Non-triviality of some products of β-elements in the stable homotopy of spheres

Dedicated to Professor Hirosi Toda on his 60th birthday

Katsumi Shimomura

(Received December 2, 1986)

§ 1. Introduction

Throughout this paper, p. will denote a prime $\geqq 5$. In the p-component of the stable homotopy group $\pi_{*} S$ of spheres, H. Toda and L. Smith introduced a family $\left\{\beta_{s} ; s \geqq 1\right\}$, and then S. Oka introduced another family $\left\{\beta_{t p / r} ; t \geqq 1,1 \leqq r \leqq p\right.$ and $(t, r) \neq(1, p)\}$ (cf. [2]). The products $\beta_{s} \beta_{t p / r}$ (by composition) is trivial if $r<p$ by [2] and [5]; and some results for $r=p$ are found in [2], [4], [5]. In this paper, we have the following

Theorem. $\quad \beta_{r p+1} \beta_{t p / p} \neq 0$ in $\pi_{*} S$ if $p \nmid t u(u+1)$ for $u=(r+t) / p^{n}$.
By this theorem and the results in [2], [4], [5], the products a) $\beta_{r p} \beta_{t p / p}$ with $p \mid r+t$ and b) $\beta_{r p+1} \beta_{t p / p}$ with $r+t=(u p-1) p^{n}$ are not determined to be trivial or not; and we see that the other product $\beta_{s} \beta_{t p / p}$ is non-trivial if and only if $p \nmid s t$. We note that the product a) is trivial in the E_{2}-term of the Adams-Novikov spectral sequence for $\pi_{*} S$, by [6; Cor. 2.8].

Furthermore, recall the family $\left\{\beta_{t p^{2} / p, 2} ; t \geqq 2\right\}$ in $\pi_{*} S$ given by S. Oka (cf. [2]). Then the equality $\beta_{s} \beta_{t p^{2} / p, 2}=\beta_{s+t\left(p^{2}-p\right)} \beta_{t p / p}\left(\left[2 ;\right.\right.$ Prop. 6.1]) in the E_{2}-term implies

Corollary. $\quad \beta_{r p+1} \beta_{t p^{2} / p, 2} \neq 0$ in $\pi_{*} S$ if $p \nmid t u(u+1)$ for $u=(r+t p) / p^{n}$.
We recall [1] the comodule M_{0}^{2} (see (2.3)) over the Hopf algebroid $B P_{*} B P$ of the Brown-Peterson spectrum $B P$ at p; and we prepare some $B P_{*} B P$-comodules in §2. It is proved in $[4 ; \S 5]$ that there exists an element $b_{s+t p-1}$ in Ext $_{B P * B P}^{2}$ $\left(B P_{*}, M_{0}^{2}\right)$ whose non-triviality implies that of $\beta_{s} \beta_{t p / p}$ in $\pi_{*} S$ (see Lemma 3.1); and we prove the theorem in $\S 3$ by showing $b_{(r+t) p} \neq 0$.

The author wishes to thank Professor M. Sugawara for his helpful suggestions.

§ 2. The $B P_{*} B P$-comodules $M(n, j)$ and $M(n)$

For a given prime $p \geqq 5$, let $B P$ be the Brown-Peterson spectrum at p, and consider the Hopf algebroid

$$
\begin{equation*}
(A, \Gamma)=\left(B P_{*}, B P_{*} B P\right)=\left(Z_{(p)}\left[v_{1}, v_{2}, \cdots\right], B P_{*}\left[t_{1}, t_{2}, \cdots\right]\right) \text { with } \tag{2.1}
\end{equation*}
$$

$$
\left|v_{i}\right|=\left|t_{i}\right|=e(i)=\left(p^{i}-1\right) /(p-1), \text { where }|x|=(\operatorname{deg} x) / q \text { and } q=2 p-2
$$

Then, for a Γ-comodule M with coaction $\psi_{M}: M \rightarrow M \otimes_{A} \Gamma, H^{*} M=\operatorname{Ext}_{\Gamma}^{*}(A, M)$ is the homology of the cobar complex $\left(\Omega^{*} M, d_{*}\right)$ defined by
(2.2) $\quad \Omega^{s} M=M \otimes_{A} \Gamma \otimes_{A} \cdots \otimes_{A} \Gamma(s$ copies of $\Gamma)$ and

$$
\begin{aligned}
& d_{s}(m \otimes x)=\psi_{M} m \otimes x+\sum_{i=1}^{s}(-1)^{i} m \otimes x_{1} \otimes \cdots \otimes \\
& \Delta x_{i} \otimes \cdots \otimes x_{s}-(-1)^{s} m \otimes x \otimes 1
\end{aligned}
$$

for $m \in M, x_{i} \in \Gamma$ and $x=x_{1} \otimes \cdots \otimes x_{s}$, where $\Delta: \Gamma \rightarrow \Gamma \otimes_{A} \Gamma$ is the diagonal of Γ. In particular, for the Γ-comodule A with $\psi_{A}=\eta$, the right unit of Γ, we have
(2.2.1) $d_{0} v_{1}=p t_{1}, d_{0} v_{2} \equiv v_{1} t_{1}^{p}-v_{1}^{p} t_{1} \bmod (p)$ and $d_{1} t_{1}=0$ in $\Omega^{*} A$. See [3] for details.

