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1. Introduction

Consider the initial value problem for a stiff system

(i.i) y'=f(yl

where y is an m-vector and the m-vector f unction /(y) is assumed to be sufficiently

smooth. Let y(x) be the solution of this problem,

(1.2) Xj = x0+jh 0 = l,2, . . . ,/x>0),

and let J(y) be the Jacobian matrix of f ( y ) . We are concerned with the case

where approximations .̂(7 = 1, 2,...) of y(xj) are computed by ^4-stable modified

Rosenbrock methods of the form

(1-3) yn+ί = yn+Σϊ=ίPikί (n = 0, 1,...)

which require per step one evaluation of J, k evaluations of/ and the solution of a

system of m linear equations for q different right hand sides, where

(1.4) M/c^/ί/O^ Σj Ξ} atjkjϊ + hJ Σj=l dtjkj (ί = 1, 2,..., q),

the matrix M = I — ahJ is nonsingular, J = J(yn + bhf(yn)\ a and b are constants

and 0>0.
N0rsett and Wolfbrandt [10] obtained an ^4-stable method of order 3 for

k = q = 2. Kaps and Rentrop [6] have constructed an y4-stable method of order 4

which embeds a method of order 3 for k = 3 and q = 4. Kaps and Wanner [7]

have shown that there exists no ^4-stable method of order /c+1 for k = q = 4, 5 and

constructed an ^-stable method of order k for k = q = 5, 6.

Bui [2] derived an L-stable method of order k for k = q = 2, 3, 4. Cash [4]

has obtained a strongly ^[-stable method of order 3 which embeds a method of

order 2 for k = 2 and q = 4. Artemev and Demidov [1] have proposed a variable

order method which is γ4-stable and of order k for k= 1, 2, 3, 4.

The first object of this paper is to show that for q = 2k+ 1 (fc= 1, 2, 3) we can

construct an A-stable modified Rosenbrock method of order k + 2 and also a

method of order k + 1 by incorporating the first value of / in the next step of

integration. The discrepancy of these two methods can be used for stepsize
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control. It is also shown that a strongly ^-stable method of order fc + 2 exists
for fe=l, 2, 3. The second object of this paper is to show that there exists a
variable order method which is y4-stable and of order 2, 3, 5 for fe=l, 2, 3 re-
spectively. Finally these methods are illustrated by two numerical examples.

2. Preliminaries

Let

(2.1) /ι

and suppose that the matrix M = I — ahJ (a>0) is nonsingular, where a and b are
constants. Let

(2.2) Λ + 1 =

(2.3) ίπ+1 = t(xn, yn9 yn+1;h),

(2.4) zB+1 = yn+1 + tn+1,

(2.5) Φ(xrt, yH; h) = Σ$=ι (M + ̂ Λ H^h+sni (fc = 1, 2, 3),

(2.6) *(*„, Λ, Λ + I ; Λ) = Σ5-ι (pjkj + q^ + ̂ m.+s^ + t^hf^

where ^3 = ̂ *=0,

(2.7) fcy = X/}0' = l,2,3), /-Lfe^i^l^), m,=Ll^n,=Lm,J*=f(yn+J,

f2=f(yn + C2ikl+d2Jl)J3=f(yn+ΣΪ=ι(c3iki + dM + e3ί^

(2.8) X = ftM-1, L= XJ, M = /-f lAJ (Λ > 0),

c2ι> ^21, c3ί, d3ί, ,̂ ^(1 = 1,2),^.,^ 0 = 1,2, 3), r,s, r*, s* and ί* are
constants.

Let

(2.9) W 2 = < 2 1 > ^3 = ^31+^32, ^

7= d2ιC32 + u2d32 + e3ι, Z =

(2.10) w2 =

(2.11)

s(fl) = (120α
4
 - 240α

3
 + 120α

2
 -

ί(α) = 72(k
5
 - IδOOα

4
 + 1200α

3
 -
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z(fl) = 12005 - 600α4 + 600α3 - 200α2 + 25a - 1 .

Replacing in (2.10) pt (i = 1, 2, 3) and qj (j = 1, 2) with pf and g* respectively, we
define wf (ϊ = 2, 3) and bj (j = 1, 2, 3, 4, 5). In the sequel for simplicity we impose
the condition

(2.12) d21 = M2(M2-2a)/2, * = u,(u3-2a)/2.

