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Introduction

In [11], Ooishi gave a necessary and sufficient condition for Z[,/m] to
be seminormal. In this paper, we will study Z[%/m] and give the criteria for
Z[2/m] to be normal, p-seminormal, seminormal and quasinormal. First, we
treat the normality of Z[%/m]. Next, we construct some elements which are
integral over Z. Then using these elements, we study the p-seminormality, the
seminormality and the quasinormality of Z[%/ m].

The writer heartily thanks Prof. H. Matsumura who gave him continuous
encouragement.

§1. Notation, terminology and preliminary results

Let A be a noetherian reduced ring. If the canonical homomorphism
Pic A-Pic A[X] (or Pic A—»Pic A[X, X~']) is an isomorphism, where X is a
variable, A is said to be seminormal (or quasinormal, resp.), and for an integer p
if the kernel of Pic A[X]—Pic 4 has no p-torsion, A is said to be p-seminormal.
These are chracterized as follows. The seminormality (or the p-seminormality)
of A is equivalent to that if x € Q(A) satisfies x2, x3€ 4 (or x2, x3, px € A4, resp.),
then x € A (cf. [5] or [12]). On the other hand in the case that dim A=1 and 4 is
a domain, A is quasinormal if and only if the following conditions are satisfied:
(1) A is seminormal, and (2) if x € Q(A) satisfies x2—x, x3—x2€ 4, then xe A4
(cf. [10]). These are our main tools in this paper. Now normality, semi-
normality and p-seminormality are local properties, that is, 4 is normal (or
seminormal, p-seminormal) if and only if so is 4, for all maximal ideals m of 4
(cf. [12]). If dim A=1 and A is a domain, quasinormality is a local property
(cf. [2]). For an ideal a of A, we write V(a)={pe Spec Alacp}. And we
denote the normalization of A in Q(A) by A.

We denote the set of natural numbers by N, the set of integers by Z, the set of
rational numbers by Q and the prime field of characteristic p by F,.

Throughout this paper, m and n are integers with n=2. Moreover when
X"—m is an irreducible polynomial over Z, we denote a root of X"—m=0 by

.
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If we write n=p¢---pe:, this means the factorization of n into prime factors
and p;# p;fori#j. For integers p and q if p divides q in Z, we write p|g. More-
over for a non-negative integer e if p¢|q and pe*1})q, we write p¢||qg. The greatest
common divisor of p and q is denoted by (p, q).

Finally we note the following theorem which plays an important role. We
write m= ([17=} ai)b", where a;, be Z (i=1,..., n—1) and []2z} a;is square-free.
For j20, put m;=[T;=}aii~tii/"I" and put a;=y/m; in Q({m) where [ ] is
the Gauss’ symbol. Obviously, if (j, n)=1, Z[«;]~=Z (o/m]~.

THEOREM 1.1 (cf. [6]). Assume that n is a prime number. Then if m}~1#1
(mod n?), Z[Ym]~=Z[ay,...,%,_,], and if m}'=1 (modn?), (Z[Jm]~:
Z[ay,..., %, 1])=n as an additive group.

§2. Normality

Before considering the normality of Z[3/m], we will prove the following
lemmas.

LeMMA 2.1. Let p be a prime divisor of n. Then Z(p,[{’/_rﬁ] is normal if
and only if mP#m (mod p2?).

Proor. Put 9=\7r7 and n=pe°q, where e, ge N and (p, g)=1. We con-
sider Z[9] as a homomorphic image of Z[X], where X is a variable. Then
Z[¥]=Z[X]/(X"—m). We write X"—m=F,(X)---F(X) (mod pZ[X]), where
F{(X),..., F(X) e Z[X] and each image of Fy(X) in F,[X]is irreducible. Putting
P,=(p, F(X))Z2[X] (i=1,...,s), we have V((p, X"—m))={P,,..., P} in
Spec Z[X]. Then Z,[8] is normal if and only if X"—m is a part of a regular
system of parameters of Z[X]p, foralli. Now X"—m=(X7—m)?* (mod pZ[X])
and e=1. Hence, we can write X"—m=G(X)(X1—m)*+a(X1—m)+mr*—m,
where G(X)e Z[X] and a is an integer with a=0 (mod p). Moreover, since
mP*'=m+kp for an integer k, m?*=(m+kp)’=m? (mod p?). Hence, X"—
m=mP—m (mod P?) for all i. Thus, X"—m is a part of a regular system of
parameters of Z[X]p, for all i if and only if m? #m (mod p?). Q.E.D.

