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§1. Introduction

Let G/K be a Riemannian symmetric space of non-compact type. In [1]
spherical Fourier transforms of left K-invariant L? (1< p<2) functions on G/K
are studied and it is shown that the spherical transforms of these functions are
extended holomorphically to a certain domain T, which is determined only by p,

in a¥ and a Hausdorff-Yong inequality holds. We adopt n,(f)= SG f)m,(x)dx as

the Fourier transform of fe C¥(G/K); here ©, denotes the induced representation
of class one from the minimal parabolic subgroup P of G. The purpose of this
paper is to show that the Fourier transforms of K-finite L? functions on G/K also
satisfy a Hausdorff-Young type inequality in the domain T, similar to the spherical
case.

§ 2. Notation and Preliminaries

Let G be a connected semisimple Lie group with finite center and g its Lie
algebra. We denote by <-,-> the Killing form of g. Let G=KAN be an
Iwasawa decomposition and ¥, a and n the Lie subalgebras of g corresponding
to K, A and N respectively. Each xe G can be written uniquely as x = «(x)-
exp H(x)n(x), where k(x)e K, H(x)ea and n(x)e N. Let M’ and M be the
normalizer and the centralizer of a in K respectively and denote by W=M'/M
the Weyl group. Throughout this paper, we denote the dual space of a real or
complex vector space V by V* and the complexification of a real vector space V by
V¢ We fix an ordering on a* which is compatible with the above Iwasawa
decomposition. Let X denote the set of all positive roots of (g, a) and m(x) the
multiplicity of e X. Let X, be the set of elements in X which are not integral
multiples of other elements in 2. We put a(e)=m(a)+m(2«) for aeX, and
p=2"1% . sm(a)x. Let a¥ be the positive Weyl chamber of a* and put

a, = {Hea|a(H)>0 for all wea*}; A* =expa,.
For any ¢>0, we put

C., = {Aea*||(sA)(H)|<ep(H) for all Hea, and se W}.
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Now we write T, for the tube domain a*+\/~——1C£‘7 in a§, where ¢=2/p—1
(1<p<2).

Let K be the set of all equivalence classes of irreducible unitary representations
of K. Foreach 7 e K, we fix a representative of 7 and denote it by the same symbol
1. For each 7, we denote by V,, x, and d(7) its representation space, character and
degree respectively. Let K, be the subset of K which consists of all the class
one representations with respect to M. We fix a finite subset F of K, and put
Xr= 2 wr d(D)).. If M is a manifold, C*(M) and Cy(M) denote the set of all
C-valued C* functions and the set of all C-valued continuous functions with
compact supports on M respectively and put CF(M)=C®(M)n Co(M). Let
C&r(G/K) denote the set of all fe CP(G) which satisfy f(gk)=f(g) (9 €G, ke K)
and gpxf=f, * denoting the convolution on K. Let dk, denote the invariant
measure on K/M such that the total measure equals 1 and da the (2n)~*/2 -times of
the euclidean measure on A (I=dim A) which is induced by the Killing form.
We denote by dx the invariant measure on G/K such that

[, Joodx = jka)(aykyda,

where 6(a)=11,.s, (sinh a(log a))™®).
1/
For fe C§x(G/K), weput || f | ,= <S |f (x)|l’dx> . And its L completion
G/K

is denoted by LE(G/K). If s# is a complex separable Hilbert space, then #(s#)
denotes the space of all bounded linear operators on #. For Be Z(#), its
operator norm is denoted by |B|,, and the p-norm ||B||, is defined by ||B|,=
(tr (B*B)?/?)1/P (1 < p< 0), where B* denotes the adjoint operator of B.

§3. The estimate of the norm of 7,(f)

Recall first the definition and properties of the induced representations of the
class one from the minimal parabolic subgroup P to G. Let L*(K/M) be the
space of right M-invariant functions in L%(K) and denote by (-,-) the inner
product in L?(K/M). For each vea§ the induced representation 7, of G on
L%(K/M) is defined by

(n,(x)®) (k) = eW TP HENP(1(x k),
(Pe LYK/M), xeG, keK).

