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Introduction

Maruo [4] introduced the concept of weak ideals of Lie algebras generalizing

that of subideals and investigated pseudo-coalescency of classes of Lie algebras.
Togo [6] introduced the concept of weakly ascendant subalgebras of Lie algebras

generalizing those of weak ideals and ascendant subalgebras. Weak ideals are
called weak subideals in [6]. A class 3E of Lie algebras is pseudo-coalescent [4]

if in any Lie algebra the join of any pair of a subideal and a weak subideal be-
longing to 3£ is always a weak subideal belonging to £. However, it might be
meaningless to consider classes £ such that in any Lie algebra the join of any
pair of weak subideals belonging to 3E is always a weak subideal belonging to 3E,
for there exists a Lie algebra L such that the join of some pair of 1-dimensional
weak subideals of L is not a weak subideal of L and is non-abelian simple (cf.

[3, Example 5.1]). In this paper we shall investigate several classes of Lie algebras
in which the join of any pair of weak subideals (resp. subideals) is always a weak
subideal (resp. a subideal).

In Section 2 we shall show that if a Lie algebra L belongs to one of the classes

£21, yimι and 912̂  (resp. the classes t>21, 919̂  and 912̂ ), then the set ^L(wsi)
(resp. the set ^L(si)) of all weak subideals (resp. all subideals) of L is a sublattice

of the lattice ^L(<) of all subalgebras of L (Theorem 2.11). In Section 3 we

shall show that if a Lie algebra L belongs to one of the classes 2ll9 g Π (9lS0ti)

and g Π (91210 (resp. the classes 2Il9 grKfliaJlO and 50(51910), then ^L(wsi)
(resp. ^L(si)) is a complete sublattice of £?L(<) (Theorem 3.5). In Section 4
we shall construct Lie algebras L such that yL(wsi) is a sublattice of ^L(<)
but is not a complete sublattice of &*L(<) (Examples 4.1 and 4.2). We shall
also construct a Lie algebra L such that ^L(wsi) is a complete sublattice of
^L(<) (Example 4.3).

Here 21 (resp. 91, g) is the class of abelian (resp. nilpotent, finite-dimensional)

Lie algebras, 5 (resp. ϊ>) is the class of Lie algebras in which every subalgebra is

a weak subideal (resp. a subideal), and M^ (resp. StRj) is the class of Lie algebras

in which every weak subideal (resp. every subideal) is an ideal; and (Hί is the class

consisting of either abelian Lie algebras or metabelian Lie algebras L with

dim (L/L2) = 1. For classes 3E, 3) of Lie algebras, 3E2) is the class of Lie algebras

L having an ϊ-ideal / such that L/I e ?).
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1.

Throughout the paper we always consider not necessarily finite-dimensional

Lie algebras over a field I of arbitrary characteristic unless otherwise specified.

Let L be a Lie algebra and let H be a subalgebra of L. For an integer n > 0,

H is an n-step subideal of L, denoted by #<α "L, if there exists a finite series (#,•)*<;«
of subalgebras of L such that

(1) H = H0<Hl< <Hn = L,

(2) H^Hi+i ( 0 < ί < n ) .
H is an n-step weak subideal of L [6], denoted by H<nL, if there exists a finite
chain (M^<n of subspaces of L such that

(1) tf = M 0 cιM 1 c ... <ΞMn = L,

(2) [M^tfJczM, ( 0 < j < n ) .
H is a subideal (resp. a weak subideal) of L, denoted by H si L (resp. H wsi L),
if #<ιrtL (resp. H<nL) for some integer n>0.

The ideal closure series of H in L is the descending series (#L>α)α;>o of sub-
algebras of L defined inductively by

#L>° = L,

#L,α+ι = HHL,« for any ordinal α?

#L'λ = r\Λ<λH
LίCί for any limit ordinal /L

It is well known ([2, Lemma 1.3.6]) that for any integer n>0

H^nL if and only if HL>» = H.

The weak closure series of H in L is the descending chain (HL>α)α^0 of subspaces

of L defined inductively by

HL,*+I = LHL)Λ9 H~\ + H for any ordinal α,

^L,λ = ^α</^L,α f°r any limit ordinal λ.

Then as a special case of [3, Lemma 1.4(2)] we have the following

LEMMA 1.1. For an integer π>0, the following conditions are equivalent:

(1) H<»L.
(2) HLtn = H.

(3) [L,π#]c=#.

In [4] H is called an n-step weak ideal of L, denoted by H n-wi L, if [L, π H] ̂

H. H is also called a weak ideal of L, denoted by H wi L, if H n-wi L for some
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integer n > 0. It is clear from Lemma 1 . 1 that H n-wi L if and only if H < "L and
that H wi L if and only if H wsi L.

Now let H wsi L (resp. H si L). The weak subideal index (resp. the subideal
index) of H in L, denoted by wsi(L: //)(resp. si(L: H)), is the least integer rc>0
with respect to H<"L (resp. H^nL).

