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1. Introduction

In this paper, we are concerned mainly with knots, by which we mean
topologically embedded circles in the 3-sphere S3.

Let X be a subset of S3. Then, X is PL if it is a subpolyhedron of S3, tame if

h(X) is PL for some homeomorphism ft: S3&S3, and wild if it is not tame.
Furthermore, X is locally tame at x e X if there are an open set VD x in S3 and a

homeomorphism φ: V&E3 such that φ(VΓ\X) is a subpolyhedron of E3 (En

denotes the Euclidean n-space), and when X is a knot, X is locally flat at xeX
if φ(Vn X) = E1 in addition. For a knot J c S3, we note that these local properties
are equivalent to each other, and consider the closed subset

E(J) = {xeJ\J is not locally tame at x} c J.

Then, Ring's theorem [2] says that J is tame if and only if E(J) is empty.

We shall say that a knot J<=53 is wealky tame if there is a PL knot Kc=S3

such that the complement S3 — K is homeomorphic to S3 — J, and weakly flat

according to Duvall [7] if K is unknotted in addition and we shall study several
properties of such a knot J by taking notice of the set £(J).

The main results are stated as follows.

THEOREM I. Assume that a knot JaS3 is weakly tame, and let U be an

open set in J. Then, J is locally tame at every point xell if so is at every
point xe U — C*, where C* is a Cantor set in U.

COROLLARY. // a knot JcS3 is weakly tame, then E(J) has no isolated
points. If J is locally tame at every point xe J — C* for a Cantor set C*aJ in
addition, then it turns out that E(J) is empty and J is tame.

Theorem I means that E(J) for a weakly tame knot J can not be 0-dimensional.

In contrast with this we can find a weakly tame knot J with 1-dimensional E(J):

most significant one is given by the following

THEOREM II. For each PL knot KaS3, there is a wild knot JcS3 such that

S3 —J is homeomorphic to S3 — K and J is everywhere wild, i.e., E(J) = J.

A proof of Theorem I using Cannon's characterization of tame arcs in S3
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will be given in §2. We can give also an elementary proof by comparing a system

of neighborhoods of a Cantor set C* with the standard one, as described in the

original version of the paper.

Theorem II is proved in §3. Bing [3] developed the "hooked rug" method,

by which Alford constructed a "nice" wild 2-sphere in S3 ([!]); it contains a wild

knot J* whose E(7*) is an arc (Rushing [14]). We show that this knot J* is

weakly flat (Theorem 3.1), and then prove Theorem II by taking J as a connected

sum of K and infinitely many copies of this J*.

The following notation and the terminologies are used in this paper :

« : homeomorphic, id : the identity map, 0 : empty set, ^ : isomorphic,
E«\ Euclidean n-space, El = En~l x [0, oo), £" = [-!, 1]", rBπ = [-r, r]n

(r>0), Sn = dBn+l: the n-sphere, d: a metric on S", diamX: the diameter of X,

C\X: the closure of X, ¥rX: the frontier of X, N(X, r) = {xe S3\d(x, X)<r}

For X ciS3, X is locally polyhedral at x e X if X Π Vis polyhedral for some

closed neighborhood Fof x in S3. When X is a compact n-manifold (1 < «< 3),

X is locally flat at xe X if it is locally tame at x by an open set Fax and φ:

V&E3 with φ(VΓ\X) = El or En according to xedX or not in addition (these

local properties are equivalent), and X is locally flat if so it at every point xeX.

2. Proof of Theorem I

We first recall a characterization of tame arcs in S3.

DEFINITION. An arc A in S3 is said to have 1-ALG complement in S3 if for

each ε>0 there is a (5>0 such that each loop in S3 — A which is null-homologous

(Z-coefficients) in a ^-subset of S3 — A bounds a singular ε-disk in S3 — A.

THEOREM 2.1 (J. W. Cannon [5, Th. 3.16]). An arc A in S3 is tame if it

has 1-ALG complement in S3.

We prove Theorem I by this theorem together with the following

PROPOSITION 2.2. Let J be a knot in Theorem I and p be an arbitrary point

of U. Then, for each open neighborhood W of p in S3 there is an open neighbor-

hood Fc: W of p such that every loop in V—J which is null-homologous in V—J is

null-homotopic in W—J.

