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Introduction

Let (R, m) be a d-dimensional noetherian local ring and / an m-primary ideal

of R. Then it is well known that there exist (uniquely determined) integers et

such that

for all sufficiently large n. e0 is the multiplicity of /. The significance of the
other coefficients eί has been studied by some people (cf. [4], [10], [16], [17],
[19], [23]). But it seems that much more remains to be done. The aim of this
paper is to study the significance of the invariants ed and eQ — ev-\ ----- \-( — l)ded.
We introduce the notion of genus and arithmetic genus of an ideal, and study the
properties of local rings by these invariants. We also introduce the notion of

normal genus and normal arithmetic genus by considering the function ΰ(R/In+ί),
where J denotes the integral closure of an ideal J. These invariants might be
better to study singularities.

In §1, we investigate properties of general polynomial functions by introducing

various invariants (e.g. the genus and the arithmetic genus) of a polynomial

function.

In §2, we consider the Hubert functions of graded modules. We express the
genera by the local cohomology modules and study the relation of the genera and

the vanishing of local cohomology modules.

In §3, the (normal) genus and the (normal) arithmetic genus of an ideal are
defined, and we express them in terms of the sheaf cohomology of (normalized)
blowing-up schemes.

In §4, we investigate the relation between the genera and the reduction

exponents of ideals.

In §5 and §6, we examine the cases of dimension one and two (curve and

surface singularities) in detail.

Notation and terminology

All rings are commutative noetherian rings with unit.
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Let / be an ideal of a ring R. We denote by / the integral closure of /, i.e.,

the set of elements xeR such that xn + aίx
n~ίl 1-̂  = 0 f°r some a^el1. We

put R(I)= Θn>o 1*9 ^CD= θM>o ^"5 G(/) = ® M >o ln/In+ί and G(/)=©/J>0/"//"+1.
If (R, m) is a local ring, then we put G(R) = G(m) and G(R) = G(m).

β(M) denotes the length of an J^-module M.
Q(R) denotes the total quotient ring of R. For any jR-submodules / and J of

Q = Q(R), put (/: J) = {xεQ\xJcιI} and (/: J)R = (I: J) n R. R denotes the

integral closure of R.

For m, n ε Z, nΞ>0, (m j denotes the binomial coefficient with an agreement

= 0 i f ra</ ι ,

§ 1. Some invariants of polynomial functions

We assume that all functions /: Z-> Z considered in this section satisfy the

following condition : f ( n ) = 0 for all n «0. We say that/is a polynomial function if
there is a (uniquely determined) polynomial Pf e Q[_f] such that f ( n ) = Pf(n) for all

n»0. Denote by & the set of all polynomial functions and set @>+ = {/e 0>\f(ri) =

0 for all π<0}. Put (Δf)(h)=f(h)-f(n-l) and (Γ/)(n)=Σ^«/(0- Then for
any /e^, we have Af, 7fe0>, A(rf)=f, Γ(Af)=f and PΛf(t) = Pf(t)-Pf(t-\).
It is well known that if / is a polynomial function, then there are (uniquely

determined) integers d2>0, ^(O^i^d), e0^Q, such that (Pf)(n) = e0(
nj V

^ι("jί71)+ +(-1)ίί^forall"»0 Note that d = deg(P/)+l(resp.d = 0) if

Pr 7^ 0 (resp. Pr = 0). Put d(/) = d, ef(/) = *„ </) = e0, ^(/) = ed = (- \)dPvf( - 1),

min{n|/(w) = Pχm) for all m>n} and Fχί)=Σπ6z/(w)ίIIe ZCWICr1]. We
call d(/), βX/), e(/), ^(/), χ(/), pβ(/), n(/) and Fχθ the dimension, the i-th
Hubert coefficient, the multiplicity, the genus, the Euler characteristic, the
arithmetic genus, the postulation number and the Hilbert series of / respectively.

Note that χ(4/) = Pχθ), χ(/) = Pχθ) + ( - 1)̂ (/), and g(f) - pa(f) = ( - Dd(/(0) -
Pχθ)) if /e^ + . The following proposition may be well known (except for
the assertion on the postulation number) and is easy to show. So we omit the

proof.

PROPOSITION 1.1. For any function f: Z->Z,/^0, the following conditions

are equivalent:

(1) f is a polynomial function.
(2) Ff(i) = φ(i)l(\-t)d for some integer d^Q and φ(t)ε Z[t, r1] such that

Moreover, if these conditions are satisfied, then we have d(f) = d, e(f) =
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and n(/) = deg(F/) = deg(φ) — d. We denote by φf the (Laurent) polynomial φ
determined by f.

REMARK 1.2. (1) If we define the product f*g of /, ge0> by (/*α)(n) =

Σi+y=«/(0fi'(j)> then & becomes a commutative ring and ̂ + is a subring of .̂
(the additions are usual ones). We have Έ fng(i) = F {(i)Fβ(i), and / is in ^+ if
and only if φf e Z[ί]. Hence by corresponding Ff to /, the ring ̂  (resp. ^>+) is

isomorphic to Z[ί, r1, (1-ί)"1] (resp. Z[ί, (1-ί)'1])-
(2) For any/e^ , we have d(F/) = d(/)+l, d(J/) = d(/) - 1 if

F,XO(1 - O-1 and «(/) = n( F/) + 1 = n(Δf) - 1.

THEOREM 1.3. Lei f be a polynomial function and put d(f) = d, φf(ί)=

Σn*z ant", C(/)=Σ.<o/(») (C(/) = 0 iffe& + .)
(1) // d = 0, ί/ien /(n) = αn /or β// ne Z, P/ = 0, PΓ/

(2)

(3) fl,= Zi+j...oSlsi(-

(4) fe&+ if and only if an = 0 for all n<0, i.e., φf^Z[f}. In this case,

a0=f(ΰ)andaι=f(ί)-df(0).

(5)

(6)

(7) // «(/)gO, ί/ten ^(/)=(-l)d(/(0)-P/(0) + C(/)) = a, + ( -
λ(/)=/(0)+C(/) and pa(/)=0. Hence n(/)<0 if and only if n(/)gO and

(8) // n(/)>0, then g(f) = (- 1)'(Σ7# (/(O-P/O + C(/))=

and pJJ) = (-1)"

(d+ί\ad + i+l(^ d J

(9) Iffe & + , ίnen g(f)-pJJ) = W ai+t(

Hence g(f)^pa(f)^0 if an^.0for all n^d.

