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1. Introduction

In this paper, we are concerned mainly with knots, by which we mean
topologically embedded circles in the 3-sphere S3.

Let X be a subset of S3. Then, X is PL if it is a subpolyhedron of S3, tame if
h(X) is PL for some homeomorphism h: S3=x S3, and wild if it is not tame.
Furthermore, X is locally tame at x € X if there are an open set V3 x in S3and a
homeomorphism ¢: V~ E3 such that ¢(V'n X) is a subpolyhedron of E3 (E"
denotes the Euclidean n-space), and when X is a knot, X is locally flat at xe X
if (V' n X)=E" in addition. For a knot J = S3, we note that these local properties
are equivalent to each other, and consider the closed subset

E(J) = {xeJ|J is not locally tame at x} < J.

Then, Bing’s theorem [2] says that J is tame if and only if E(J) is empty.

We shall say that a knot J < S3 is wealky tame if there is a PL knot K< S3
such that the complement S3—K is homeomorphic to S*—J, and weakly flat
according to Duvall [7] if K is unknotted in addition; and we shall study several
properties of such a knot J by taking notice of the set E(J).

The main results are stated as follows.

THEOREM 1. Assume that a knot J<=S3 is weakly tame, and let U be an
open set in J. Then, J is locally tame at every point xe U if so is at every
point x € U—C*, where C* is a Cantor set in U.

COROLLARY. If a knot J=S3 is weakly tame, then E(J) has no isolated
points. If J is locally tame at every point x € J— C* for a Cantor set C¥<J in
addition, then it turns out that E(J) is empty and J is tame.

Theorem I means that E(J) for a weakly tame knot J can not be 0-dimensional.
In contrast with this we can find a weakly tame knot J with 1-dimensional E(J):
most significant one is given by the following

THEOREM II. For each PL knot K < S3, there is a wild knot J<S3 such that
S3—J is homeomorphic to S?—K and J is everywhere wild, i.e., E(J)=J.

A proof of Theorem I using Cannon’s characterization of tame arcs in S3
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will be given in §2. We can give also an elementary proof by comparing a system
of neighborhoods of a Cantor set C* with the standard one, as described in the
original version of the paper.

Theorem II is proved in §3. Bing [3] developed the “hooked rug’’ method,
by which Alford constructed a “‘nice’’ wild 2-sphere in S3 ([1]); it contains a wild
knot J* whose E(J*) is an arc (Rushing [14]). We show that this knot J* is
weakly flat (Theorem 3.1), and then prove Theorem II by taking J as a connected
sum of K and infinitely many copies of this J*.

The following notation and the terminologies are used in this paper:

~ : homeomorphic, id: the identity map, ¢:empty set, = :isomorphic,
E": Euclidean n-space, E"=E"1x[0, c0), B"=[—-1,1]", rB"=[—r,r]"
(r>0), S*=0B"*1: the n-sphere, d: a metric on S", diam X : the diameter of X,
Cl X: the closure of X, Fr X: the frontier of X, N(X, r)={xe S3d(x, X)<r}
(X <=83).

For X =83, X is locally polyhedral at x e X if X n V is polyhedral for some
closed neighborhood V of x in S3. When X is a compact n-manifold (1 <n<3),
X is locally flat at xe X if it is locally tame at x by an open set Vs x and ¢:
V~ E? with ¢(V'n X)=E" or E" according to xed0X or not in addition (these
local properties are equivalent), and X is locally flat if so it at every point x € X.

2. Proof of Theorem I

We first recall a characterization of tame arcs in S3.

DEFINITION. An arc A4 in S3 is said to have 1-ALG complement in S3 if for
each ¢>0 there is a >0 such that each loop in S3— A which is null-homologous
(Z-coeflicients) in a d-subset of S3— A4 bounds a singular ¢-disk in S3— A.

THeOREM 2.1 (J. W. Cannon [5, Th. 3.16]). An arc A in S3? is tame if it
has 1-ALG complement in S3.
We prove Theorem I by this theorem together with the following

PROPOSITION 2.2. Let J be a knot in Theorem 1 and p be an arbitrary point
of U. Then, for each open neighborhood W of p in S3 there is an open neighbor-
hood V<= W of p such that every loop in V—J which is null-homologous in V—J is
null-homotopic in W—J.