LeMMA 2.2. Let K be an algebraic extension field of Q and 3 be an element
of K satisfying "=me Z, where ne N. Assume that m is square-free. If
Z[9], is not normal for some peSpec Z[3], then p?m and p3n.
In particular nZ[9]~ < Z[9].

Proor. By [8, (10.18)], nmZ[3]~< Z[3]. Hence, we have panm. We
write Z[3]= Z[X]/(X"—m). If pam, then p=(p, X)/(X"—m) for a prime
divisor p of m. Since m is square-free, X"—m¢ (p, X)?Z[X], x)- Hence
Z[3],isnormal. Thisis a contradiction. Therefore,p2mandpan. Q.E.D.
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THEOREM 2.3. The following statements are equivalent:

(a) Z[z/m] is normal;

(b) Z[{/m] is normal for all te N such that t|n* for a € N;

(c) m is square-free and mP #£m (mod p?) for all prime divisors p of n.

Proor. It is sufficient to prove the equivalence of (a) and (c). Put 9="1/m.
We may assume that m is square-free. Indeed, write Z[3]x~ Z[X]/(X"—m)
and assume that p?|m for a prime divisor p of m. Then we have X"—me
(p, X)?Z[X](,,x) and Z[8], 5, is not normal. Hence by (2.2), Z[3] is normal
if and only if Z,[9] is normal for all prime divisors p of n. Therefore
equivalence of (a) and (c) is proved by (2.1). Q.E.D.

REMARK 2.4. For an integer m and a prime number p, mP#m (mod p?) if
and only if m#r? (mod p?) for all r=0,..., p—1.

By (1.1) and the proof of (2.3), we can give a generalization of (2.3) as follows,
whose proof is omitted. The notation is as in Section 1.

PROPOSITION 2.5. For an integer n, assume that (i, n)=1 for all i such that
a;#+1. Then Z[Ym]~=Z[a,,..., a,_,] if and only if m{#m, (mod p?) for
all prime divisors p of n with (p, m;)=1.

Next we shall show the following lemma concerning the normalization of
Z[%/m], which will be used to prove (5.1).

LEMMA 2.6. Let n=p§.--psc be the factorization of n into prime
factors and m be a square-free integer. Put 3=1/m, q;=p§' and 9,=9"%i=
9/m. Then if Z[9,]"=Z[8,, d;y,..., 03] for all i, we have Z[9]~=2Z[9,
{6ij}1§i§t,1_5_j§li]'

ProOF. Put A={5;;}. We assume that Z[9, 4], is not normal for a
maximal ideal p of Z[3, 4]. Since Z[3]<c Z[9, A1< Z[3]~, we have pPm
and pon by (2.2). Then p>p; for some i. Consider the following ring ex-
tensions:

Z[917[%] < Z[3, 4] < Z[9]".

Put I=n/q;, Then since 3'=9;e Z[9;], we have ImZ[3]~ < Z[3,1"[3] by
[8,(10.18)]. Therefore Z[9, 4], is normal since p 3 Im. Thisis a contradiction.
Q.E..D

§3. Some integral elements

In this section, we construct some integral elements over Z [2/m], where m



32 Hiroshi TANIMOTO

is not necessarily square-free. One of these will be useful in the following
sections.

PROPOSITION 3.1. Let p be a prime number, e be a positive integer and
n=pe. Put $=7m for an integer m. Moreover let e=a+b, where a, be Z,
a20 and b21, and put a=p* and B=pb. For each positive integer k, we
define an element of Q(9):

Oy = p* A2 (m)-17i(9)".
Then the minimal polynomial of 6, , over Q is
£ = X0 = T3 (§ ) pr-pmei(m—mop-1-ixc
Moreover assume that (m, p)=1 and let s be a positive integer such that
pfllm"~t—1. Then d,, is integral over Z if and only if k<min {b, s—1}.