PROOF. (1) is trivial. (2) Since ΣBez/Wί" = ί fXO = (ΣBez^"Xl-0"d =

(ΣneZ flπίn)(Σnez( jϋΐ~ )*")> WC ^aVC /(Π)= Σί + y=n Λi ( J-T ) *°Γ ^

neZ. The formula for Vf follows from this. (Note that Σ i ^ m ( Λ ) =

by
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Then Pk(n) = k(n) (n^O), Pfc(n) = fe(n) = 0 (-r^n<0) and

K-r). Hence f(n)-Pf(n)=-Σn-i<-(d-i)(-^Y~ί

-l)dΣn-^-d^(/^71) = (-l)dΣ^d«n+/^l}). (3)Since

= (l-OdfXO=(Σf=o(-l) ί(f)ί"XΣ»6z/Wί"λ we have an =

j=n,o^d(-iY (f)/0) for a11 π e Z (4) foll°ws from (3). (5) Since

( d—\~ )*s a polynomial function of dimension d, we have e(f)=^nezan

by (2). (6) We may assume that d^l. Then C(/)= ΣB<o/(Ό = Σn<o Σ ί e zΛI

V d—1 / ί<0 ' \ n<0 V fl7—! // ί<0 \ ^ / '
of the formula for Σn^o/(w) ^ similar. Since (7) can be proved as (8), we have
only to show (8). Put n(/) = m. Then for all n»0, we have (F/)(«) = Σκo/(0 +

Σί l=o/(0+Σi=m+ι/(0 = C(/) + Σf=o(/(0 —^/(0) + Σ?=o^/(0 It is easy to
see that the polynomial P(t) determined by P(n) = Σ?=o ^/(O f°Γ a^ w e Z, rc^O

is a multiple of ί+1. Hence (-l)dflf(/) = PF/-l)= Σ?=o(/(0-^XO) + C(/)

and χ(/) = (- l)d^(/) + Pχθ) = Σf=ι (/(O-^X0) +/(°) +• c(/) Other assertions
follow from (2). Q. E. D.

COROLLARY 1.4. Suppose that /e<^ + , /(0) = 1, αnJ pwί d(f) = d, e(f) = e,

(1) /n general, we have n(f) + rf(/) = deg (φf)^0.

(2) n(/) + d(/) = 0 i/and on/^ iff(n)= (

(4) n(/) + d(/)^2 i/ and on/j if f ( n ) =

-)r all n>2.

EXAMPLE 1.5 (Graded modules of polynomial growth). Let A — ®n^0An

be a graded ring with ^0 = .R. Then a graded ^-module M= ®neZ Mn is said to
be a graded A-module of polynomial growth if each Mn is an Λ-module of finite

length and f ( n ) = ΰ(Mn) is a polynomial function. In this case, put //(M, n) =

t(Mn) and we write ft(M, ί), d(Aί), ^W, β(Aί), n(M), F(M, ί),
χ(M), pβ(Aί) instead of P/ί), d(/), ^(/), β(/), n(/), F/ί), <?/«,
respectively. Note that (FH)(M, n) = H(M[̂ ], n) with deg(X) = l, and if

aeA is a homogeneous M-regular element of degree r, then F(M/aM, ί) =
(1 —ίr)F(M, ί) and n(MjaM) = n(M) + r. If ^4 is a homogeneous algebra over
an artinian ring, then a finitely generated graded v4-module M is a graded ^-module
of polynomial growth with d(M) = dim(M) (see §2 for this case). If X is a
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projective variety over an algebraically closed field k and D is an ample Carder

divisor on X, then A = ®n^0H°(X, Θx(nD}) is a noetherian graded /c-algebra of

polynomial growth.
(1) Let X be a d-dimensional abelian variety and D an ample Cartier

divisor on X. Put A = @n^H\X, Gx(nD)\ Then e: = e(A) = (Dd) and

H(A, n) = endld\ for all π^l. Hence we have φA(t) = (\-ty+* + eld\ Σo*i<»<d

(-ly^t^n-O'ί", nG4) = 0, A,C4) = 0 and 0(Λ) = (-l)d+1. If D is very

ample, then A is a Buchsbaum ring with dim(A) = d + l, depth (A) = 2, J(X) =

Σ?=ι( )( ι )> anc* A is Cohen-MacaulayoA is GorensteinoZ is an elliptic

curve (cf. [25]).
(2) If X is a smooth projective surface of general type and K is its canonical

divisor, then the canonical ring A = ΘM^0 H°(X, Θx(nK)} of X is a 3-dimensional
noetherian ring with H(A, n) = (K2)n(n-l)/2 + χ(0y) for all n^2 (cf. [2]).
Hence φ/4(0=l + (^-3)ί + (β-2t;-^ + 4)ί2 + (ί; + 2^-3)ί3-h(l-^)ί4, where e =

(X2), υ = pg(X\ q = q(X). We have 004) = />/*)-2^*)+ 1, pa(A)=l-q(X)9

\n(A)\£l, and n(A)^0 (resp. n(A)= -ί) if and only if q(X) = l, i.e., pα(X) = 0

(resp./?β(JO = «(X) = l, i.e., pJ[A) = g(A) = 0). If X is ample, then reg(A) = 4,
and A is Cohen-Macaulay<^>^ is Gorensteino^f(X) = 0. (Concerning reg(^4),

see [20].)
(3) Let X be a Del Pezzo surface and 4 = ®M^0 H

Q(X, Θx(-nK)) its anti-
canonical ring. Then A is a 3-dimensional Gorenstein algebra and H(A9 n) =

n(n +1)(9 - r)/2 +1 for all n ̂  0, where r = 9 - (X2). Hence φA(t) = 1 + (7 - r)t +
ί2, π(A)= —1 and g(A) = pa(A) = 0. (cf. Demazure, Lecture Notes in Math,

vol. 777.)

EXAMPLE 1.6. Let P be a d-dimensional lattice complex, i.e., a simplicial
complex in Rm whose vertices are in Zm, then the function f ( n ) = Card (nP n Zm)

(n ̂  0) is a polynomial function such that d(f) = d + l and n(f) ^ 0. Hence pa(f) =
0. If P is a d-dimensional lattice convex polytope in Rd, then we have n(/)<0

and e(f) = d\ (the volume of P). Hence pβ(/) = 0(/) = 0 (cf. [1], [26]).

§ 2. The case of graded rings

In this section, A = ®n^QAn = R\_Al~] denotes a noetherian homogeneous

algebra over an artinian local ring # = ̂ 0 and M= ®neZ Mn is a finitely generated
graded ^4-module with dim (M) = d. Put P = A + .

LEMMA 2.1. H(M, n)-h(M, n)=Σdi=o(-iYt([.Hi

P(MKn) for all nεZ.

In particular, if M is Cohen-Macaulay, then H(M, n) — h(M, n) = (— l)d

L) for aline Z.
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PROOF. Put X = Proj (A). Then ft(M, n) = χ(*, M(n)) = Σ Γ=o ( - 1)'

SΓ, M(n))) for all neZ, H},+1(M) = eιI6ZHίCX', M(n)) (ΐ^l), and we have

the following exact sequence (cf. [6], (2.1.3), (2.5.3)):

0 - > //°(M) - > M - > φπez H°(X, M(n)) - > //KM) - > 0.