The following lemma corresponds to [5, Lemma 3.13].

LEMMA 1.2. Let A be either of the relations wsi and si and let {H^. ie/}
be a collection such that HiALfor all i e/ . Put H=r\ieIHt.

(1) //Λ(L:// f )<n/or αΠ ie/ , then H A Land A(L: H)<n.
(2) //card(/)<oo, then H A Land A(L: H)<max{A(L: //f): ie/}.

PROOF. Here we only give a proof for the case A = wsi, since the other case
can be similarly proved.

(1) Since //L, „£(#;)!,,« = #; for all i e/ , //L?n = // and therefore H<"L
by using Lemma 1.1.

(2) Put n = max { wsi (L ://;): ie/}. Then by (1) we have //wsiL and
wsi(L: H)<n.

DEFINITION. We denote by &*L(A) the set of all subalgebras H of a Lie
algebra L such that HAL, where A is any one of the relations < , wsi and si. Let
n be any integer >0. We furthermore introduce the classes 2, 2°°, 2^, 9Kn and
W (resp. the classes £, £°°, £„, 9Kn and 2R) as follows. For a Lie algebra L,
L e 5 (resp. L e £) if and only if <//, X> e ̂ L(wsi) (resp. <//, K> e ̂ L(si)) for
any //, K e yL(wsi) (resp. //, K e ^L(si)). Le£°° (resp.Le£°°) if and only if
</f f : i e /> e ^L(wsi) (resp. <//f : i e /> e ^L(si)) for any subset {//f : i e /} of
^L(wsi) (resp. ^L(si)). LeS^ (resp. LefiJ if and only if Γ^///; e^L(wsi)
(resp. n^j//^.^^!)) for any subset {//,-: i e / } of ^L(wsi) (resp. ̂ L(si)).
LeSRM (resp. L e 9KJ if and only if wsi(L: H)<n (resp. si (L: H)<n) for any
//e^L(wsi) (resp. // e ̂ L(si)). Le^ί (resp. Le 5m) if and only if Le^?π

(resp. LeϊRn) for some integer n>0.

Let J be either of the relations wsi and si. For any Lie algebra L, we can
consider ^L(<) as a lattice by introducing the usual lattice-structure in it. Then
it is clear that &Ί(A) is not necessarily a sublattice of the lattice ^L(<) (cf. [3,
Example 5.1] and [2, Lemma 3.1.1]). So it seems to be interesting to investigate
the classes of Lie algebras L such that ^L(A) is a sublattice of the lattice ^L(<).
Using Lemma 1.2 we can easily see that ^(wsi) (resp. ^L(si)) is a sublattice of
the lattice ^L(<) if and only if Le£ (resp. Le£). Moreover, yL(wsi) (resp.
yL(si)) is a complete sublattice of the lattice ^L(<) if and only if

[6, Theorem 1] states that if Le9ld, then every n-step weak subideal of L
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is an nd-step subideal of L. It follows that if LeE^l, then ^L(wsi) =
Therefore we obtain

LEMMA 1.3. (1) For any integers n, d>Q

Wtn Π 2ϊd < Wlnd and 9KM n 2ld < Wn.

(2) If X is one of the classes fl, £°°, £„ and ΪR, then I n uSI = I n E9I.

Any notation not explained in this section may be found in [2].

2.

In this section we shall investigate several classes of Lie algebras L such that

yL(A) is a sublattice of the lattice ^L(<), where A is any one of the relations
wsi and si.

We begin with the following lemma due to Maruo [4], which is useful to the
argument of this section. We here present its proof simplified by using the notion
of weak closure series.

LEMMA 2.1 ([4, Lemma 2.3]). Let H9 K wsi L and let J = <#, X>. // [#,

^H, then J wsi L and wsi(L: J)< wsi(L: #)wsi(L: K).

PROOF. Put m = wsi (L : #) and n = wsi (L: K). Then by Lemma 1 . 1 HLttn =

H and KLn = K. First we show that

(*) [#Ljί, K] c #L>ί for any integer i > 0.

To do this we use induction on i. It is trivial for ϊ = 0. Let ί>0 and suppose

that [#Ljί, K]^HLίi. Then

H] + H, K-] =

Hence (*) has been proved. Now we define

Mtj = HLιi+l + (HL>ί n KLJ) + K (0 < i < m, 0 < j < n) .

Then for 0 < i < m

HL,ί+1 +K = M,B £ Mi>n_ t £ c Mί>0 = /fL>i + X.

Furthermore, by using (*) we have
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[Mu, J] = [HLpί+1 + (HLtί n KLJ) + K,H + KJ

S HLi/+1 + [HLil+1, X] + [HLil Π KLJ, Kl + K

S #L,i+ι + (HLtl Π

Since Mm_1 > w = J and M0 0 = L, we have J<mnL. Thus J wsiL and wsi (L: J)<;

mn.

