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Introduction

Let (R, m) be a d-dimensional noetherian local ring and I an m-primary ideal
of R. Then it is well known that there exist (uniquely determined) integers e;
(0<i<d) such that

d—1
GRIY) = e("H D) = e (P HATT) ek (<1,

for all sufficiently large n. e, is the multiplicity of I. The significance of the
other coefficients e; has been studied by some people (cf. [4], [10], [16], [17],
[19], [23]). But it seems that much more remains to be done. The aim of this
paper is to study the significance of the invariants e, and ey —e; +--- +(—1)%e,.
We introduce the notion of genus and arithmetic genus of an ideal, and study the
properties of local rings by these invariants. We also introduce the notion of
normal genus and normal arithmetic genus by considering the function 4(R/I"*1),
where J denotes the integral closure of an ideal J. These invariants might be
better to study singularities.

In §1, we investigate properties of general polynomial functions by introducing
various invariants (e.g. the genus and the arithmetic genus) of a polynomial
function.

In §2, we consider the Hilbert functions of graded modules. We express the
genera by the local cohomology modules and study the relation of the genera and
the vanishing of local cohomology modules.

In §3, the (normal) genus and the (normal) arithmetic genus of an ideal are
defined, and we express them in terms of the sheaf cohomology of (normalized)
blowing-up schemes.

In §4, we investigate the relation between the genera and the reduction
exponents of ideals.

In §5 and §6, we examine the cases of dimension one and two (curve and
surface singularities) in detail.

Notation and terminology

All rings are commutative noetherian rings with unit.
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Let I be an ideal of a ring R. We denote by I the integral closure of I, i.e.,
the set of elements x € R such that x"+a,x""'+---4+a,=0 for some q;eI!'. We
put RU)=@,z0I", R()= @uzo I, G(D)=@,50I"/I"*" and G()= @ngoﬁ/lrl-
If (R, m) is a local ring, then we put G(R)=G(m) and G(R)=G(m).

4(M) denotes the length of an R-module M.

Q(R) denotes the total quotient ring of R. For any R-submodules I and J of
Q0=0Q(R), put (I: J)={xeQ|xJ<=I} and (I: J)g=(I:J)nR. R denotes the
integral closure of R.

For m,ne Z, n=0, (T) denotes the binomial coefficient with an agreement

that <ZI>=O if m<n, and <8>=1.

§1. Some invariants of polynomial functions

We assume that all functions f: Z— Z considered in this section satisfy the
following condition: f(n)=0 for all n «0. We say that fis a polynomial function if
there is a (uniquely determined) polynomial P e Q[t] such that f(n)= P «(n) for all
n>0. Denote by £ the set of all polynomial functions and set 2+ ={fe 2|f(n)=
0 for all n<0}. Put (4f)(n)=f(n)—f(n—1) and (Ff)(n)=%,;c,f(i). Then for
any fe 2, we have Af, Vfe 2, A(Ff)=f, V(Af)=f and P, (t)=P(t)—Py(t—1).
It is well known that if f is a polynomial function, then there are (uniquely

determined) integers d20, ¢, (0<i<d), e,#0, such that (Vf)(n)=eo<”;d _

e, (" ;i1_1>+ -+ (—1)%e, foralln>0. Notethat d=deg(P,)+ 1 (resp. d=0) if

P,#0 (tesp. P,=0). Put d(f)=d, e(f)=e, e(f)=e, g(f)=es=(~1)"Py (1),
x(f)=eo—ey+ - +(=1Dley=Py0), p)=(—Dx(f)—Znzo f(), n(f)=
min {n|f(m)=Py(m) for all m>n} and F (t)=3,.,f(n)t"e Z[[t]][t"']. We
call d(f), e(f), e(f), 9(f), x(f), pf), n(f) and F(t) the dimension, the i-th
Hilbert coefficient, the multiplicity, the genus, the Euler characteristic, the
arithmetic genus, the postulation number and the Hilbert series of f respectively.
Note that x(4f) = P(0), x(f)=P0)+(—)ég(f), and g(f)—p.(f)=(~ DS (0)~
P,0)) if fe2*. The following proposition may be well known (except for
the assertion on the postulation number) and is easy to show. So we omit the
proof.

PrOPOSITION 1.1.  For any function f: Z— Z, f#0, the following conditions
are equivalent:

(1) fis a polynomial function.

(2) FA)=o)/(1-1)? for some integer d=0 and ¢(t)€ Z[t, t~'] such that
@(1)#0.
Moreover, if these conditions are satisfied, then we have d(f)=d, e(f)=¢p(1)
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and n(f)=deg(F,;)=deg(p)—d. We denote by ¢ the (Laurent) polynomial ¢
determined by f.

ReMARK 1.2. (1) If we define the product f*g of f, ge 2 by (f*g)(n)=
i+ j=n f(D)g(j), then 2 becomes a commutative ring and #* is a subring of 2
(the additions are usual ones). We have F . (t)=F ()F (), and fis in 2*if
and only if ¢, € Z[t]. Hence by corresponding F to f, the ring 2 (resp. 2%) is
isomorphic to Z[t, t, (1—1)~1] (resp. Z[t, (1 —t)~1]).

(2) For any fe 2, we have d(Pf)=d(f)+1, d(4f)=d(f)—1 if d(f)=1,
e(Ff)=e(f) (0=i=d(f)), eddf)=e(f) (0=i<d(f)), F ()=(1-0DF ()=
F . ((1—1)" and n(f)=n(Ff)+1=n(4f)—1.

THEOREM 1.3. Let f be a polynomial function and put d(f)=d, ¢ (t)=
ez ant", C(f)=L,cof(). (C(f)=0if fe2")

(1) If d=0, then f(n)=a, for all ne Z, P;=0, Py, =g(f)=x(f)=e(f)=
S rez 8 and )= Tzo | |

@ 1f dz1, then f)=Tieg ai(*F 521D, P10 =g, (TH]

and f(n)—P,(n)=(—1)" z,>da,,+,<d 1>for allne Z.

@@= i smnosisa(~ D (9) S0 for all ne z.

(4) fe2* if and only if a,=0 for all n<0, i.e., ¢, € Z[t]. In this case,
ao=f(0) and a,=f(1)=df (0)

) elN)=Tuztn |

© C(N=Ticoa (77 ) and Tygofm=Tisoa (7).

M) If n(NZ0, then g(f)=(=DAS©O)~P[0)+C(f)=a,+(~1IC(f),
1()=f(0)+C(f) and p,(f)=0. Hence n(f)<O0 if and only if n(f)<0 and
a(f)=(=D*C(f).

®) If n(f)>0, then g(f)=(=DASIH (f()~PLD) + C(N)=Z1% ays
(437) + (=1, 1) = TP (J0) = Pr0) + F©O) + C(f) = (— )¢ Tpf-"
avinr (U ) +1O+CU) and pyf) = (= 1)* T (FG)— P,()) = T1p-

d+i
Q+iva\ 4 )

©) 1ffe2*, then g(N)=pN=ZtH arei( T FI7T).
Hence ()2 p.(f)20 if 4,20 for all nzd.