Let

(2.13) T(x; h) = y(x) + Φ(x, j(x); Λ) -

(2.14) ί(x;Λ) = ί(x,Xx),

Then is Butcher's notation [3] Γ(x; /i) and ί(x; /ι) can be expanded into power
series in h as follows :

(2.15) T(x; Λ) = X

+ C5[[2/]2/] + C6[[/
2]/] + C7[[/]η + C8[[/]/2] + C9[/*])

(2.16) ί(x; Λ) =

For k=l and s = s*=0 we have

(2.17) Al=p1-ί,A2 = 2(ap1 + qί)-ί, A3

At = 3b(A2 + l)-l,

(2.18) B1=24r(a) + l2a(A3-3aA2 + 2a2Aί), B2=4b(A3 + l)-l, B3 = B2-2,

B4

(2.19) Λί

ί̂
(2.20) B? =
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For 6 = 0 we have

(2.21) A^bt-1, A

(2.22)

(2.23) Cl = 120(ί?5 - s(ά)) + 2000^ - 6aA3 + !2a2A2 -

C2 = 60w3 - 20α2 + 100 - 1 + 10α(B2 - 2aA4\

C3 = 3C4 = 3(5a-\)-5(4a-l)u2 + 5aB3 + 5

C5 = 120κ3 Yp3 - 2(2Qa2 - I5a + 2) 4- 100(£3 - 4α^4), C6 = 60u3u
2

ic32p3 - 4,

C8 = 2C7 = 6C9 = - 6 + 15(w2 4- M3)/2 + 10w2M3 + 5(u2 + u3)B3/2 -

(2.24) Dί =

D2 =

D4 = £>3/3 =

D5 = 720α(w2

D9 = £)8/6 = D7/3 =

, D13 = D 1 2 / 3 = Zu2-

= -10+12(w2

(2.25)

(2.26) B* = 24b*4 - 4v(ά)t* + 12

B*2 = 12w| + 4(1 -

+ 2a2A*)9

(2.27) Cf =

Cf = 60w? + 5(12α2 - 8α + l)ί*

C? = 3CJ = 5[3(1 - 4α) - 5α(l - 3α)u2]ί*

Cf = 120(ιi3 7p J + ί(α

C* = 2C? = 6Cξ = 30(1 - ιι2) (1 - ι/3)ί* + 5(w2 + w3)J^ -
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The stability function of the method (2.2) for the test system y' = λy is given by

(2.28) R(z) = 1 + Σ5=ι bjVJ

where F=z/(l — αz), z = λh and λ is an arbitrary complex number. Let JR(z) =
P(z)/β(z) and

(2.29) E(x) = |βOX>l2

where i is the imaginary unit, and P(z) and Q(z) are polynomials in z. Then the

method (2.2) is ^-stable [9] if and only if

(2.30) E(x) ^ 0 for all real x.

Let R(z) be the polynomial in V of exact degree p and

(2.31) P(z) = Σ?=o ejz'-J, β(z) = (1 - azf.

Then the method (2.2) is strongly ^.-stable if and only if e0 = 0 and (2.30) is satisfied.

3. Construction of A-stable methods

In this section we shall show the following

THEOREM 1. For fc = l, 2, 3 there exists an A-stable method (2.2) of order
k + 2 and a method (2.4) of order /c+1; a strongly A-stable method of order

k + 2 also exists.
By this theorem the difference tn+l of the methods (2.2) and (2.4) is available

for stepsize control. If yn+1 is accepted as an approximation of y(xn+l), then
/* can be used as/t in the next step of integration.

3.1. Casek=l
Choosing ^ = 0 (i = l, 2, 3, 4), ̂  = 0 (j = l, 2) and s = s* = 0, we have

(3.1) Pl = l, q, = -p(a\ r = «(α), 6 = 1

^3= -5/3,

(3.2) pT=-ί*, «ί = (α-l)ί*, ^f = 6

βf = 72αr* + 4(12α3 - 18α2 + l)ί*, 5f = 8r* + 4tι(α)ί*, E\ = Bf + 8ί*,

#* = 8ί*/3,

(3.3) Λ(z) = 1 + V-p(ά)V2 + q(ά)V*.