Hence Λ(M, π) = Σ?=ι (- 1) W(X, M(n))) + ^(//°(X, M(n))) = ΣΓ=ι (- 1)1

D = //(M, n)- Σ/Loί-l) 1

Q.E.D.

COROLLARY 2.2. ίfe Λαi e n(M) ^reg(M)- depth (M). Moreover, if M

is Cohen-Macaulay, then n(M) = α(M) : = reg (M) — dim(M).

PROOF. If n > reg (M) — depth (M), then for any ϊ^ depth (M), we have

n + i ̂  n + depth f M) > reg (M), which implies that [//KM)]M = 0. Hence //(M, ή)

= Λ(M, n) for all n > reg (M) - depth (M), i.e., n(M) ^ reg (M) - depth (M). The

second assertion follows from Lemma 2.1 immediately. Q. E. D.

EXAMPLE 2.3. Assume that R is a field k and A has a pure resolution:

0 - >Fr - > - — F! - > 5 - > A - >09Ft* S*'( -*,)

where S = fc[X1,..., JfJ, z; = emb(yl), 0<fli< - <ar and r = hd5(^l). Then we

have regG4) = α r-r and φx(0 = l + fc1ί
αι + + Vαr Hence n(,4) = reg (.4) -

depth (A).

THEOREM 2.4. Suppose that M = ®n^0 Mn.

(1) .
(2)
(3) // n(M)>0,

PROOF. This follows from Theorem 1.3 and Lemma 2.1. Q. E. D.

COROLLARY 2.5. Suppose that.M=@n^0Mn is Cohen-Macaulay.

(1) g(M) ^ pa(M) ^and g(M) - pa(M) = £(\H ί(Aί)]0).
(2) pa(M) = Q if and only if α(M)^0. ^f(M) = 0 ι/ αnίί only if α(M)<0

(or equivalently g(M) =

(3) // α(Λf)>0,

THEOREM 2.6. Lei A be a Gorenstein homogeneous algebra over a field, and

put dim(A) = d, emb(^) = ί;, e(A) = e9 a(A) = a.

(1) //α(M)>0, then g(A)=Σa

n

(=AJ H(A, n) and pa(A)=Σa

n

(=A^ί H(A, n).
(2) a(A)^0 (resp.a(A)<0, a(A) = 0, a(A) = ϊ) if and only if pa(A) = Q
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(3) g(A) ^ 2oa(A) ^ \<*g(A) ^ emb (A)+l£ 2. pa(A) ^ 2
^ emb (A) + 1 £ 2. a(A) = 1 (resp. a(A) = 2) if and only if g(A) = emb (A) + 1 ̂  2
(resp. pβ(Λ) = emb (A) + 1 ̂  2).

if and only if a(A)^i(A)-\ (resp. a(A) ̂  i(A)\ where

ϊG4) = min ln\H(A, n)^4"""1)!, the initial degree of A. g(A) = (e\ (resp.

pa(A) = ( j) if and only if A is a hypersurface or v = e + d — 2, d^i (resp. A is

a hypersurface or v = e + d — 2).
/•p //^~1 [ <^\

(5) //reg(Λ)^3 and A is not a hypersurface, then g(A)^( L ' J }and

)'

PROOF. Since A(ά) ^KA^ Homfc (H^(Λ), fc), we have β([Hd

P(A)]n) =
for all n e Z. This implies (1) by Theorem 2.4. (2) and (3) follow from (1).

(4) g(A)=Σan=oH(A,n)^Σan=o(V + n

n~
l)=(V+a), and the equality holds if

and only if i(A) ^a(A)+l. Since d + a = reg (A) ^ e + d - υ, we have ίv + a\ ̂  (e\

and the equality holds if and only if A is a hypersurface or v = e + d — 2 (i.e., 0 +
d = 2) (cf. [20], Proposition 13 and Theorem 15). The assertions for pa(A) are

similarly proved. (5) Under the assumption, we have TQg(A)^e/2 + d — υ +
+ 2, i.e., v + a^e/2 + 2 (cf. [20], Proposition 13). This implies the assertion.

Q.E.D.

EXAMPLE 2.7. (1) g(A) and pa(A) are not necessarily non-negative. For

example, put A = k[X, Y]/(*2, XY). Then we have φA(t) = l + t-t2, n(A) = l,

(2) If A is a complete intersection of type (eί9 e2) and emb(A) = v, then

The formula for any complete intersection is similar.
(3) Let A be a Cohen-Macaulay homogeneous algebra over a field. If

pα(,4) = l? then a(A) = l. The canonical module XA of A is Cohen-Macaulay,

and we have α(KJ = 0, 0(XJ = 1, PΛ(^) = 0.
(4) Let ^4 be the Stanley-Reisner ring k[^] (or more generally an ASL)

on a simplicial complex Δ over a field fe. Then n(4)?gO (cf. [27]) and we have
pa(A) = 0 and 0(>4) = (— l)d(χ(J) — 1), where χ(Δ) is the Euler characteristic of
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§ 3. Genera and arithmetic genera of local rings

Let (R, m, k) be a noetherian local ring with dim (R) = d ̂  1, and let / be an

m-primary ideal of R. Then the Hubert function f(n) = H°I(n) = ΰ(In/In+1) of /

is a polynomial function. Also, if R is analytically unramified, then the function

= ΰ(ϊ"/T"+l) is a polynomial function because G(7) is a finitely

generated G(/)-module. We have (Γf)(n) = ̂ (R/In+l) and ( F/)(n) =

We use the notation et(I\ 0(7), χ(7), pa(I) and n(I) (resp. ^(7), 0(7), χ(7), pJJ)

and ϋ({» instead of ejf), g(f), χ(f), pa(f) and n(f) (resp. etf), g(f), *(/), pJJ)
and n(/)). Note that e0(I) — e0(I) = e(I\ the multiplicity of/, and we have 0(7) =

0(G(7)), J(/) = 0(G(7)), etc. If / = m, we also put 0(m) = g(R)9 0(m) = g(R), pβ(m) =

Pa(K)> Pa(™) = Pa(K)> etc. We call #(/), pα(7), 0(7), pβ(7) the genus, the arithmetic
genus, the normal genus, the normal arithmetic genus of 7 respectively (cf.
[22]). In what follows, when we consider #(7), pα(7), etc, we always assume that

R is analytically unramified. Our aim of this section is to prove the following

THEOREM 3.1. Assume that R is Cohen-Macaulay, and put X = Proj

7) = Proj (G(7)), Z = Proj (£(/)) and 5 = Proj (G(7)).

g(l)=£(H°(X,Θx)IR)9

and pa(I) = g(ί) -

(2) // d^2, then g(I)= Σί=ί (-iy+i+*£(H*(X9 Ox)\

and pa(I}=g(I)

, 0D)). 7n particular, if d = 2, then g(l) = £(H\X, θx}) and

LEMMA 3.2. Let I be an ideal of a noetherian local ring (R, m), and let

F be a coherent module on X = Proj (£(7)). Then H*(X, F) = 0 for all / ̂  £(Γ) : =
dim (G(7)/mG(7)), and SuppR(Hl(X9 F))cV(ί) for all i^l. 7π particular, if
I is m-primary, then HVX, F) = Q for all z'^dimCR) and H\X,F) is an R-

module of finite length for all z^l.