PrOOF. (1) is trivial. (2) Since ¥ ,.zf(M)t"=F(t)=(Z ez ant")(l_t)_d=
(Zrez ) (Erez (V51710 we have f0=Frrsmma(V3I71) for a
ne Z. The formula for Ff follows from this. (Note that ¥ ;. (""‘l)_

<m:1f'1>for all me Z and n20.) For each re Z, r=0, define ke 2 by
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k(n)=<”+’). Then P(n)=k(n) (n20), P(m)=k(n)=0 (—r<n<0) and

P =(=1yr (77 ") (<. Hence () =Py = = Lo r<—-1y (- D"
(3 )R S rzmaa (3T ) =0 Ezaar (§21)- @) Sinee

Znezat "‘(pf(t) (l—t)de(t) (Z 0(_1)'< >tn)(2nezf(n)t")’ we have a,=
Yivj=moziza(— 1) <7> f(j) for all neZ (4) follows from (3). (5) Since
<d+:11 —117—_
by (2). (6) We may assume that d>1. Then C(f)=2,<of(N)=2,<0 Licz G;

<d+n—z—l> Zi<oai<2n<0(d+£:ll_l>> Z.<oa:<d_al] > The proof

of the formula for 3}, f(n) is similar. Since (7) can be proved as (8), we have
only to show (8). Put n(f)=m. Then forall n>>0, we have (F f)(n)=3 ;.o f()+

Teof(D)+ Xlemi 1 (D) =C(f) + XTo (f() = P(D)) + 240 P,(i). It is easy to
see that the polynomial P(¢) determined by P(n)=3 "o P(i) for all ne Z, n20
is a multiple of t+1. Hence (—1)4g(f)=Py(—1)= X7 (f(i)—P(i))+C(f)
and x(f)=(—=1%%(f)+P0)=Xm, (f(i)—P))+f(0)+ C(f). Other assertions
follow from (2). Q.E.D.

1>is a polynomial function of dimension d, we have e(f)=3,.; a,

COROLLARY 1.4. Suppose that fe 2+, f(0)=1, and put d(f)=d, e(f)=e,

J)=v.
(1) In general, we have n(f)+d(f)=deg(¢,)20.

@) n(f)+d(f)=0 if and only if f(n)= ("+Z—l>for all 1.

(3) n()+d(f)<1if and only if f(n)= <"+"1’~1)+(v_d) <nﬂf2> for
alln=1. In this case, we have v=e+d—1.
@ n(f)+d(f)<2 if and only if f(n)= <n+d >+(v_d)<n-rl;il—2)+

(e—v+d— 1)<”+d 3)foralln>2

EXAMPLE 1.5 (Graded modules of polynomial growth). Let A=@®,50 4,
be a graded ring with A;=R. Then a graded A-module M =@®,_, M,, is said to
be a graded A-module of polynomial growth if each M, is an R-module of finite
length and f(n)=¢(M,) is a polynomial function. In this case, put H(M, n)=
4(M,) and we write (M, t), d(M), e(M), e(M), n(M), F(M, t), @u(t), gM),
x(M), p,(M) instead of P (1), d(f), ef), e(f), n(f), F (1), ¢ (1), g(f), 2(f), pulf)
respectively. Note that (FH)(M, n)=H(M[X], n) with deg(X)=1, and if
a€A is a homogeneous M-regular element of degree r, then F(M/aM, t)=
(1—-t)F(M, t) and n(M/aM)=n(M)+r. If A is a homogeneous algebra over
an artinian ring, then a finitely generated graded A-module M is a graded A-module
of polynomial growth with d(M)=dim (M) (see §2 for this case). If X is a
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projective variety over an algebraically closed field k and D is an ample Cartier
divisor on X, then A=@®,5, H(X, Ox(nD)) is a noetherian graded k-algebra of
polynomial growth.

(1) Let X be a d-dimensional abelian variety and D an ample Cartier
divisor on X. Put A=@,s¢H%X, 0x(nD)). Then e:=e(A)=(D?) and
H(A, n)=en?/d! for all nZz1. Hence we have ¢ ()=(1—-1)""+e/d! Y o<i<n<a
(—1)f<d * 1>(n—i)dtn, n(4)=0, p(A)=0 and g(4)=(—1)'. If D is very
ample, then A4 is a Buchsbaum ring with dim (4)=d+1, depth (4)=2, I(4)=

?=1<cii><iil>’ and A is Cohen-Macaulay<>A is Gorenstein<>X is an elliptic

curve (cf. [25]).

(2) If X is a smooth projective surface of general type and K is its canonical
divisor, then the canonical ring A=®, H(X, 0x(nK)) of X is a 3-dimensional
noetherian ring with H(A4, n)=(K»)n(n—1)/2+x(0y) for all nz2 (cf. [2]).
Hence ¢ (t)=14+@w-3)t+(e—2v—q+4t*+(v+29—3)3+(1—g)t*, where e=
(K?), v=p,(X), q=q(X). We have g(4)=p,(X)—2q9(X)+1, p,(A)=1-q(X),
In(A)|£1, and n(A4)=0 (resp. n(4)= —1) if and only if g(X)=1, i.e., p(4)=0
(resp. p(X)=q(X)=1, ie., p(4)=g(4)=0). If K is ample, then reg(4)=4,
and A is Cohen-Macaulay<>A4 is Gorenstein<>q(X)=0. (Concerning reg(A4),
see [20].)

(3) Let X be a Del Pezzo surface and A=@®,», H%(X, 0x(—nK)) its anti-
canonical ring. Then A is a 3-dimensional Gorenstein algebra and H(A, n)=
n(n+1)(9—r)/2+1 for all n=0, where r=9—(K?). Hence ¢ (t)=1+(T—r)t+
2, n(4)=—1 and g(4)=p,(A)=0. (cf. Demazure, Lecture Notes in Math.
vol. 777.)

ExaMpPLE 1.6. Let P be a d-dimensional lattice complex, i.e., a simplicial
complex in R™ whose vertices are in Z™, then the function f(n)=Card (nPn Z™)
(n20)is a polynomial function such that d(f)=d+1 and n(f)<0. Hence p,(f)=
0. If Pis a d-dimensional lattice convex polytope in R¢, then we have n(f)<0
and e(f)=d! (the volume of P). Hence p,(f)=g(f)=0 (cf. [1], [26]).

§2. The case of graded rings

In this section, A=®,5,A4,=R[A4;] denotes a noetherian homogeneous
algebra over an artinian local ring R=A4, and M=®,., M, is a finitely generated
graded A-module with dim (M)=d. Put P=A4,.

LemMmA 2.1. H(M, n)—h(M, n)= Y 4, (= D4([HLM)],) for all ne Z.
In particular, if M is Cohen-Macaulay, then H(M, n)—h(M, n)=(—1)4
Y([H¢(M)],) for allne Z.
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PROOF. Put X=Proj(4). Then h(M, n)=x(X, M(n)= ¥ 2,(-1)
4(H(X, M(n))) for all ne Z, Hi*'\(M)=@®,., H(X, M(n)) (i=1), and we have
the following exact sequence (cf. [6], (2.1.3), (2.5.3)):

0— HYM) — M — @, H(X, M(n)) — HLM) — 0.