The equation r(α) = 0 has three positive roots at (i = l, 2, 3), where

(3.4) 0 < a1 < 1/6 < α2 < 1/3, α3 = 1.068579.
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We consider first the case q(a)^Q. In this case we have

(3.5) E(x) = c,x* + c2x*, e0= - v(a)/6,

where

(3.6) Cl = - 2r(a\ c2 = (3α - 1) (6a - 1) (v(a) + 6a3)/36.

Hence the method (2.2) is ^4-stable if and only if ct ̂  0 (i = 1, 2), that is,

(3.7) 1/3 = α = α3.

The choice α = l/3, r* = 7/432 and ί* = l/8 yields

(3.8) j;,,+ 1 =j; n + ̂  + ^6 -mi/18,

(3.9) tn+l = (Ar-fcJ/8 - /!/12 + 7m1/432,

(3.10) 5i = -1/9, X| = l/18, 4J = l/8, β* = 1/9, 5f = 2/27, 5^ = 29/27, 5J =

The method (2.2) is strongly yl-stable if and only if ι;(α) = 0 and (3.7) is
satisfied, that is,

(3.11) α = 0.4358665215.

Choosing r* = 17/400 and ί* = 1/8 for this value of a, we have

(3.12) βl =0.06413347849, r= -0.07922023027, B,= -0.6215300316,

(3.13) pf=-l/8, ^f= -0.07051668481, ^5 = 0.1186849362, AJ = l/8,

5f = 0.6207694834, B^ = 0.1582465816, B% = 1 .1 582465816, B| = 1/3.

Next we consider the case q(a) = Q, namely a = (3 ± x/3)/6. Since

(3.14) E(x) = (2a - l)2(4α - l)x4/4,

the method (2.2) is ^4-stable if and only if a ̂  1/4, so that we have

(3.15) a =

(3.16) Λ

The choice r* = 0 and ί*= -1/16 leads to

(3.17) fπ+1=(/Cι-/ι/*)/16 + (3-^3)^/96,

(3.18) ^? = (l+V3)/6, ^=-1/16, B*

3.2. Case k =2
Choosing b = 0 and Aι=Bt = Af = 0 (f = l, 2, 3, 4), we have
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(3.19) c 2 1 =3/4, rf21 = 3(3-8α)/32, Pl = 11/27, p2 = 16/27,

qι = -(22α + 5)/54, q2 = 4(l-4α)/27, r = (9a2-α-l)/9,

s = -α(18ίz2

(3.20) G! = - 120s(α), C2 = - 20α2 + lOα -1, C3 = 3C4 = 3/4,

C5 = -2(20α2-15α + 2), C6 = -4, C8 = 2C7 = 6C9 = -3/8,

(3.21) p? = 7ί*/9, pf=-16f*/9, «f+ $S = (3β + l)ί*/3, r* + 3gf/4 = 3(2-3α)ί*/3,

(3.22) B* = 24(d2lq*2+s*)-4v(a)t*, B*2 =27q2/4 + 4(1- 3α)ί*, β? = 3B| = 3ί*,

(3.23) Cf = 480α(ί/2, q f + s*) - 5(72α4 - 192α3 + 72α2 - l)ί*,

Cf = 135αgf/2 + 5(l-12α2)ί*, CJ = CJ/3= 135^/16 + 5(1- 3α)ί*,

C| = 20ί*, C| = 2C^ = 6Cξ = 105ί*/8,

(3.24) R(z) = l + V- p(a)V2 + q(a)V3 - r(a)V4.

In the case r(α) φ 0, we have

(3.25) E(x) = c3x
6 + c4x

8, e0 = w(α)/24,

where

(3.26) c3 = - (756α5 - 1224α4 + 768α3 - 204α2 + 24α -1)/72,

(3.27) c4 = (4α -1) (24α2 - 12α +1) (w(α) + 24α4).

Hence the method (2.2) is 4-stable if and only if cί = 0 (i = 3, 4), that is,

(3.28) α4 = a g α5,

where

(3.29) α4 = (3 + N/3)/12 = 0.394338, α5 = 1.28058.