PROOF. This follows from [6], (4.2.2). Q. E. D.

PROPOSITION 3.3. Let R be a noetherian ring, M a finitely generated

R-module and I an ideal of R which contains an M-regular element.
(1) Put X = Proj (#(7)) and F = R(I, MY the coherent module associated to

JR(/>M)=eπ^07"M. Then

H°(X, F) * lim^ HomΛ(7«, 7«M) *V?=0(I"M: 7%(M),

where Q(M) = MS, S = R — ZR(M) the set of M-regular elements. More generally,
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we have H°(X9 F(r)) ̂  lim,^ «> Horn* (/", In+rM)for all r^O. // depth, (M)^2,
thenH°(X, F)^M.

(2) Assume that R(I) is noetherian, and put J = Proj (£(/)), F=R(I, M)~,

where R(I, M)=0Π^07^M. Then H°(X, F(r)) = lim/l_00 HomR(ϊ^, T^M) for
allr^Q.

(3) If R is reduced and R(I) is noetherian, then H°(X, Θx(r))^T» for all

PROOF. (1) Put L = R(I,M), A = H°(X,F)znd B= \j^Q(InM: 7")Q(M).
By the assumption , 7 = (01,..., av) for some M-regular elements at. Put U~

D+(a^ aieR(l\. Then H»(Ui9 F) = L(flί) = {x/α? eQ(M)|xe7»M, n^O
Π l/y, F) = L(flfαj) and A = K^(UiL(ai^UiJL(aia.}). Let x be an element of B.

Then xI"<^InM for some n. Hence xeL ( f l ί ) for all i. Put /(x) = (x,..., x).
Then it is easy to show that / defines an isomorphism from B to A. The fact
F(r) = R(I, /ΓM)~ implies the second assertion. The proof of (2) is similar.

(Note that Θx(r) = Γ:θx = IrΘj[ for any r^O.) (3) follows from (2) and the

following lemma. Q. E. D.

LEMMA 3.4. Let I and J be ideals of a reduced noetherίan ring R. Assume
that I contains an R-regular element. Then (IJ:I)R = J.

PROOF. We have only to show the inclusion (77: /)κ<= J. Take an element

x of (77: I)R. If R is an integral domain, then /= n IV Π R, where Fruns over all
valuation overrings of R (cf. [28]). For any V, put IV=aV. Then x/Fc:77F,
xϊV=xIV=xaV2inάUV=Ijy=aJV. Therefore xa eaJV, i.e., x e J K Hence

= J. In general, we have x e (IJR/p : IR/p)R/p = JR/p for each

minimal prime ideal p of R (x is the image of x in R/p). Put 5'=Πt,eMin(R) R/P
Then we have x eTS n R = J. Q. E. D.

PROOF OF THEOREM 3.1. We assume that d^2. The case d=l is similar

(or will be treated in §5). For each r^l, put rD = Proj (®^0 //l//n+r) =
Specx (&χ/Ir@χ), the closed subscheme of X defined by IrOx. From the exact

sequence Q-+Ir&x-+(9x-^(9rD-+Q, we have the following exact sequence:

0

We have H°(0X) = R and H°(IrΘχ) = Ir, Hi(Ir&x) = Q for all r»0 and all i^l.

Hence #(R/Ir) = χ(rD)-Σi=ϊ (-l)1 '̂̂ )) for all r»0. Let P be the poly-
nomial associated to the function £(R/In+ί). Then for each r^l, we have
χ(&rD(n)) = ΰ(InIIn+r) = ΰ(R/In+r)-#(R/In) = P(n + r-l)-P(n-l) for all n»0.

Hence χ(C}rD) = P(r-l)-(-iYg(I). Therefore (-1)^(7)= -χ(rD) + P(r-l) =
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-χ(rD)+ΰ(R/Ir) (for all r»0)= - Σf=ι (-
(— l)d#(7) and pa(I) = (— l)d(χ(7) — ΰ(R/I)) = g(I) + (— iY(χ(D) — £(R/IJ). The
proof for the normal genus case is similar. Q. E. D.

EXAMPLE 3.5. If G(R) is reduced, then m" = mn for all n ̂  1. Hence g(R) =

g(R) and pa(R) = pa(R). For example, if R = k\_[X^..., ^J]/(/), e(K) = e and the

initial form of/ is square-free, then g(R) = g(R) = (e) and pa(R) = pa(R) = \~

§ 4. Reduction exponents of ideals of local rings

In this section, (R, m, k) denotes a Cohen-Macaulay local ring with infinite
residue field and dim (R) = d^. 1. In [21], we introduced the notion of reduction
exponent δA(M) of a finitely generated graded module M over a noetherian
homogeneous β-algebra A: δA(M) = mm {n\there is a minimal M-reduction B
of A such that BίMm = Mm+ί for all m^n}. If A = @n^0An is a (not necessarily
homogeneous) noetherian graded ring with AQ = R such that A is a finitely
generated Λ[y41]-module, then we put δ(A) = δR^Aί^(A). For an ideal / of R9

put (5(7) = <5(K(/)) and 5(7) = δ(R(I)). We call <5(/) and 3(7) the reduction exponent
and the normal reduction exponent of 7 respectively. Hence (5(7) = min {n|there is
a minimal reduction J of 7 such that J7Π = 7"+1} and 5(7) = min {n\there is a

minimal reduction J of 7 such that JIm = Im+1 for all m^n}. Note that 5(7) is
well-defined if R is analytically unramified. We also put δ(R) = δ(m) and S(R) =

S(m).

THEOREM 4.1. Lei 7 fre 0n m-primary ideal of R.
(1) The following conditions are equivalent:

(a) <5(/)=0.
(b) / is α parameter ideal.

(c) t(I»II»+1) = t(R/I)(n+£~l^for all n^l.

(d) βl(/) = 0.
7/ ί/iese conditions are satisfied, then βf(7) = 0 (l^z^ίi), n(I)=—d and #(7) =

(2) Assume that R is analytically unramified. Then the following
conditions are equivalent:

(a) 5(7) = 0.

