, for any ae D(n,_,), ap={po—p;>Ll
{p,—p3yL--. Conversely, the following Lemma 2.7 shows that G(p)=
G(p,_,). Therefore if a is an element of k such that ap={p,—p,>L
{py—p3yL-, then a must be an element of D(y,_,).

LEMMA 2.7. Let p,..., p,—, be the chain of Pfister forms of an excellent
even-dimensional form ¢. Then G(¢)=G(p,_,).

PrROOF. We may assume that o ={p,—p,> L{p,—p;>L---. We first prove
that G(¢)2G(p,-;). Let a be any element of G(p,_,). It is sufficient to show
that a e G({p;—p;+,y) for any i=0,...,t—2. The fact that p,>p,;,, for any
i=0,...,t—2, implies that aeG(p,_,)=G(p;) for any i=0,...,t—1. Then,
Piv1Llpi—pir > =Epi=api=ap;,  Lalp;—piv 1D = piv 1 Lalpi—pis1)- Hence
{pi—pir1y=alp;—pi+1y. Thus we see that G(p)=2G(p,_;). We now show the
converse inclusion. We let dimp,_,=2" and dimp,_,=2". By Remark 1.4,
we have n<m. We then define a form ¢ as follows:

Y =L@o=pi-1> =<po—p1> Lpy—p3> L--L<pi—3—pi-> (1: 0dd)
Y=0Llp_1=Lpo—p1>Lpa—p3> L Lp_s—p,_3> Lp,_, (t: even).

It is clear that y € Ik where Ik is the fundamental ideal generated by all even-
dimensional forms of the Witt ring W(k). For any element a of G(¢), if ¢ is odd
then (I, —a)®@Y~ —l, —ad®p,_, € W(k), and if t is even then {1, —a) Ry
~{, —a)®p,_,€ W(k). Hence {1, —ad®p,_,eI™ k. It follows from the
Arason-Pfister’s theorem ([4], p.289, Theorem 3.1) that {l, —a)®p,_,~0.
Thus a € G(p,-,) and G(p)< G(p,-,). Q.E.D.

§3. Applications

PROPOSITION 3.1.  Let ¢ be an isotropic excellent form and ¢ =n,..., n, be
the chain of complementary forms of ¢. Then @,=(—1)in; for some i where @,
is the anisotropic part of ¢.

ProOF. Let py,..., p,—, be the chain of Pfister forms of ¢. Since ¢ is
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isotropic, we have p,~0. By the fact that p;|p;_, for any i=1,..., t—1, there
exists i (0<i=<t—1) such that p;~0 for any j<i and p; is anisotropic for any
j>i. By Theorem 2.1 and Theorem 2.4, @=~<{po—p,)L{p,—p;syL--. We
first consider the case where i is odd. Then, {py—p>L:--L{p;_;—p;> is hyper-
bolic and {p;,,—p;4+,>L:-- is anisotropic. This yields that ¢,~{p;+;—pis+2>
L., From Corollary 2.3 and Corollary 2.5, we can readily see that ¢,~#n;, .
We now consider the case where i is even. Since ¢x{po—p > L LLp;—pis 1)
Le=dKpo—p oL LpD)—(Kpiv1—pir2> L)), we see that <{po—p)
1-.-1{p;> is hyperbolic and <p;,,;—p;+,>L:-+ is anisotropic. Again by
Corollary 2.3 and Corollary 2.5, ¢,= —n;,,=(—=1)*'n;,,. Q.E.D.

We can strengthen Proposition 7.18 in [3] slightly as follows.

PROPOSITION 3.2. Let ¢ be an excellent form, ¢=n,,..., , be the chain of
complementary forms of ¢ and py,..., p,_, be the chain of Pfister forms of ¢.
Let s be a natural number with 1 £s<t.

(1) If s is even, then the form {@—n,y is excellent. Its chain of Pfister
Jorms is pg,..., ps— if dim p,_,=4dim p,_, and pg,..., ps_3, ps—, if dimp,_,=
2dim p,_,.

(2) Ifsisodd, then the form ¢ Ly, is excellent. Its chain of Pfister forms
i Poseees Ps—1 if dimpg_,24dimp,_y and po,..., ps-3, ps—1 if dimp,_,=
2dim p,_,.