The choice α = 2/5, gf = 1/225, s*= -1/1250 and ί* = l/10 yields

(3.30) yπ+1 = >'B+(llk1 + 16/c2)/27-23/1/90+m1/225-2(50/2-9n1)/1125,

(3.31) ίπ+1=(7/c1-16fc2)/90 + 31/1/450 + llm1/1500 + (50/2-9n1)/11250

+ Λ/*/10,

(3.32) d21 = -3/160, d = 11/125, C2 = -1/5, C5 = 8/5,

(3.33) B? = -157/2500, B| = -1/20, B| = 3B| = 3/10, Cf = -259/1250,

Cf=-17/50,

6Q = 21/16.
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The method (2.2) is strongly ^4-stable if w(0) = 0 and (3.28) is satisfied, namely

(3.34) 0 = 0.5728160625.

Choosing #f = 1/12, s* = sq$/q2 and ί* = l/8 in this case, we have

(3.35) d2i = -0.1483620469, ίlL = -0.3259620995, q2 = -0.1912984074,

r = 0.1533609012, c = s/q2 = -0.1625898283, C, = 3.271078415,

C2 = -1.834204204, C5 = 0.05975221696,

(3.36) pf = 7/72, pξ = -2/9, ^ff = 0.1132686745, ^5 = 1/12, r*= -0.05578010831,

£?= -0.3103660558, £f = 0.2032759063, 5J

Cf = -3.555653240, C| = 1.386203541, Q = CJ/3 = 0.2540948828,

C* = 0.9775929186, Cg = 5/2, Q = 2Cf = 6Cξ = 105/64.

Next we consider the case r(α) = 0, that is, a = al9 a2 or α3. Since E(x) =
c2x

6, by (3.6) the ^4-stability condition for (2.2) yields a = a3,

Cl = 3(20α2-10α + l)/2 > 39/2, C2 = -2CJ3 < -13,

C5 = -(20α2-15α + 2) < -35/2.

Hence no useful method is obtained in this case.

3.3. Case k =3

Choosing fc = 0, Ai = Bi = Af=Bf = 0 (i = l, 2, 3, 4) and C; = 0 (j = l, 2,...., 9),
we have

(3.37) 5(l

U2

2(u2-u3)p2 = (3-4ιι3)/12, ul(u3-u2)P3 = (3-4ιι2)/12,

I5u2u%c32p3 = 1, 6θMiί/32j73 = 20α2 - 100 + 1,

601/37^3 = 2002-150 + 2, Zp3 = s(α), 12u%(c32p3 + q2) = l-4α,

(3.38) D^ίCfl), D2

D5 = -2D14 = -2D16 = 4(60α3-60α2 + 150-1),

D6=-2D15=-2D17 = 4(60-1), D8 = 2D7 = 6D9 = 9(1 -5α)ι/2 + 6(60-1),

D10 = 24003-27002 + 720-
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DH = -12003 + 180α2 -420 + 1, D13 = D12/3 = 8w2-5,

D19 = 2D18/3 = 10D20 = 5ιιi(3-4ιι2

(3.39)

(3.40) Cf = 5[96(5α - 2)s(a) + w(α)]ί*, Cf = (400α3 - 30002 + 600 - 3)ί*,

C* = 3CJ = 5[3(1 - 4α) - 4(1 - 3α)w2]ί*, C? = 4(200α3 - 200α2 + 50α - 3) ί*,

Cg = 4(20α - 3)ί*, Cί = 2C? = 6Cξ = 30α(l - u2)ί*,

(3.41) R(z) = 1 + K- p(a)V2 + ^(α)F3 - r(a}V* + s(a)V5.

If (l-α)(l-4α)(l-5fl)^0, from (3.37) c21, d21, c3ί> d3ί, g £ ( i = l,2), e3l9 g3i9 PJ
(j = l, 2, 3), r and s are determined uniquely for given a.

In the case s(a) Φ 0, we have

(3.42) £(x) = c5x
6-2c6x

8 + c7x
10, e0 = -z(α)/120,

where

(3.43) c5 = (720α5 - ISOOα4 + 1 200α3 - 300α2 + 30α - 1)/360,

(3.44) c6 = (57600α7 - 158400α6 + 14496005 - 63600α4 + 1488003 - 1880α2

+ 120«-3)/57600,

(3.45) CΊ = (120α5 + z(α)) (120α5 - z(ά)) .

The method (2.2) is /1-stable if and only if c5^0, c7^0 and c6^N/c5c7, that is,

(3.46) 06 ^ a ̂  aΊ or a8 ^ a g 09,

where

(3.47) α6 = 0.24651, aΊ = 0.36180, α8 = 0.42078, 09 = 0.47326.