For fe C3(G/K) the bounded linear operator =n,(f) on L?(K/M), which is called
the Fourier transform of f, is defined by

n(f) = SGf(x)nv(x)dx.



A Hausdorff-Young inequality on symmetric spaces 69

Then the following Parseval equality and the inversion formula are known (cf.

[2D):
1713 = DWI7 | ImODIBlei-2dv;

fx)=[w]! Sa‘ tr (m,(Hm,(x" ) [e)72dv  (fe CF(G/K)),

where c¢(v) is the Harish-Chandra c-function for G/K and [W7] denotes the order
of the Weyl group W. For fe CP(G/K) and ae A we define a function f* on
K/M by fa(kM)=f(ka). We fix, for each 7, an orthonormal basis {v,,..., V4}
of V, such that {v,,..., vy} is an orthonormal basis in VM, V'™ denoting the
subspace of all M fixed vectors in V,. Denote by {v},..., v} the dual basis of
{v1,.. Vgy}. Here we denote by LE(K/M) the closed subspace of L?(K/M)
which is spanned by the set {d(1)!/2v*(r(k~Y)v)lteF, 1<i<d(1), 1<j<d,(1)}
and put CR(K/M)=L%(K/M)n C*(K/M). Then it is known that the set forms
an orthonormal basis of L%(K/M) (cf. [4]). For simplicity, we put d=
> .r d(t)d,(7) and denote by {P,,..., D,} the above orthonormal basis of L}(K/M).
Let fe C3e(G/K). If we put fi(a)=(f*, ®;), then f* e C¥(K/M) is written as

SfakM) = i1 f{a)Py(kM). (3.1
We now put
Cy(A*, C) = {p=(p\,..., p%): A*—> C¥| 9’ e CF(A*), 1<i<d},

and we denote its L? completion with the norm [|¢|2= 4_;lpi(a)|Pé(a)da <
o by LP(A*, C?9). By using the decomposition (3.1), we can define a natural
linear isomorphism D of C§z(G/K) into CF(A*, C?) by f—(f1,..., f9).
We first show the following lemma.
LemMMA 1. If fe C3e(G/K) then we have
d=21e| fll, < IDfll, < d** V7| fll, (1<p<o0).

Proor. We shall prove the second inequality. Using the Holder inequality,
we have

1f1 = | (St.117*@1"6(0) da
- g,{+ ‘ii=1 |(fa, Qi)lpa(a)da

< Ttreiep@de.
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where 1/p+1/q=1. Since |®;|<d, we have
IDfI} < dr*! gr If2llp6(a)da

- dP“S 1 (eMI3(a) dieyda

K/Mx
= dr* ! fll7.

The first inequality is proved in a way similar to the above.

By this lemma, D can be uniquely extended to a linear isomorphism of
2(G/K) onto LP(A*, C?%) and we use the same symbol D for it. Let fe CF(G/K).
From the right K-invariantness of f we get

It = 17 (F)Poll2 5

where @, is the constant function on K/M with value 1.

LeMMA 2. For fe C3x(G/K) the following inequality holds.
7Nl < Blfll,  (veTy).
Proor. Using decomposition (3.1), we have

(NP k)l = | FmIPo) K dx

= IS b1 (@) () e T =P B~ = k05 (q) dkda
KX A+

< g L1 (@)]1Pi(k ik M)||eW/=Tr =0 E @ %D §(a) dk da
KxA*

<d{ st 1r@I([ lewTome o) dk) s@da.
Because
SK |eV=Tv=p)(H(a~ k" 1)| dk < | (ve T,
(cf. [2]) we have

(7, (f)Po)(K)] < dg =11/ (a)lé(a)da=d| Df |, (3.2

A+
< d3||f|l; (by Lemma 1).
This implies [|7,(f)lo <d*|| f 1.