PrOOF. Put 6=0,,, f=f,1, h=m* and t=9%. Then hf=m" and ¥ =m.
Now let { be a primitive f-th root of unity. Then the conjugate elements of t
over Q are t, 7{,..., t{f~!. Since d(t—h)=p~¥(m—m"), the conjugate elements
of 6 over Q are d=I/(t—h), 1/(z{—h),..., l/(z{F~1—h), where I=p~*(m—m").
Since these elements are distinct, we have [Q(d): Q]=f=degf. Thus if f(6)=0,
then f(X) is the minimal polynomial of é over Q. Therefore, we will show that
f(6)=0. Now for 0<sj=<p-1,

Tipkd = Yizd mhi-t-iti 4 Z‘,-’;} hE-1-itigh
Hence we have
Sizd mhi-1-izi 4 (hA1 — pkd)1i + Z‘,-’;}+1 hf-1-itigi =,

Thus denoting by M the n x n-matrix

hB-1—pk§ B2 -3 D |
m  hFl—pk§ b2 e h
mh m  hPI—pks .. R? ’
mh:"‘2 mh’:"3 m}:l”“‘ ---h”‘lz—p"é

we have det M=0. Putting d=m—m", we have
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—pké 1

d+phé  —pks 0 h

det M =det d+ p*hé ' h?
0 ks h-2

d+phd  hP-1—pkd
= (=p9) + () i (F ) warmps

Therefore, f(6)=0. This completes the proof of the first assertion.

Now denote the coefficient of X* of f(X) for 0<i<f—1 by ¢; and denote the
canonical valuation of Z, by v. Then since (m, p)=1 by our assumption,
we have ’

#) o) = v(<f)> —k+ (s—k)(B—1—i).

First, we assume that k<min {b, s—1}. To prove that ¢ is integral over Z, it is
sufficient to show that v(c;)=0 for all i. If i=0, then v(cy)=—k+(s—k)(B—1)
by (#). Since s—k=1and B=p*=b+1=2k+1, we have v(c,)=0. If i>1, then
u(</§>>=u(ﬁ)—u(i)= b—u(i) (cf. [9, Lemma 2]). Hence v(c;)=(b—k)—u(i)+
(s—k)p—1—i) by (#). Putov(i)=t and g=p—p’. Then since v(q)=t and g=1i,
and since b=k and s—k=1, we have v(c)=—t+(f—1—q)=—t+p'—120.
Thus, 6 is integral over Z. Next we assume that k>min {b, s—1}. If k>s—1,
then v(co)< —k <0 by (¥). If k>b, then v(cs_,)=b—k <0 by (#). Therefore &
is not integral over Z. Q.E.D.

COROLLARY 3.2. Let p be a prime number and suppose that mp-1=1
(mod p2). Put &=p~' Y024 mi®/m)P='~i. Then wusing the notation in
Section 1, we have Z[R/m]~ = Z[u,..., a,_,, 8].

PRrROOF. Since (m, p)=1 by the assumption, we have d € Z[§/m]~~ Z[«,,...,
a,_1] by (3.1). Hence we have the conclusion by (1.1). Q.E.D.

REMARK. Let m be a square-free integer, n be an integer with n=2 and
n=ps¢..-p¢t be the factorization of n into prime factors. Put g;=p§. Let
#={illLi<t, mPi~1=1 (mod p?)}. For each ie %, letting pi|m?-1—1, put
k;=min {e;, s;—1} and 4;,={6;;|]1<j<k;}. Denote \U;.o4; by 4. If Z=g,
we let A={1}. Now if n is square-free, we have k;=1 for all ie #. Therefore
Z[y/m]~=2Z[2/m, 4] by (2.3), (2.6) and (3.2). From this, the following
question arises: Does Z[t/m]~=Z[%/m, 4] hold for all n>2? For this
question, by (2.6) we may assume that n=p® for a prime number p and ee N.
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When n=4, this question can be solved by an elementary calculation. A related

topic is also treated in [9].

