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Introduction

Maruo [4] introduced the concept of weak ideals of Lie algebras generalizing
that of subideals and investigated pseudo-coalescency of classes of Lie algebras.
To6gd [6] introduced the concept of weakly ascendant subalgebras of Lie algebras
generalizing those of weak ideals and ascendant subalgebras. Weak ideals are
called weak subideals in [6]. A class X of Lie algebras is pseudo-coalescent [4]
if in any Lie algebra the join of any pair of a subideal and a weak subideal be-
longing to X is always a weak subideal belonging to X. However, it might be
meaningless to consider classes X such that in any Lie algebra the join of any
pair of weak subideals belonging to X is always a weak subideal belonging to X,
for there exists a Lie algebra L such that the join of some pair of 1-dimensional
weak subideals of L is not a weak subideal of L and is non-abelian simple (cf.
[3, Example 5.1]). In this paper we shall investigate several classes of Lie algebras
in which the join of any pair of weak subideals (resp. subideals) is always a weak
subideal (resp. a subideal).

In Section 2 we shall show that if a Lie algebra L belongs to one of the classes
DA, RM, and NA, (resp. the classes DA, NI, and RA,), then the set &, (wsi)
(resp. the set & (si)) of all weak subideals (resp. all subideals) of L is a sublattice
of the lattice & (<) of all subalgebras of L (Theorem 2.11). In Section 3 we
shall show that if a Lie algebra L belongs to one of the classes 2;, & n (RNM,)
and § N (NA) (resp. the classes Ay, Fn(INM;) and Fn(NA,)), then &L (wsi)
(resp. &1(si)) is a complete sublattice of (<) (Theorem 3.5). In Section 4
we shall construct Lie algebras L such that & (wsi) is a sublattice of &L (<L)
but is not a complete sublattice of &, (<) (Examples 4.1 and 4.2). We shall
also construct a Lie algebra L such that &;(wsi) is a complete sublattice of
&1(L) (Example 4.3).

Here A (resp. 9N, §) is the class of abelian (resp. nilpotent, finite-dimensional)
Lie algebras, D (resp. D) is the class of Lie algebras in which every subalgebra is
a weak subideal (resp. a subideal), and I, (resp. M,) is the class of Lie algebras
in which every weak subideal (resp. every subideal) is an ideal; and 2, is the class
consisting of either abelian Lie algebras or metabelian Lie algebras L with
dim (L/L?)=1. For classes X, 9 of Lie algebras, X9 is the class of Lie algebras
L having an X-ideal I such that L/I€9).
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1.

Throughout the paper we always consider not necessarily finite-dimensional
Lie algebras over a field f of arbitrary characteristic unless otherwise specified.

Let L be a Lie algebra and let H be a subalgebra of L. For an integer n>0,
H is an n-step subideal of L, denoted by H<a"L, if there exists a finite series (H,);<,
of subalgebras of L such that

(1) H=Hy<H,<--<H,=1L,

2) Hi<wH,,, 0<i<n).
H is an n-step weak subideal of L [6], denoted by H <"L, if there exists a finite
chain (M), of subspaces of Lsuch that

() H=MycsM;c:--cM,=1L,

@ My, HlesM; 0<i<n).
H is a subideal (resp. a weak subideal) of L, denoted by H si L (resp. H wsi L),
if H<a"L (resp. H<"L) for some integer n>0.

The ideal closure series of H in L is the descending series (H%*%),», of sub-
algebras of L defined inductively by

HL:0 — L’
HL.a+1 — gHL.« for any ordinal «,

HYA = N, , H*  for any limit ordinal A.

It is well known ([2, Lemma 1.3.6]) that for any integer n>0
H <L if and only if HL:"» = H.

The weak closure series of H in L is the descending chain (H ,),»o of subspaces
of L defined inductively by

Hyo=1L,

Hy oy =[Hy,, HI+ H for any ordinal o,

Hy,=Nu<,H, for any limit ordinal A.
Then as a special case of [3, Lemma 1.4 (2)] we have the following

LEMMA 1.1. For an integer n>0, the following conditions are equivalent:
(1) H<"L.

(2 Hp,=H.

3) [L,,H]<H.

In [4] H is called an n-step weak ideal of L, denoted by H n-wi L, if [L, , H]<=
H. H is also called a weak ideal of L, denoted by H wi L, if H n-wi L for some



Joins of weak subideals of Lie algebras 659

integer n>0. Itis clear from Lemma 1.1 that H n-wi L if and only if H<"L and
that H wi L if and only if H wsi L.

Now let H wsi L (resp. Hsi L). The weak subideal index (resp. the subideal
index) of H in L, denoted by wsi(L: H) (resp. si(L: H)), is the least integer n>0
with respect to H<"L (resp. H<"L).

The following lemma corresponds to [5, Lemma 3.13].