In any Lie algebra L, the join of any pair of permutable subideals of L is
always a subideal of L (cf. [2, Lemma 2.1.4]). On the other hand, we do not

have any reason to say that the join of any pair of permutable weak subideals of
L is always a weak subideal of L. However, we can show the following

LEMMA 2.2. Let H, K wsi Land let J = </f, K>. //[if, K]cH + K and H

si J, ίhen J wsi L.

PROOF. Let n = si (J : H). We use induction on n to show that J wsi L.

By Lemma 2.1 it is trivial for n< 1. Let n> 1 and suppose that the result is true
for n-1. We put HV=HJ. Then clearly H^n~1Hί^J. Since H^K^

K wsi L, Hl n K wsi L. By modular law

H, = HI n J = H± n (H+κ) = /f + (#1nκ).

Since siCi^: /f) = n — 1, by induction hypothesis we have /^wsiL. Evidently
J = <//!, K> and [/f1? £]£//!. Using Lemma 2.1 we have J wsi L.

As a result shown by using Lemma 2.2, we have the following proposition
corresponding to [2, Proposition 2.1.6].

PROPOSITION 2.3. Let //, K wsi L with m = wsi (L: /f)>0 and n = wsi (L: X)

>0. Assume that <//, K> is solvable. Then for any i>m and j>n we have

jtj = </f ',£•/> wsi L

and Jitj = (H n Jitj) + (K Π ,/u). Furthermore, for any i>m we have [L, fH]
<mLand\L, Hli<mL.

PROOF. Let i > m and > n. Then it is easy to see that H1 < mL and KJ < "L.

By Lemma 1.2 (2) we have H n K wsi L. Put C = <# n X , X'> Since K ̂ X,
C wsi L by Lemma 2.1. Clearly [if1, K^^H n K. It follows that [/f 4, C] c

//f + C. Hence <ff', C> = ff ' + C = Hί + (JFf nX) + JKA Since <ff, X> is solv-
able, so is <//f, C>. Therefore by [6, Theorem 1] H1 si <#S C>. Using Lemma

2.2 we have <//*, C>wsiL. We can easily show that Jίf</<aH' + (/f
and Jίf</ = (H n Jfj) + (K n JίfJ ). Thus we obtain JtJ wsi L.

Now [L, Jϊ'] s [L, f H] c//. By induction on fe we have
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[[L,k#l HL.«-ι] •£ LL,kIΓ\. for any integer k > 0.

In particular, [_[L,iH~\,HLim_l~\<^[L,iH'] and hence [L5ί//]<L. Furthermore,

c= [[L, „_!#], [L,f

Therefore by Lemma 1.1 we have [L?ί#]<mL. Since HL>m=H, [H*,

Hl. Hence we have

It follows that [L, #'] <L. Moreover,

[L, m [L, jff ']] c [[L, m_ ,-fl], [L, #<]] •£ [ff L>m_ y, [L, fl']] c [L,

Therefore by Lemma 1.1 we have [L,

For subalgebras H, K of a Lie algebra L, the circle product HoK of # and K
is defined as HoK = [H, K]H"K.

LEMMA 2.4. Lei J be either of the relations wsi and si αrcd /ef H, KAL.

Then the following conditions are equivalent:

(1) <H9KyAL.
(2) <#*>ΛL.

(3) HoKAL.

PROOF. Since HoX<i<HK>^<H, X>, (l)π^(2)c»(3) is trivial. We have to
show that (3) implies (1). Suppose HoKAL. It is easy to see that <#*> =

H + HoK and [#oK, H~]<^HoK. Hence (HκyAL. Since <#, £> = <#*> +X,
we have <

Let us recall the class X) of Lie algebras in which every subalgebra is a subideal.
We analogously introduce the class X) of Lie algebras in which every subalgebra
is a weak subideal. It is clear that

91 < D < 25.

We also have

COROLLARY 2.5. (1) 2>2T < 2.
(2)

PROOF. Here we only prove (1), since (2) is similarly proved. Let L e £>2Ϊ
and let H, K wsi L. Then L2 6 £. Since HoK < L2, HoK wsi L. By using

Lemma 2.4 we have <H, K> wsi L. Therefore Le 2.

Togo [7] introduced the closure operation wsi defined as follows: A class
ΐ of Lie algebras is wsi-closed if every weak subideal of an £-algebra also belongs
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to £. As a relationship between the closure operations i, s and wsi, we have

i < wsi < s.

On the other hand, Robinson [5] introduced the class £* of groups to investigate
classes of groups in which the join of any pair of subnormal subgroups is always

subnormal. We analogously introduce the classes 5* and £* of Lie algebras
in the following

DEFINITION. We define the class £* of Lie algebras as the largest wsi-closed
subclass £ of £ having the following property:

(A) If //, K wsi L and J = <# , X> e £, then J wsi L.

We similarly define the class £* of Lie algebras as the largest i-closed subclass X
of £ having the following property :

(B) If H,KsiL and J = <H, K> e £, then J si L.