Hence h(M, n) = 2, (= DI4(H(X, M(n) + ¢(HAX, M(n) = T2, (= 1)}
¢([HF(M)],) + ¢(LHHM)],) + ¢(M,) — ¢ ([HYM)],) = H(M, n) — ¥ Lo (—1)!
4([Hp(M)],). Q.E.D.

COROLLARY 2.2. We have n(M)<reg(M)—depth(M). Moreover, if M
is Cohen-Macaulay, then n(M)=a(M):=reg (M) —dim (M).

ProoOF. If n>reg(M)—depth (M), then for any ix=depth(M), we have
n+i=n+depth (M) >reg (M), which implies that [H5(M)],=0. Hence H(M, n)
=h(M, n) for all n>reg(M)—depth (M), i.e., n(M)=<reg(M)—depth (M). The
second assertion follows from Lemma 2.1 immediately. Q.E.D.

ExAMPLE 2.3. Assume that R is a field k and A4 has a pure resolution:
0— F,— -+ — FF— S— A4—0, F; = S*(—a;) (1ZiZr),

where S=k[X,..., X,], v=emb (4), 0<a,<---<a, and r=hdg(4). Then we
have reg(A)=a,—r and ¢, (f)=1+b t**+---+b,t*~. Hence n(A)=reg(A)—
depth (4).

THEOREM 2.4. Suppose that M= @50 M,.

(1) If n(M)<0, then p(M)=0 and g(M)= 3 {_o (— )" 4([HH(M)],).

(2) n(M)<O if and only if n(M)<0 and g(M)=0.

(3) If n(M)>0, then g(M)=3198) T o (— D U([Hp(M)],) and p(M)=
Tal0 S o (= 1) L(CHEM)],).

Proor. This follows from Theorem 1.3 and Lemma 2.1. Q.E.D.

COROLLARY 2.5. Suppose that M=@®, >, M, is Cohen-Macaulay.

(1) gM)zp,(M)20 and g(M)— p,(M)=£¢([LHE(M)]o).

(2) pM)=0 if and only if a(M)<0. g(M)=0 if and only if a(M)<O0
(or equivalently g(M)= p,(M)).

B) If aM)>0, then g(M)=3X:% ¢([H)(M)],) and p(M)=3 s
¢([LHE(M)],).

THEOREM 2.6. Let A be a Gorenstein homogeneous algebra over a field, and
put dim (A)=d, emb (4)=v, e(Ad)=e, a(4)=a.

(1) If a(M)>0, then g(A)= Y 24) H(A, n) and p,(A)= Y. 241 H(A, n).

(2) a(A)=0 (resp.a(A4)<0, a(A)=0, a(A)=1) if and only if p,(4)=0
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(resp. g(4)=0, g(4)=1, p(4)=1).

(3) g(4)22+a(4)21sg(4)2emb (4)+122. p(A4)22<a(4)22<p,(4)
zemb(4)+1=2. a(A)=1 (resp. a(4)=2) if and only if g(A)=emb(A)+1=2
(resp. p(A)=emb (4)+12=2).

@ o (* 193 () entrins(“H (), (1)

v
(resp. p(A4) =<U + ‘; - 1)) if and only if a(A)<i(A)—1 (resp. a(A)Zi(A)), where

i(4)=min {an(A, n)¢<v+2_1>}, the initial degree of A. g(A)=<§) (resp.

p(A)= (e;l)) if and only if A is a hypersurface or v=e+d—2,d=1 (resp. A is
a hypersurface or v=e+d—2).
(5) Ifreg(A)=3 and A is not a hypersurface, then g(A)§<[e/zv] +2> and

n(as (F2+1).

ProoF. Since A(a)=K , ,~Hom, (H%(A), k), we have 4([H4(A4)],)=4(A,-,)
for all ne Z. This implies (1) by Theorem 2.4. (2) and (3) follow from (1).

(@) g(A)=X3_o H(4, n)<T9_, (" - 1)= (”j“), and the equality holds if

and only if i(4)=a(4)+1. Since d+a=reg(A)<e+d—v, we have <v :a>§ <$>,
and the equality holds if and only if 4 is a hypersurface or v=e+d—2 (i.e., a+
d=2) (cf. [20], Proposition 13 and Theorem 15). The assertions for p,(A4) are
similarly proved. (5) Under the assumption, we have reg(4)<e/2+d—v+
+2,1.e., v+aZe/2+2 (cf. [20], Proposition 13). This implies the assertion.

Q.E.D.

ExampLE 2.7. (1) g(A4) and p,(A) are not necessarily non-negative. For
example, put A=k[X, Y]/(X2, XY). Then we have ¢, (f)=1+t—12, n(4)=1,
a(4)=0, g(4)=p,(A)=—-1.

(2) If A is a complete intersection of type (e, e,) and emb (A)=v, then

e e e e;+e,—1 e;—1 e,—1
o= (613~ () o i () () (1)
The formula for any complete intersection is similar.

(3) Let A be a Cohen-Macaulay homogeneous algebra over a field. If
pA)=1, then a(A)=1. The canonical module K, of A is Cohen-Macaulay,
and we have a(K )=0, g(K)=1, p(K,)=0.

(4) Let A be the Stanley-Reisner ring k[4] (or more generally an ASL)
on a simplicial complex 4 over a field k. Then n(4)<0 (cf. [27]) and we have
p(A)=0 and g(4)=(—1)4(4)—1), where x(4) is the Euler characteristic of
4, d=dim (4).
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§3. Genera and arithmetic genera of local rings

Let (R, m, k) be a noetherian local ring with dim (R)=d =1, and let I be an
m-primary ideal of R. Then the Hilbert function f(n)=H{(n)=¢(I"/I"*') of I
is a polynomial function. Also, if R is analytically unramified, then the function
f(n)=HYn)=¢(I"/I"*1) is a polynomial function because G(I) is a finitely
generated G(I)-module. We have (Ff)(n)=4(R/I"*!) and (Ff)(n)=4(R/I**Y).
We use the notation ef(I), g(I), x(I), p,(I) and n(I) (resp. e(I), g(I), x(I), p(I)
and 7(1)) instead of e,(f), g(f), x(f), p(f) and n(f) (resp. e(f), g(f). x(f), p(f)
and n(f)). Note that eq(I)=¢é,(I)=e(I), the multiplicity of I, and we have g(I)=
9(G(D)), g(I)=g(G(I)), etc. If I=m, we also put g(m)=g(R), g(m)=g(R), p,(n)=
PA(R), p(m)=p,(R), etc. We call g(I), p(I), g(I), p(I) the genus, the arithmetic
genus, the normal genus, the normal arithmetic genus of I respectively (cf.
[22]). In what follows, when we consider g(I), p,(I), etc, we always assume that
R is analytically unramified. Our aim of this section is to prove the following

THEOREM 3.1. Assume that R is Cohen-Macaulay, and put X =Proj (R(])),
D =Proj (G(I)), X =Proj (R(I)) and D="Proj (G(I)).