PrOOF OF THEOREM I. Let A be an arc in U with Int AcC*. For each ¢>0,
we define an open covering {V,|x € S3} of S3 as follows:

V, = N(x, min (g2, d(x, A)), for xeS3 — 4;
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V.=V given by Proposition 2.2 for p=x and W=N(x, ¢/2), for x € Int 4; and
V.3 x is an open e-subset with (V,, An V)= (E3, E}), for x € 0 A.

Then, there is a Lebesgue number 6>0 for {V,}, i.e., each &-subset of S3 is
contained in some V,. Thus, A has 1-ALG complement in S3, and A4 is tame by
Theorem 2.1.[]

To prove Proposition 2.2, we prepare the following

LEMMA 2.3. Suppose that a knot J<S3 is weakly tame. Then, there is a
sequence {P,} of locally flat solid tori in S3 such that

(1) IntP,>P,,,, "\P,=J and P,—IntP,,,~0P,x [0, 1], and
(2) J is a deformation retract of P,.

Proor. Let K be a PL knot with S3—J=~ S3— K by assumption.
Case 1: K is a trivial knot. Let h: S3—J=S! x E2 be a homeomorphism,
and put

0,=h"'(S'xnB2), P,=S%—1IntQ,.

Since Q, is a locally flat solid torus in S3, we note that P, is a knot space. Since
Jc<lInt P, is compact and J has codimension 2 in P,, P,—J is connected and
n,(P,—J)->n,(P,) is an epimorphism (see p. 329 of [11]). Note that P,—J~
S1x S' %[0, o). Then, n,(P,—J)=Z®Z, and so =,(P,) is abelian. Hence,
n,(P,)=~H,(P,)=~ Z and P, is a solid torus.

Case 2: K is not trivial. Take h: S3—J~S3—K and a tubular neighbor-
hood K x E? of K; S3>K x E2cK x {0} =K.

0, = h™'(S*—K xInt(1/n)B?), P,=S°—1IntQ,.

Then, the knot space Q, is not a solid torus. It follows that P, is a solid torus
(cf. Rolfsen [13, Th. (4.C.1)]).

Clearly, {P,} satisfies the other conditions in (1). Since J~S! is an ANR,
there are an open set R>J in S3 and a retraction r: R—»J. Then, there is an m
such that P,cR foralln>m. Letn>m. Then, r|P,: P,—J is a retraction, and
o)

Z~n(P) WP () Z

is an isomorphism. Thus, 7|P, is a deformation retraction. Let n<m. Then,
by the last condition in (1), P, is a deformation retract of P,; and we see (2).[]

PRrROOF OF PropPOSITION 2.2. By Bing [2, Th. 9], we may assume that J is
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locally polyhedral at every point of U—C*. Also we may assume that WnJc<U.
Take a subarc I of Wn J such that peInt ], and both end points a, and a, of I
are contained in U—C*. Then, there are disjoint PL disks D, and D, in W such
that D;n J={a;} and J intersects D; transversely at a; (i=0, 1). By Lemma 2.3,
there is a locally flat solid torus P<S3 such that Pn (0D, U 0D,)=g, J<Int P
and J is a deformation retract of P. Let X and X’ be the components of Int P—
(Dg U D) containing Int I and J — I, respectively.

Claim 1. X=xX'.

Suppose that X=X’. Take a point geJ—1. Then, there is an arc Hc X
joining p and q. Let H'3 a, be the subarc of J which joins p and q. Then, the
loop HU H' in Int P intersects D, transversely at a, and (H U H')n Dy={a,}.
Thus, H U H' is homotopic to J in Int P, because J is a deformation retract of P,
JnDy={a,} and J intersect transversely at a,. But, (HU H')n D,=g; this is
a contradiction. Claim 1 follows.