LEMMA 1.2. Let A be either of the relations wsi and si and let {H;:iel}
be a collection such that H,AL for all iel. Put H=N\;; H;.

(1) IfA(L: H)<n foralliel, then H A Land A(L: H)<n.

(2) Ifcard(I)<oo, then H A Land A(L: H)y<max {4(L: H}): ieI}.

Proor. Here we only give a proof for the case 4 =wsi, since the other case
can be similarly proved.

(1) Since H,,=(H),,=H; for all iel, H ,=H and therefore H<"L
by using Lemma 1.1.

(2) Put n=max{wsi(L: H):iel}. Then by (1) we have HwsiL and
wsi(L: H)<n.

DEerFINITION. We denote by &, (4) the set of all subalgebras H of a Lie
algebra L such that HAL, where 4 is any one of the relations <, wsi and si. Let
n be any integer >0. We furthermore introduce the classes €, €2, 8 , M, and
M (resp. the classes &, 22, €, M, and M) as follows. For a Lie algebra L,
LeQ (resp. Le ®) if and only if (H, K) e % (wsi) (resp. (H, K) € &#,(si)) for
any H, K e #;(wsi) (resp. H, K € #,(si)). Le2 (resp. Le £*) if and only if
(Hy:iel) e #(wsi) (resp.{H;:iel)e F(si)) for any subset {H;:iel} of
Fr(wsi) (resp. #i(si)). LeQ, (resp. Le ,) if and only if N, H,e % (wsi)
(resp. Ny H; € #y(si)) for any subset {H;:iel} of &p(wsi) (resp.F.(si)).
Le M, (resp. LeM,) if and only if wsi(L: H)<n (resp.si(L: H)<n) for any
He % (wsi) (resp. He #i(si)). LeIM (resp. LeM) if and only if LeIN,
(resp. Le M,) for some integer n>0.

Let 4 be either of the relations wsi and si. For any Lie algebra L, we can
consider ¥;(<) as a lattice by introducing the usual lattice-structure in it. Then
it is clear that &;(4) is not necessarily a sublattice of the lattice & (<) (cf. [3,
Example 5.1] and [2, Lemma 3.1.17). So it seems to be interesting to investigate
the classes of Lie algebras L such that &#;(4) is a sublattice of the lattice ¥ ().
Using Lemma 1.2 we can easily see that & (wsi) (resp. &#.(si)) is a sublattice of
the lattice #,(<) if and only if Le € (resp. Le 8). Moreover, & (wsi) (resp.
&(si)) is a complete sublattice of the lattice & (<) if and only if Le2*ng,_,
(resp. Le2*nL,).

[6, Theorem 1] states that if Le ¢, then every n-step weak subideal of L
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is an nd-step subideal of L. It follows that if Le©r, then & (wsi)=F(si).
Therefore we obtain

LemMa 1.3. (1) For any integers n, d>0
M, n A< M,;, and M, n A <M,
(2) If Xisone of the classes £, 82, 8  and M, then & N EA =X nEA.

Any notation not explained in this section may be found in [2].

2.

In this section we shall investigate several classes of Lie algebras L such that
&1(4) is a sublattice of the lattice &;(<), where 4 is any one of the relations
wsi and si.

We begin with the following lemma due to Maruo [4], which is useful to the
argument of this section. We here present its proof simplified by using the notion
of weak closure series.

LemMmA 2.1 ([4, Lemma 2.3]). Let H, K wsi L and let J={H, K). If [H,
K]<H, then J wsi L and wsi(L: J)< wsi(L: H)ywsi(L: K).

PrROOF. Put m=wsi(L: H) and n=wsi(L: K). Then by Lemma 1.1 Hy ,,=
H and K; ,=K. First we show that

(%) [H,;,, Kl< H,; forany integer i > 0.

To do this we use induction on i. It is trivial for i=0. Let i>0 and suppose
that [H, ;, K]=H,; Then

[HL,i+19 K] =[[HL,i’ H] + H, K] = [[HL,ia Hl K] + [H’ K]
S [[HL,i’ K]’ H] + [HL,i, [Ha K]] + [H’ K]
S [Hp, Hl+ H=Hp;,,.

Hence (*) has been proved. Now we define
Mj=Hp . +H,; K )+ K 0<i<m,0<j<n).
Then for 0<i<m
Hy ;1 +K=M;,csM;, ;=-=M,,=H,;+K

Furthermore, by using (*) we have
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[M;;, J]1=T[HLis, + (H; N K ;) + K, H + K]
SHp;y +[Hpyiv, K1+ [Hy; 0 Ky j, K1+ K
SHyjvi+(HL 0 Kpje) + K=M, 4,

Since M,,_; ,=J and M, o=L, we have J<™"L. Thus JwsiL and wsi(L: J)<
mn.