The following proposition gives some properties of the integral element
0y, in (3.1).

PROPOSITION 3.3. In(3.1), let a=0 and b=e, and put =9, ;. Assume that
p’lm"=t—1 for some integer s>1. Then 6 Z[3]~~Z[9], and we have the
following :

(@) Ife=2, then 62, %€ Z[ 9] and hence Z[ 3] is not seminormal.

(b) Ife=1and pis odd, or if e=1, p=2 and s=3, then 62—0, 6>—d%¢€
Z[ 3] and hence Z[39] is not quasinormal.

(c) Ife=1, p=2and s=2, then 6*°—6, € Z[93].

PrOOF. Since min {e, s—1}=1, we have de Z[3]°~Z[3] by (3.1).
Now since 3" =m, we have

02 = p72 3 i (k+1)m2(=Dk 4+ (n—(k+1))m"~1-k)3k,
Putting m"~ ! —1=psu (ue Z), we have
02 = p~2u 3 pl (k+1)mr—17k3k 4+ pe-145,
Since s=2, we have
3.3.1) 02 — pe16 = pru Pzl (k+ 1)mn-1-k 8k e Z[9].
Next by (3.3.1) and the above calculation,
0% — pe1o? =pr 32 P psimr ik ko (i4+ 1) 3%+ 271 petsm2(pe+ 1)ud .
Since s=2, we have
(3.3.2) 03 — pe162 — 271pets~2(pe+ 1ud e Z[3].

Thus since pde Z[3] and (u, p)=1, (a), (b) and (c) easily follow from (3.3.1)
and (3.3.2). Q.E.D.

The following proposition can be easily shown. Therefore we omit the proof.

PROPOSITION 3.4. Let p be a prime number and ne N, and put $=%m
and x=39""1/p. Then if n=3 and p?|m, or if n=2 and p3|m, we have xe
Z[3]"~Z[9] and x2, x> Z[3]). In particular, Z[93] is not seminormal.

§4. p-seminormality and seminormality

First we will treat the p-seminormality of Z[%/m]. Since a ring A4 is p-
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seminormal if and only if A4 is g-seminormal for all prime divisors q of p, we have
only to study the case that pis a prime number. Our result on the p-seminormality
of Z[%/m] is as follows.

THEOREM 4.1. For a prime number p, Z[Vr;] is p-seminormal if and only
if one of the following conditions holds.

@ plm;

() (p, mn) =1;

(c) n=23,(p,m)=1andp|n;

d) n=3,(p, m)=1, p|nand m?*£m (mod p?) ;

(¢) n=2and(p,m)=1;

(f) n=2,p+#2and p*|m.

Before proving this, we show the following two lemmas.

LeMMA 4.2.  For a prime number p, Z[%/m] is p-seminormal if and only
if Z,,[%/m] is seminormal.

In (6.5) this lemma will be generalized and proved.

LEMMA 4.3. Let p¢||n for a prime number p and some ee N, and suppose

(p, m)=1. Then Z,,[/m] is seminormal if and only if Z,,[%/m] is semi-
normal.

ProOF. Put 9=/m and 1=9"/7°=2/m. Since Z,[9] is free over Z,[7],
the “only if”’ part easily follows. Now we can write Z,[3]=Z ,[7][X]
[(X"—1), where r=n/p® and the image of X in Z,[9] is 3. Then since

"=m, we see that r and 3 are invertible in Z,,[9] by our assumption. Hence
Z,)[9] is smooth over Z,[t]. Therefore if Z[7] is seminormal, Z[9] is
also seminormal by [13, Prop. 1.5] and [3, 5.8. Th.], because Z[7] is a Mori~
ring. Q.E.D.

PROOF of (4.1). Put 9=y/m and A=Z,[9]. By (4.2) it is sufficient to
consider the condition for 4 to be seminormal. By the proof of (2.2), if (p, mn)=1
or p|m, A is normal. Hence by (3.4) and (4.3) we have only to consider the
following two cases.