(1) If d=1, then g(I)=4¢(H(X, 0x)/R), pI)=g(I)—e(I)+ ¢(R/I), g(I)=
4(H%(X, 0g)/R)=4(R/R) and p,(I)=g(I)—e(I)+ ¢(R/I)= ¢(IR/).

(2 If dz2, then g(D=XEi(—D*HUHIX, 0x), pfD)=g()+
(= D4(D)—4(R/D), F(D= T} (=D H1YH(X, Ox)) and p(D=g(I) +
(—=1)%x(D)— 4(R/I)), where x(D)=3 %4 (--1)'4(H (D, Op)) and y(D)=3{=4
(=1Di¢(HD, 0p)). In particular, if d=2, then g(I)=4(HY(X, 0y)) and
g(h)=¢(H\(X, 0y)).

LemMA 3.2. Let I be an ideal of a noetherian local ring (R, m), and let
F be a coherent module on X =Proj (R(I)). Then H(X, F)=0 for all i=Z4(I):=
dim (G(I)/mG(I)), and Suppg (H{(X, F))<V(I) for all i=1. In particular, if
I is m-primary, then H(X, F)=0 for all iZdim(R) and HY(X, F) is an R-
module of finite length for all i=1.

PROOF. This follows from [6], (4.2.2). Q.E.D.

ProPOSITION 3.3. Let R be a noetherian ring, M a finitely generated
R-module and I an ideal of R which contains an M-regular element.

(1) Put X=Proj(R(I)) and F=R(I, M)~ the coherent module associated to
R(I, M)=@®,501"M. Then

HY(X, F) = lim,_,, Homg (I", I"M) = \UZo (I"M: I")g(41)

where Q(M)= Mg, S=R —Zg(M) the set of M-regular elements. More generally,
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we have H(X, F(r))=lim,_, , Homg (I", I"**M) for all r=0. If depth, (M)=2,
then HY(X, F)=M.

(2) Assume that R(I) is noetherian, and put X =Proj (R(I)), F=R(I, M)~,
where R(I, M)=@®,50 ["M. Then H°(X, F(r))=lim,_ , Homg (I", I"*"M) for
all r=0.

(3) If R is reduced and R(I) is noetherian, then HY(X, Ox(r))=1" for all
r=0.

PrROOF. (1) Put L=R(I, M), A=H°(X, F) and B=\UZo(I"M: I")y(sy).
By the assumption , I=(ay,..., a,) for some M-regular elements a;, Put U;=
D.(a;), a;e R(I);. Then H°(U, F)=L,={x/a? € Q(M)|x e I"M, n=0}, HY(U;
NUj, F)=L,, and A=Ker (IT; L,)y311;; L) Let x be an element of B.
Then xI"cI"M for some n. Hence xeLg, for all i. Put f(x)=(x,..., x).
Then it is easy to show that f defines an isomorphism from B to A. The fact
F(r)=R(I, I"'M)~ implies the second assertion. The proof of (2) is similar.
(Note that Ox(r)=I"0x=1"0x% for any r=0.) (3) follows from (2) and the
following lemma. Q.E.D.

LemMA 3.4. Let I and J be ideals of a reduced noetherian ring R. Assume
that I contains an R-regular element. Then (IJ:I)g=1J.

ProOF. We have only to show the inclusion (1J: I)y=J. Takean element
x of (IJ: I)g. If R is an integral domain, then I= NIV n R, where V runs over all
valuation overrings of R (cf. [28]). For any V, put IV=aV. Then xIV<1JV,
xIV=xIV=xaV and TJV=IJV=aJV. Therefore xacalV, i.e., xeJV. Hence
xe nNJVNR=J. In general, we have Xxe(IJR/p: IR[p)g,,=JR[p for each
minimal prime ideal p of R (Xistheimage of x in R/p). Put S=TT,cmincr) R/P.
Then we have xe JSNR=1J. Q.E.D.

PrOOF OF THEOREM 3.1. We assume that d=2. The case d=1 is similar
(or will be treated in §5). For each r=1, put rD=Proj (®,z0 I"/I"*")=
Specy (Ox/I"0y), the closed subscheme of X defined by I'0y. From the exact
sequence 0—I"0x— 05— 0,,—0, we have the following exact sequence:

0 — HO(I'0x) — H°(0x) — H°(0,p)
— H'(I"0y) — H'(0x) — H'(0,p) — H*(I"Ox) —> -

We have H%(0x)=R and HO(I"Oy)=1I", H(I'0x)=0 for all r>»0 and all i=1.
Hence 4(R/I")=y(rD)— X 4z} (—1)'4(H(0y)) for all r>0. Let P be the poly-
nomial associated to the function ¢(R/I"*!). Then for each r=1, we have
x(0,p(m)=¢(I"[I"*")= 4(R/I"*")— 4(R/I")=P(n+r—1)— P(n—1) for all n>»0.
Hence x(0,p)=P(r—1)—(—1)4g(I). Therefore (—1)4g(I)=—x(rD)+P(r—1)=
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—x(rD)+ 4(R/I") (for all r»0)=—3 1 (-1)I4(H (0y)), x(I)=P@0)=yx(D)+
(=1)%() and p(I)=(—D*x(D)—4R/D)=g(I)+(—1)¥x(D)—4(R/I)). The
proof for the normal genus case is similar. Q.E.D.

ExaMPpLE 3.5. If G(R) is reduced, then m"=m~ for all n>1. Hence g(R)=
g(R) and p,(R)=p,(R). Forexample, if R=k[[X,,..., X,]1/(f), e(R)=e and the

initial form of f is square-free, then g(R)=g(R)= (5) and j(R)=p,(R)= <e ; 1> :

§4. Reduction exponents of ideals of local rings

In this section, (R, m, k) denotes a Cohen-Macaulay local ring with infinite
residue field and dim (R)=d=1. In [21], we introduced the notion of reduction
exponent 6,M) of a finitely generated graded module M over a noetherian
homogeneous R-algebra A: J,(M)=min {n|there is a minimal M-reduction B
of A such that ByM,,=M,,,, forall m=n}. If A=@,;, A4, is a (not necessarily
homogeneous) noetherian graded ring with A,=R such that A is a finitely
generated R[A;]-module, then we put 6(4)=0Jg;4,(4). For an ideal I of R,
put 8(I)=68(R(I)) and 8(I)=58(R(I)). We call 6(I) and () the reduction exponent
and the normal reduction exponent of I respectively. Hence 6(I)=min {n|there is
a minimal reduction J of I such that JI"=I"*'} and §(I)=min {n|there is a
minimal reduction J of I such that JI™=Im*1 for all m>n}. Note that 5(I) is
well-defined if R is analytically unramified. We also put §(R)=35(m) and 8(R)=
&(m).