In any Lie algebra L, the join of any pair of permutable subideals of L is
always a subideal of L (cf. [2, Lemma 2.1.4]). On the other hand, we do not
have any reason to say that the join of any pair of permutable weak subideals of
L is always a weak subideal of L. However, we can show the following

LEMMA 2.2. Let H,KwsiLand let J=C(H,K). If[H,K]JcH+K and H
siJ, then J wsi L.

Proor. Let n=si(J: H). We use induction on n to show that J wsi L.
By Lemma 2.1 it is trivial for n<1. Let n>1 and suppose that the result is true
for n—1. We put H,=H’. Then clearly H<""'H,<aJ. Since H,nK<
KwsiL, H nKwsiL. By modular law

Hy=H,nJ=H, nH+K)=H+ (H,nK).

Since si(H,: H)=n—1, by induction hypothesis we have H, wsi L. Evidently
J=(H,, K> and [H,, K] H,. Using Lemma 2.1 we have J wsi L.

As a result shown by using Lemma 2.2, we have the following proposition
corresponding to [2, Proposition 2.1.6].

PROPOSITION 2.3. Let H, K wsi L with m=wsi (L: H)>0 and n=wsi (L: K)
>0. Assume that (H, K) is solvable. Then for any i>m and j>n we have

Ji,j = <Hi, K"> WSiL

and J,;=(HnJ;))+(KnJ;;). Furthermore, for any i>m we have [L, ;H]
<mLand [L, H]<™L.

PrROOF. Leti>mand j>n. Then itis easy to see that Hi<™Land K/<"L.
By Lemma 1.2 (2) we have Hn Kwsi L. Put C={(HnK, K’). Since K/<K,
Cwsi L by Lemma 2.1. Clearly [Hi, K/]sHn K. It follows that [H!, C]<
H!+C. Hence {(H!,C)=H'+C=H!'+(HnK)+KJ. Since {H, K) is solv-
able, so is (H, C)>. Therefore by [6, Theorem 1] H*si {H!, C). Using Lemma
2.2 we have (H,C)wsiL. We can easily show that J;, ,<H'+(H n K)+K/
and J, ;=(HnJ;)+(KnJ;;. Thus we obtain J; ; wsi L.

Now [L, H]<[L, ; Hl=cH. By induction on k we have
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[[L,.H], H. ,-1] < [L, H] for any integer k > 0.
In particular, [[L,;H], Hy ,,—;1<[L,;H] and hence [L,; H]<L. Furthermore,
[L:m[L,iH]] = [[L’m—lH]’ [L’;H]] = [HL,m—l’ [L’lH]] = [LszH]

Therefore by Lemma 1.1 we have [L,;H]<™L. Since Hy ,,=H, [H!,H; ,_;]<
Hi. Hence we have

[[L’ Hi]’A HL,m-‘—l.-.l == [La Hl] .
It follows that [L, H]< L. Moreover,
[L,w[L, H]] < [[L, - H], [L, H]] € [Hy -y, [L, H1] = [L, H].
Therefore by Lemma 1.1 we have [L, Hi]<™L.

For subalgebras H, K of a Lie algebra L, the circle product HOK of H and K
is defined as HOK =[H, K]JH'K,

LEMMA 2.4. Let A be either of the relations wsi and si and let H, KAL.
Then the following conditions are equivalent:

(1) <H,K>AL.

(2) <(HX)>AL.

(3) HoKAL.

ProOOF. Since HOK<1{HX)><1{H, K}, (1)=(2)=>(3) is trivial. We have to
show that (3) implies (1). Suppose HOKAL. 1t is easy to see that {(HX)=
H+HoK and [HoK, Hl=HoK. Hence (HX¥YAL. Since {H, K>=<{HX)+K,
we have {H, K)AL.

Let us recall the class D of Lie algebras in which every subalgebra is a subideal.
We analogously introduce the class D of Lie algebras in which every subalgebra
is a weak subideal. It is clear that

N<DLD.
We also have
COROLLARY 2.5. (1) DA< Q.
(2) DAL L.

PrOOF. Here we only prove (1), since (2) is similarly proved. Let Le®A
and let H, KwsiL. Then L?e®. Since HOK < L?, HoK wsi L. By using
Lemma 2.4 we have (H, K> wsi L. Therefore Le €.

To6gd [7] introduced the closure operation wsl defined as follows: A class
X of Lie algebras is wsi-closed if every weak subideal of an X-algebra also belongs
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to X. As a relationship between the closure operations 1, S and wsI, we have
I < WSI<S.

On the other hand, Robinson [5] introduced the class 2* of groups to investigate
classes of groups in which the join of any pair of subnormal subgroups is always
subnormal. We analogously introduce the classes £* and £* of Lie algebras
in the following

DEFINITION. We define the class £* of Lie algebras as the largest wsi-closed
subclass X of € having the following property:

(A) If H KwsiL and J=(H, K> e X, then J wsi L.
We similarly define the class 2* of Lie algebras as the largest 1-closed subclass X
of & having the following property:

(B) If H,KsiL and J=<{H, K)€ X, then JsilL.