Proor. Let s be an even number. Then we have n,<¢ by Lemma 1.6.
It follows from Theorem 2.1, Corollary 2.3, Theorem 2.4 and Corollary 2.5 that
{p—np={po—pyL-Ll{ps_2—ps—1>. If dimp, ,24dimp,_ ,, then the
sequence of Pfister forms p,,..., p,_, satisfies the condition (e;,). Hence by
Theorem 2.1 and Theorem 2.4, the form {¢—n,) is excellent and its chain of
Pfister forms is pq,..., p,—1. Ifdim p,_,=2dim p,_,, then we have {p,_,—p,_,>
~ap,-, for some aeD(p,-,). Hence {p—n)x{po—p )L L{ps_s—ps-3>
lap,_,. Since ae D(p;_,)=G(p;—p;+,) for any i=0,..., s—4 we have {¢p—n,>
{po—p1yLL{ps_a—ps-3>Lps_¢. So,the form (¢ —n,) is excellent and its
chain of Pfister forms is py,..., p_3, ps—1. We now proceed to the case where s
is odd. Then similarly o Lln,~<{py—p, DL - LLps_3—ps-2>Lps—;. If dimp,_,
=4dim p,_,, then the form ¢ Ly, is excellent and its chain of Pfister forms is
Pos-ees Ps—1- 1f dimp,_,=2dimp,_,, then we have {p,_,—p,_;>=ap,_,
for some aeD(p,-,). Hence <{p;_3—p;—3)>Lp 1 =Z{ps-3—LPs-2—Ps- 1))
{ps—3—aps_,y. Thus we see that p Ly,~{po—p,;>L---L{p,_3—ap,_,>. Since
aeG(p;) for any i=0,...,s—3 we have @ln,~{py—p)L-L{ps_3—ps_1D-
So the form ¢ L, is excellent and its chain of Pfister forms is py,..., ps_3, Ps—1-
Q.E.D.
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Let ¢ and ¢ be excellent forms. The following question emerges: when does
the form ¢ Ly become excellent? We use the following notation: @=n,,..., ,
is the chain of complementary forms of ¢, py,..., p,— is the chain of Pfister forms
of ¢, Yy=£&,,..., £ is the chain of complementary forms of  and finally 7o,..., 7,-
is the chain of Pfister forms of .

LEMMA 3.3. In the above situation, we assume that ¢ is even dimensional
and that 7t4|p,-,, dimto<dimp,_,, det(Y)e D(n,-,) (if dimy is odd) and
D(&,_ )N D(n,_)# @ (if dimy is even). Then the following statements hold.

(1) Ift is even, then the form @ Ly is excellent and pg,..., Pi— 1> Tose-er Ts—1
is the chain of Pfister forms of ¢ L.

(2) If tisodd and 1) ®p,_ | p,-,, then the form @ Ly is excellent and
DP0s-+s Pr—2> KID®Pr_ 15 Pi—1> Tos-+-» Ty is the chain of Pfister forms of ¢ L.

PrOOF. We choose an element a as follows: if dim  is odd then a=det (/)
and if dimy is even then a is a fixed element of D(é,_ ;) N D(n,-,). Note that
apx{po—piyLl{py—psyL--+ and ay={tg—1,)L{r,—13>L---. If t is even,
then aplay={po—p>Ll-L{p_—pi—1D>L{ro—1,>L---. Thus, the form
@ Ly is excellent and py,..., p;—1, Tgs--.» Ts— 1S the chain of Pfister forms of ¢ L.
If t is odd, then ¢

apLay = {po—p) L L<p3—pr-2> Lp_y L<{To—7(> L-+
=<Lpo—p)LLlp3—p-2> L
KD ®pi-1—pe-1> L<{to—1) Lo

Thus the form ¢ Ly is excellent and pg,..., P2, KID®P,_ 15 Pr— 15 Tosees Tg—1 1S
the chain of Pfister forms of ¢ L. Q.E.D.

DEefINITION 3.4. For any natural number n, we denote by e(n) the number
such that 2¢™ is the least 2-power not less than n, and we put ¢(n)=2¢" —p,

PROPOSITION 3.5. For a form ¢, the following statements are equivalent.

(1) ¢ is excellent.

(2) Let ¢, be the anisotropic part of ¢ with dim @,=n and r be the Witt
index of ¢. Then ¢, is excellent and r=0 or ¢(n) (mod 2¢(").