(b) / is α parameter ideal.
n + d-Γ

(c) ^(/"//"+1)

(d) e1(/)=0.
If these conditions are satisfied, then R is a regular local ring and In — In (n^

etf) = 0 (1 ̂  i ̂  d), «(/) = - d, g(I) = pα(/) = 0.
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PROOF. We only prove (2). The proof of (1) is similar. (a)=>(c)=>(d) is
clear. (d)=>(b) follows from Lemma 4.2 below. (b)=>(a): By [5], in this case,
R is a regular local ring and In = ϊn for all ng: 1. Q.E.D.

LEMMA 4.2 (cf. [19]). e^I) ^ e(ί) - #(R/I) ^ 0 and ev(l) ̂  e(l) - ^(R/I) ^ 0.

PROOF. We prove only the second assertion. By Theorem 4.4, below,

we have ^/7^)^/)"+

for all n^O. Hence O^ί-

terms of degree ̂  d - 2 for all n » 0. Therefore - e(I) + ΰ(R/ϊ) + e^/) ̂  0. Q.E.D.

THEOREM 4.3. Lei / be an m-primary ideal of R. Then

far all n ̂  0.

In particular, ΰ(I/I2)^e(I) + (d—ϊ)ΰ(RII). Moreover, the following conditions
are equivalent:

(1) 4K//"+1) = *(/)(Π + d

d~
1} + ̂ //)(" + lγ1)/or all

(2) et{I) = 0(2^i^

(3)
(4)

If these conditions are satisfied, then pa(I) = 0, eί(I) = e(I)-£(R/I), n(/)= -d or
-d+ί, G(I) is Cohen-Macaulay, and g(I) = 0 if d^2.

PROOF. Let J be a minimal reduction of /. Then J is a parameter ideal
and we have

") = e(RjJ") + £(J«/IJ")

n + d

d-
l)+t(RII)(n+/_^) forall » * Q,

because Jn/Jn+1 is a free Λ/J-module of rank ( n , _7 ). In particular,

-l)t(R/I)-ΰ(I2/IJ). Hence (l)o/«+ι=/J» for all

This shows the equivalence of (1), (3) and (4). (1)=>(2) is clear. (2)=>(1): Since

ί(K//) = e0(/)-«!(/), we have t(III2) = e0(I)d-eί(I)(d-l) = e(I)+(d-W(R/I}.
Cohen-Macaulayness of G(/) follows from [28]. Q. E. D.

The following theorem is analogous to Theorem 4.3. We omit the proof.

THEOREM 4.4. Assume that R is analytically unramified and 1 = 1. Then



58 Akira OOISHI

for

and the following conditions are equivalent:

(1) 4(Λ//^)=*(/)(Λ+^

(2) e.(/) = 0 (2 ̂  i ̂  d), ϊz(/) ̂  0 and T* = I2.

(3) 5(/)gl. _
(4) t(I/I2) = e(I) + (d-l)t(R/I) and I»=Infor all n^l.

Next, we recall some results of Sally about the reduction exponent of Cohen-

Macaulay local rings (cf. [24]).

PROPOSITION 4.5. (1) (5(#) = 0<^reg(G(#)) = 0<^># is a regular local ring.

(2) δ(Λ)^loreg(G(Λ))^l«>emb(Λ) = e(Λ) + dim(Λ)-l. In this case,
G(R) is Cohen-Macaulay.

(3) δ(R) = 2 if and only if reg(G(#)) = 2. In this case, G(R) is Cohen-

Macaulay and emb (R) ̂  e(R) + dim (#) - 1 - r(Λ).

(4) IfR is Gorenstein, then δ(R) = 2 if and only if emb (R) = e(R) + dim (R)-

2. In this case, G(R) is Gorenstein.

(5) // reg (G(£)) = 3, then δ(R) = 3.

PROPOSITION 4.6 (cf. [14]). For αny ideal I of R, we have <5(/r)?gdim (R)for

all r»0. Moreover, if R is analytically unramified, then δ(Ir) ^ dim (R) for

all r»0. (Here R is not necessarily Cohen-Macaulay.)

The proof of Proposition 4.6 requires some lemmas. For any real number
x, put {x} = min {n

LEMMA 4.7. Let A be a homogeneous algebra over a noetherian ring R
and let M be a finitely generated graded A-module with dim(M) = d. Then for
any r^.1, we have

) ^ {(reg(M)-d+l)/r + d-

In particular, reg (M(r)) ̂  d for all r»0.

PROOF. If π^(reg(M)-d+l)/r + d-l, then

l-r) = r(n + l-i) + ι for all O^igd. Hence
[//KM)]r(π+1_0 = 0 for all Og i^d. This implies that reg (M^)^n. Q. E. D.

LEMMA 4.8. Let I be an ideal of a noetherian ring R, and put A = R[It],
B = R[It, r1], G = G(/). Then we have

PROOF. We may assume that # is local. For a graded module M, put Tn(M)
= ®i+j=n[.Hίp(M)]j. From the exactness of the sequence 0-»B(l)-ili£->G->0,
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the sequence Tn+1(B)=T"(B(l))^Tn(B^Tn(G) = Q is exact for all n>reg(G).
Since T"+ί(β) = 0 for all ΐ»0, we have Tn(B) = Q for all n>reg(G), i.e., reg(J5)g

reg(G). If n>reg(£), then from the exact sequence Q=Tn(B)->Tn(G)-+Tn+1

(β(l))=Γ"+2(β) = 0, we have T"(G) = 0, i.e., reg (G) ̂  reg (B). Since lB/A]n = 0

for all n^O, we have Hi

P(B/A) = Q for all i>0 and H°P(BIA) = B/A. Hence the

sequence Q-+H°P(A)^H°P(B)->BIA^H},(A)->H1

P(B)^Q is exact, and Hί

P(A) =

H^B) for all i ̂  2. From these facts, we get reg (A) = regA (B). Q. E. D.

PROOF OF PROPOSITION 4.6. Since G(W> = R(Ir)®RRII, we have <5(/r) =

= (K/ί(/0®κ^ (R) for all
r » 0. The second assertion follows from the fact R(Ir) = R(Ir) for all r » 0.

Q.E.D.

REMARK 4.9 (cf. [14]). Assume that R is analytically unramified, and put

dim (R) = d, J = Proj (£(/)). Then Hd~\X, )̂ = 0 if and only if δ(/')<dim (R)

for all r»0.

PROPOSITION 4.10. Assume that d= 1 and let I be an m-prίmary ideal of R.

Then <5(/) = reg(G(/)) = n(/)+l. If R is analytically unramified, then we also

have δ(I) = reg (G(/)) = n(I) 4- 1 .

PROOF. Put δ(I) = n and let xR be a minimal reduction of / such that xln =
In+ί. Then, since /»//«+! ^χ/m/x/m+ι=/«+ι//m+2 for aπ m^rt? we have ^jm/

Im+ί) = e(I) for all m^n, i.e., n(/)^n-l. Also, since x/""1^/", we have I""1/
I n ^ x j n - i / x j n ^ j n / j n + i and ^(/«-ι//») < ̂ (/»//»+i) = β(/). Therefore π(/) = π-l.