PROOF OF THEOREM I. Let A be an arc in U with Int A a C*. For each ε > 0,

we define an open covering {Vx\x e S3} of S3 as follows:

Vx = N(x, jnin (ε/2, d(x, A)), for x e S3 - A
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Vx= V given by Proposition 2.2 for p = x and W=N(x, ε/2), for xεlntA; and

Vx 3 x is an open ε-subset with (VX9 A n Fx)^(£3, J?|), for x 6 dA.

Then, there is a Lebesgue number <5>0 for {Vx}9 i.e., each δ-subset of S3 is
contained in some Vx. Thus, A has 1-ALG complement in S3, and A is tame by
Theorem 2.1.Π

To prove Proposition 2.2, we prepare the following

LEMMA 2.3. Suppose that a knot JaS3 is weakly tame. Then, there is a
sequence {Pn} of locally flat solid tori in S3 such that

(1) IntPn^Pn + 1, nPn = JandPΛ-JntPn+1*ίdPHx[p9 I], and
(2) J is a deformation retract of Pn.

PROOF. Let K be a PL knot with S3-J&S3-Kby assumption.
Case 1: K is a trivial knot. Let h: S3 — J&Sl x E2 be a homeomorphism,

and put

Qn = h-i(S*xnB*)9 Pn = S3-lntQn.

Since Qn is a locally flat solid torus in S3, we note that Pn is a knot space. Since
JcIntPπ is compact and J has codimension 2 in Pπ, Pn — J is connected and
π1(Pπ — J)->π1(PΛ) is an epimorphism (see p. 329 of [11]). Note that Pn — Jκ
S*xS*x\Q9 oo). Then, π^(Pn-J)^Z®Z, and so π^PJ is abelian. Hence,

Tϋ^PJ^ Jf !(PΠ)£ Z and Prt is a solid torus.
Case 2: K is not trivial. Take h: S3 — J&S3 — K and a tubular neighbor-

hood KxE2 of K'9S
3^KxE2aKx {0} = K.

βn = h-*(S*-Kx Int (l/n)B2), PΠ = S3 - Int Qn .

Then, the knot space Qn is not a solid torus. It follows that Pn is a solid torus
(cf. Rolfsen [13, Th. (4.C.1)]).

Clearly, {PM} satisfies the other conditions in (1). Since J&S* is an ANR,
there are an open set jR=> J in S3 and a retraction r: £->J. Then, there is an m
such that Pn<=^R for all n > m. Let n^m. Then, r|Pw : PΠ-> J is a retraction, and

so

is an isomorphism. Thus, r\Pn is a deformation retraction. Let n<m. Then,
by the last condition in (1), Pn is a deformation retract of Pn and we see (2). Π

PROOF OF PROPOSITION 2.2. By Bing [2, Th. 9], we may assume that J is
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locally polyhedral at every point of U — C*. Also we may assume that W f t J c z U .

Take a subarc / of W{] J such that pεlntl, and both end points a0 and α x of /

are contained in 17 — C*. Then, there are disjoint PL disks D0 and /)t in PFsuch

that Dt Π J = {αJ and J intersects Df transversely at α f (i = 0, 1). By Lemma 2.3,

there is a locally flat solid torus PcS3 such that P Γ\(dD0U 80^ = 0, JdntP

and J is a deformation retract of P. Let X and X' be the components of Int P —

(D0 U I>ι) containing Int/ and J — /, respectively.

Claim 1. JSf^X'.

Suppose that X = X'. Take a point qεJ — I. Then, there is an arc HcX
joining p and q. Let //' 9 a0 be the subarc of J which joins /? and q. Then, the

loop HoH' in IntP intersects D0 transversely at a0 and (// U H') n A) = {flo}
Thus, H \J Hf is homotopic to J in Int P, because J is a deformation retract of P,

J Π A) = {0o} and J intersect transversely at a0. But, (// U //') n D1=0; this is
a contradiction. Claim 1 follows.

