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A note on Dirichlet regularity on harmonic spaces
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In [2], U. Kuran showed that for a bounded open set Ω in Rn (n > 2), a
boundary point x0 e dΩ is regular for the Dirichlet problem in Ω if and only if
G(x0, -) is quasi-bounded on ί2, where G(x, y) = \χ — y\2~n when n > 3 and is
the Green function of a disc containing Ω when n = 2. In this note we shall
investigate the above result on a P-harmonic space having an adjoint structure,
and as a consequence, we obtain a parabolic counterpart of Kuran's criterion.

§1. Main result

Let X be a locally compact Hausdorff space with a countable
base. Following F-Y. Maeda ([3], [4]), we say that a harmonic space (X, tft)
has an adjoint structure ^* if (X, tft) and (X, <%*) are both P-harmonic spaces
in the sense of Constantinescu-Cornea [1] and there is the associated Green
function G(x, y): X x X -> [0, oo] satisfying the following conditions:

(G.O) G( , •) is lower semicontinuous on X x X and continuous off the
diagonal set;

(G.I) For each yeX, G( , y) (resp. for each xeX, G(x, •)) is a ^-potential
(resp. ^-potential) and is ^-harmonic on ^f\{.y} (resp. ^"-harmonic on

(G.2) For any continuous ^-potential p (resp. any continuous ^*-
potential p*\ there is a unique nonnegative measure μ on X such that p

G( , y)dμ(y) (resp. p* = fθ(x, )dμ(x)).= ίG( , y)dμ(y) (resp. p* = f

Then, as remarked in [3, Remarks 1.1 and 1.2], the associated Green function is
detrmined uniquely up to a multiplicative constant, and both harmonic spaces
(X, <%) and (X, <%£*) have Doob's convergence property and satisfy the
proportionality axiom.

Since any open set D in X is ^-resolutive ([1, Theorem 2.4.2]), there exists
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the Perron-Wiener-Brelot solution Hf of the Dirichlet problem in D with a

boundary function / in Cκ(dD) ( = the set of continuous functions on dD with

compact support). As usual, we say that a point x0edD is a ^-regular
boundary point of D, if

for every /e Cx(

From now on we always assume that the constant function 1 is Φ*-
superharmonic on X. Our result is stated as follows:

THEOREM. Let D be an open set in X and let x0 be a point of dD. Ifx0 is a
% '-regular boundary point of D, then G(x0, •) is tft* -quasi-bounded on
D. Further, if either {x0} is a ty* -polar set or G(x0, •) is continuous on D, then
the converse assertion also holds.

Here, a function on D is called tfl* -quasi-bounded on D if it is ^*-harmonic
and is the limit of an increasing sequence of nonnegative and bounded ^*-

harmonic functions on D. Remark that a compact set in X is a ^*-polar set if

(and only if) there is a ^-potential on X which is oo on K and is fiite on X\K
(cf. [I,p.l42 and p. 147]). Also the ^*-polarity coincides with the ^-polarity
(see Remark 1 in Section 4).

Note that for the converse assertion in Theorem the condition that {x0} is
^*-polar or G(x0, •) is continuous on D can not be removed (see Remark 4 in
Section 4).

Since the heat equation on Rn x R (n > 1) defines a P-harmonic space with
an adjoint structute, an since a singleton is polar in this context (cf. [1, §3.3],

[3, §4]) our theorem leads us to

COROLLARY. Let D be an open set in Rn x R and let x0 = (ξ0, t0) be its

boundary point. For y = (ξ, ί)eA we set

G(x0, y) =
( 0, t0 < t.

Then x0 is a regular boundary point of D with respect to A — — if and only if

d
G(x0, ) is quasi-bounded on D with respect to A + — .

§2. Notations

Let D be an open set in X and let / be an extended real-valued function on
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the boundary dD of D. We denote by tyt® the set of ^-hyperharmonic
functions u on D which are lower bounded on D, nonnegative outside a
compact set of X, and satisfy the inequality

liming, ιι(x)>/00 (yedD).

We set ^f'.= -^D-f The infimum of <%$ and the supremum of <%$ are
denoted by HD

f and H$9 respectively. Then HD

f < HD

f on X (cf. [1, Corollary
2.3.3]). If HΌ

f = H1}, then we denote their common value by H%.
We use 5̂ + to denote the set of nonnegative ^-superharmonic functions on

X. For ue^+ and a subset A in X, the reduit of u on A and the balayage of u
on ,4 are denoted by R* and #;?, respectively. Namily,

Rϊ(x) = inf (ϋ(x); ve£f + 9 v > u on A} ( x ε X )

and β f is the lower semicontinuous regularization of RA. Obviously R^
and if A is open, then Rf = Rf on X (cf. [1, p. 108]).