Case 1. n=3, (m, p)=1 and n=pe°, where ee N. If mP#m (mod p?), 4 is
normal by (2.1). On the other hand if m?=m (mod p?) and e=2, A is not semi-
normal by (3.3). Thus we reduce ourselves to the case that n=p and mr-1=1
(mod p?). We will prove that A4 is seminormal. First by (3.2) and (3.3), putting
d=p 1 Y r-t mp-1-i9i we have A=A+ A5. Let x=a+pded (o, feA) satisfy
x2,x3e A. Since Max A={(p, $—m)} and since pde 4 and (3 —m)d=p~{(m—
mP) € A, we may suppose that f=1. Now p is odd, because n=p=3. Hence by
x2, x3e€ A and (3.3), we have 2a+1)d, (3a>+30+1)0€ A. From this it follows
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easily that € A4, and hence xe A. Thus A is seminormal. This completes the
proof of Case 1.

Case 2. n=2. If p=2and m=4r for an odd integer r, then x=1 +\/7 satisfies
xe A~A and x2, x3¢ A. Hence A is not seminormal. Therefore by (3.4) and
the above, we may assume that (m, p)=1 or p?|m, p#2. We will prove that A4 is
seminormal in either case. Let xe 4 satisfy x2, x3e A. First suppose that
(m, p)=1. Then if m=ab? for a square-free integer a and some b € Z, we have
A= Z(p,[\/ a]. Hence we may assume that m is square-free. Moreover by a
well-known result, we may also assume that m=1 (mod 4) and p=2. Then A=
A+ Ad for §=(m+93)/2. Hence we can write x=a+ 6 for some a, fe 4. By
the same manner as in Case 1, we may suppose that §=1. Then since x? € 4, we
have 6 € A by (3.3). Hence xe A. Therefore A is seminormal. Next we suppose
that p?|m and p#2. Put m=p?* (reZ). Then /m=p/r and (r, p)=1.
Since p#2, it follows that Z,[,/r] is normal and x € Z,[,/r]. Hence we can
write x=o+ B,/r for some o, e Z,,. Then since x2, x3 € 4, it follows easily that
x€A. Thus A is seminormal. Q.E.D.

Z[Ym] is seminormal if and only if Z[J/m] is p-seminormal for all prime
numbers p. Therefore we obtain the following criterion for the seminormality of
Z[3/m] by (4.1).

THEOREM 4.4.  Z[%/m] is seminormal if and only if one of the following
conditions holds.
(@) m is square-free, and for each prime divisor p of n,
(i) mP # m (mod p?), or
(i) pln;
(b) m is not square-free, n=2 and m=ab?, where a and b are square-free
integers, b is odd and (a, b)=1.

ReMARK. The result of the case n=2 in (4.4) has been already obtained by
Ooishi (cf. [11]).

§5. Quasinormality

Let s and ¢ be integers with (s, t)=1 and t=2. We denote the order of s in
the unit group of Z/tZ by ord,(s). For the sake of convenience we define
ord, (s)=1. Then we have the following theorem.

THEOREM 5.1.  Z[%/m] is quasinormal if and only if one of the following
conditions holds.
(a) m is square-free, and for each prime divisor p of n,
(i) mP # m (mod p?), or
(i) p=2,2|n, m=35(mod8) and ord, , (2) is odd;
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(b) m is not square-free, n=2 and m=ab? for relatively prime square-free
integers a and b satisfying that a#1 (mod 8), b is odd and <%>= —1 for all
prime divisors p of b, where <%> stands for the Legendre’s symbol.

First, we note the following lemma.

LEMMA 5.2. Let K be a finite algebraic extension field of F,. Then X2+
X+1=0 has a root in K if and only if [K: F,] is even.

PRrOOF of (5.1). We put §=2/m and A= Z[9].