THEOREM 4.1. Let I be an m-primary ideal of R.
(1) The following conditions are equivalent:
(a) o(I)=0.
(b) I is a parameter ideal.
© o /I)= e(R/I)(” td- 1) for all n=1.
(d) e (1)=0.
If these conditions are satisfied, then e(I)=0 (1<i<d), n(I)=—d and g(I)=
p1)=0.
(2) Assume that R is analytically unramified. Then the following
conditions are equivalent:
(a) &(I)=0.
(b) 1Iisa parameter ideal.
© o= eRT(" td- Dfor all nz1.
(@) e,(N=0. _
If these conditions are satisfied, then R is a regular local ring and 1
e()=0(1gizd), n(I)=—d, g(I)=p,I)=0.
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PrOOF. We only prove (2). The proof of (1) is similar. (a)=>(c)=(d) is
clear. (d)=>(b) follows from Lemma 4.2 below. (b)=>(a): By [5], in this case,
R is a regular local ring and I"=1I" for all n>1. Q.E.D.

LemMA 4.2 (cf. [19]). e,(I)=e(I)—£4(R/I)20 and &,(I)=e(I)— ¢(R/I)=0.

ProOF. We prove only the second assertion. By Theorem 4.4, below,
we have 4(R/T1) < (1) (” td-l >+ e(R/1)<” +d- 1> e(1)<” P d>+(—e(I)+
UR/D) (” +d— ) for all n20. Hence 0<(—e(I)+ e(R/I)+él(1))(" hart )+
terms of degreefd—Z foralln>0. Therefore —e(I)+ 4(R/I)+e,(I)=0. Q.E.D.

THEOREM 4.3. Let I be an m-primary ideal of R. Then
URII™) < el <”+d >+ e(R/I)(”j;ff) forall nz0.

In particular, 4(I/I*)Ze(I)+(d—1)4(R/I). Moreover, the following conditions
are equivalent:

) 4(R/1n+1)=e(1)<" td- 1) + e(R/I)(" P 1>for all n20.

(2) e(D)=02=<i=d)and n(I)=0.

(3) =1

@ ¢/IP)=e()+(d—1)4(R/).
If these conditions are satisfied, then p,(I)=0, e,(I)=e(I)— 4(R/I), n(I)= —d or
—d+1, G(I) is Cohen-Macaulay, and g(I)=0 if d >2.

PrOOF. Let J be a minimal reduction of I. Then J is a parameter ideal
and we have

O(R/I™Y) < G(R[IJ™) = 4(R|J") + £(J"[1J7)
= 4(R/J") + £(J"|J"* 1 @p,y R/T)

—e(1)<”+d‘1)+ z(R/1)<"+d ) forall n=0,

because J*/J"*1 is a free R/J-module of rank <n ;i; 1>. In particular, £(I/1?)=
e()+(d—1)4(R/I)— ¢(1%/1J). Hence (1)<«>I"*'=IJ* for all n=0<«=I2=1J.
This shows the equivalence of (1), (3) and (4). (1)=>(2) is clear. (2)=>(1): Since
4(R/)=ey(I)—e,(I), we have £(I/I*)=ey(I)d—e,(I)(d—1)=e(I)+(d—1)4(R/]).
Cohen-Macaulayness of G(I) follows from [28]. Q.E.D.
The following theorem is analogous to Theorem 4.3. We omit the proof.

THEOREM 4.4. Assume that R is analytically unramified and I=1. Then
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YR < e(I)<" td- 1) + e(R/1)<" ‘gf;l) forall n20

and the following conditions are equivalent:
(1) ¢R/F)= e(1)<”+g‘ 1) +OR/T) (” s 1>for all n20.
2) e()=0(2=gigd), a(I)£0 and I*>=1>
(3) D=L
@) ¢/IP)=e(I)+(d—1)4(R/I) and I"=1I" for all nZ=1.

Next, we recall some results of Sally about the reduction exponent of Cohen-
Macaulay local rings (cf. [24]).

ProprosITION 4.5. (1) 8(R)=0<>reg(G(R))=0<>R is a regular local ring.

(2) 4(R)<1<reg(G(R))<1<>emb (R)=e(R)+dim (R)—1. In this case,
G(R) is Cohen-Macaulay.

(3) O6(R)=2 if and only if reg(G(R))=2. In this case, G(R) is Cohen-
Macaulay and emb (R) 2 e(R)+dim (R)—1—r(R).

(4) IfRis Gorenstein, then 5(R)=2 if and only if emb (R)=e(R)+dim (R) —
2. In this case, G(R) is Gorenstein.

(5) Ifreg(G(R))=3, then 6(R)=3.

PROPOSITION 4.6 (cf. [14]). For any ideal I of R, we have 6(I") <dim (R) for
all r>0. Moreover, if R is analytically unramified, then 3(I")<dim (R) for
all r>0. (Here R is not necessarily Cohen-Macaulay.)

The proof of Proposition 4.6 requires some lemmas. For any real number
x, put {x}=min {ne Z|ln=x}.

LEMMA 4.7. Let A be a homogeneous algebra over a noetherian ring R
and let M be a finitely generated graded A-module with dim (M)=d. Then for
~any r=1, we have

reg(M®) < {(reg(M)—d+1)/r+d—1}.
In particular, reg (M) <d for all r>0.

Proor. If n=(reg(M)—d+1)/r+d—1, then reg(M)+1=r{(n+1)—d} +
d=r(n+1)+d(1—-r)Sr(n+1)+i(l—r)=r(n+1—i)+i for all 0<i<d. Hence
[Hp(M)],(u+1-i=0forall0<i<d. Thisimplies that reg(M®™)<n. Q.E.D.

LeEMMA 4.8. Let I be an ideal of a noetherian ring R, and put A=R[It],
B=R[It, t71], G=G(I). Then we have reg(A)=reg, (B)=reg(G).

Proor. We may assume that R is local. For a graded module M, put T"(M)
=®;4+j=n[Hp(M)];. From the exactness of the sequence 0—B(1)15B—G—0,
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the sequence T"*(B)=T"(B(1))-T"(B)-»T"(G)=0 is exact for all n>reg(G).
Since T"*{(B)=0 for all i»0, we have T*(B)=0 for all n>reg(G), i.e., reg(B)<
reg(G). If n>reg(B), then from the exact sequence 0= T"(B)— T*(G)— T"*!
(B(1))=T"*%(B)=0, we have T*(G)=0, i.e., reg(G)<reg(B). Since [B/A],=0
for all n=0, we have Hy(B/A)=0 for all i>0 and H}(B/A)=BJA. Hence the
sequence 0—H$%(A)—H%(B)-»B/A—->H}(A)—»HLB)—-0 is exact, and Hi(A4A)=
Hi(B)foralli=2. From these facts, we get reg (4)=reg, (B). Q.E.D.

PROOF OF ProposITION 4.6. Since G(I)”=R(I")®g R/I, we have §1I")=
S(R(IM)=0(RUIN®g R/DN=36(G()M) < reg (G(I)™)< dim (G(I))=dim (R) for all
r>0. The second assertion follows from the fact R(I")=R(I") for all r>0.