Proor. (1)=>(2): Let ¢=ny,..., i, be the chain of complementary forms of
¢ and p,,..., p,—; be the chain of Pfister forms of ¢. By Proposition 3.1 there
exists a number i, 0<i<t, such that ¢,=(—1)'n,. Hence it is clear that the form
¢, is excellent. If the number i is even, then o~ {py—p DL L{pi_,—pi— DL
Pi=pir )L mimpi—piviP L. So (p—ny=rH={po—p>L-L{p;-2—
Pi-1y. Since dim p;=2¢m" and dim p;_, divides the dimension of the form
po—p1)LLLlpi—3—pi-1), we have 2¢W*1 | dim p, _,|dim rH=2r. So 2¢"|r
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and we have r=0 (mod 2¢™). If the number i is odd, then o~ {py—p,>L::-1L
pi—1—piyL-, mi={p;—pi+,yL---. By Corollary 2.3 and Corollary 2.5, we
have @lm~<{po—p>L--L<{pi-3—p;-2>Llp;—;. Hence 2¢M*1=2dim p,|
dimp,_, |dim (¢ Lln,)=2r+2n. So 2¢™|r+n and we have r=-—-n=c(n)
(mod 2¢tm),

(2)=(1): We have to show that p=~rH l¢, is excellent. We first consider
the case where r=0 (mod 2¢™). It is clear that rH is excellent. Let pq,..., p;—;
be the chain of Pfister forms of rH. Then for any i, 0Zi<t—1, p; is hyperbolic.
Let 74,..., T,_, be the chain of Pfister forms of ¢,. Then we have 2¢(™*!|2r=
dim rH, hence 2¢(™*1|dim p,_,. The fact dim1,=2¢"™ implies that dimt,<
dimp,_, and 75|p,_,. By Lemma 3.3, o=rH l¢, is excellent. We now con-
sider the case where r=c¢(n) (mod 2¢). We put m=e(dim ¢) and r'=2"—r—n.
Then r+n=0 (mod2¢™) and r'=2"—r—n=—r—n=0 (mod2¢™). By the
case where r=0 (mod 2¢(™), the form Yy =r'H L(—¢,) is excellent. If dim¢ is a
power of 2, then 2m=2r+n. Hence r'=2"—r—n=r and we obtain o= —y.
Thus ¢ is excellent. If dim ¢ is not a power of 2, then r'—r=2"—r—n—r=
2m—dim¢>0. So r'>r. We have ylo~rHl(—¢,)LlrHLo,=(r'+r+n)H
=2mH. This implies that ¢ is the first complementary form of { and ¢ is ex-
cellent. Q.E.D.

REMARK 3.6. Let ¢ be an excellent form. By Proposition 3.1, ¢,=(—1);
for some n; which is the ith complementary form of ¢. Let r be the Witt index
of ¢. Then r=0 (mod 2¢™) if i is even and r=c(n) (mod 2¢) if i is odd.

REMARK 3.7. Let n be a natural number, and we denote the 2-adic expansion
of n as follows: n=2r0(2%04 .. 1)+ - 42m(2%i -+ 1) 4o +2rm(25m 4 ...
+1), where r;+s;+2=<r;_, for any i, 1<i<m. Let ¢o={po—p,y>L--+ be an n-
dimensional excellent form with the chain of Pfister forms po,..., p,_;. By
Remark 1.4 and Remark 1.5, there exist Pfister forms 7;, 1<i<t—1, such that
pi®Tp;—,. We have {p,_;—p;> ={p;®7;—p;> =p;®7;, where t; is the pure
part of 1, Then {p,;—pPai+1) = Pri+1072:+1, the subform of ¢, corresponds to
2ri(2si4---+1). It means dim p,;,,=2" and dim7ty;,,=2%+---+1. As for
the height of a form ¢, denoted by h(¢) (cf. [2]), if ¢ is an anisotropic excellent
form, then h(¢) is determined by m, r,, and s,, as follows:

(1) If r,>0,s, >0 then h(p) =2m+2.

2 If r,>0,s,=0 then h(p) =2m+1.

3 Ifr,=0,s,>0 then h(p) =2m+1.

@4 Ifr,=0,s,=0 then h(p) = 2m.
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