Thus, Y=XΠ W is an open neighborhood of Int/ in S3 and 7n^' = 0.
Take subdisks E0 and £t of D0 and Z>15 respectively, such that α f e Int Et and £fc=

IntP (i = 0, 1). By Lemma 2.3, there is a locally flat solid torus P'dntP such

that JcIntP', J is a deformation retract of P', P'-J&S1 xS1 x [0, oo) and

P' n ((D0 U D! U Fr Y)-Int (£0 U EJ) = 0. Let V be the component of Int P; -
(D0 U DI) containing Int/. Then, Fc: Yby the same reason as in Claim 1.

Let/: Sl=dB2-+Vbe a loop which is null-homologous in V— J. Then,/ is
also null-homologous in IntP7 —J; hence / extends to a map/: B2-»IntP' — J.

We may assume that/is in general position with respect to E0 U Ev hence f~1(E0 U
EJ is a finite union of disjoint circles in IntB2. Let E' be the closure of the

component of B2—f~1(E0 U #ι) which contains dB2.

Claim 2. For each component Laf~1(Ei) (i = 0, 1), the loop f\L: L-*
Ei — {ai} is null-homotopic.

If not, then some non-zero multiple of δ£f is homotopic to/|L in S3-J and

f\L is null-homotopic in S3 — J. Therefore the linking number of J and dEt

is zero. This is a contradiction, and Claim 2 follows.
Thus,/|F: B'-KFuEoU^O-J extends to a map/': B2-+(V(J E0\J EJ-J;

hence/: S1-*^bounds a singular disk in W—J.D

Thus, the proof of Theorem I is completed.

3. Proof of Theorem II

THEOREM 3.1. There is a wild knot J*aS3 which satisfies the following
conditions.
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(a) J* is weakly flat.
(b) E(J*) is a non-empty subarc A* of J*.

(c) There are an open subset ί/c:S3 and a homeomorphism h: (U9 U Π J*)
«(£3, E1) such that D*-J*«(dD*-J*)x [0, oo) where D* = S3-Int Jr1^3).

PROOF. Alford [1] constructed a wild 3-cell B* in S3 such that S3-B*πE3

and y4* = {xed£*|d#* is not locally tame at x} is a non-empty arc on <λB*. B*
and A* are the limits of PL 3-cells {BπcS3} and PL arcs {An<^dBn} respectively:
BQ is a PL 3-cell and A0 is a PL arc on dB0. Bn is obtained from Bn_ 1 by adding
"cubes- with-eyebolts" to dBn.i along >!„_! and removing a thin slice from the
loop of each cube-with-eyebolt. There is a homeomorphism /„: Bn.ί^Bn such
that fn\C\(Bn_1-Cn-i) = id where Cn_1 is a regular neighborhood of An_t in
£„_ !, and An =fn(An. J. {/„/„_ t - - •/! : £0-^J is a Cauchy sequence converging
to the embedding /*: B0-^53 such that B*=f*(BQ) and A*=f*(A0). By the
construction (cf. Bing [3, §4] and Gillman [9, §3]), we have PL cubes-with-handles
{MJ such that

(Ml) IntMn^Mπ+1 and Γ\nMn = A

(M2) Mn n Bn_ t = Cm_ x and Mπ n Bn=

Now we take a PL circle J0 on ^β with J0ι=>A0, and put J*=/*(J0). Then,

J* is a wild knot in S3 with £(J*) = v4* by [14]; hence J* satisfies (b).
Next, we prove (a). By applying the "stretching argument" to a regular

neighborhood of Bn (n>l) as used in [9, §§4-5], we can construct PL 3-cells
{Nn} satisfying the following

(Nl) IntNn=>Nn+

(N2) Mn n Nt is a PL 3-cell and Mn n Nt n dWn is a PL disk for i > n, where

Let p: S3->S3/;4* be the projection. Since B* is locally tame at every xe
B*-A* and B* is cellular in S3 by (Nl), it follows from Meyer [12, Th. 2] that

S3 w S3/B* «.S3/Λ* 3- d£*/Λ* « S2

and dB*/A* is locally tame at every point of dB*/A* — p(A*).