Q.E.D.

REMARK 4.9 (cf. [14]). Assume that R is analytically unramified, and put
dim (R)=d, X =Proj(R(I)). Then H4 (X, 0x)=0 if and only if 5(I")<dim (R)
for all r>0.

PROPOSITION 4.10. Assume that d=1 and let I be an m-primary ideal of R.
Then 6(I)=reg(G(I))=n(I)+1. If R is analytically unramified, then we also
have 8(I)=reg (G(I))=n(I)+1.

Proor. Put 8(I)=n and let xR be a minimal reduction of I such that xI"=
I**1. Then, since I™/Im*1~x]m|x]mt1=]m*+1[/[m*+2 for all m>=n, we have £(I™/
It =¢(I) for all m=n, i.e., n(I)Sn—1. Also, since xI""!#[", we have 1"/
I"=xI"txI"EI"/I"tt and ¢(I*~Y/I")< ¢(I"*/I**')=e(I). Therefore n(I)=n—1.
By [21], 6()Sreg(G(I)). Put A=G(I), P=A, and let x be the image of x in A4,.
Consider the exact sequence 0-»K—->A-*,4(1)>C—0. Then C,=K,,_,=0 for
all m=n, and the following sequences are exact: 0—K—H$(A4)— H(A(1))-C,
C—HL(A)-»HL(A(1))-»0. Hence [Hi(A)],—>[Hb(4)],+1 is an isomorphism
for all m=n and i=0, 1, which implies that [Hi(A4)],,=0. Therefore reg(G(I))<
n. The second assertion is similarly proved. Q.E.D.

REMARK 4.11. (1) When d=1, d(I) does not depend on the choice of a
minimal reduction of I. Hence we define §(I) by 6(1) =6(IR(X)) even if k is not an
infinite field.

(2) After writing the manuscript, we noticed that recently K. Kubota
obtained Theorem 4.3 independently (cf. Tokyo J. Math. 8 (1985), 439-448).

§5. The case of dimension one (curve singularities)

In this section, let (R, m, k) be a one-dimensional Cohen-Macaulay local
ring with the total quotient ring Q, and let I be an m-primary ideal of R. Put
S=\U%,": I")=lim,_, Endg (I"), the first nieghbourhood ring of R with
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respect to I (cf. [12], [18]). Then X=Proj(R(I)) is an affine scheme with
HY(X, 0x)=S (cf. Proposition 3.3). Some assertions in the following theorem
may be well known (cf. [10], [12], [16], [19]). We give the proof for convenience.

THEOREM 5.1. (1) S is the smallest ring between R and Q such thatIS is
a principal ideal. Moreover, S is a finitely generated R-module.

(2) 4(R/I")y=e(I)n— 4(S/R) for all n>0.

(3) e)=4(S/IS), g(I)=£(S/R), pI)=g(I)—e(I)+ ¢(R/I)=¢(IS[I)=e(I)—
4(I/1%)+ £(I?S]1?), and g(I)Zp,(I)20. If R is Gorenstein, then g(I)=4(R]c),
where ¢=(R: S) is the conductor of S in R.

(4) o6(I)=min {n|S=(I": I")}.

(5) g(I)=0<>I is a principal ideal<>I" is a principal ideal for some r<
N =0<=p(D)=g(I)<=¢(I"/I**)=¢(I) for all n=0.

6) pD=0<S=(I: )=o) < 1<>e(I)=L(I]I?).

(7 pfD)=e(I)—¢(I/I?) if and only if 6(I)<2.

Proor. We may assume that k is an infinite field. Let xR be a minimal re-
duction of I. Then x is a non zero-divisor. (1) is well known. We have IS=
xS. (2) For all n>»0, we have I"=1"S=x"S and 4(R/I")+ ¢(S/R)=4(S/I")=
4(S/x"S)=4(S/xS)n=4(S/IS)n. (3) follows from (2). If R is Gorenstein, then
£(J/I)=¢(I71]J71) for any fractionary ideals I =J of R. Hence 4(S/R)=4¢(R/¢).
(4) If 8(I) < n, then we have x"I"=I"*" for all r=0. Hence (I"*": I"*")=(I": I")
for all r=0, and we have S=(I": I"). Conversely, assume that S=(I": I").
Then for any y e I, we have yImcI™*1=xI™ for some m. Hence y/xe(I™: I™) <
S={":1"), i.e., yI"cxI*. Therefore we get xI"=I"*! i.e.,()<n. (5)g()=
0<S=R<>I is a principal ideal<>6(I)=0. g(I")=g(I) for all r=1 and g(I)—
pD)=¢(I/xI). This shows our assertion. (6) and (7) follow from (3) and (4).

Q.E.D.

COROLLARY 5.2. (1) g(R)=2p,(R)=0 and p (R)=g(R)—e(R)+1.

(2) g(R)=0<>p,(R)=g(R)<>R is a discrete valuation ring.

(3) pR)=0<>g(R)=e(R)—l<>emb (R)=e(R).

4) g(R)=1<>e(R)=2<>p,(R)=0, R is Gorenstein and is not a DVR.

(5) Assume that R is Gorenstein. Then p,R)=1<>g(R)=e(R)<>6(R)=2<
emb (R)=e(R)—1.

(6) pR)=e(R)—emb(R), and p,(R)=e(R)—emb (R) if and only if §(R)<2.

Proor. (1), (2), (3) and (6) follow from Theorem 5.1. (4) Assume that
g(R)=1. Then p,(R)=0 by (1) and (3). Hence e(R)=g(R)—p,(R)+1=2. The
other assertions are clear. (5) We have only to show the equivalence of p,(R)=1
and emb (R)=e(R)—1 (cf. Proposition 4.5). If p,(R)=1, then since mS/m=k,
we have c=(R: S)om2. Hence emb (R)= ¢(m/c)=4(R/¢c)— 4(R/m)=g(R)—1=
e(R)—1. Therefore emb (R)=e(R)—1 by (3). Conversely, assume that emb (R)
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=e(R)—1. Then m?cc and 4(R/c)=g(R)=e(R) by (3). Hence e(R)—1=
emb (R) = 4(m/c)=¢(R/c)— 4(R/m)=e(R)—1. Therefore p,(R)=4(R/c)—e(R)+
1=1. Q.E.D.

From now on, we assume that R is a one-dimensional analytically unramified
local ring, i.e., R is a one-dimensional reduced local ring whose integral closure
R is a finitely generated R-module. Let I be an m-primary ideal of R.

LeMMA 5.3. R=U®,(I": I")=H%(X, 0yx), where X =Proj (R(I)).

ProOF. Considering the base change R—R(X) and a minimal reduction,
we may assume that I=xR for a non zero-divisor x of R. Then for all n>»0,
we have x"R<R and x"R=x"Rn R=x"R. Hence (I": I")=(x"R: x"R)=R for
all n>»0. This implies the first assertion. The second assertion follows from
Proposition 3.3. Q.E.D.