We have the following result corresponding to [5, Theorem 3.23].

THEOREM 2.6. (1) 9l£* < 2.

(2) 9lfl* < £.

PROOF. Here we only prove (1), since (2) is similarly proved. Let L e 91CS*.
We use induction on c to show that Le£. It is trivial for c = 0. Let c>0 and

suppose that the result is true for c — 1. L has a nilpotent ideal / of class <c
such that L/Je5*. We put Z = d(/). Since 7<ιL, ZoL. Then clearly L/Ze
9lc_ x£* and therefore L/Z e £ by induction hypothesis. Let H, K wsi L and put
J = <#, Ky . Since L/Z e fl, we have J + Z/Z wsi L/Z, so that J + Z wsi L. It is

easy to see that J n /<α J + Z. Now J/J n / = <// + (J n I)/J Π /, X + (J Π /)/
J n / > , where both # + (Jn/)/J(U and K + (J fU)/Jn/ are weak subideals of
J + Z/JfU. Since J + /// wsiL/7, J + ///e wsι£* = £* and so J/Jn/e5* . By
the property (A) of £* we have J/J n / wsi J + Z/J ni. Hence JwsiJ + Z and
therefore J wsi L. Thus we have L e £. This completes the proof.

In this section, we aim to investigate classes of £-algebras (resp. £-algebras).

Theorem 2.6 shows that it is one of the effective measures for this purpose to

search classes of £*-algebras (resp. fl*-algebras). We can easily see that 21 <

£* n £*. However, the Hartley example (cf. [2, Lemma 3.1.1]) shows that over

any field ϊ of characteristic p > 0

83 n $12 £ 5* U £* and 5 n (2ΠΠ2) n ©3 <£ £ u £.

Therefore it seems that both of the classes £* and £ (resp. the classes £* and £)
are not so large. But we shall present several interesting subclasses of £* (resp.

£*) in the rest of this section.
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First we consider the classes Wϊ^ and (3)11. SD^ is the class of Lie algebras
in which every subideal is an ideal, and is denoted by Z in [2]. On the other
hand, Wlί is the class of Lie algebras in which every weak subideal is an ideal,
and is a proper subclass of SP .̂ Then we can prove the following

THEOREM 2.7. (1) 5̂  < 5* and therefore 91^ < 5.

(2) mι < £* and therefore 91^ < £.

PROOF. Here we only prove (1), since (2) is similarly proved. Clearly we
have wsiSEFΪ! = 35̂  < 5. Let L be any Lie algebra and let H, K wsi L. Suppose
that J = <#, KyeWlt. Since #wsiJ, #<ιJ and so [#, K]^H. By Lemma
2.1 we have JwsiL. Hence the class W± has the property (A). Therefore we
obtain J^ < 5*. By using Theorem 2.6 (1) we have MM^ < 5.

DEFINITION. (1) We define the class S of Lie algebras as follows: For a
Lie algebra L, L e S if and only if L has no non-trivial weak subideals. On the
other hand, we denote by S the class of simple Lie algebras. Then

5 < s, s < ml9 e < soii.
(2) We define the subclasses (3ί1 and 2ί0 of 9I2 as follows : For a Lie algebra

L, L e Sli if and only if either L e 2ί, or L e 9I2 with dim (L/L2) = 1 . L e Sί0 if
and only if either Le9I. or Le 21̂ 21 with L/L2 acting on L2 as scalar multi-
plications. Then

Owing to [1, Theorems 3.6 and 3.8], we can easily show that the class $I0 coincides
with the class of Lie algebras in which every subalgebra is a quasi-ideal.

Let us recall the class έ(<ι)2I of Lie algebras which have an ascending ideal
series with abelian factors. Stewart proved in his thesis that SP^ n E2Ϊ = $ Π E$I =
$I0 (cf. [2, p. 167]). We can generalize this result in the following

PROPOSITION 2.8. 9I0 = ̂ i Π E(<3)2I=9JZ1 n έ(^)9I.

PROOF. Using Lemma 1.3 (1) we have 50^ nE2I = 9K1 ΠESI. Hence it
follows from the Stewart's result that 3I0 <$??!. Therefore we have

2I0 < ϊ«ι Π έ(<])21 < 9JΪ! n £(<])«.

Conversely, let LeSPίj nέ(<ι)3l. Then L has an ascending ideal series (Lα)α^σ

with abelian factors. We use transfinite induction on α to show that Lα e 9I0

for any α<σ. It is trivial for α = 0. Let 0<α<σ and suppose that L^62I0

for all β<oί. If α is a limit ordinal, then LΛ = \Jβ<ΛLβG
<$ί2 and hence Lαe

90ϊt n 2ί2 = 9T0. If α is not a limit ordinal, then Lα_ ! e 2T0 < SI2. Since Lα/Lα_ i e
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91, Lα e 9ί3 and therefore Lα e 9Rl Π 9l3 = 2ί0

 τbίs completes the induction. In
particular, we have L = Lσe2ί0. Hence 9J11 nέ(<])$ϊ<$I0. Thus we obtain

Next we shall prove that Sl^S* n £*. To do this we need the following

LEMMA 2.9. // L e 21Λ9Ϊ, ffcen

^L(wsi) = {H:H <L2 or H = L} = {H: H <ι2 L} .