The corresponding ones with respect to <%* are denoted by <%JD, <%$,
HJD, HJD, &>*, R$A and R**A (w*e^*), respectively.

§ 3. Lemmas

In the following lemmas, D will be an open set in X. Lemmas 1 and 2 are
stated with respect to <%*. The corresponding assertions with respect <%l are
also valid.

LEMMA 1 (cf. [2, Lemma 1]). Let p* be a 91* -potential on X and let K be a
compact tf/*-polar set contained in dD. If p* is <%* -quasi-bounded on D and
continuous on D\K, then

(1) p* = H*P on D.

PROOF. By the assumptions, there is a ^-potential u* on X which is oo
on K and finite on D, and there also exists an increasing sequence {h%}™=1 of
nonnegative bounded ^*-harmonic functions on D which converges to p* on
D. Let t;* be an Evans function of p*, namely, v^G^ί such that for any ε > 0
the set {xeΛΓ; p*(x) > εv*(x)} is relatively compact. We may assume that v* is
finite on D (cf. [1, Proposition 2.2.4]).

Since D is a ^*-MP-set ([1], Corollary 2.3.3.]), p*e€**D and given ε > 0,
h% — ε(v* + u*)e<%$P for each n>l. Hence letting n -> oo we have

p* > H$? > H*P > p* - ε(υ* + ιι*)

on X. Since ε is arbitrary, p* = H **D, which completes the proof of Lemma 1.

LEMMA 2. Ifu*ε^ϊ, then
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(2) tf*D(x) = R^D(x) (xeD).

PROOF. Since R*?\D = R$D on D, this lemma follows from [1, Propo-
sition 5.3.3].

LEMMA 3. A boundary point x0 e dD is tfί-regular if and only if

(3) RZ$M = G(x09 y) for all y e X.

To prove Lemma 3 we need the following duality relation for the balayage
of the Green function:

LEMMA 4. For an arbitrary subset A of X, we have

(4) R&..*(x)

PROOF. First we note that y -> #G(.,y)M is a $f*-ρotential on X. This
follows from the equality

where ε^f is the ^-balayaged measure of εx ( = the Dirac measure at x) on A (cf.
[1, Corollary 7.1.2]). Likewise x -+ R%(Xt.)(y) is a ^-potential on X.

If A is open, then the relation (4) is given in [4, Lemma 1.3]. Now let A
be an arbitrary subset in X. By [1, Corollary 4.2.2] we may assume that A is
relatively compact, so that there is a continuous ^-potential p0 on X such that
p0 > 0 on A. We show that for any continuous ^-potential p on X,

(5) Rΐ = mfϋeβAR
u

p,

where βA is the family of all open sets in X containing A. In fact, let ve&+,
v > p on A. Given ε > 0, put UB = {xeX;(υ + εp0)(x) > p(x)}. Then Ue e <9A9

so that

MUeffΛ Ru

p < Ό + sp0 on X.

Since v and ε are arbitrary, we have inf^^^ R% < R* . The converse inequality
is trivial, and hence (5) follows.

Next let x, yeX. There is a sequence of continuous ^-potentials {pn}^°=1

on X such that {pn}™=ι increasingly converges to G( ,y) and if pn

= G( , η)dμn(η\ then {μn}^=1 vaguely converges to εy. Then for each n > 1,

pn(ξ)dεv

x(ξ)(
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, η)dεu

x(ξ)dμn(η) = inf

= inf^ fR$x,,(η)dμn(η) > ί R^

Since 77 -> ^G(i, )W *s l°wer semicontinuous, by letting n -» oo in the above, we

conclude RG(.^(X) > Rζ^.^y). Since x -> KSoUOO ^s also l°wer semiconti-
nuous, we thus obtain RG(.,y)(x) > Rfx^.)(y) for x, yeX. By symmetry the
converse inequality also holds, and the required result follows.

PROOF OF LEMMA 3. The "if" part: Assume that x0edD is not < -̂

regular. Then X\D is ^-thin at x0, and hence there is a continuous <%-

potential p on X such that K*VI>(XO) < p(x0) (cf. [1, Proposition 6.3.2 and

Theorem 6.3.3]). Representing p= \G( 9 y ) d μ ( y ) by some nonnegative mea-

sure μ on X (by (G.2)), in the light of (4), we obtain

(XO, y)dμ(y) = p(x0)

= G(z, y)dεx

x\
D(z)dμ(y) =

Jj

The "only if" part: We first remark that two functions in «5̂ ί are equal

identically provided that they coincide on ^ί\{x0} (cf. [1, Corollary 5.1.2]).