The following Theorem 5.4 and Corollary 5.5 are analogous to Theorem 5.1
and Corollary 5.2. So we omit the proof.

THEOREM 5.4. (1) 4(R/I")=e(I)n— 4(R/R) for all n»0.

(2) e(I)=4(R/IR), g(I)=4(R/R), pI)=g(I)—e(I)+ ¢(R/T)=¢(IR/I), and
g(H=p(I)=0. (Note that g(I) does not depend on 1.) If R is Gorenstein, then
g()= ¢(R/c), where c=(R: R).

(3) d(I)=min {n|R=(I": I")} =min {n|I"=(R: R)}.

@ g(D)=0=p,)=g(D<e)=4¢(R/D)<=I is a principal ideal<R is a
discrete valuation ring.

(5) p()=0«<R=(I: <=d(I)Z1<=4(I/I?)=e() and I"=1I" for all n>1.

(6) Assume that I=1. Then p(I)=e(I)—¢(I/I®)+ £(I2R/I?) and p(I)=
e(I)— ¢(I/1?) if and only if (I) <2 and I"=1" for any n=1.

(7 gH=g(D), and gl)=g()<=I"=I" for all n>0<Proj(R(I)) is normal.

(8) If R is local, then 8(I)={4(R/¢c)/e(I)}.

COROLLARY 5.5. (1) G(R)2Pl(R)2P(R)20, gG(R)2g(R)Zp,(R)20 and
PR)=g(R)—e(R)+1.

(2) G(R)=0<G(R)=p,(R)<>R is a DVR.

(3) P(R)=0<R=(m: m)<>R is a DVR or (R: R)=m<5(R)< 1<emb
(R)=e(R) and m"=m" for all n=1.

4) G(R)=1<p,(R)=0 and e(R)=2<>e(R)=2 and m"=m" for all n>1.

(5) g(R)=2 and R is Gorenstein<>p,(R)=1 and e(R)=2.

(6) pJ(R)=e(R)—emb (R) and p,(R)=e(R)—emb (R) if and only if (R)<2
and m"=m" for all n=1.
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We call a maximal ideal of R/mR®, k a geometric branch of R, where k is
the algebraic closure of k.

PROPOSITION 5.6. Assume that k is perfect. Then p,(R)=0 and the number
of geometric branches of R is equal to e(R) if and only if R is seminormal.
(The only if part is valid without the assumption on k.)

ProoF. We may assume that R is not a DVR. Then R is seminormal<>

(R: R) is a radical ideal of R<>(R: R)=m and mR is a radical ideal of R<>p,(R)=0
and R/mR is reduced. Hence our assertion follows from the following lemma.

Q.E.D.

LEMMA 5.7. e(R)=the number of geometric branches of R, and the equality
holds if and only if R/mR is a geometrically reduced k-algebra.

PrOOF. Put S=R/mR®, k. Then S is a finite k-algebra with dim; (S)=
e(R). Put Card (Max(S))=n. Since the canonical homomorphism f: S—
I .cmaxcs) S/n=k" is surjective, we have dimg (S)=n, and f is an isomorphism
(i.e., S is reduced) if and only if dimg (S)=n. Q.E.D.

ExaMpLE 5.8. Suppose that k is algebraically closed and is contained in R.

(1) g(R)=1if and only if R=k[X, Y])(XY) or k[X, Y]/(Y2—X3). The
“if> part is clear. Assume that g(R)=1 and R is complete. If Card (Max (R))=
2, then R is a seminormal double point by Proposition 5.6. Hence R~k[X, Y]/
(XY). IfRislocal, then R=k[t], mR=1t2k[t] and R/k[t?, t3] S R/k[t?, 3] =k.
Therefore R=k[¢?, 3] =k[X, Y] /(Y2—X?3).

(2) (Double points) Assume that char (k)#2. If e(R)=2, then R~k[X,
Y] /(Y?2—X") for some r (cf. [7], Ex. 5.14). It is easy to show that g(R)=1,
p(R)=0, g(R)=p,(R)+1=r/2 (if r is even) or (r—1)/2 (if r is odd). Hence
e(R)=2 and §(R)=g if and only if R~k[X, Y]/(Y2—X?29) or k[X, Y]/(Y2—
X20+1),

EXAMPLE 5.9. (Monomial curve singularities). Let H be a numerical semi-
group, i.e., an additive submonoid of N={0, 1, 2,...} such that N—H is a finite
set. Put e(H)=min{neH|n>0}, c¢(H)=min{neHln+N<H} and g(H)=
Card (N—H). Fixafield kand put R=k[t"lne H]. Then R=k[t], e(R)=e(H),
g(R)=g(H), p(R)=g(H)—e(H)+1 and R is Gorenstein if and only if c¢(H)=
2g(H) (cf. [8]). We have 8(R)={c(H)/e(H)} by Theorem 5.4, (8).

(1) P (R)=0C<w>g(H)=e(H)—1<e(H)=c(Hy<>H=H,:={e, e+1,...,2¢e—1)
={0, e, e+1,...}, i.e.,, H is an ordinary semigroup. In this case r(R)=e(R)—1.
Hence p,(R)=0 and R is Gorenstein if and only if H={(2, 3).

(2) pPJAR)=1eg(H)=e(H)<>H=H,,:={0, e, e+1,...,e+r, e+r+2,..}=
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{e,e+1,...,e+r,e+r+2,.,2e—1),0sr<e—3 or (e,e+1,...,2¢e—2), e=3.
In this case, emb(R)=e(R)—1, ¢c(H)=e(R)+r+2. Hence p,(R)=1 and R is
Gorenstein if and only if H=H,,_,={e, e+1,...,2e—2), e>3.

3) g(H)=1=H=<2,3). g(H)=2<H={2,5) or {3,4,5). g(H)=3«
H={2,7),43,4),43,5,7,9) or {4, 5,6, 7).

(4) Let H={0,g9,9+2,9+3,...}, g=2 (a normal semigroup). Then
g(R)=g, g(R)=g—1, p(R)=1, p,(R)=0 and r(R)=g—1.

(5) e(H)=2ifand only if H={2, 2g+1), g=1 (a hyperelliptic semigroup).
In this case, §(R)=g, g(R)=1, p,(R)=g—1 and p,(R)=0.

(6) Let H=(e, e+1), e=2. Then g(R)=g(R)=e(e—1)/2, p(R)=p(R)=
(e—1)(e—2)/2 and §(R)=e—1.

ExAMPLE 5.10 (Milnor number of curve singularities). Buchweitz and Greuel
[3] defined the Milnor number u(R) of a complex curve singularity R by u(R)=
4(Coker (c)), where c: R—Q},c— Ky is the canonical homomorphism into the
canonical module of R, and they showed that u(R)=2g(R)—r(R)+ 1, where r(R)
is the number of branches of R. Hence u(R)=g(R)+ p,(R)=g(R), and u(R)=
J(R)+ p(R) (resp. w(R)=g(R)) if and only if e(R)=r(R) (resp. p,(R)=0and e(R) =
r(R),i.e., R is seminormal). u(R)=1 (resp. w(R)=2)if and only if R is an ordinary
double point (resp. R is a seminormal triple point or R= C[X, Y]/(Y?— X?3)).