Now we show that dB*/A* is flat in S3/A*. Since β*/^* is a 3-cell, it is

sufficient to show that Cl(S3/,4* — B*/A*) is a 3-cell, and this is equivalent to that

-J5*/A* is 1-LC at p(A*) by Bing [4, Th. 2]. Here, for closed subset
in S3, S3 — X is 1-LC at A if each open set UciA in S3 contains an open

set Vc:A such that each loop in V— X is null-homotopic in U — X. Thus, it is
sufficient to show that S3 - 5* is 1-LC at A*. By (Ml) and (Nl-2),
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n+ί9 Γ\nWn = A* and Wn - B* =

Moreover, Cl(Wn-Ni) = C\(Wn-(MnΠ N^ is a PL 3-cell for ι>n+l by (N2).

Thus, S3-B* is 1-LC at A*, and dβ*/,4* is flat in S3/A*. From this, J*/A* is

flat in S3/A*. Then, we see (a), because

S3 - J* « (S3M*) - (J*/Λ*) w S3 - S1 w S1 x E2.

Finally we verify (c). Take φ: (S3/A*9 J*/A*)w(S3, S1), and choose an

open set U' aS3-φp(A*) and Λ' : (I/', I/' n S1)-^3, ̂ )- Furthermore, put

U = p-1φ-l(U')aS*-A* and h = h'φp: (17, l / n J*)«(£3, tf1)- Then, we have
D* - J* « £3 - B1 « (δD*- J*) x [0, oo) for D* = S3 - Int h~l(B3).

This completes the proof of Theorem 3. ID

LEMMA 3.2. Suppose that J* and D* are as in Theorem 3.1. Lef 0 :
be an embedding such that there is an open set t/'c=S3 with h' : (I/', U' Π

(£3 , .E1). Take a locally fίat 3-cell D' = h'-l(B*) in S3 and a subarc C' = g-l(D')
of S1. Then, there is an embedding /: S1-^S3 with the following (l)-(4):

(1) /IS^IntC'^IS^IntC'.
(2) /(IntCOcIntD'.
(3) (D', D' Π/ίS1)) w(D*, D* n J*).

(4) T/iere is φ: 53-^(51)^53-/(S1) SMC/Z ίfcaί 0 = id on S3-

PROOF. Suppose that J*, [/, /i and D* are as in Theorem 3.1. Then, there is

an embedding e: S1-^3 such that J* = e(51). Take a subarc C = e~i(D)<=S1

where D = h~1(B3), and put

S^S1 =(S1-IntC/) U g (S^IntC), ^ = e^h^h': dC' - > dC,

and S3#S3 = (S3-IntD') u^(53-IntD), h = h^h': dD' - > dD.

Then, there are p: S^S^S1 and q: S3«S3*S3 such that pjS1-!^ C' = id and
' = id. We can define an embedding g': S^S^S^S3 by

flf'l S1 - Int C' = flf I S1 - Int C' and ^'| 51 - Int C = e\ S1 - Int C.

Therefore, we get an embedding f=q~1g'p: Sl-+S3. Clearly, /satisfies (l)-(3).
From (c) of Theorem 3.1, we can easily verify (4).Q

LEMMA 3.3. Let J* and D* be the ones in Theorem 3.1. Let /0: S
1-^3

be a PL embedding, and Vn (n>l) be connected open sets in S1, which forms a
basis of open sets. Then, there are BcAc{l, 2,...}, Dn<=UnaS3, hn: Un&E3

and Cnc:VnforneA, embedding s f n : Sί^S3 and φn: S
3-fn(S1)πS3-fn(S1) for



On wild knots which are weakly tame 123

n>l, which satisfy the following conditions (F1)-(F6):

(Fl) If n^A, thenfn-^Vn) is everywhere wild,fn=fn_i and φn = id.

(F2) For each nεA, Un is open in S3, hn: (UH9 Unf]fn_1(Sί))^(E^ &),

Dn = hhl(B3)c:Un is a locally flat 3-cell with diam Dn< 1/2", and Cn=fn^(D^cVn

is a subarc of S1 with diam Cπ<l/rc.

(F3) // n<m, then either Dn n Dm = 0 = Cn Π Cm, or DmcIntDπ and Cmc:

IntCn.

(F4) /JSi-IntC^Λ.JS'-IntC,,, fn(lntCn) c Int Dn9 (Dn9 Dn fl/^S1))*
(D*, D* Π J*) and ^-(/^(S1) U Int /)„)_= zU

(F5) IfneB, then Dn(\Dn = 0 where Dn = \ji<nDi.