Let us assume that R**x?, ) / G(x0, •)• Then by the above observation,

there is y0eX with y0 + x0 such that R^^.}(y0) < G(x0, y0). We now take a
continuous ^-potential p on X satisfying p < G( , y0) on X and p — G( , y0) on

some neighbourhood of x0. Then by equality (4)

R?D(*o) < RXG\D,yo)(χ0) = R*G$M < G(χ09 yσ) = PίxJ

This shows that X\D is ^T-thin at x0 and therefore x0 is not ^-regular, again by

[1, Proposition 6.3.2 and Theorem 6.3.3].

§4. Proof of Theorem and remarks

We follow the arguments in the proof of [2, Theorem 3]. Assume first

that x0edD is ^-regular. Then according to Lemmas 2 and 3,

H8£.,)(y) = ΛSS&ω = G(*o, y) (yeo).

Hence denoting min{G(x0, •)> n} by /„ for n > 1, we have HJ^<n and

lim^^ HJ» = G(x0, •) on D ([1, Proposition 2.4.2]). This means the <^*-quasi-
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boundedness of G(x0, •) on D.

Conversely, assume that G(x0, •) is ^*-quasi-bounded on D. If {x0} is a
<^*-polar set or G(x0, •) is a continuous function on D, then using Lemmas 1
and 2 we have, in either case,

G(x09 y) = H$Xo,}(y) = Rtfx\
D,(y) for all yeD.

From this R%*X\
D.) = G(x0, •) follows, and hence £$£,.) = G(x0, •). By Lemma 3,

it follows that x0 is a ^-regular boundary point of D. This completes the proof
of Theorem.

Before closing this paper we make some remarks concerning the case where
a singleton is nonpolar.

REMARK 1. For a subset F of X, the following assertions are equivalent:
(a) F is a ^-polar set.

(b) Rf = 0 for any continuous ^-potential p on X.

(c) #£(,y)(x) = 0 for any x, ye X.
(d) F is a ^*-ρolar set.

(e) R*f = 0 for any continuous ^-potential p* on X.

(0 £&..,()>) = 0 for any x,

The implications (b) -> (a) -> (c) and (e) -> (d) -> (f) are given in [1, p. 147 and

Proposition 6.2.4]. Also (c)-»(b) and (f)-»(e) follow from (G.2) and [1,

Corollary 7.1.2]. Finally we see (c)<->(f) by Lemma 4.

REMARK 2. Suppose that {x0} be not ^*-polar. Then G(x09 •) is bounded
on X. Likewise G( , x0) is bounded on X, if

In fact, by the preceding remark, there is a continuos ^-potential p* on X

such that R**(Xo} 7^0. By our assumption le^ί, we may assume that p* is

bounded. Since R**{Xo} is ^*-harmonic on Ji\{x0}, the proportionality axiom
for (X, <%*) yields R$*(Xo} = cG(x0, •) with some constant c > 0, and this shows
that G(x0, •) is bounded on X. The case for G( , x0) is similar.

REMARK 3. Suppose again that {x0} is not ^*-polar and le^+ Then

the following assertions are equivalent:
(a) x0 is ^-regular for
(b) x0 is ^"-regular for
(c) G(x0, •) is continuous at x0.
(d) G( , x0) is continuous at x0.

In fact, since G(x0, •) is bounded by the previous remark, it is ^-quasi-
bounded on X\{x0}, so that (c) -> (a) follows from our Theorem. Similarly (d)

-» (b) holds by the dual statement of our theorem. For (a) -> (d), let x0 be 91-
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regular. Since RG(°ZO) ^ 0 for some z0εX, as in Remark 2, there is a constant
c > 0 such that

H&{oX:M = H$.[%}(x) = R£:L(x) = cG(x, x0)

for every xeX\{x0}. From the ^-regularity of x0, HQ\^°Z

]

O) is continuous on
X, and hence G( , xσ) is continous at x0. Likewise (b)->(c) follows.

The author is indebted to Professor J. Bliedtner for the following remark.

REMARK 4. Let X be the real line R. For any open set U in R, we denote

by <%(U) the set of left continuous increasing functions on U. Then (X, W) is a
P-harmonic space having an adjoint structure, and the associated Green functin

is

1 if x > v

In this case every singleton is nonpolar. Let D be the open interval

(0,1). Then G(l, •) is bounded on D, while x0 = 1 is not a ^-regular boundary

point of D.
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