ExaMPLE 5.11. Let X be a reduced noetherian scheme such that dim (¢ ,)
=1 for any closed point x of X, and assume that X has the finite and rational
normalization p: X - X, i.e., p is finite and k(y)=k(p(y)) for any closed point y
of X. Let =@y be the largest ideal which defines the singular locus of X, and
let B/ (X) be the blowing-up of X along I. Put X,=BI/(X) and X,,,=BI/(X,)
for all n=1. Define g(X)=3,9(0x ), g(X)=3,3(0x ), where x runs over
the set of closed points of X. Then X,=X forall >0, and §(X)=Y 2, 9(X)=

128 g(X)+g(X,) for any n=1. Therefore g(X)=>1",9(X;) if and only if
X,=X. In particular, after blowing-up g(X)—g(X)+1 times, X becomes
normal.

§6. The case of dimension two (surface singularities)

In this section, let (R, m) be a two-dimensional Cohen-Macaulay local ring
with infinite residue field, and let I be an m-primary ideal of R.

THeOREM 6.1. (1) (cf. [17]). g(I)=0 if and only if 6(I") <1 for some (or
sufficiently large) r=1.

(2) (cf. [22]). Assume that R is analytically unramified. Then the
following conditions are equivalent:

(@ g)=0.



64 Akira OoIsHI

(b) d(D=1.
(¢) S6(IN<1 for some (or all) r=1.

Proor. (1) If 8(I")<1 for some r, then g(I)=g(I")=0 by Theorem 4.3.
Conversely, if g(I)=0, then g(I")=¢g(I)=0 and n(I")<0 for all r>0. Hence by
Theorem 4.3, §(I")< 1 for all r>0.

(2 If 8(I"<1 for some r, then g(I)=g(I")=0 by Theorem 4.4.
Conversely, assume that §(I)=0 and put X =Proj(R(I)) and A=R(I). Then
Hi'' (A)= @,z H(X, 0x(n)), i=1, and the following sequence is exact:

0— HY(A) —> 4 — @,z HAX, Ox(n)) — Hp(A) — 0.

By Lemma 3.2 and Proposition 3.3, (3), we have H$(A)=0, [H}(A)],=0 for all
n=0, [H}(A)],=H*X, 0x(n))=0 for all ne Z and [H}(4)],=H'(X, 0x)=0
by the assumption. Therefore we get 8(1) <reg (R(I)) <1 (cf. [20]). Q.E.D.

COROLLARY 6.2. Assume that R is analytically unramified.

(1) g(R)=0 if and only if emb (R)=e(R)+1 and m"=m" for all n=1.

(2) g(R)=0 and R is Gorenstein if and only if R is a regular local ring or
e(R)=2 and m"=m" for all n>1.

ProOOF. This follows from Theorem 6.1 and Theorem 4.4. Q.E.D.

Assume that R is analytically unramified and normal. Then R is said to be
pseudo-rational if for any proper birational morphism X —Spec(R) with X a
normal noetherian integral scheme, we have H(X, 0x)=0. R is said to be
rational if Spec (R) has a desingularization X —Spec (R) such that H!(X, 0x)=0.
R is pseudo-rational if and only if §(I)=0 for any parameter (or m-primary) ideal
I of R, and R is rational if and only if R is pseudo-rational and is analytically
normal. For these matters, see [11], [13], [14], [15].

COROLLARY 6.3. Assume that R is analytically unramified and normal.
Then R is pseudo-rational if and only if for any integrally closed m-primary
ideal I of R, we have £(I/1?)=e(I)+ ¢(R/I) and I"=1" for all n=1 (in particular,
emb(R)=e(R)+1 and m"=m" for all n=1). In this case, G(I) is Cohen-
Macaulay for any integrally closed m-primary ideal I of R.

ExXAMPLE 6.4. (1) Put R=k[X, Y] and I=(X3, X2Y, Y3). Then I=m3,
(X3, Y3)I?2=13, dim, (m3*/I*)=1 and 4(R/I")=9n(n—1)/2+6n+1 for all n=>1.
Therefore we have e(I)=9, n(I)=1, §(I)=2, p,(I)=0 and g(I)=1. Hence g(m)=
g()=0<g(I).

(2) Put R=k[X, Y] and I=(X% X3Y, XY3, Y4). Then I=m* Im4=
m8, ['=I"=m* forall r=2 and (X%, Y4)I2=I3. Therefore 6(/)=2 and 5(I")=
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1 for all r=2. Hence the condition g(I)=0 does not imply 6(I)<1 (cf. Theorem
6.1).

(3) (cf. [17]). Put R=k[X,Y, Z] [(Z3)=k[x, y,z] and I=(x?, y?,
xz, yz). Then Im=m3, dim,(m?/[)=2, I**1=]"(x2, y?)=I%x2, y?)"~1 and
dim, (m2"/I"y=n for all n>2. Therefore ¢(R/I"*1)=6n2+10n+5 for all n>1,
n()=1, p(I)=—1and g(I)=1. Put S=R[t] and J=(I, t). Then 4(S/J"+1)=
2n3+8n%2+11n+6 for all n=0. Hence we have p,(J)=0 and g(J)=e;(J)=
—1<0.

Assume that R is analytically normal, and let X—Spec (R) be a desingulari-
zation of Spec (R). Then we call p(R):= ¢(HY(X, 0g)) the geometric genus of R.
p,(R) does not depend on a desingularization (cf. [9], [13]).

PROPOSITION 6.5. If R is analytically normal, then g(I)<pyR) for any
m-primary ideal I of R.

PROOF. Put X =Proj(R(I)) and let £->X be a desingularization of X.
Then since f,(0g)=0y, H\(X, 0Og)=H' (X, f(0g)—-H'X, 0g) is injective
by Leray’s spectral sequence. Hence g(I)=¢(HN (X, Og)< ¢(H(X, 05))=
Py(R). Q.E.D.

COROLLARY 6.6. Assume that R is analytically normal. Then p(R)=1
(i.e., R is elliptic) if and only if gI)<1 for any m-primary ideal I of R and
g(Iy=1 for some m-primary ideal I of R.

ExaMPLE 6.7. (1) Put R=C[X, Y, Z]/(X"+Y"+Z"), n=2. Then py(R)
=3(R=g(R) = (§ ) and p(R)=pR=("3")

(2) PutR=C[X, Y, Z]/(Z?-f(X, Y)) and assume that R is normal. Then
as was pointed out by S. Itoh, R(m) is normal (or equivalently g(R)=0) if and
only if f¢ (X, Y)*. If R=C[X, Y, Z]/(X?+ Y3+ Z%) (which is a simple elliptic
singularity), then p,(R)=1 and g(R)=0. (Hence g(R)=0 does not imply that R
is rational.) If R=C[X, Y, Z]/(X2+Y*+Z%), then p,(R)=g(R)=1 (cf. [9]).
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