The choice a = 1/3 and ί* = 1/12 yields

(3.48) c21 = 6/5, d21 = 8/25, c31 = 406/729, c32 = 80/729,

d31 - -2552/19683, J32 = -40/19683, *31 = -416/6561,

β3l = 80/19683,

(3.49) yπ+1 = >;/ί + (1144/c1 + 125k2 + 2187k3)/3456~(272/1 + 115/2)/1296

+ 17m1/432 + 17n1/324,

(3.50) ίΛ+1 = (80/c1-125/c2-243/c3)/3456 + (35/1 + 10/2)/1296 + mi/144
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(3.51) D1=23/219 D2=-5/9, D3 = 3D4=-9/5,

I>5= -2D14= -2Z)16= -16/9, D6 = 4, Ds = 2D7 = 6D9 = - 6/5,

D 1 0= -29/27, Dn=23/9, D12 = 3D13 = 69/5, D15 = DίΊ=-2,

(3.52) Cf = 137/972, Cf = -41/324, Cf = 3C| = -5/12, CJ = -31/81,

C6* = 11/9, C8* = 2QT = 6CJ = - 1/6,

(3.53) Df = 583/486, Df = -29/54, Dξ = 3D| = - 157/90, Dξ = -58/9,

£>* = 10/9, Dξ = 2D% = 6Dξ = 181/15, Dί0 = - 1037/486,

D?! = 269/162, Df2 = 3D*3 = 43/10, D?4 = D*6 = - 161/81,

D*5 = D*7 = 37/9, D*9 = 2D*8/3 = 10DJ0 = -43/45.

The method (2.2) is strongly ,4-stable if z(α) = 0 and (3.46) is satisfied, that is,

(3.54) a = 0.2780538411.

For this value of a we have

(3.55) c21 = 2.086715347, d21 = 1.596971253, c31 = 0.6880907035,

c32 = 0.03385545541, d31 = -0.009352040051,

J32 = -0.001431432753, e31 = -0.07409613665,

g31 = 0.005937857065,

(3.56) P! = 0.3720306131, p2 = 0.001573567760, p3 = 0.6263958192,

q1 = -0.2102070122, q2 = -0.02335447252, r = -0.02535011637,

5 = 0.04882735273,

(3.57) D! = 0.3816347293, D2 = -0.3735928198,

D4 = D3/3 = -0.9604384354,

D5 = -2D14 = -2D16 = -0.7127297665,

D6 = -2D15 = -2D17 = 2.673292187,

D7 = D8/2 = 3D9 = -1.659744195, D10 = 0.4935616656,

Dn = 0.6585551038, D12 = 3D13 = 35.08116834,

Dί9 = 2D18/3 = 10D20 = 1.106496130.

The choice ί* = l/8 yields
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(3.58) p* = 0.07181502854, pξ = -0.005848618348, jpf = -0.1909664102,

q* = 0.05495023631, q% = 0.004878361809, r* = 0.007941406168,

s* = 0.007189851420, t* = 0.125,

(3.59) Cf = 0.03971741473, CJ = -0.1139970082,

C* = 3CJ = -1.075548044, Cξ = -0.1303043710,

Q = 1.280538411, Q = 2C? = 6C| = -1.133120162,

(3.60) D* = 0.3313073918, £>J = -0.4369146771,

D* = D*/3 = -1.073879143, DJ = -10.52551645,

D* = 0.9655441270, D* = DJ/2 = 3DJ = 28.12658147,

Dfo = -1.274483999, DJΊ = 2.024902351,

Df2 = 3D?3 = -4.018015275, D*4 = DJ6 = -4.489377832,

D*5 = D*7 = 4.858843171, D*9 = 2D*8/3 = 10DJ0 = -8.631342287.

Finally we consider the case s(α) = 0. Since we have (3.25) in this case, the
^-stability condition for (2.2) is given by (3.28). The equation s(α) = 0 has four
positive roots rf (z = 1, 2, 3, 4), where

r t = 0.09129, r2 = 0.17448, r3 = 0.38886, r4 = 1.34537.

These roots do not satisfy the condition (3.28), so that no ^4-stable method exists
in this case.