By [21], <5(7) ̂  reg (G(/)). Put ^4 = G(7), P = ̂  + and let x be the image of x in A1 .

Consider the exact sequence 0-»K-»,4-^,4(l)->C-»0. Then Cm = X m _ 1 =0 for

all m^n, and the following sequences are exact: 0-^K^H^(A)^H^(A(1))^C9

C->H\,(A)->WP(A(l)Ϊ^Q. Hence [#{,(4)]M- [̂#K4)]m+ι is an isomorphism
for all m ̂  π and i = 0, 1 , which implies that [#}>(̂ )]m = 0. Therefore reg (G(/)) g

n. The second assertion is similarly proved. Q. E. D.

REMARK4.il. (1) When d = l, δ(I) does not depend on the choice of a

minimal reduction of /. Hence we define δ(I) by <5(/) = δ(IR(X)) even if k is not an

infinite field.
(2) After writing the manuscript, we noticed that recently K. Kubota

obtained Theorem 4.3 independently (cf. Tokyo J. Math. 8 (1985), 439-448).

§ 5. The case of dimension one (curve singularities)

In this section, let (R, m, k) be a one-dimensional Cohen-Macaulay local

ring with the total quotient ring Q, and let / be an m-primary ideal of R. Put

S = ̂ j™=0(In: /π) = limπ^00EndR(/M), the first nieghbourhood ring of R with
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respect to / (cf. [12], [18]). Then X = Pτoj(R(I)) is an affine scheme with
H°(X9 0X) — S (cf. Proposition 3.3). Some assertions in the following theorem
may be well known (cf. [10], [12], [16], [19]). We give the proof for convenience.

THEOREM 5.1. (1) S is the smallest ring between R and Q such that IS is
a principal ideal. Moreover, S is a finitely generated R-module.

(2) £(R/In) = e(I)n - ί(S/R) for all n» 0.

(3) e(I) = £(S/IS), g(I) = £(S/R)9 pJJ) = g(I) - e(I) + £(R/I) = t(IS/I) = e(I) -
^(///2) + ̂ (/2S//2), and g(I)^pa(Γ)^0. If R is Gorenstein, then g(I)=ΰ(R/t),
where c = (R: S) is the conductor of S in R.

(4) 5(/) = min{n|S = (/":/")}.
(5) ^(/) = 0<=>/ is a principal idealolr is a principal ideal for some r<=>

%I) = ̂ p£Γ) = g(Γ)*>£(I*II"+i) = e(I)for all
(6) pJJ) = OoS = (I : /)o<5(/) ̂  !<><</) =

(7) pJJ) = e(I) - A///2) if and only if δ(I) ^ 2.

PROOF. We may assume that k is an infinite field. Let xR be a minimal re-
duction of /. Then x is a non zero-divisor. (1) is well known. We have 75 =
xS. (2) For all n»0, we have In = I»S = xnS and 4(R/In)+t(S/R)=#(S/In) =

)n = ΰ(SJIS)n. (3) follows from (2). If R is Gorenstein, then

-1) for any fractionary ideals IciJofR. Hence £(S/R) = f(R/t).
(4) If δ(I)^n9 then we have xrln = ln+r for all r^O. Hence (In+r: In+r) = (In: /")
for all r^O, and we have S = (!":!"). Conversely, assume that S = (In: /").
Then for any y e /, we have ylm^lm+l=xlm for some m. Hence y/x e (Im : Im) c
S = (In: In\ i.e., ylncχl». Therefore we get x!n = In+\ i.e., δ(I)^n. (5) g(I) =

is a principal ideal<^>(5(/) = 0. g(Ir) = g(I) for all r^l and g(I)-
) = ΰ(I/xI). This shows our assertion. (6) and (7) follow from (3) and (4).

Q.E.D.

COROLLARY 5.2. (1) g(R) ^ pa(R) ^ 0 and pa(R) = g(R) - e(R) + 1.
(2) g(R) = Qopa(R) = g(R)oR is a discrete valuation ring.
(3) pJiR) = Qog(R) = e(R) - l<^emb (R) = e(R).
(4) g(R) = loe(R) = 2opa(R) = Q, R is Gorenstein and is not a DVR.
(5) Assume that R is Gorenstein. Then

(6) pa(R)^e(R)-emb(R), and pa(R) = e(R)-emb(R) if and only ίfδ(R)^2.

PROOF. (1), (2), (3) and (6) follow from Theorem 5.1. (4) Assume that
1. Thenpfl(tf) = 0by(l)and(3). Hence e(R) = g(R)-pa(R)+ 1 = 2. The

other assertions are clear. (5) We have only to show the equivalence of pa(R) = 1
and emb (R) = e(R) — 1 (cf. Proposition 4.5). If pa(R)=l, then since mS/m = /c,
we have c = (R : 5) => m2. Hence emb (jR) ̂  ̂ (m/c) = ΰ(R/c) - jg(R/m) = g(R) - 1 =
e(R) — 1. Therefore emb (R) = e(R) — 1 by (3). Conversely, assume that emb (R)
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= e(R)-l. Then m2c=c and #(Rlc) = g(R)^e(R) by (3). Hence e(R)-l =

emb (R) = ̂ (m/c) = £(R/c) - £(R/m) ^ e(R) - 1 . Therefore pa(R) = £(R/c) - e(R) +

1 = 1. Q.E.D.

From now on, we assume that Risa one-dimensional analytically unramified
local ring, i.e., R is a one-dimensional reduced local ring whose integral closure
R is a finitely generated jR-module. Let / be an m-primary ideal of R.

LEMMA 5.3. R = \J™=0 (Γn : Tn) = H°(X, θχ\ where X = Proj (£(/)).

PROOF. Considering the base change R-+R(X) and a minimal reduction,

we may assume that I = xR for a non zero-divisor x of R. Then for all n»0,

we have xnR<=R and ΛΛR = x"# Π # = xn£. Hence (7»: 7") = (xπR: x"R) = R for
all n»0. This implies the first assertion. The second assertion follows from
Proposition 3.3. Q. E. D.

The following Theorem 5.4 and Corollary 5.5 are analogous to Theorem 5.1

and Corollary 5.2. So we omit the proof.

THEOREM 5.4. (1) £(R/PΓ) = e(I)n-£(RIR)for all n»0.
(2) e(l) = £(KllK)9 g(l)=£(KlR), pa(I) = g(I)-e(I)+£(R/I) = £(IR/I), and

)^Q. (Note that g(I) does not depend on I.) If R ίs Gorenstein, then

g(I) = £(R/c)9 where c = (R: R).
(3) δ(I) = mm{n\R = (Tn:Tn)} = π\m{n\Inc(R: R)}.