We have the following result corresponding to [5, Theorem 3.23].

THEOREM 2.6. (1) NC* < €.
Q) Ne* < Q.

PrOOF. Here we only prove (1), since (2) is similarly proved. Let L e R, 2*.
We use induction on ¢ to show that Le 8. It is trivial for c=0. Let ¢>0 and
suppose that the result is true for c—1. L has a nilpotent ideal I of class <c
such that L/Te ®*. We put Z={,(I). Since I<L, Z<L. Then clearly L/Z e
N._,L* and therefore L/Z € € by induction hypothesis. Let H, K wsi L and put
J=(H,K). Since L/Z€Q, we have J+Z/ZwsiL|Z, so that J+Zwsi L. Itis
easy to see that JnI<J+Z. Now J/JnI=<H+UnD/JnI, K+ nI)
JnIy, where both H+(JnI)/Jnl and K+(J nI)/JnI are weak subideals of
J+Z/Inl. Since J+I/IwsiL/I, J+I/Iewsi€*=8* and so J/Jnlel* By
the property (A) of €* we have J/JnIwsiJ+Z/JnI. Hence J wsiJ+Z and
therefore J wsi L. Thus we have L € €. This completes the proof.

In this section, we aim to investigate classes of €-algebras (resp. L-algebras).
Theorem 2.6 shows that it is one of the effective measures for this purpose to
search classes of L*-algebras (resp. @*-algebras). We can easily see that A<
2*n 2*. However, the Hartley example (cf. [2, Lemma 3.1.1]) shows that over
any field f of characteristic p>0

FnNR, LKLy L* and Fn@AN,) NG, KL U 2.

Therefore it seems that both of the classes £* and € (resp. the classes £* and )
are not so large. But we shall present several interesting subclasses of 8* (resp.
£%) in the rest of this section.
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First we consider the classes MM, and M,. M, is the class of Lie algebras
in which every subideal is an ideal, and is denoted by ¥ in [2]. On the other
hand, M, is the class of Lie algebras in which every weak subideal is an ideal,
and is a proper subclass of M;. Then we can prove the following

THEOREM 2.7. (1) M, <L* and therefore NI, < L.
(2) M, <L* and therefore NM, < L.

Proor. Here we only prove (1), since (2) is similarly proved. Clearly we
have wsiIi, =9, <T. Let L be any Lie algebraandlet H, K wsi L. Suppose
that J=C(H, K>eM,. Since HwsiJ, H<J and so [H, K]=H. By Lemma
2.1 we have JwsiL. Hence the class MM, has the property (A). Therefore we
obtain M; <L*. By using Theorem 2.6 (1) we have NI, < L.

DerINITION. (1) We define the class & of Lie algebras as follows: For a
Lie algebra L, L e & if and only if L has no non-trivial weak subideals. On the
other hand, we denote by & the class of simple Lie algebras. Then

<6, 8<M,S <M,

(2) We define the subclasses A, and A, of A2 as follows: For a Lie algebra
L, Le U, if and only if either Le A, or Le A? with dim (L/L?)=1. LeU, if
and only if either Le A, or Le A,\A with L/L? acting on L2 as scalar multi-
plications. Then

A< Uy < A, < A2,

Owing to [1, Theorems 3.6 and 3.8], we can easily show that the class 2, coincides
with the class of Lie algebras in which every subalgebra is a quasi-ideal.

Let us recall the class E(<a) of Lie algebras which have an ascending ideal
series with abelian factors. Stewart proved in his thesis that M, NEA=T N A=
A, (cf. [2, p. 167]). We can generalize this result in the following

PrOPOSITION 2.8. o=, nE(<)A=M, n &(<)U.

Proor. Using Lemma 1.3 (1) we have M, nEA=IM, nEA. Hence it
follows from the Stewart’s result that W, <I,. Therefore we have

A, < M, NE(<)A < M, N (<)L

Conversely, let Le I, nE(<)WA. Then L has an ascending ideal series (L,),<,
with abelian factors. We use transfinite induction on o to show that L,e %,
for any a<o. It is trivial for «=0. Let 0<a<o and suppose that L;e U,
for all B<a. If o is a limit ordinal, then L,=\Uz.,LseU? and hence L,e
M, N A2=W,. If ais not a limit ordinal, then L,_, e W, <A2. Since L,/L,_, €
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A, L,e W3 and therefore L, e M, N A3=W,. This completes the induction. In
particular, we have L=L,eW,. Hence M, NE(<)A<A,. Thus we obtain
Wo=MM, NE(<)WA=M, nE(<)A.

Next we shall prove that %, <€*n 2*. To do this we need the following
LeMMA 2.9. If Le U\, then
SFr(wsi)={H:H< L? or H=L} = {H: H<?L}.
Proor. Since L2 is an abelian ideal of L, it is clear that
{H:H<L?orH=L} < {H: H<?L} < & (wsi).