PROOF. Since L2 is an abelian ideal of L, it is clear that

{H: H < L2 or H = L} <Ξ {H: tf <ι2L} c

Conversely, let #e<^L(wsi). Suppose that H<^L2. Then H has an element
hέξL2. Since LeSί^Sl, L has an element x such that L = L2 + <x>. Then
clearly [L2, x] = L2. We can write /ι = α + αx, where aeL2 and αeϊ. Since
h^L2

9 α^O. Without loss of generality we may assume α = l, so that h = a + x.
Then

[L2, /i] = [L2, α + x] = [L2, x] = L2.

It follows that [L, h] = L2. By induction on n we have [L,π/ι]=L2 for any
integer n>0. Since /ίwsiL, by Lemma 1.1 [L,n/ί]c/f for some integer n>0.
Then

and hence L2<H. Since dim(L/L2)=l, we have H = L. This completes the
proof.

THEOREM 2.10. ^ < M2 n 9J12 Π S* n fi* ^n d therefore 91^ < S n fl.

PROOF. By Lemma 2.9 we have SI^SE^ n 9K2. On the other hand, by
Corollary 2.5 Sl^SP^Snfl. Let H be a weak subideal of an Sl^algebra
L. If L e 21, then H e 9I< S .̂ If L ̂  31, then by Lemma 2.9 we have H e 91 or
H = L, so that ίΓeSίi. Hence Ŝ  is wsi-closed and therefore i-closed. Now let
M be any Lie algebra and let H, XwsiM. Suppose that J = <#, X>e9I1. If
Je9I, then by Lemma 2.1 JwsiM. So we may assume J^SI. If either H = J
or K = J, then clearly J wsi M. Suppose that ff < J and K<J. Since #, X wsi J,
by Lemma 2.9 H, K<J2e9I and so [H, K]=0. Using Lemma 2.1 we have
J wsi M . If both H and X are especially subideals of M, then we can similarly
show that J si M. Therefore Ŝ  has the properties (A) and (B). Thus we have
Sli < 5* n fi*. By using Theorem 2.6, we obtain 91^ < S n fl.

REMARK. By the above theorem we have
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!̂ < si2 n ffi2 n $0ϊ2.

However, the Hartley example [2, Lemma 3.1.1] shows that over any field ϊ
of characteristic p>Q

2ί2 n m2 n aκ2 <ίc 2* u £*.

Finally we summarize the results in this section as the following main
theorem.

THEOREM 2.11. (1) Let £ be any one of the classes

//Le£, ί/ien ^L(wsi) is α sublattice of the lattice
(2) Lef X fee £W)> one o/ ί/ze classes

// Le£, ίften «^L(si) is α sublattice of the lattice ̂ L

3.

In this section we shall investigate several classes of Lie algebras L such
that &*L(A) is a complete sublattice of the lattice ^L(<), where J is any one of

the relations wsi and si.
We begin with the following result corresponding to [5, Lemma 3.14].

PROPOSITION 3.1. Let L be a Lie algebra and let n be any integer >0.

Then
(1) LeSoo if to any H<L there corresponds an integer m = m(H)>0 such

(2)
(3) L e f i ^ if and only if to any H<L there corresponds an integer m =

m(#)>0 such that HL>m = HL>m+1.
(4) LeaKM if and only if HL>n = HL>n+l for all H<L.

PROOF. (1) Let {Hλ : λ e A} be any subset of ̂ L (wsi) and let H = Γ\λeΛ Hλ.
For each λeΛ, we put n(λ) = wsi(L: Hλ). By our assumption we can find an
integer m > 0 such that HLm = HLm +1. If we put m(λ) = max {n(λ), ra}, then

This being true for all λeΛ, we have HLm = H. Therefore7ie^L(wsi). Thus

we obtain LeΣ*
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(2) Let H e &>L (wsi) with m = wsi (L : H). Then H = HL>m = HL>m + ί = '~.
By our assumption we have HLin = HL)n+l = ~ . It follows that HL>n = HLm = H.
Hence H<nL and therefore wsi (L : H) < n. Thus we obtain L e Mn.

(3) One implication is similarly proved as in the proof of (1). Suppose
Lefi^ and let H<L. It is clear that HL * e ̂  (si) for any ί<ω. Hence
HL>G> = r\i<ωHL>ieyL(si). If we put m-si(L: HL><»\ then

and therefore HL>m = HL>m+1.

(4) One implication is similarly proved as in the proof of (2). Suppose
Le^nandlet^<L. Since HL>n+ί e#>L (si), we have si(L: HL>n+1)<n. Hence

HL>" < (HL>n+1)L>n = HL>n+ί < HL>"

and therefore HL>n = HL>n+1.