4. A variable order method

In this section we consider only the case b = 0 and show the following

THEOREM 2. For fc = 3 there exist a method (2.4) of order 4 and an A-stable
method (2.2) of order 5 which embeds an A-stable method of order j + 1 (.7 = 1, 2)
with j function evaluations.

Let

(4.1); yJ

n+1 = yn + Φj(χn,yn',h) 0 = 2,3,5),

(4.2) j t f+i = Λ + Ψ(χn9 yn, Λ.+I; Ό,

(4.3) Φ/xπ, Λ; /i) = Σϊ=ι (P/fc| + ί/I«) + ̂ '̂ i + ̂

O' = ( f c 2 - f c + l ) / 2 , f c = l , 2 , 3 ) ,

(4.4) ^n, Λ5 y*n+1 Λ) = Σ?=ι (PfΛI
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where

(4.5) ^ = 0(7=2,3,4,5), q\ = H = s2 = s3 = 0, /* =

Let

(4.6) 7}(x; Λ) = Xx) + Φ/x, Xx); Λ) - Xx + Λ) (j = 2, 3, 5) ,

(4.7) T4(x; Λ) = Xx) + Ψ(x, Xx), y(x + h); Λ) -Xx + Λ) .

Then T}(x h) (j = 2, 3, 4, 5) can be expanded into power series in h as follows :

(4.8) T/x; Λ) = 4*/ + Λi(h*l2) [/] + (A3/3!)(^[2/] 2 + Λ4T/2]) + - .

The condition ,4?=0 (i = l, 2) yields (3.14) and

(4.9) pf = l, β?=-Xβ).

For this choice of parameters the method (4.1)2 is of order 2 and is ^4-stable if
and only if α^ 1/4.

The choice ,43 = 0 (i = l, 2, 3, 4) leads to (3.5) and

(4.10) p\ + p\ = 1, u2p\ + q\= -p(a\ d2lp
3

2 + r3 = q(a\ u\p\ = 1/3.

If M27^0, from (4.10) p} (ί=l, 2), ^f? and r3 are determined uniquely for any
given a and d2ί and the method (4.1)3 is of order 3. It is ^4-stable if and only

if (3.7) is satisfied.

The condition A] =B\ =0(i = 1, 2, 3, 4) and CJ = 0 (7 = 1, 2,..., 9) yields (3.37)
and (3.42). If (1 - α) (1 - 4a) (1 - 50) ̂  0, then w2w3(M3 - w2) ̂  0 and from (3.37)

^21. ^21* C3p ^3ή ί? (ί> = ̂  2), e31, g31, pj (j = l, 2, 3), r5 and s5 are determined
uniquely for any given a and the method (4.1)5 is of order 5. It is yl-stable if and
only if (3.46) is satisfied.

Thus the methods (4.1)7 (j = 2, 3, 5) are ^4-stable together if and only if

(4.11) 1/3 ^ a ̂  aΊ or as ^ a ̂  α9.

The condition 1̂ = ̂  = 0 (i= 1, 2, 3, 4) yields

(4.12)

If M2w3(w3-M2)^0, from these pj O'=l, 2, 3), f̂ ( / = !, 2), r4 and s4 are
determined uniquely for any given a, d2i, c32, w2, t/3, X, 7 and f4, and the
method (4.2) is of order 4.
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Taking into consideration (4.11) and the condition (1 — ά)(l— 4α)(l — 50)^0,

we choose

(4.13) a = 1/3, ί4 = 1/12.

Then it follows that

(4.14) ^-n^ + fcι + Zι/6,

(4.15) A§ = l/3, A 2 = - l , flί = ll/9, Bi = -1, B| = 3JJJ = -3,

(4.16) c21 = 6/5, d21 = 8/25,

(4.17) y3 + ι = y|| + (83fcι + 25/c2)/108 - ZJ9 - 71^/54,

(4.18) 5? = -1/9, 51 = 1/3, Bl = 3BI = 9/5,

(4.19) c31 = 406/729, c32 = 80/729, d31 = -40/19683,

c/32 = -2552/19683, e31 = -416/6561, 031 = 80/19683,

(4.20) y5

n + 1 = yn + (1144/Ci + 125/c2 + 2187/c3)/3456 - (272^ +115/2)/1296

+ 17m1/432 + llnJ3249

(4.21) y*+l =yn + (Ilk, + 27fe3 + 4h/*)/48 - (474^ + 205/2)/2592

+ 5WJ108 + llnj/216,

(4.22) Cf = 137/972, CJ = -41/324, CJ = 3CJ = -5/12, Cf = -31/81,

CJ = 11/9, CJ = 2C^ = 6CJ = - 1/6.