Thus, Y=X n W is an open neighborhood of Intl in S3 and Yn X’'=g.
Take subdisks E, and E, of D, and D,, respectively, such that a;€ Int E; and E;c
Int P (i=0, 1). By Lemma 2.3, there is a locally flat solid torus P'<Int P such
that J<Int P, J is a deformation retract of P’, P'—J=S'x S! x [0, c0) and
P'n({(DguD, UFrY)—Int(E,UE,)=g. Let V be the component of Int P'—
(Do U D,) containing Int I. Then, V< Y by the same reason as in Claim 1.

Let f: S1=0B%—V be a loop which is null-homologous in V—J. Then, f is
also null-homologous in Int P’—J; hence f extends to a map f: B2—Int P'—J.
We may assume that fis in general position with respect to E, U E ; hence f~1(E, U
E,) is a finite union of disjoint circles in Int B2, Let B’ be the closure of the
component of B2—f~1(E, U E,) which contains dB2.

Claim 2. For each component Lcf~Y(E) (i=0, 1), the loop f|L: L—
E;—{a;} is null-homotopic.

If not, then some non-zero multiple of JE; is homotopic to f|L in S3—J and
fIL is null-homotopic in S3—J. Therefore the linking number of J and JE;
is zero. This is a contradiction, and Claim 2 follows.

Thus, f|B': B'—»(VU Ey U E,)—J extends to a map f': B2>(VUE,UE,)—J;
hence f: S'— ¥V bounds a singular disk in W—J.[]

Thus, the proof of Theorem I is completed.

3. Proof of Theorem II

THEOREM 3.1. There is a wild knot J*<S3 which satisfies the following
conditions.



On wild knots which are weakly tame 121

(@) J* is weakly flat.

(b) E(J*) is a non-empty subarc A* of J*.

(c) There are an open subset U<S3 and a homeomorphism h: (U, U n J*)
~(E3, E') such that D* —J*=~(0D* —J*) x [0, c0) where D*=S3—Int h~1(B3).

Proor. Alford [1] constructed a wild 3-cell B* in S3 such that S3—B*~ E3
and A*={x € 0B*|0B* is not locally tame at x} is a non-empty arc on dB*. B*
and A* are the limits of PL 3-cells {B,<=S3} and PL arcs {4,=0B,} respectively:
B, is a PL 3-cell and A, is a PL arc on 0B,. B, is obtained from B,_, by adding
“cubes-with-eyebolts’” to 0B,_, along A,_, and removing a thin slice from the
loop of each cube-with-eyebolt. There is a homeomorphism f,: B,_; =~ B, such
that f,|Cl1(B,_.;—C,_,)=id where C,_, is a regular neighborhood of A4,_; in
B,_i, and A,=f(A,-1). {fufa-1-f1: Bo—B,} is a Cauchy sequence converging
to the embedding f*: B,—S?3 such that B*=f*(B;) and A*=f*(A4,). By the
construction (cf. Bing [3, §4] and Gillman [9, §3]), we have PL cubes-with-handles
{M,} such that

(M1) IntM,o>M,,, and N\, M,=A*,
(M2) Mn n Bn—l =Cm—1 and Mn n Bn=fn(cn—1)'

Now we take a PL circle J, on 0B with Jy> Ay, and put J*=f*(J,). Then,
J* is a wild knot in S3 with E(J*)= A* by [14]; hence J* satisfies (b).

Next, we prove (a). By applying the “‘stretching argument’’ to a regular
neighborhood of B, (n>1) as used in [9, §§4-5], we can construct PL 3-cells
{N,} satisfying the following

(N1) IntN,oN,,{and N\ N,=B*,

(N2) M,nN;is a PL 3-cell and M, n N;n 0W, is a PL disk for i>n, where
W,=M,nN,.

Let p: S3—-S3/A* be the projection. Since B* is locally tame at every xe
B*— A* and B* is cellular in S3 by (N1), it follows from Meyer [12, Th. 2] that

S3 ~ S3/B* ~ S3[/A* > 0B*|A* ~ S?

and 0B*/A* is locally tame at every point of dB*/A* — p(A*).