(F6) // neA — B, then Dn^\niDt for some i<n. If k is the smallest

integer of such ί in addition, then

Dn c IntDk - φΛ-ι φkhk-*(KJ where Kn = B> x (B*-(l/n)B*).

PROOF. The requirements in the lemma with (F1)-(F6) are defined by in-

duction on n as follows:

Case 1: Vn-Cn*0 where Cn=\Ji<nCi. Let neB and neA. By (F4) in

the inductive assumptions, we have

fn-ι\Vn-CΛ=fo\Vn-Cn and /..^-CjcS^-U,.

Then, there are an open set UnaS3-Dn with Un n/^^S^cz/^^^-CJ and

Λ. d/.^i.n/.-iίS1)^^3^1). Put DM = ΛϊHB3) and 'C^/^D.). We
may assume that diam Dn< 1/2" and diam Cπ<l/n. Then, (F2), (F3) and (F5)

hold. By Lemma 3.2, we get an embedding /„: Sl-+S3 with (F4).

Case 2: Vn^E(fn.,\ where E(fn_ί)=f-ίΐ(E(fn^(S^). Set n$A, fn=fn-,

and φn—id.

Case 3: VncCn and Vn-E(fn_ί)*0. Set ne^ and m^B. Since Cπ is a

finite union of pairwise disjoint arcs, (F3) implies that Vnd\ji<nlntCt. Take a

point p e 7Λ -£(/„_ j) and put

j(p) = max {ι\p€ Int CJ, /c(p) = min {i \pelnt CJ and

Then, Vn n (Int CJ(p) - C(p)) a p is open in S1. (F4) shows that

L- 1 = //(P) on Int Cj(P) ~ C(JP) and

Φn-ί = Φκp) on IntD7.(p)

where D(p) = W {Df | ̂  cz Int DJ(p)}. Moreover

N = (lntDj(p)-D(p)) - φH-ι-
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is a neighborhood of/n_j(p) in S3. Since p^E(fn.1)9 i.e.,/,.^^1) is locally flat

at/π_ι(p), there is an open set t/M3/M-ι(p) in IntN such that

um n /.^(so c/^K.nίMC^-αp))).

Theh, we can define /ιπ, Dn and Cn with (F2), (F3) and (F6), and an embedding

/„ with (F4) by Lemma 3.2. Π

PROOF OF THEOREM II. Let g: S1-^S3 be a PL embedding with 0(8*) = K.

By using Lemma 3.3 for/0 = #, we define J as follows.
Since d(/n,/n_1)<l/2w by (F2) and (F4), {/„} is a Cauchy sequence con-

verging to a continuous map/: S1-*^3. We show that /is an embedding, and

put J =/(S*)
By induction, it is easy to check that, for all i^n,

/f(Int CJ c Int Dn and /(S1 - Int Cn) a S3 - Int /)„ .

From this, we have

(i) /(IntC π )c=IntD π (n>l)and

(ii) /(S1 - Int CΛ)c=S3- Int A, (">!)•

To see (i), we take x e Int Cn. Suppose that x e Int Ck c Ck c Int Cn for some fc > n.
Then, ft(x) e Int Dfc for each i>/c, and so /(x) = lim/ί(x)eDJkc:IntDπ. Suppose

that x ξ Int Q (ί > n). Then,/f(x) =/n(x) (i > n), and so/(x) =/„(*) e Int Dπ. Thus,
(i) holds, (ii) is also easy to varify.

Now let x, y e S1 be distinct points.
Case 1 . If x e Int Cn and y eSl- Int Cπ, then /(x) e Int Dn and f ( y ) e S3 -

Int Dn by (i) and (ii), and so /(x)^ /(>>).
Case 2. If x, y e S1 - WπeX Int Cπ, then /(x) = 0(x) * g(y) =f(y).
Case 3. If x, ye!ntCπ and x, yeS3 — IntQ for every i>n, then we have

/(*) =ΛW ^ AW =f(y\ Thus, / is an embedding.
We shall see that J is everywhere wild by proving the following claims A 1-3:

Claim A.I. £(/Jc=£(/.) and E(fn) n Cί = 0 (π<i)

This claim is shown by induction.