Conversely, let He &% (wsi). Suppose that H<cL2. Then H has an element
he L2, Since LeA,\A, L has an element x such that L=L%234{(x>. Then
clearly [L?, x]=L?. We can write h=a+ax, where aeL? and aef. Since

h& L2, ax0. Without loss of generality we may assume a=1, so that h=a+x.
Then

[L? h] = [L? a+x] = [L? x] = L%

It follows that [L, h]=L2. By induction on n we have [L,,h]=L? for any
integer n>0. Since H wsi L, by Lemma 1.1 [L,,H]< H for some integer n>0.
Then

L>=[L,, k] <[L HlcH

and hence L2<H. Since dim (L/L?)=1, we have H=L. This completes the
proof.

THEOREM 2.10. A, <TM, n M, n €* n 8* and therefore NA, <L n L.

ProOF. By Lemma 2.9 we have %A, <M, nM,. On the other hand, by
Corollary 2.5 A, <A><LNnL. Let H be a weak subideal of an U,-algebra
L. IfLe¥q, then He A<A,. If L & A, then by Lemma 2.9 we have He U or
H=L, so that He A,. Hence A, is wsi-closed and therefore 1-closed. Now let
M be any Lie algebra and let H, K wsi M. Suppose that J=(H, K>eq,. If
J e, then by Lemma 2.1 JwsiM. So we may assume J&U. If either H=J
or K=J, then clearly J wsi M. Suppose that H<J and K<J. Since H, K wsiJ,
by Lemma 2.9 H, K<J?e U and so [H, K]=0. Using Lemma 2.1 we have
Jwsi M. If both H and K are especially subideals of M, then we can similarly
show that J si M. Therefore U, has the properties (A) and (B). Thus we have
A, <8*n L*. By using Theorem 2.6, we obtain NA, <L n L.

REMARK. By the above theorem we have
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AL < A2 0 M, n M,

However, the Hartley example [2, Lemmé 3.1.1] shows that over any field f
of characteristic p>0

A n M, n M, << 8+ y L*,

Finally we summarize the results in this section as the following main
theorem.

THEOREM 2.11. (1) Let X be any one of the classes
DA, NS, NI, NA,, NA,.

If Le X, then & (wsi) is a sublattice of the lattice ¥ ().
(2) Let X be any one of the classes

DA, NS, NM,, NA,, NA,.

If Le X, then &, (si) is a sublattice of the lattice &1 ().

3.

In this section we shall investigate several classes of Lie algebras L such
that &#,(4) is a complete sublattice of the lattice &,(<), where 4 is any one of
the relations wsi and si.

We begin with the following result corresponding to [5, Lemma 3.14].

PROPOSITION 3.1. Let L be a Lie algebra and let n be any integer >0.
Then

(1) LeZ®, iftoany H<L there corresponds an integer m=m(H)>0 such
that Hy ,=H ;1.

(2 LeW,if H ,=H,.+ forall HSL.

(3) LeQ, if and only if to any H<L there corresponds an integer m=
m(H)>0 such that HL>-m = HL-m+1,

(4) LeM, if and only if HL-"=HL:"+1 for all H< L.

ProoF. (1) Let {H,: Ae A} be any subset of &, (wsi) and let H=\ ;.4 H,.
For each Ae A, we put n(A)=wsi(L: H;,). By our assumption we can find an
integer m>0 such that H, ,=H; ,.,. If we put m(1)=max {n(1), m}, then

HL,m = HL,m().) E(H).)L,m().) S (H).)L,n(l) = Hz-

This being true for all A€ A, we have H; ,,=H. Therefore He & (wsi). Thus
we obtain Le €.
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(2) Let He & (wsi) with m=wsi(L: H). Then H=H,=H ,, ="".
By our assumption we have Hy ,=H; ,,,;=--. It follows that H, ,=H, ,=H.
Hence H<"L and therefore wsi(L: H)<n. Thus we obtain Le I,.

(3) One implication is similarly proved as in the proof of (1). Suppose
Lef, and let H<L. 1t is clear that H-ie %, (si) for any i<w. Hence
Hbo=nN\, ., H e &£ (s)). If we put m=si(L: HL-®), then

HL,m S (HL,w)L,m= HL,wS HL,m+1

and therefore HL:m= HL.m+1

(4) One implication is similarly proved as in the proof of (2). Suppose
LeM,and let H<L. Since HL>"t1e & (si), we have si(L: HL»"*1)<n. Hence

HELn < (HLont)Lon — HLinttl < FLon
and therefore HL-"=HL:"*1,
As a direct consequence of Lemma 1.2 we obtain
Lemma 3.2. M<Q and M< L.

REMARK. Over any field ¥ of characteristic p>0, the Unsin example (cf.
[2, Chap. 7, §5]) presented a metabelian D-algebra L having subideals of every
non-negative subideal index. Then clearly Le £ and L&Mm. By using Lemma
1.3 (2), we have Le @, and L&IR. Therefore we have M<L, and M< L.