As a direct consequence of Lemma 1.2 we obtain

LEMMA 3.2. Wt^Q^ and

REMARK. Over any field ! of characteristic p>0, the Unsin example (cf.
[2, Chap. 7, §5]) presented a metabelian T>-algebra L having subideals of every
non-negative subideal index. Then clearly L e Q^ and L^9Jl. By using Lemma

1.3 (2), we have LeS,, and L^SR. Therefore we have ^ϊ<500 and SR<£00.

To prove the main results of this section, we need the following lemma
corresponding to [5, Lemma 3.24].

LEMMA 3.3. Let Le2 (resp.Lefi). Then Lefi 0 0 (resp.LeΆ*) if and
only //^L(wsi) (resp. ^L(si)) is closed under the formation of unions of ascending
chains.

PROOF. One implication is trivial. Suppose that ^L(wsi) (resp. < L̂(si)) is
closed under the formation of unions of ascending chains. Let {Hλ: λeΛ} be
any subset of ^L(wsi) (resp. ^L(si)) and put J = <#;: A e Λ > . Let the elements
of A be well-ordered as Λ = {oc: α<p} for some ordinal p. Then we can define
the ascending chain G/α)α<pof subalgebras of L as follows :

J0 = 0,Ja = (Hβ:β<xy ( 0 < α < p ) .

We use transfinite induction on α to show that Jαe^L(wsi) (resp. Jα

for any α<p. It is trivial for α = 0. Let 0<α<p and suppose that Jβ

(resp. Jβ E ̂ L(si)) for all jS<α. If α is not a limit ordinal, then Jα = <Jα_ l 5

si) (resp. <Jα-1? ίfα_i> e^si)) as Le£ (resp.Lefi). Assume
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that α is a limit ordinal. Then it is easy to see that Ja=\Jβ<Λ Jβ. By our assump-
tion we have JΛ e ̂ L(wsi) (resp. JΛ e « L̂(si)). This completes the induction. In

particular, we have J=Jpe^L(wsi) (resp. Jp e ̂ L(si)). Therefore Le2°°

(resp. Lefi00).

We now set about showing the main results of this section.

THEOREM 3.4. (1) W n 5<5°° n 5^.

(2) SJΐ

PROOF. Here we only prove (1), since (2) is similarly proved. Let L e 5ER n 5.

By Lemma 3.2 we have LeS^. Let {#(α): α<p} be any ascending chain in
^L(wsi), where p is an ordinal. We put J=\jΛ<p H(α). Since L e $R, there exists

an integer n > 0 such that H(α)L>IJ = H(a) for all α < p. If we put Jf = Wα < p H(a)Lfi

for 0<z<n, then we can easily show that J = J r tcjπ_1c...cj0 = Lis achain of

subspaces of L such that [Jf, J]cj.+1 for 0<i<n. Hence J e ̂ L(wsi) and there-

fore L e 5°°. Thus we have $R n 5 < S°° n 2^.

Finally we have the following

THEOREM 3.5. (1) Let 3£ be any one of the classes

7/Leϊ, then ^L(wsi) is a complete sublattice of the lattice ^L(<).
(2) Lef ΐ be any one of the classes

//Leϊ, ί/zen ^L(si) 15 α complete sublattice of the lattice

PROOF. If LeSuJFΪ! (resp.LeD U ^i), then ^L(wsi) (resp. ̂ L(si)) is
clearly a complete sublattice of ^L(^). If Le2ί1? then by Theorems 2.10 and

3.4 ^L(wsi) ( = ̂ L(si)) is a complete sublattice of <^L(<). Since 5<5R n 99ί, the
results for the other cases are immediately deduced from Theorems 2.11 and 3.4.

4.

In this section we shall present several examples in connection with the
previous sections.

First we present two examples showing that ^L(wsi) (resp. ^L(SΪ)) is n°t
necessarily a complete sublattice of the lattice ^L(<), even if ^L(wsi) (resp.

is a sublattice

EXAMPLE 4.1. Let I be any field of characteristic zero and let A be an abelian
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Lie algebra over ϊ with basis {αf. ieZ}, where Z denotes the set of integers.
For each integer 7>0, define x7 eDer(^4) by aίxj = ai+j for any ίeZ. Let X
denote the subalgebra of Der (A) generated by the elements x/s. Then X is an
abelian Lie algebra with basis {x, :;>()}. We construct the split extension
M = A + X of A by X. Since M has basis [ai9 x / : i, jeZ5 </>0}, we can define
δ e End (M) by

a.δ = at + i f l f- ! (ΐeZ),

X;(5 = jx,-! (j > 0),

where we regard x _ t as the zero map on A. By the definition of δ we can easily

see that for any ί, j eZ with j > 0

[αί5 x7](5 = [αΛ xj + [αί? *,.<$] .