5. Numerical examples

Numerical results on two problems are presented in this section.

Problem 1. /= -By+Uw, j<0)= -(1, 1, 1, 1)Γ,

where

(5.1) y = Uz, z = (zl9 z2, z39 z4)
Γ, w = (zf, z§, z|, z|)Γ,

17 = (iiy), iiy = 1/2 (i ^ j), uu = - 1/2 (/, j = 1, 2, 3, 4) ,

B=UDU, D = diag(jS1,jS2,j83,jS4), β, = 1000, J?2 = 800,

j8 3= -10, j?4 = 0.001.

The exact solution given in [5] is

(5.2) y(x) = I7z(x), zf(x) = βj(\ + cf?**\ c, = -(1 + ft) (i = 1, 2, 3, 4).

Profc/em 2. y' = Ay, y(Q) = (2, L 2)Γ,

where
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(5.3) A = (ajj), αn = -0.1, *12=-49.9, a22 = -50, α32 - 70,

α33 = -120, α13 = «21 = α23 = 031 = 0, y = (yl9 y2, y3)
τ.

The exact solution given in [8] is

(5.4) y^x) = e~°'lx + έΓ50*, y2(x) = e~50x, y3(x) = e~50x + e~120x.

To avoid the multiplication of the matrix J by a vector g, the vector v = Lg

is obtained by the formula M(v + g/a) = g/a, because L = KJ = (M~l-I)/a by (2.8).

The matrix M is decomposed by LLi-factorization and the infinity norm is used.

For methods (3.8), (3.30) and (3.49) computation is carried out in the following
manner:

(1) Compute yί9 tί9 d=\\tl\\ andr = max(l, \\yi\\).

(2) If d>εr, then halve the stepsize; replace δ by (5/8 if w = l ; go to (1).

(3) Replace x0 and y0 by x± and yί respectively and set w = 0.

(4) If d<δr, then double the stepsize and set w = 1.

(5) Go to (1).
Initially ft = 1/64, ε=lQ-2/2, δ = 2-k-4ε (fe=l, 2, 3) and w = 0. The error e and

the number s of integration steps are listed in Table 1.

The program for the variable order method is as follows:

(1) Compute y\, y\9 d=\\y\-y\\\ and r = max(l, \\yl\\).

(2) If d^εr, then set yί=yl and go to (6).

(3) Compute y\9 tf, d= \\yl-tf\\ and r=max(l, \\yl\\).

(4) If d^εr, then set y^=y\ and go to (6).

(5) Halve the stepsize; replace δ by (5/8 if w = 1 go to (1).

(6) Replace x0 and y0 by xί and yί respectively and set w = 0.

(7) If d^δr, then double the stepsize and set w = 1.

(8) Go to (1).
Initially ft = 1/64, β=10~2/2, <5 = 2~5ε and w = 0. The error e, the number s of

integration steps and the number n of steps in which the method of order 5 is not

used are listed in Table 2.
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Table 1.

Prob

1

.x

1/64

1/8

1

8

1/64

1 ί /

1

8

k=l

e

1.614E-2

6.975E-2

4.628E-3

3.401E-3

5.502E-4

9.228E-3

2.228E-2

4.769E-2

s

10

25

88

144

*=2

e

6.619E-3

6.144E-2

1.822E-3

2.668E-3
!

2 9.772E-5

10 6.482E-4

19

29

8.978E-3

3.814E-2

s

8

16

62

84

5

12

21

30

*=3

e s

3.595E-3

9.850E-2

1.139E-2

4.524E-3

3.903E-3

9.291E-4

7.050E-3

3.054E-2

6

12

21

30

1

6

12

18

Table 2.

X

1/64

1/8

1

8

Problem 1

e

8.279E-3

7.243E-2

1.495E-2

1.342E-2

s

7

17

38

47

n

5

14

34

43

Problem 2

e

3.903E-3

9.570E-6

1.652E-2

4.097E-2

s

1

8

17

26

n

0

6

15

22
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