Case 1. mis square-free. For g € N with g|n, A is free over Z[{/m]. Hence if
A is quasinormal, Z [{'/ﬁ] is also quasinormal. Moreover for a prime number
p, if p is odd and Z[#m] is not normal, or if p=2 and m=1 (mod 8), then
VAR, m] is not quasinormal by (3.3). Therefore by the implications normal=
quasinormal=>seminormal and by (2.3) and (4.4), we may assume that, for an odd
natural number r, n=2r, Z[{/m] is normal and m=5 (mod 8). Then putting
d=(m+./m)/2, we have A =A+ A5 by (2.6), (3.2) and (3.3). Hence for each
x€A we can write x=a+ 6 for some a, fe A. Then by 26€ 4 and (3.3), we
have x2—x, x3—x2€ A if and only if (82— p)J, p(a?+a+1)de A. Nowforze A,
it can be easily seen that zd € 4 if and only if ze(2, 3" —1). Moreover since 4=
Z[X]/(X"—m) and (2, X'—1)>X"—m, we have Z[3]/(2, "—1)=F,[X]/
(Xr—1). Therefore A4 is not quasinormal if and only if there exist f and g in
F,[X] such that g2—g, g(f?+f+1)e(X"—1)F,[X] and g¢(X"—1)F,[X].
We write X'—1=F(X)---F(X) in F,[X], where each F(X) is irreducible.
Then since F,(X),..., F,(X) are relatively prime, putting K;= F,[ X]/(F{(X)), we
have F,[X]/(X"—1)=K,x:--xK,. Hence by (5.2), A is not quasinormal if
and only if [K;: F,] is even for some i. Now for the minimal splitting field K of
Xr—1=0 over F,, we have [K: F,]=ord,(2) by [1, chap. V, §11 Exercices 1)],
and K=K; for some i. Therefore [K;: F,] is even for some i if and only if
ord, (2) is even. Thus the proof for Case 1 is completed.

Case 2. m is not square-free. Since quasinormality implies seminormality, by
(4.4) we may assume that n=2 and m=ab?, where a and b are square-free integers,
bis odd and (a, b)=1. Then 3 =b\/5. First note that if a=1 (mod 8), 4 is not
quasinormal by (3.3). Therefore we may assume that a#1 (mod 8). Now let x
be an element of A satisfying x2—x, x3—x2eA. Then xe z[/ a], because
AcZ [\/E] and Z[\/E] is quasinormal by Case 1. Hence we can write x=0+
B/a (¢, Be Z). Therefore A is not quasinormal if and only if there exist « and g
in Z such that btp and p(2a—1), f(3a>+p2a—2a)e bZ. Thus A is quasinormal
if and only if X2a=1 (mod b,) does not have any roots in Z for all b, such that

bo>1and by|b. This is equivalent to that (%): — 1 for all prime divisors p of b.
Q.E.D.
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§6. Some remarks

As stated in Section 1, we know the implications normal=-quasinormal=-
seminormal=>p-seminormal. But the converse of each implication does not neces-
sarily hold as shown by well-known examples. But by (2.3), (4.1), (4.4) and (5.1),
we can easily construct such examples in the case of dimension 1, though they
do not contain a field.

EXAMPLE 6.1. Let 4, = Z[/5] and A,= Z[/17], and let A;= Z[,/pg®] for
distinct prime numbers p and q. Then A4, is quasinormal but not normal, 4, is
seminormal but not quasinormal and A; is p-seminormal but not seminormal.
Moreover A; is p-seminormal but not g-seminormal.

Next let n=p§t---p¢: be the factorization of n into prime factors and put
q;=p¢* for each i. Then by (2.3) (or (4.4)) we see that Z[%/m] is normal (or
seminormal, resp.) if and only if Z[%/m] is normal (or seminormal, resp.) for
all i. If m is square-free, this result can be generalized as follows. Let P be a
property concerning noetherian rings satisfying the following four axioms.

(1) A ring R has P if and only if R, has P for all p e Max (R);

(2) Regularity implies P;

(3) Let (4, m)>(B, n) be a flat local homomorphism. Then if B has P,
A also has P;

(4) 1In (3), if A has P and the canonical homomorphism A— B is regular, B
also has P.