(4) g(I) = Qopa(I) = g(I)oe(I) = ΰ(R/I)oϊ is a principal idealoR is a
discrete valuation ring.

(5) pa(I) = QoR = (i: 7)o5(/)^lo4(///2) = e(/) and P = In for all n^L

(6) Assume that 1 = 1. Then pa(I) = e(I)-£(I/I2) + ΰ(I2R/I2) and pa(I) =

e(I)-£(III2) if and only ifδ(I) = 2 and!" = 1" for any n = l.

(7) g(I)^g(I\ and g(I) = g (I)<^>ΓΓ= In for all n » 0<s>Proj (#(/)) is normal.
(8) // R is local, then o(I) = {£(R/c)/e(I)}.

COROLLARY 5.5. (1) §(K)^pJίR)^pJ(R)^0, g(R)^g(R)^pa(R)^Q and

(2) g(R) =ϋ^g(R) = pa(R)oR is a DVR.
(3) pa(R) = QoR = (m: m)oR is a DVR or (R: R) =

(R) = e(R) andm" = mnfor all n^l.

(4) g(R)=lopa(R) = Q and e(R) = 2<>e(R) = 2 and mrι = mnfor all n^L

(5) g(R) = 2 and R is Gorensteinopa(K)=l and e(R) = 2.
(6) pa(R) = e(R) - emb (R) and pa(R) = e(R) - emb (R) if and only if δ(R) ̂  2

and mπ = m" for all n = l.
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We call a maximal ideal of R/mR<S>k K a geometric branch of R, where k is

the algebraic closure of k.

PROPOSITION 5.6. Assume that k is perfect. Then pa(R) = Q and the number

of geometric branches of R is equal to e(R) if and only if R is seminormal.

(The only if part is valid without the assumption on k.)

PROOF. We may assume that R is not a DVR. Then R is seminormalo

(R : R) is a radical ideal of R<z>(R : R) = m and mR is a radical ideal of Ropa(R) = 0
and R/mR is reduced. Hence our assertion follows from the following lemma.

Q.E.D.

LEMMA 5.7. e(R)^the number of geometric branches of R, and the equality
holds if and only if R/mR is a geometrically reduced k-algebra.

PROOF. Put S = R/mR®kk. Then S is a finite ^-algebra with dimE(S) =

e(R). Put Card (Max (S)) = n. Since the canonical homomorphism /: S-+

ΠneMax(S) S/π = £M is surjective, we have dinifc(S)^tt, and / is an isomorphism
(i.e., S is reduced) if and only if dim^ (S) = n. Q. E. D.

EXAMPLE 5.8. Suppose that fc is algebraically closed and is contained in R.

(1) g(R)=l if and only if β^fc[X, YJl(XY) or fc[X, y]/(Y2-X3). The
"if" part is clear. Assume that g(R)= 1 and R is complete. If Card (Max (R)) =
2, then R is a seminormal double point by Proposition 5.6. Hence R^klX, Y J /

(X y). If R is local, then £ = k [ίj , m£ = t2k [ίj and R/fc [[ί2, ί3J ̂  Λ/fe [ί2, f 3J ̂  fe.

Therefore /^ = fc[ί2, ί3! ̂ fc[Xryi/(y2-X3).
(2) (Double points) Assume that char(fc)y2. If β(R) = 2, then R^k[X,

Ύll(Y2-Xr) for some r (cf. [7], Ex. 5.14). It is easy to show that #(#)=!,
pα(tf) = 0, g(R) = pa(R) + l = r/2 (if r is even) or(r-l)/2 (if r is odd). Hence

) = 2 and g(R) = g if and only if tek[X, yi/(y2-J^2^) or klX9 YI/(Y 2 -

EXAMPLE 5.9. (Monomial curve singularities). Let H be a numerical semi-
group, i.e., an additive submonoid of 7V={0, 1, 2,...} such that N—H is a finite

set. Put e(H) = min{nεH\n>Q}, c(H) = min{neH\n + Nc:H} and
Card (N- H). Fix a field /c and put R = kltn\neHj. Then K = fc[ίl, e(K) =

g(R) = g(H)9 pa(R) = g(H)-e(H)+l and # is Gorenstein if and only if
2^(H) (cf. [8]). We have S(R) = {c(H)/e(H)} by Theorem 5.4, (8).

(1) pa(R) = Qog(H) = e(H)-l*>e(H) = c(H)oH = He:=(e, *+!,...,
= {0, e, e+1,...}, i.e., H is an ordinary semigroup. In this case
Hence pα(K) = 0 and K is Gorenstein if and only if # = <2, 3>.

(2) pJ(K)=log(H) = e(H)oH = Hetr: = {Q, e,
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-3 or (e, e + 1,..., 2e-2>, e^3.
In this case, emb(#) = £?(K)-l, c(#) = e(R) + r + 2. Hence pa(R)=l and 1? is
Gorenstein if and only if jF/ = # e e_ 2 = <e, e-hl,..., 2e-2>, e^3.

(3) 0(H) = loH = <2, 3>. '0(tf) = 2oH = <2, 5> or <3, 4, 5>. 0(H)=3o
H = <2, 7>, <3, 4>, <3, 5, 7, 9> or <4, 5, 6, 7>.

(4) Let H = {0, #, 0 + 2, 0 + 3,...}, #g:2 (a normal semigroup). Then

£(Λ) = 0, 0(Λ) = 0-1, pβ(Λ) = l, Λ(K) = 0 and K*) = 0-l
(5) e(H) = 2 if and only if H = <2, 2# + 1>, g ̂  1 (a hyper elliptic semigroup).

In this case, g(K) = g, g(R) = l, pa(R) = g-l and pa(R) = Q.
(6) Let # = <*, e+l>, e^2. Then

EXAMPLE 5.10 (Milnor number of curve singularities). Buchweitz and Greuel
[3] defined the Milnor number μ(R) of a complex curve singularity R by μ(R) =
^(Coker(c)), where c: R-+ΩχιC-*KR is the canonical homomorphism into the

canonical module of R, and they showed that μ(R) = 2g(R) — r(Λ) + l, where r(jR)
is the number of branches of jR. Hence μ(R)^g(R) + pa(R)^g(R), and μ(R) =
g(R) + pa(R) (resp. μ(R) = g(R)) if and only if e(R) = r(R) (resp. pa(R) = 0 and e(R) =

r(R), i.e., R is seminormal). μ(R)= 1 (resp. μ(R) = 2) if and only if Λ is an ordinary
double point (resp. R is a seminormal triple point or fί=ClX, Y]/(Y 2 —

EXAMPLE 5.11. Let ̂  be a reduced noetherian scheme such that dim(0X;c)

= 1 for any closed point x of X, and assume that X has the finite and rational
normalization p: X-*X, i.e., p is finite and k(y) = k(p(yj) for any closed point y

of X. Let / c 0X be the largest ideal which defines the singular locus of X, and

let B/ (X) be the blowing-up of X along /. Put X1 =El (X) and Xn+ l = El (Xn)

for all n^l. Define (̂̂ ) = ΣX^(^Λ:,Λ:)» 9(X) = Σx9(@x,x)> where x runs over
the set of closed points of X. Then Xn = X for all n » 0, and g(X) = Σ Γ=0 ̂ W =

Σ"=^(^i) + ̂ (^n) for any n^l. Therefore g(X)=Σl=o0(Xύ ^ and only if
Xn = X. In particular, after blowing-up g(X) — g(X) + 1 times, Jί becomes

normal.