Now we show that 0B*/4* is flat in S3/4*. Since B*/A* is a 3-cell, it is
sufficient to show that C1(S3/A* — B*/A*) is a 3-cell, and this is equivalent to that
S3/A*—B*/A* is 1—LC at p(4*) by Bing [4, Th. 2]. Here, for closed subset
AcX in 83, S3—X is 1-LC at A if each open set U< A in S3 contains an open
set V= A such that each loop in V— X is null-homotopic in U—X. Thus, it is
sufficient to show that S3—B* is 1-LC at A*. By (M1) and (N1-2),
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IntW,> W,,y, N,W,=4* and W, — B* = U, (W,—N)).

Moreover, C1(W,—N;,)=Cl1(W,—(M,n N;)) is a PL 3-cell for i>n+1 by (N2).
Thus, S3—B* is 1-LC at A*, and 0B*/A* is flat in S3/4*. From this, J*/A* is
flat in S3/4*. Then, we see (a), because

S3 — J* x (S3/4%) — (J*/A*) ~ §* — S'~ S! x E2.

Finally we verify (c). Take ¢: (S3/4*, J*/A*)=(S3, S!), and choose an
open set U'cS3—¢p(4*) and h': (U’, U' nSY)~(E3, E'). Furthermore, put
U=p ¢~ (U)c=S3—A* and h=h'¢pp: (U, UnJ*)=~(E3, E'). Then, we have

D* — J* ~ B3 — B! = (0D*—J*) x [0, o0) for D* = S3 — Int h~'(B3).

This completes the proof of Theorem 3.1[]

LeMMA 3.2. Suppose that J* and D* are as in Theorem 3.1. Letg: S'—S3
be an embedding such that there is an open set U' = S3 with h': (U’, U’ n g(SY))~
(E3, E'). Takealocally flat 3-cell D'=h'"1(B3) in S3 and a subarc C'=g~(D’)
of S1. Then, there is an embedding f: S'—S3 with the following (1)+(4):

1) f|St—IntC'=g|S'—IntC'.

2 f(IntC)cIntD'.

(3) (D', D'nf(SY))=(D*, D* nJ*).

(4) There is ¢:S3—g(SY)~S3—f(S') such that ¢=id on S3-—
(g(SY U Int D).

PrOOF. Suppose that J*, U, h and D* are as in Theorem 3.1. Then, there is
an embedding e: S'—S3 such that J*=¢(S'). Take a subarc C=e !(D)cS!?
where D=h"1(B3), and put

St# St = (St —Int C)Uz(8'=IntC), g=ethth': 0C' — 0C,
and S3#S3=(S*~IntD') U;(S®~IntD), h = h"'h': 0D’ — 0D.

Then, there are p: S'~ S'4#S! and ¢q: S3~ S3#S3 such that p|S!'—Int C'=id and
q|S3—Int D’=id. We can define an embedding g': S'#S'— S3#S3 by

g'|S' —IntC' =g|S' —IntC’ and g¢'|S' — IntC = e|S! — Int C.

Therefore, we get an embedding f=¢g1g'p: S'—>S3. Clearly, f satisfies (1)~(3).
From (c) of Theorem 3.1, we can easily verify (4).[]

LemMA 3.3. Let J* and D* be the ones in Theorem 3.1. Let f,: S1>S3
be a PL embedding, and V, (n>1) be connected open sets in S, which forms a
basis of open sets. Then, there are Bc Ac={l,2,...}, D,cU,=S3, h,: U,~ E3
and C,cV, for ne A, embeddings f,: S'>S3 and ¢,: S?—f,(SV)~ S3—f,(SY) for
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n>1, which satisfy the following conditions (F1)~(F6):

(F1) Ifn& A, then f,_,(V,) is everywhere wild, f,=f,_, and ¢,=id.

(F2) For each ne A, U, is open in S3, h,: (U,, U,nf,_(SY))~(E3, E!),
D,=h;(B3) < U, is a locally flat 3-cell with diam D,<1/2", and C,=f,1,(D,) <V,
is a subarc of S* with diam C,<1/n.

(F3) If n<m, then either D,nD,=¢=C,NnC,, or D,<IntD, and C, <
Int C,.

(F4) f,|S'—IntC,=f,_(|S'—IntC,, f,IntC,)<IntD,, (D,, D,nf(SV))~
(D*, D* nJ*) and ¢,|S>—(f,-(SY) U Int D,)=id.

(F5) IfneB, then D,nD,=¢ where D,=\U,., D;.