Claim A.2. For each n ̂  Λ9f(V^)=fn(Vn) is everywhere wild.

In fact, let n$A. Then, MV^^.^VJ is everywhere wild by (Fl). Thus,

Fπcz£(/π) and so ϊ cS'-Q (i>n) by claim A.I. Then, /JF^/J^ (i>n),
and hence we have Claim A.2.

Claim A.3. Wπ^χ Vn is dense in S1.
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I f n e A , then Vn=>Cn=>Int Cn Int E(fJ*0 by (F4). Hence, Int Cπ n Int £(/„)
ID K; for some i>rc. Thus, we have the claim.

Since £(/) is a closed subset of S1, Claims A.2 and A.3 show that £(/) = S1,
i.e., J is everywhere wild.

Finally, we shall prove that S3 — J«S3 — X by showing the following Claims
Bl-6: For each n, we define closed sets A(n, i) (ieB) of S3-K = S3-g(S1) by

(n, 0 =

Claim B.I. The collection {A(n, ϊ)}ieB is locally finite in S3 — K.

Suppose that this claim is false. Then, there are a point y e S3 — K and a sequence
{yk} in S3-K converging to y such that ykeA(n, i(k)) for a sequence i(l)<
i(2)< in B. Since A(n, i(fc)) <= D/(fc), lim diam Dj(k) = 0 and D^^K^f^y,^

, we see that y eK. This is a contradiction; and the claim follows.
By virtue of this claim, we can define open sets Xn of S3 — K by

Claim B.2. Xl*X2c— and \jnXn = S*-K.

This follows easily from the definition of {Xn}.

Claim B.3. φ^ φ^X^S3-^-^1) U Dn), where D. = \jl>mDt.

We prove this by induction on n. This holds forn = 1 since Xί = S3 — (K U Vj , eB

= S3-(0(S1)u£,)by(F5).
If n-l^B, then X^A"^! and

φ.-Γ ψi^,) c φ.-ΛSM/.-ΛS1) U β.-i)) (by induction hypothesis)

= ψ._ ,(S3 -(/.- iCS1) U A,_ 0) c S3 _ (/„_ t(Si) U βπ) (by (F4)) .

If n- 1 e B, then X^^.j U h'l^K^ and

ψ.-i-^fc iiίxj = Φn^h-l^K^, φΛ-1κι1(κj n /.-iίs1) = 0.

Thus, it suffices to show that

φn^/iΰijCKJ n D, = 0 for each i > n.

This is trivial in case of £>( n Dn _ t = 0. If Z)f c Int DB _ t , then (F6) shows that

D, <= IntD,-! - ψ^i-φ.-iΛ iiίKj)

c Int A.-I - Φt-t φn-ih-^KJ = IntD^! - φn_ ̂ l^KJ .
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Therefore, we see Claim B.3.

By (F4), we see that SMΛ-iOS1) U Dn) = S3-(f(S1) U Dn). Therefore, by
Claim B.3, an embedding ψn: Xn-+S3-J = S3-f(Sl) can be defined by

Ψn = Φn-l—Φl\Xn f°Γ

Claim B.4. φn+ί\Xn = φn.

Since φn\Φn-ι'"Φι(Xn) = ̂  by Claim B.3 and (F4), we see Claim B.4.

Claim B. 5. For each yeS3 — J9 {n\yeDn} is a finite set.

Suppose that there is a sequence π(l)<π(2)< such that yeDn(kγ Then,

AiCD^Aiu)^-* limdiamDπ(k) = 0, Cή(ί^Cn(2^-9 limdiam CΛ(fc) = 0, by (F3).
Thus, {y} = r\k Dw(k) =/(ΛfcCπ(Λ)) d J; and the claim follows.

Claim B.6. S3 - J = \jn ψJίXJ.

For yeS3-J9 put /c = min {n\yeDn}9 j = max{n\yeDn} and z = φk

ί>-φ^1(
Dk — K. Then, z e Xn for some n >./. Thus,

ψn(z) = φn-i-φάz) = φj'"φk(z) = J,

and the claim holds.

Now, by Claims B.2, B.4 and B.6, we have a hoeomorphism ψ: S3 —

S*-J given by ψ\Xn = ψn.
This completes the proof of Theorem II. Π
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