We see that the Fourier transform can be extended to LL(G/K). If g€
Lr(A*, C?) then we write, for simplicity, ¢f for D~'¢. From (3.2) We get



A Hausdorff-Young inequality on symmetric spaces 71

COROLLARY. If o e L\(A*, C?) then we have

In@Dle < dlelly (veTy).

§4. The Hausdorff-Young inequality in real case

To prove the Hausdorff-Young inequality on a*, we use the Riesz-Thorin
theorem for vector valued functions. Let (X, p) and (X', ¢') be two o-finite
measure spaces. We denote by #(X, C9) the set of all compactly supported
simple functions on X with values in C¢. Namely

(X, CY = {p=(pl,..., p%): X— C?4| ¢*’s are compactly
supported simple functions on X}.

Let T be a linear mapping of (X, C9) to the space of all u’-measurable functions
on X'. If there exists a positive constant k such that ||To|,<k|e¢]|, for all
peL(X, C9, then T is called of type (p, q) and in addition the infimum of such
k is called the (p, g)-norm of T.

LemMMA 4. Suppose that T is simultaneously of type (p;, q;) with (p;, q;)-norm
k;(1<p;, g;< ) for i=0,1. For each 0<t<1, define p, and q, by
1—1¢ t

A A=t ot g L= 4+t
P: Po Py q: 9o q1

Then T is of type (p,, q.) and its (p,, q,)-norm k, satisfies the inequality k,<
dk{~tki. Namely,

I Tolly, < dk§~'killel,,  (peL(X, CY). 4.1

Moreover, if p,<oo then T can be extended to an operator on LP«(X, C9%) and
satisfies the same inequality as (4.1).

The proof of this lemma is accomplished by applying the Riesz-Thorin
theorem to each component ¢’ of o =(¢l,..., ¢9) e #(X, C?) and so it is omitted.
The aim of this section is to prove the following theorem.

THEOREM 1. If 1<p<2 and 1/p+1/q=1, then the Fourier transform can
be extended to LE(G/K) and there exists a positive constant C,p, which depends
only on p and F, such that

(] 1mongemi-2a)™ < Cellfl, (e LEGIK).

To prove the theorem, we need a lemma. We consider two measure spaces
(A*, é(a)da) and (a*, [W]~1|c(v)|~2dv) and define linear mappings T (i=1,..., d)
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of #(A+, C?) to the space of C-valued functions on a* by
Ti(g)() = (n¢")Po, 8) (For g F(4*, CV).
Then clearly Ti(¢p) is measurable on a* and
(NP = iy TH)P;. (4.2
In addition, for 1 < p< oo, we easily have
@Dl = (Zéy ITH @)V 43)

LEmMMA 5. Let 1<p<2 and 1/p+1/q=1. Then each T' can be extended
to LP(A*, C?) and there exists a positive constant C,r such taht

1T, < Coelloll,  (peLr(4*, CY).

PrOOF. We fix an i. Using (4.3) and the corollary to Lemma 2, we have
for pe £(A*, C9)

1T o = suPyeqr ITHP)W)| < sUP,es (@Dl < dlly .

and so T is of type (1, c0). On the other hand, using (4.3), the Parseval equality
and Lemma 1, we have for g € (47, C?%)

IT @I, = (W1 IT@O ) 2dv) "

<(tw1{_ Im@ni3lemiay)
= lo"l> < & o,

and so T'is of type (2, 2). Applying Lemma 4 to our case, we can find a positive
constant C,r which satisfies the desired inequality.

PrOOF OF THEOREM 1. From (4.3), we have

Iz, (@NF = (Xt | TH@) D2 = (Xi=y (| TH(@)|9)? )22
<dP L TP .

Therefore using the Minkowski inequality, we get
1y —24, )¢
(] 1mtonigiem-2av)

<di? (Sa‘ 'i’=1lTi(‘P)lqlC(v)[‘zdv)l/q

< &2 T TP, < d2Cpeloll,
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Because D is a bijection, the proof is completed.