ReMARK. (a) If B is smooth over A4, then A— B is regular (cf. [13, Prop.
1.5]).

(b) If P=normality or seminormal Mori, P satisfies the above four axioms
(cf. [4, IV (6.5.4)] or [3, 5.8. Th.]).

Then we have the following proposition, which is proved easily by (2.2) and
4.3).

PROPOSITION 6.2. Let n=p$t---p¢t be the factorization of n into prime
factors and P be a property satisfying the above four axioms, and assume that
m is square-free. Put q;=p§. Then Z[%/m] has P if and only if Z[%/m] has
P for all i.

For quasinormality, (6.2) does not hold as follows.

ExaMPLE 6.3. By (5.1), Z[$/13] is not quasinormal, but Z[,/13] is quas-
normal and Z[3/13] is normal. Indeed, quasinormality does not satisfy the
axiom (4). For example, Z(z)[\/ﬁ] is quasinormal by [2, 4.7. Cor.] and
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Z,,[$/13] is etale over Z;)[,/13], but Z,,[$/13]is not quasinormal. Now in
[2, 4.13. Example], Greco also shows such an example due to Ferrand which
contains the real number field. But as above, we can construct many such
examples by (5.1), though they do not contain a field.

Finally, for p-seminormality, we can prove the following proposition. Since
p-seminormality satisfies the axioms (1), (2) and (3) (cf. [12]), (6.2) holds for
P = p-seminormality.

PROPOSITION 6.4. Let A and B be noetherian reduced rings. Assume that
A is a Mori ring satisfying (S,) and the canonical homomorphism A—B is
normal. Then for a prime number p, if A is p-seminormal, B is also p-semi-
normal.

For the proof, we first show the following lemma which is a generalization of
4.2).

LEMMA 6.5. Let R be a noetherian reduced ring satisfying (S,) and let p be
a prime number. Then R is p-seminormal if and only if R, is seminormal for all
height 1 prime ideals p containing p.

PrOOF. By the proof of [12, Th. 6.1], R is p-seminormal if and only if R, is
p-seminormal for all p e Spec R with depth R,=1. Now seminormality implies
p-seminormality, and if the image of p in R is not zero, R[1/p] is always p-semi-
normal. Moreover since R satisfies (S,), def)th R,=1implies ht p=1. Therefore
it is sufficient to show that if R is a noetherian reduced p-seminormal local ring of
dimension 1 with p not invertible, R is seminormal. Assume that R is not semi-
normal. Then there exists x € Q(R)~R such that x2, x3e R. We will show
that R is not p-seminormal.

Case 1. p is a non-zero divisor in R. Then Q(R)=R[1/p]. Hence we can
assume that px e R. Thus R is not p-seminormal.

Case 2. pis a zero divisor in R. Put R,=R/,/pR and R,=R/0: pR. Since R
is reduced, we have the following ring extensions: '

R__’RIXRZ—)RIX,Rz.

Then R=R, xR,. Now since xe R, we can write x=(x,, x,), where x;e R,
i=1,2. By Case 1, p°x, € R, for some non-negative integer e. Let e be the
minimal non-negative integer satisfying this. If p®xeR, then e=1 by our
assumption. Then since p¢~!x, ¢ R, by the minimality of e, we have pe~1x ¢ R.
Since (p¢~1x)?, (p*~!x)® e R, we see that R is not p-seminormal. On the other
hand, if pex¢ R, then pe*'xeR. Indeed, since pe*'x=(0, pc*lx,) and since
DX, € R,=R/0: pR and pR; =0, we have pe*lxe pR. Since (p°x)?, (px)?}€R,
it follows that R is not p-seminormal. Q.E.D.
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PrOOF of (6.4). Since A— B is normal, B is also a Mori ring satisfying (S,).

Therefore by (6.5), it is sufficient to show that B, is seminormal for all height 1
prime ideals B containing p. Put p=Pn A. Since B is flat over A, we have
htp<1. Then A, is seminormal by (6.5). Since 4,—Bg is normal, it follows
that By is seminormal by [3, 5.8. Th.]. Q.E.D.
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