(F6) If ne A—B, then D,cIntD; for some i<n. If k is the smallest
integer of such i in addition, then

D,cIntD, — ¢,_,--- o~ Y(K,) where K, = B! x (B>—(1/n)B?).

ProofF. The requirements in the lemma with (F1)-(F6) are defined by in-
duction on n as follows:

Case 1: V,—C,%x0 where C,=\U;.,C;. Let neBand neA. By (F4)in
the inductive assumptions, we have

fn—lan—Cn=f0|Vn_Cn and fn—l(Vn_Cn)Csa—Bn‘

Then, there are an open set U,=S3—D, with U,nf,_,(SY)<f,_,(V,—C,) and
hy: (Uy Uy 0 fuo (S~ (E%, EY).  Put D,=h;'(B%) and C,=f;1,(D,). We
may assume that diam D,<1/2" and diam C,<1/n. Then, (F2), (F3) and (F5)
hold. By Lemma 3.2, we get an embedding f,: S'— S3 with (F4).

Case 2: V,<E(f,_,), where E(fy-)=fz(E(fu-1(SY). Set n& 4, fy=f,_,
and ¢,=1id.

Case 3: V,=C, and V,—E(f,_)~8. Set neA and m&B. Since C, is a
finite union of pairwise disjoint arcs, (F3) implies that V,c\U;.,Int C;. Take a
point pe V,—E(f,-,) and put

j(p) = max {i|peIntC;}, k(p) = min {i|pelntC;} and
C(p) = U{G|CicInt Cj,p} .

Then, ¥, n(Int C;,,—C(p))> p is open in S*. (F4) shows that
fo-1=fjy on IntC;, — C(p) and
bn-1 = $j»n on IntDy, — D(p),

where D(p)=\U {D;| D;=Int D;,)}. Moreover

N = (Int Dj(p)—D(p)) - ¢n—1“'¢k(p)h;(lp)(Kn)
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is a neighborhood of f,_,(p) in S3. Since p& E(f,- ), i.e., f,,—(S!) is locally flat
at f,_,(p), there is an open set U, 3 f,_ (p) in Int N such that

Un n fn—l(Sl) Cfn— 1(Vn n (Il’lt Cj(p)_c(p)))-

Theh, we can define h,, D, and C, with (F2), (F3) and (F6), and an embedding
[, with (F4) by Lemma 3.2.]

Proor OF THEOREM II. Let g: S'—S3 be a PL embedding with g(S')=K.
By using Lemma 3.3 for f,=g, we define J as follows.

Since d(f,, f,—1)<1/2" by (F2) and (F4), {f,} is a Cauchy sequence con-
verging to a continuous map f: S'—>S3. We show that f is an embedding, and
put J=f(S").

By induction, it is easy to check that, for all i > n,

f(IntC,) =« IntD, and f(S'-IntC,) = S3 — IntD,.

From this, we have
(i) f(IntC, < IntD,(n>1)and
(i) f(S*—=IntC,)<=S3—IntD, (n>1).

To see (i), we take x € Int C,. Suppose that x € Int C, < C,<Int C, for some k> n.
Then, f(x)eInt D, for each i>k, and so f(x)=Ilimf(x)e D,<Int D,. Suppose
that x & Int C; (i>n). Then, f(x)=f,(x) (i>n), and so f(x)=f,(x) e Int D,. Thus,
(i) holds. (ii) is also easy to varify.

Now let x, y € St be distinct points.

Case 1. If xeIlntC, and ye S'—Int C,, then f(x)eInt D, and f(y)e S3—
Int D, by (i) and (ii), and so f(x) = f(y).

Case 2. Ifx, yeS'—\U,.,Int C,, then f(x)=g(x)xg(y)=f(p).

Case 3. If x, yeIntC, and x, y e S3—Int C; for every i>n, then we have

fx)=f(x)>=f,(»y)=f(y). Thus, fis an embedding.
We shall see that J is everywhere wild by proving the following claims A1-3:

Claim A.1. E(f,)<E(f) and E(f,)n C;=@ (n<i).
This claim is shown by induction.
Claim A.2. For each n& A, f(V,)=f,V,) is everywhere wild.