It follows that δ is a derivation of M. We construct the split extension L = M +
<<5> of M by <c>>. Then L = A + X + (δy. Since 1̂ is ^-invariant, A is an ideal
of L. Define Y=<X, ^>. Since X is ^-invariant, 7 is the split extension of an
abelian ideal X by <£>. Furthermore,

Y2 = [X, 5] = Xδ = X.

Hence Y26^I and dim(Y/Y 2) = l. Therefore we have YeW^W. It is clear
that L is the split extension of A by Y. Thus L e ^ίSIi. By using Theorem 2.10

we have L e f i n £ . Therefore ^L(wsi) ( = ̂ (si)) is a sublattice of the lattice

Next we shall show that L^£00l)£00. To do this it is sufficient to show that
. Suppose that it has been shown. Since MoL, we have L^fi^.

Clearly Le 2t3. By Lemma 1.3 (2) we have L^fi^. Now for any i, n eZ with
n > 0, put

and define An = (a(ί, n): ieZ>. Then An has basis {α(i, n): ieZ}. We put
z = x0 + x1. It is not hard to show that [A,nz~\=An for any n>0. Since A^M,
we have A t > A2 > . For any integer n > 0, define Hn = (An, z> . Since [α(ΐ, n),

Xj] = α(i + ;, n) for all iJeZ with j>0, we have \_An, X~\ = An. Hence

and therefore

[M,B HJ = lA + X, n XB + <z>] = D4,πz] = ̂ n < Hπ.

It follows that Hn<"M. This is true for all n>0. Now assume that
Then H = Γ\n>0HnwsiM and so [M,r#]c# for some r>0. We put B =

Λn > 0 ̂  so that H = J5 + <z>. Since [5, X]<^B, we have
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[M,rfl] = tA + X, r£ + <z>] = [X,rz] = Ar.

Hence Ar c #. By modular law

Xr = A, Π (5 + <z» = B + (A, Π <z» = B < Ar

and therefore Ar = Ar+i. Since α(0, r)ev4 r + 1, we can write α(0, r)=Σk=ι αkflO'k>
r + 1), where 0^α f c eϊ and ί f c GZ(l<fc<5) such that iί< <is. Then we have

1^=0 and a1 = l. Also ιs + r+l = r and α s=l. Hence is= — I<0=i1, a con-

tradiction. Therefore we have M^S^. Thus L^S^ U £00. This implies that

yL(wsi) ( = «^L(si)) is not a complete sublattice of the lattice

EXAMPLE 4.2. Let ! be any field of characteristic p>0 and let A be the ad-

ditive abelian group of type p°°. We consider an abelian Lie algebra X over I

with basis {xa: a e A}. For each be A, define δ(b) e Der (X) by

Let 7 denote the subalgebra of DerpQ generated by the set {δ(b): be A}. It

is clear that [δ(6), δ(c)] = 0 for all b,ceA. Hence 7691. We construct the

split extension L = X + 7 of X by 7. Then L e 9ί2 and therefore by Corollary 2.5

L e 5 n fi. Thus ^L(wsi) ( = ̂ L(si)) is a sublattice of the lattice ^L(<).

Now let ft e A. First we show that in the associative algebra End (X)

(*) δ(b)pn = δ(pnb) for any integer n > 1.

To show this we may restrict our attention to the case n = l. For any aeA, we

have an expression

where each nt is an integer such that 0<nι<p. We introduce an indeterminate t

and work in the polynomial algebra ϊ[ί]. Obviously

On the other hand, since char(f) = p>0 we have

Hence Σ(i=o1)p nf = Σf=o tip, so

1 if p I /,

0 otherwise.

Therefore
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= Σ\p=Όί)p niXa+ib = Σpi=

This is true for all a e A. Thus δ(b)p = δ(pb) and (*) is proved. Since A is of type

l —Pn f°r some integer rc>0. Then by (*)

Hence

<X, <5(fo)y+1 = [X, ,„ 5(6)] = Xδ(bΓ = 0.

Therefore we have <X, δ(6)> e 91. Since L2 < X, <X, 5(6)><aL. Clearly we have

It follows that L is a Fitting algebra.
Next we show that L^SFΪ U 9Jί U 2°° U £°°. To do this it suffices to show that

L ̂  5°°. Suppose that it has been shown. Since L e 5, by Theorem 3.4 (1) we

have L^Jffl. Therefore by Lemma 1.3 (2) L^9Mu£°°. Now assume, to the
contrary, that Le£°°. Since L is a Fitting algebra, <<5(fe)>siL for all be A.
Hence Y=(δ(b): be Ay wsi Land so 7<mLfor some integer w>0. There is an
integer n>0 such that m<pn. Since A is of typep00, we can find an element b
of ,4 of order prt+1. By (*)

^ 0.