To prove the main results of this section, we need the following lemma
corresponding to [5, Lemma 3.24].

Lemma 3.3. Let LeQ (resp.Le®). Then Le8® (resp.Lef®) if and

only if &1 (wsi) (resp. &,(s1)) is closed under the formation of unions of ascending
chains.

PrOOF. One implication is trivial. Suppose that &, (wsi) (resp. #;(si)) is
closed under the formation of unions of ascending chains. Let {H,: 1€ A} be
any subset of & (wsi) (resp. &, (si)) and put J=(H,: Ae A). Let the elements
of A be well-ordered as A={a: a<p} for some ordinal p. Then we can define
the ascending chain (J,),<,0f subalgebras of L as follows:

Jo=0,J,=(Hg: p<ay O<a<p).

We use transfinite induction on « to show that J,e & (wsi) (resp.J, € &L (s1)
for any a<p. It is trivial for =0. Let 0<a<p and suppose that J; € &;(wsi)
(resp. Jy€ Si(si)) for all f<a. If o is not a limit ordinal, then J,={Jpey,
H,_;)> € % (wsi) (resp. {Jo—y, Hy— )€ (s1)) as ‘LeL (resp. Le ). Assume
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that « is a limit ordinal. Then it is easy to see that J,=\Uz,J;. By our assump-
tion we have J, e & (wsi) (resp. J, € & (si)). This completes the induction. In
particular, we have J=J,e S (wsi) (resp.J,eP(si)). Therefore LeB*
(resp. Le £%).

We now set about showing the main results of this section.

THEOREM 3.4. (1) MnL<V°n L.
2 MnLe<L ne,.

ProOF. Here we only prove (1), since (2) is similarly proved. Let Le M n 2.
By Lemma 3.2 we have Le 8. Let {H(x): a<p} be any ascending chain in
&1 (wsi), where p is an ordinal. We put J=\U,., H(®). Since Le TN, there exists
an integer n>0 such that H(«), ,=H(x) for all a<p. If we put J;=\U,<, H®).;
for 0<i<n, then we can easily show that J=J,=J,_,<---=J,=L is a chain of
subspaces of L such that [J;, J]=J;,, for0<i<n. Hence J € & (wsi) and there-
fore Le €°. Thus we have Mn L<T°n .

Finally we have the following
THEOREM 3.5. (1) Let X be any one of the classes
B, My, Ay, Fn (RN, Fn(NA).

If Le X, then & (wsi) is a complete sublattice of the lattice ().
(2) Let X be any one of the classes

D, M, Ay, FNRD), Fn(NRA).
If Le X, then &(si) is a complete sublattice of the lattice . (<).

Proor. If LeDUM, (resp. Le DUM,), then &y (wsi) (resp. S (si)) is
clearly a complete sublattice of &;(<). If LeU,, then by Theorems 2.10 and
3.4 & (wsi) (=&,(s1)) is a complete sublattice of #;(<). Since F<IM n M, the
results for the other cases are immediately deduced from Theorems 2.11 and 3.4.

4.

In this section we shall present several examples in connection with the
previous sections.

First we present two examples showing that &;(wsi) (resp. #.(si)) is not
necessarily a complete sublattice of the lattice & (<), even if & (wsi) (resp.
&1(si)) is a sublattice of &, ().

ExaMPLE 4.1. Let t be any field of characteristic zero and let 4 be an abelian
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Lie algebra over ¥ with basis {a;: ie Z}, where Z denotes the set of integers.
For each integer j>0, define x;eDer(4) by a;x;=a;,; for any ieZ. Let X
denote the subalgebra of Der (4) generated by the elements x;’s. Then X is an
abelian Lie algebra with basis {x;:j>0}. We construct the split extension
M=A+X of Aby X. Since M has basis {a;, x;: i, jeZ, j>0}, we can define
¢ € End (M) by

ai5 = a; + iai_.l (ieZ),
X0 =jX;_y (=0,

where we regard x_; as the zero map on A. By the definition of 6 we can easily
see that for any i, je Z with j>0

[ai, x;10 = [a:0, x;] + [a;, x;6].

It follows that ¢ is a derivation of M. We construct the split extension L=M
{6> of M by <(6). Then L=A+X4{d). Since A is d-invariant, 4 is an ideal
of L. Define Y=<(X, ). Since X is d-invariant, Y is the split extension of an
abelian ideal X by (§). Furthermore,

Y2 = [X, 6] = X6 = X.

Hence Y2eA and dim(Y/Y2)=1. Therefore we have Ye A, \A. It is clear
that L is the split extension of A by Y. Thus Le AA,. By using Theorem 2.10
we have Le 8 n L. Therefore &, (wsi) (=;(si)) is a sublattice of the lattice
F(L).