§ 6. The case of dimension two (surface singularities)

In this section, let (R, m) be a two-dimensional Cohen-Macaulay local ring

with infinite residue field, and let / be an m-primary ideal of R.

THEOREM 6.1. (1) (cf. [17]). g(I) = Q if and only if δ(Ir)^ 1 for some (or

sufficiently large) r^l.
(2) (cf. [22]). Assume that R is analytically unramίβed. Then the

following conditions are equivalent:

(a)
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(b)

(c) δ(Ir)<> 1 for some (or all) r^ 1.

PROOF. (1) If δ(Ir)^l for some r, then g(I) = g(Ir) = Q by Theorem 4.3.

Conversely, if 0(/) = 0, then #(/') = #(/) = 0 and n(/r)^0 for all r»0. Hence by

Theorem 4.3, <5(/r)^l for all r»0.
(2) If 5(/r)^l for some r, then g(I) = g(Ir) = Q by Theorem 4.4.

Conversely, assume that 0(/) = 0 and put J = Proj (£(/)) and A = R(I). Then
), i^l, and the following sequence is exact:

0 - > tfo^) - > Λ - > ®nez H°( J, 0j(«)) - > HK^) - > 0.nez

By Lemma 3.2 and Proposition 3.3, (3), we have H°P(A) = Q, [//j>04)]π = 0 for all

n^O, [HJ(A)]B = #2(J/0jKn)) = 0 for all n e Z and [^(A)]0 = H1(^, 0*) = 0
by the assumption. Therefore we get o(I) ^ reg (£(/)) ̂  1 (cf. [20]). Q. E. D.

COROLLARY 6.2. Assume that R is analytically unramίfied.

(1) g(K) = Q if and only ifemb(R) = e(K) + l and mn = mnfor all n^l.

(2) g(R) = Q and R is Gorenstein if and only if R is a regular local ring or

e(R) = 2 andm" = mnfor all n^l.

PROOF. This follows from Theorem 6.1 and Theorem 4.4. Q. E. D.

Assume that # is analytically unramified and normal. Then # is said to be
pseudo-rational if for any proper birational morphism X-+Spec(R) with X a

normal noetherian integral scheme, we have H1(X9 &X) = Q. R is said to be
rational if Spec (R) has a desingularization X-+Spec(R) such that Hi(X9 ^χ) = 0.
R is pseudo-rational if and only if #(/) = 0 for any parameter (or m-primary) ideal

/ of R9 and R is rational if and only if R is pseudo-rational and is analytically
normal. For these matters, see [11], [13], [14], [15].

COROLLARY 6.3. Assume that R is analytically unramified and normal.

Then R is pseudo-rational if and only if for any integrally closed m-primary

ideal I of R, we have ΰ(I/I2) = e(I) + ΰ(R/I) and F=Infor all n^ 1 (in particular,

emb (#) = *<£) + 1 and m" = m" for all n^l). In this case, G(I) is Cohen-
Macaulay for any integrally closed m-primary ideal I of R.

EXAMPLE 6.4. (1) Put R = k[X, 7] and I = (X3, X2Y, Y3). Then J = m3,
(X3, r3)/2 = /3, dim fc(m3w//") = l and ^(fl//") = 9n(n-l)/2 + 6w + l for all n^l.

Therefore we have e(I) = 9, n(I) = 1 , δ(I) = 2, pa(I) = 0 and g(I) = 1 . Hence g(m) =

(2) Put R = klX, 71 and I = (X4, X3Y, XY3, 74). Then / = τn4, Im4 =
m8, Γr = Ir = m4r for all r^2 and (X*, 74)/2 = /3. Therefore δ(I) = 2 and δ(Ir) =
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1 for all r^2. Hence the condition #(/) = 0 does not imply <5(/):g 1 (cf. Theorem
6.1).

(3) (cf. [17]). Put R = k[X, 7, Z]/(Z3) = /c[x, y, z\ and I = (x2, y2,
xz9 yz). Then /m = m3, άimk (m2//) = 2, In+1=In(x2, y2) = I2(x2, y2)n~ι and

dim fc(m2M//n) = π for all n^2. Therefore ^CR//π+1) = 6n2 + 10tt + 5 for all n^l,

n(/)=l, pβ(/)= -1 and #(/)=!. Put .S = /φJ and / = (/, ί) Then ^(S/J"+1) =
2rc3 + 8n2+lltt + 6 for all n^O. Hence we have pa(J) = 0 and g(J) = e3(J) =

Assume that # is analytically normal, and let J?->SpecCR) be a desingulari-

zation of Spec (R). Then we call pg(R) : = £(Hl(%9 Θx)) the geometric genus of R.
pg(R) does not depend on a desingularΐzation (cf. [9], [13]).

PROPOSITION 6.5. If R is analytically normal, then g(I)^pg(R) for any

m-primary ideal I ofR.

PROOF. Put X = Proj (£(/)) and let X-^X be a desingularization of X.

Then since /*(#*) = 0*, H\X9Ox) = H\Xj+(Ox))^Hl(%,Gx) is injective
by Leray's spectral sequence. Hence g(I) = e(Hl(X, θχ))^β(H\X, Θ^) =

P9(R\ Q.E.D.

COROLLARY 6.6. Assume that R is analytically normal. Then pg(R) = l

(i.e., R is elliptic) if and only if #(/)^l for any m primary ideal I of R and

g(I)=lfor some m-primary ideal I of R.

EXAMPLE 6.7. (1) Put R = CIX9 7, ZJ /(Xn + Y" + Z"), π ̂  2. Then pg(R)

and Λ =

(2) Put R = CIX, 7, Z] /(Z2 -f(X, 7)) and assume that R is normal. Then

as was pointed out by S. Itqh, R(m) is normal (or equivalently g(R) = 0) if and

only if/ <£ (X, 7)4. If £ = CpΓ, 7, ZJ /(X2 + 73 + Z6) (which is a simple elliptic
singularity), then pg(R)=l and g(R) = 0. (Hence g(R) = Q does not imply that R

is rational.) If R = C{X, 7, Z] /(X2 + 74 + Z4), then j?,(Λ) = 0(JR) = 1 (cf. [9]).
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