§5. The Hausdorff- Young inequality in general case

To prove the Hausdorff-Young inequality on a§, we use the Kunze-Stein
interpolation theorem (cf. [3]). The function space which we consider is not
Lr(A*) but LP(A*, C?) and so we need a slight extension of the theorem. Let
(X, p) be a o-finite measure space. (X, C% and L?(X, C¢) are the same as in
section 4 and section 3 respectively. Moreover let Y be a locally compact space
satisfying second countability axiom with a regular measure w and let 5# be a
complex separable Hilbert space. If F is a #(s#)-valued measurable function on
Y, then we define p-norms |F|, (1< p<o0) by

1#1, = (], 1FO)Iz dot) " @ <p<eo),
”F”oo = €sS. Super ”F(y)”oo .

For a, beR, b>a, we put D=D(a, b)={ze Cla< Imz<b}. And suppose
T, (z € D) is a linear operator from &£(X, C?) to the space of all #(s#)-measurable
functions on Y. The family {T,|ze D} is called admissible on D if (i) for any
&, Yes and e L (X, C%, the C-valued function (T,(¢)(y)®, ¥) is locally
integrable on Y; and (ii) for any measurable relatively compact subset Y’ of Y,
the function

60 = | (To)0)e, ¥) doly)

is admissible on D. Here we say that a C-valued function ¢ on D is admissible if
(i) ¢ is holomorphic in the interior of D and is continuous on D; and (ii) ¢ is of
admissible growth, that is, ¢ satisfies

SupaSySb log |¢(X +\/-""_1_y)| = O(ecl"‘)

for some ¢ <n/(b—a).
Let 1<py, py<o0 and 1<qy, g, <. If teR, a<t<b, then we put 1=

(t—a)/(b—a),

+ % and LIzt T
p Po Dy q 90 9

Let A; (i=0, 1) be positive functions on R which satisfy, for some C>0 and
c¢<n/(b—a), the inequality

log A(x) < Cecl*l  for i=0,1
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simultaneously. The following lemma is an easy consequence of Kunze-Stein

[31.

LeMMA 6. Let {T,J|zeD} be an admissible family on D of linear
operators of #(X, C?) to the space of B()-valued measurable functions on Y
such that

[ Tet y=1a(@) 4o < Ao(X) @]l 5o
I Tt y=r6(@)lq, < As(x) @I,
for all p e #(X, C?%). Then we have
IT=x{P)ly < dCllol, (peL(X, CY)

Jor a positive constant C, which is given by
log C, = S“’ 2(1—1, %) log Ao((b— a)x)dx

+[7 e 0 tog 4y -apwyax, (5.1)

where

1(z, x)-—tan( )sech2< )/2(t n2< >+t h2< a ))

To prove the Hausdorff-Young inequality, we need another lemma.
LemMA 7 (cf. [1]). There exist positive constants B; and B, such that
By|c()7? < TTaexo I<v, 12141y, ad[)*®72 < Byle(v)| 2
for all vea*.

We take two measure spaces (A%, d(a)da) and (a*, do(v)=TT,e5, 1+
|<v, a)])*@dv) as (X, p) and (Y, w) respectively. Let 1<p<2, 1/p+1/g=1 and
e=2/p—1. We fix neC,, (n#0) and choose an orthonormal basis uy,..., #; of
a* so that u;=n/|n|. We then put D=D(0, |n|/e). For p e £(4*+, C?%) we put

Fzm((p) (V) = nzu1+v ((P1) Hael‘o (1 + |<V, a>|)~1|<2ﬂ1 + v, a>|
(zeD, vea*)

and define a family {T,|z € D} by
T: 9— F,,(9) (pes(4%, CY).

From the relation (%,(¢")®, )= 4, T{(@)()(P, Po)(P;, ¥) and the fact that if
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zeD then zu,+ve T, it follows that {T,|ze D} is an admissible family on D.
For ¢=x+./—1nl/e (xeR), by the corollary to Lemma 2 and the inequality
[<v+Epy, | <1+ [y, 0L+ [<Epy, 0)]), we have

ITellow < dllells Taexo (1 +1<S11, 23]

If we put A;(x)=d [Tsez, (1+|<{Ep4, @D]), then for any ¢, 0<c<en/|n|, we can
choose a positive constant C, such that

log A;(x) < C,ecl*l (xeR).