Next we shall show that L&€_ U 2,. To do this it is sufficient to show that
M&S,. Suppose that it has been shown. Since M<iL, we have L&€,.
Clearly Le 23. By Lemma 1.3 (2) we have L& £,,. Now for any i, ne Z with
n>0, put

a(i, n) = Yi-0 «Cilisk

and define A,=<a(i, n):ieZ). Then A, has basis {a(i, n):ieZ}. We put
z=Xxo+x,. Itis not hard to show that [4,,z]=A4, for any n>0. Since A<M,
we have A;>A,>:--. For any integer n>0, define H,=<A,, z). Since [a(i, n),
x;1=a(i+ j, n) for all i, je Z with j>0, we have [4,, X]=A4,. Hence 4,<M
and therefore

M,, Hn] =[4+X, n A,,+<Z>] = [Asnz] =4,< Hn'

It follows that H,<"M. This is true for all n>0. Now assume that Me €.
Then H=N\,>oH,wsiM and so [M, H]c<H for some r>0. We put B=
Np>o Ay, so that H=B+{z). Since [B, X]< B, we have
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[M,,H] =[4+X, rB+<Z>] = [A,,.Z] = 4,.
Hence A, =H. By modular law
A, = A, 0 (B+<z)) =B+ (4,nz)) =B < 4,

and therefore 4,=A4,,,. Since a(0, r)eA,,, we can write a(0, r)= > 7_; a(iy,
r+1), where Oxo,ef and i, e Z(1<k<s) such that i;<---<i,. Then we have
i;=0 and a;=1. Also i;+r+1=r and a;,=1. Hence i;=—-1<0=i;, a con-
tradiction. Therefore we have M&2,. Thus L& €, U L,. This implies that
S(wsi) (=&, (s1)) is not a complete sublattice of the lattice ().

EXAMPLE 4.2. Let T be any field of characteristic p>0 and let 4 be the ad-
ditive abelian group of type p®. We consider an abelian Lie algebra X over f
with basis {x,: ae A}. For each b e A4, define §(b) € Der (X) by

xaé(b) = f=_01 Xa+ib (a € A) .

Let Y denote the subalgebra of Der (X) generated by the set {5(b): be A}. It
is clear that [d(b), 6(c)]=0 for all b, ce A. Hence YeUA. We construct the
split extension L=X 4 Yof X by Y. Then L e %? and therefore by Corollary 2.5
Le®n L. Thus & (wsi) (=,(si)) is a sublattice of the lattice & ().

Now let be A. First we show that in the associative algebra End (X)

(%) d(b)P" = 6(p"b) . for any integer n > 1.

To show this we may restrict our attention to the case n=1. For any a€ 4, we
have an expression

= p—1 p—1 = (p=1)p
X 0(0)F = 302 - Zi,,=o Xa+ (iy+etip)b — 220V miX ot ins

where each n; is an integer such that 0<n;<p. We introduce an indeterminate ¢
and work in the polynomial algebra f[¢]. Obviously

(zlirz—& ti)p = fl—:10 ﬁ)—:lo girttip = 25261)17 niti'
On the other hand, since char (f)=p>0 we have
(X825 )P = Xh5g ¢,
Hence Y {2oVP niti = Y P-4 1P, so
1 if pli,

h i =
0 otherwise.

Therefore
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xaa(b)p = Zgg(—)l)P NiXgtip = Zf;é xa+ipb = xaé(pb)'

This is true for allae A. Thus 8(b)?=45(pb) and (*) is proved. Since 4 is of type
p%, [{b)|=p" for some integer n>0. Then by (*)

8(b) »" = 8(p"b) = 5(0) = 0.

Hence
<X, 8(b)>P™*t = [X, pn 6(b)] = X6(b)*" = 0.

Therefore we have <X, (b)) e R. Since L2< X, <X, d(b))<sL. Clearly we have

L=3Y,.4{X, d(b)). It follows that L is a Fitting algebra.

Next we show that L&I U MU €U L*. To do this it suffices to show that
L & 8. Suppose that it has been shown. Since L € €, by Theorem 3.4 (1) we
have L&M. Therefore by Lemma 1.3 (2) L&EM U L*. Now assume, to the
contrary, that Le 8®. Since L is a Fitting algebra, <{8(b)) si L for all be A.
Hence Y={d(b): be A) wsi L and so Y <™L for some integer m>0. Thereis an
integer n>0 such that m< p". Since A4 is of type p®, we can find an element b
of A of order p**1. By (%)

[xpnb,pn O(D)] = Xpnp0(B)?" = X,npd(P"b) = 322G X1+ 1)pmp * 0.
Hence [X, ,»{6(b)>]=0. However,
[X, OIS [X, nY]1S Y

and therefore [X, ,,{(d(b)>]=X n Y=0, a contradiction. Thus we have L&E£>.
We consequently obtain L& U MU €2 U L*. In particular, & (wsi) (= F(si))
is not a complete sublattice of the lattice #;(<).