Hence [X, pn<<5(fc)>] ̂  0. However,

and therefore [X, pn<(5(fe)>] c X n 7=0, a contradiction. Thus we have

We consequently obtain L^2R U 9JI U 5°° U £°°. In particular, ^L(wsi) ( =

is not a complete sublattice of the lattice

REMARK. Let L be the Lie algebra constructed in Example 4.2. Then L is a

Fitting algebra, but L does not satisfy the idealizer condition. In fact, we can

prove that /L(Y) = 7<L. Let xeCx(Y). Since A is of type p°°, we can write

where αe,4 with |<0>|=p" and α /e!(0<i<pw). Since A is a radicable group,

^ has an element b such that pb = a. Then

On the other hand, xδ(b) = [x, δ(f?)]=0 as xeCx(7). Hence we have Σf^ό1

X5zJα ίx( ίp+J)& = 0. Since b is of order pn+1, we have αf = 0 (0<ι<pn). There-

fore x = 0. Thus we have Cx(7) = 0. It follows that /L(Y) n X = 0. By modular

law
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ιL(Y) = IL(Y) n (x+ 7) = (iL(Y) nx) + γ=γ.

Therefore we obtain IL(Y) = Y<L.

Finally we shall construct an example of (£* n £*)-algebras L such that both

^(wsi) and ^L(si) are complete sublattices of the lattice

EXAMPLE 4.3. Let I be a field in which α2 + j82 + y2 = 0 always implies

α = /? = y = 0 (for example, take as ϊ the field of real numbers). Let A be an

abelian Lie algebra over ϊ with basis {a0, α1?...} and let x, y, z be respectively the

derivations of A defined by

a3ix = a3i+ί, a3i+ίx = -a3i, a3i+2x = 0 (i > 0),

= 0, a3i+iy = a3i+2, a3i+2y = -α3ί+1 (i > 0),

= <*3i+2, a3i+ίz = 0, a3i+2z = -a3i (ί > 0).

We denote by S the subalgebra of Der (X) generated by the elements x9 y and z.
It is easy to see that

Hence S is a 3-dimensional simple Lie algebra with basis {x, y, z}. First we show

that Se 6. To do this it is sufficient to show that S has no 1-dimensional weak

subideals. Assume, to the contrary, that S has a 1-dimensional weak subideal,
say <w>. Since <w> has codimension 2 in S, <w><2Sr and hence [S, 2<w>]^

< w> . Write w = ouc + /ty + yz, where α, ,̂ y e ϊ. Then we have β ̂ F 0 or y ̂  0. In
fact, suppose that β = γ = Q. Then α^O, whence <w> = <x>. Therefore — z =

[z, 2 x] e <x>, a contradiction. Now we can find a μ e ϊ such that [x, 2 w] =μw.
By calculation we have

[x, 2 vv] = - (β2 + y2)x + Λβy + αyz.

Hence —(β2 + γ2) = μa, aβ = μβ and ay = μy. Since β^O or γ^O, we have α = μ.
Therefore α2 + ̂ 2 + 72 = 0. This contradicts our assumption on f. Thus we
obtain S e&.

We now construct the split extension L = A 4- Sof A by S. Then by Theorem
2.7 we have

LeSIS^SISOΪ! < 5 n £.

Let # wsi L and suppose that H <|C A. Since 0 ̂  # 4- A/ A wsi L/A e S, # + 4/4 =
L/4 and so /ί + 4 = L. To each element t of {x, >>, z}, there correspond an Λ f e H

and an α r e4 such that t = ht + at. Then for any integer ι>0,
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= α3l,

Since fί wsiL, we can easily see that {α3ί, α3ί+1, 03ί+2}£H. This being true for
all z>0, we have A<H. Hence L = H + A = H. Therefore we have proved that

= {H: H < A or H = L} = {H: H<ι2L} .

It follows that L e 5JΪ2 n $0Ϊ2 Using Theorem 3.4 we have L e S°° n 5*, Π £°° Π
fi^. Therefore both «^L(wsi) and ^L(si) are complete sublattices of the lattice

Finally we show that L e 5* n £*. Let £ denote the class 21 (J (L) of Lie al-

gebras over ϊ, where (L) is the smallest class containing L. Evidently 3£<S n £.

Since <^L(wsi) = {#: #<,4 or H = L}9 ϊ is wsi-closed and hence i-closed. Now

let M be any Lie algebra over ϊ and let H, K wsi M (resp. H, K si M). Suppose

that J = <H, X> 6 X. We must show that J wsi M (resp. J si M). To do this we

may assume that J ̂  21 , H < J and K < J. Then J s L. Hence by the above argu-
ment we have [H, K]=0. By using Lemma 2.1 (resp. [2, Lemma 2.1.4]), we

obtain J wsi M (resp. J si M ). Therefore 3£ has the property (A) (resp. the property

(B)). It follows that X<2* (resp. £<£*). Thus we have Le2* n £*.

REMARK. Let L be the Lie algebra over any field I constructed as in Example

4.3. Then we can prove as above that L e 9J12 n £°° n £«, n fl*.
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