On the other hand, for é=x (x e R)

I Tl = S I Tgpuyn (@13 Taero (1+1<v, ) )*®72[CEpy +v, 0d|2dy

a¥

< 0 1 (03 ez, (1 IKER +v, D21+, 032y

* Hae!o Supvsa‘ (1 + |<€M1 + V, a>|)2—-a(a)(1 + |<V, a>|)a(a)—2.

Because there exists a positive constant k such that

(L+1<Euy +v, ap[)>72@ < k(1+[<v, ad )22+ [ Epy, adlal=2]

for all vea*, we have by Lemma 7 and Lemma 1

I T3k Taen, (1R, 212!
170 (@1 13 e, (1 KG9, D21y +v, adl2dy

< Bok Taex, (1+ KEpy, apD272@ld ] )3 -

If we put Ay(x)=(dB,k)'/? [T,ez, (1 +1<Euy, ad|)19®/2-11 then for any ¢, 0<c<
en/|n|, we can choose a positive constant C, such that

log Ag(x) < Cgecl*l (xeR),
and we have
T, < Ae®lell.  (peF(4", C)).

Applying Lemma 6 to our case, we can find a constant C >0 such that

IT/=tq(@)lly < dClioll,-
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Therefore, the following inequality holds:
(] 17 smra @18 ez, (14 1y, syl
1/q
=T, a)ledv) < Corylloly-

Thus we obtain the following proposition.

LeMMA 8. Let 1<p<2, 1/p+1/q=1 and e=2/p—1. If we fix an neC,,
then there exists a positive constant C,p, which depends only on p, F and n such

that
s 1/q
(] 17 mratonlglem2a) ™ < Cpplol,

for all pe (AT, C9).
From this lemma we get the following theorem.

THEOREM 2. Let p, q and ¢ be in Lemma 8. If fe L%(G/K) then the Fourier
transform n,(f) can be holomorphically extended to the tube domain T, and
for any ne C,,, there exists a positive constant C,p, such that

(. 1msmnOlglem2ay ) < el £, (FeLEGIR).

§6. The Hausdorff-Young inequality for the Radon-Fourier transform

The Radon-Fourier tansform on the Riemannian symmetric space G/K is
defined as follows. Let fe C¥(G/K). Then

f(kM, v) = S f(kan)e “V=1v+p)(H@)dadn, (kMeK/M, vea¥).
AXN

Concerning this transform, the Parseval equality and the inversion formula are
known: for fe CP(G/K)

/1% = [W]"S . | f(kM, v)I2le(v)|~2dkpdv,

K/Mx
f(x) = [W]—l SK/an‘f(kM, V)e(‘/_—l"”’)(H("'"‘))IC(V)l'zdkMdv.

The aim of this section is to give the Hausdorff-Young inequality for the Radon-
Fourier transform. If vea¥ and fe C3(G/K) then, by a simple calculation using
integral formula for the Iwasawa decomposition, we have
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(R (NBo) (kM) = | f()eTr=n =00 = T(kM, ).
G
Therefore, using (4.2), (4.3) and the Schwarz inequality, we have for any g¢>1,

|F(kM, )| = |r,(/)@ol® = |Z; TH@)P;l®
S (XL Ty 19:) 92 < di2||m (NI -
Let 1<p<2,1/p+1/g=1and e=2/p—1. IfneC,, then we have from the above,

<gK/an' |[f(kM, v +\/:—1n)|qlc(v)|*2dv>1/q
< (5, o A D))

1/q
= a2 ([ ImrmnDIgem)2dv)
< dl/szFn”f“p .
Thus we obtain the following theorem.

THEOREM 3. Let 1<p<2,1/p+1/q=1 and e=2/p—1. If fe L%(G/K) and
neC,, then there exists a positive constant C g, such that

(SK/MW |f(kM, v+\/:_1'1)l“|6(v)l‘2dv>l/q <Corlfl,-
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