ReEMARK. Let L be the Lie algebra constructed in Example 4.2. Then Lis a
Fitting algebra, but L does not satisfy the idealizer condition. In fact, we can
prove that I,(Y)=Y<L. Let xeCx(Y). Since 4 is of type p®, we can write

— -1
X = 2h=0 %X,

where ae A with |{a)|=p" and o;€f(0<i<p"). Since A is a radicable group,
A has an element b such that ppb=a. Then

x0(b) = IG5 oyxipp 0(b) = IS HZG X iptjype
On the other hand, xd(b)=[x, 6(b)]=0 as xe Cx(Y). Hence we have > 2 5!
T Pzh X p4+ jp=0. Since b is of order p*!, we have o;=0 (0<i<p"). There-
fore x=0. Thus we have Cx(Y)=0. It follows that I;(Y)n X=0. By modular
law
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I(N=I,(NnX+Y)=U(NnX)+Y=7Y.
Therefore we obtain I;(Y)=Y<L.

Finally we shall construct an example of (2* n 2*)-algebras L such that both
&, (wsi) and #;(si) are complete sublattices of the lattice & (<).

EXAMPLE 4.3. Let f be a field in which a2+ f2+92=0 always implies
a=f=y=0 (for example, take as ¥ the field of real numbers). Let A be an
abelian Lie algebra over  with basis {a,, a,,...} and let x, y, z be respectively the
derivations of A defined by

A3 X = d3;41, A3;41X = —d3z;, 334X =0 (i=0),
azy =0, A3i+1) = Q34425 342 = — 3441 (i=0),
A3,Z = A3342, A3i412 =0, A3i422 = —a3; (i=0).

We denote by S the subalgebra of Der (4) generated by the elements x, y and z.
It is easy to see that

[x, ¥l =12z [y, zZ]1 = x, [z, x] = y.

Hence S is a 3-dimensional simple Lie algebra with basis {x, y, z}. First we show
that Se©. To do this it is sufficient to show that S has no 1-dimensional weak
subideals. Assume, to the contrary, that S has a 1-dimensional weak subideal,
say {w)>. Since {w) has codimension 2 in S, {w)><2S and hence [S, ,{(w)]<=
{w). Write w=ax+ fy+yz, where o, §, yef. Then we have f0 or yx0. In
fact, suppose that f=y=0. Then a0, whence {w)=<x)>. Therefore —z=
[z, ,x] e {x), a contradiction. Now we can find a u € f such that [x, , w]=puw.
By calculation we have

[x, 2 wl = — (B2+y*)x + afy + ayz.

Hence —(f%+7y?)=pa, af=upf and ay=puy. Since B0 or y=0, we have a=pu.
Therefore o?+ f%2+792=0. This contradicts our assumption on f. Thus we

obtain Se &.
We now construct the split extension L=A4 4 S of 4 by S. Then by Theorem

2.7 we have
LeAS <AM, <8 n &

Let H wsi L and suppose that H&< A. Since 0xH+A/AwsiL/AeS, H+A/A=
L/A and so H+A=L. To each element ¢ of {x, y, z}, there correspond an h,e H
and an a,€ A4 such that t=h,+a,. Then for any integer i>0,
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Lasi, hy] = [asi, x—a,] = a3,
[a3i+1, hy] =[asi+1, J"'ay] = 0a3i+2,
[asi+2, —h.] =[a3;42, —z+a,] = ay,.

Since H wsi L, we can easily see that {as;, a3;,1, a3;4,} SH. This being true for
all i>0, we have A<H. Hence L=H+A=H. Therefore we have proved that

FL(wsi)={H: H< Aor H=L}={H: H<?L}.

It follows that Led, nM,. Using Theorem 3.4 we have LeE8*nT_nL*n
2,. Therefore both & (wsi) and &, (si) are complete sublattices of the lattice
SL(L).

Finally we show that Le 8* n 2*. Let X denote the class 2 U (L) of Lie al-
gebras over I, where (L) is the smallest class containing L. Evidently X<€n £.
Since &y (wsi)={H: H< A or H=L}, X is wsi-closed and hence 1-closed. Now
let M be any Lie algebra over f and let H, K wsi M (resp. H, K si M). Suppose
that J=(H, K> e X. We must show that J wsi M (resp.J si M). To dothis we
may assume that J&W, H<J and K<J. ThenJ=~L. Hence by the above argu-
ment we have [H, K]=0. By using Lemma 2.1 (resp. [2, Lemma 2.1.4]), we
obtain J wsi M (resp. J si M). Therefore X has the property (A) (resp. the property
(B)). It follows that X< ¥* (resp. X< €*). Thus we have Le 8*n £*.

ReMARK. Let L be the Lie algebra over any field f constructed as in Example
4.3. Then we can prove as above that Le I, n 8 n L n L*.
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