In fact, let n§& A. Then, f(V,)=f,-,(V,) is everywhere wild by (F1). Thus,
V,<cE(f,) and so V,cS'—C; (i>n) by claim A.1. Then, f;|V,=f,|V, (i>n),
and hence we have Claim A.2.

Claim A.3. U, V, is dense in S'.
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If ne A, then V,oC,>IntC, Int E(f,)=@ by (F4). Hence, Int C,n Int E(f,)
o V; for some i>n. Thus, we have the claim.

Since E(f) is a closed subset of S, Claims A.2 and A.3 show that E(f)=S!,
i.e., J is everywhere wild.

Finally, we shall prove that S3—J= S3— K by showing the following Claims
B1-6: For each n, we define closed sets A(n, i) (i € B) of §3— K=_S3—g(S") by

hi'(B' x ((1/n)B*—{0})) = h7'(B' x (1/n)B?) — K (i<n)
A(n, i) =
" hi'(B'x(B*—{0})) = D; — K (i=n).
Claim B.1. The collection {A(n, i)}, is locally finite in S3—K.

Suppose that this claim is false. Then, there are a point y € S3— K and a sequence
{yi} in S3—K converging to y such that y, e A(n, i(k)) for a sequence i(1)<
i(2)<--- in B. Since A(n, i(k))<D;y), limdiam D;;,=0 and D;y, N K=f;;)- ;-
(Ciwy)) =9, we see that ye K. This is a contradiction; and the claim follows.

By virtue of this claim, we can define open sets X, of S®—~K by

X, =(8*—K) = Uiep A(n, i) (n>1).
Claim B.2. X,#X,<--and \U,X,=S*-K.
This follows easily from the definition of {X,}.
Claim B.3. ¢,_,¢,(X,)=S3—(f,-(SY) U D,), where D,=\U,,, D;.

We prove this by induction on n. This holds for n=1since X;=S3—(K U \U;.p D))
=S$3—(g(S")u D)) by (F5).
If n—1& B, then X,,=X,_, and

Gn1D:1(X,) S Ppo 1(S3=(fo— (S U D,_,)) (by induction hypothesis)
= ¢u-1(SP—(fu-1(SHUD,_ 1)) = $? = (f,-(SHUD,) (by (F4)).
If n—1eB, then X,=X,_, U h;1,(K,) and
Gn-1 P12 (Kp) = -1 h22i(K),  du- 12K N f,-y(SY) = 0.
Thus, it suffices to show that
¢p_1hily(K,) N D;=¢ for each i > n.
This is trivial in case of D; N D,_,=¢. If D;cIntD,_,, then (F6) shows that
DicIntD,_y — @iy Pp-1h324(K))
cIntD,_y — ¢i—y- Py 1h;2(K,) = Int D,y — ¢,_1h714(K,).
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Therefore, we see Claim B.3.
By (F4), we see that S3—(f,_,(SY)uD,)=S3—(f(S*)uD,). Therefore, by
Claim B.3, an embedding v,: X,—S3—J=S83—f(S!) can be defined by

V=019 X, for each n.
Claim B.4. ¢, X,=V,.
Since ¢,|p,— - (X,)=1d by Claim B.3 and (F4), we see Claim B.4.
Claim B.5. For each yeS3—J, {n|lyeD,} is a finite set.

Suppose that there is a sequence n(l)<n(2)<--- such that yeD,4,. Then,
Dy1y2 Dyzy> -, limdiam D,y =0, C,;,2Cpz)> -+, limdiam C,,,=0, by (F3).
Thus, {y}="\ Dysy=f("NCphuy) =J; and the claim follows.

Claim B.6. S3—J=\,y(X,).

For yeS*—J, put k=min {n|yeD,}, j=max {n|yeD,} and z=¢;!---¢p7' ()€
D,—K. Then, ze X, for some n>j. Thus,

Uu(2) = ppoy@y(2) = ¢j"‘¢k(z) =),

and the claim holds.

Now, by Claims B.2, B.4 and B.6, we have a hoeomorphism : S3— K=~
S3—J given by Y| X,=V,,.

This completes the proof of Theorem II.[]
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