We now consider the following Γ-comodules $M(n, j)$ and $M(n)$ with coactions η induced from the above η for A :

$$
\begin{align*}
& M(n, j)=v_{2}^{-1} A /\left(p^{n}, v_{1}^{j}\right) \quad \text { for } \quad p^{n-1} \mid j, \text { and } \tag{2.3}\\
& \begin{aligned}
M(n) & =\operatorname{dirlim}_{j} M(n, j)=v_{2}^{-1} A /\left(p^{n}, v_{1}^{\infty}\right) \\
\quad= & \left\{x / v_{1}^{j} \mid x \in v_{2}^{-1} A, j \geqq 1, \text { and } x / v_{1}^{j}=0 \text { if } p^{n} \mid x \text { or } v_{1}^{j} \mid x\right\} .
\end{aligned}
\end{align*}
$$

Then, the Γ-comodules $M_{i}^{j}(i+j=2)$ in [1] are given by

$$
\begin{align*}
& \text { 1) } \quad M_{2}^{0}=M(1,1), \quad M_{1}^{1}=M(1) \quad \text { and } \quad M_{0}^{2}=\operatorname{dirlim}_{n} M(n)= \tag{2.3.1}\\
& \left\{x / v_{0}^{i} v_{1}^{j} \mid x \in v_{2}^{-1} A, i, j \geqq 1 \text { and } x / v_{0}^{i} v_{1}^{j}=0 \text { if } p^{i} \mid x \text { or } v_{1}^{j} \mid x\right\} \quad\left(v_{0}=p\right) .
\end{align*}
$$

Furthermore, we have the short exact sequences

$$
\begin{array}{rl}
0 \longrightarrow M(k, l) \xrightarrow{p} M(k+1, l) & \longrightarrow M(1, l) \longrightarrow 0, \\
0 & \longrightarrow(1, k) \xrightarrow{1 / v_{1}^{k}} M(1) \xrightarrow{v_{1}^{k}} M(1) \longrightarrow 0, \\
0 \longrightarrow M(k, l) \xrightarrow{1 / v_{1}^{t}} M(k) \xrightarrow{v_{1}^{t}} M(k) \longrightarrow \\
\text { and } 0 & 0 \longrightarrow M(k) \xrightarrow{1 / v_{0}^{k}} M_{0}^{2} \xrightarrow{p^{k}} M_{0}^{2} \longrightarrow 0
\end{array}
$$

for $1 \leqq k \leqq n$ and $l=2 p^{n}$ of the Γ-comodules. These give rise to the long exact sequences

$$
\begin{align*}
& \cdots \longrightarrow H^{*-1} M(1, l) \xrightarrow{\partial_{k, l}} H^{*} M(k, l) \xrightarrow{p} \tag{2.3.2}\\
& H^{*} M(k+1, l) \longrightarrow H^{*} M(1, l) \longrightarrow \cdots,
\end{align*}
$$

$$
\begin{align*}
& \cdots \longrightarrow H^{*-1} M(1) \xrightarrow{\partial_{k}} H^{*} M(1, k) \xrightarrow{1 / v_{1}^{k}} \tag{2.3.3}\\
& \cdots \longrightarrow H^{*-1} M(1) \xrightarrow{\delta_{k, l}} H^{*} M(k, l) \xrightarrow{1 / v_{1}^{l}} \\
& H^{*} M(k) \xrightarrow{v_{1}^{l}} H^{*} M(k) \longrightarrow, \quad \text { and } \tag{2.3.4}\\
& \cdots \longrightarrow H^{*-1} M_{0}^{2} \xrightarrow{\delta_{k}^{k}} H^{*} M(1) \xrightarrow{1 / v_{0}^{k}} H^{*} M_{0}^{2} \xrightarrow{p^{k}} H^{*} M_{0}^{2} \longrightarrow \cdots
\end{align*}
$$

We now recall the notations of cycles
(2.4.1) ζ of degree 0 for $i=1, g_{0}$ of degree q for $i=2, \rho=v_{2}^{-1} t_{1}^{p} \otimes g_{0}$ of degree 0 for $i=3$ and $\rho \otimes \zeta$ of degree 0 for $i=4$ in $\Omega^{i} v_{2}^{-1} A$.
which represent some bases of the $F_{p}\left[v_{2}, v_{2}^{-1}\right]$-vector space $H^{*} M(1,1)=H^{*} M_{2}^{0}$ (cf. [3; Ch. 6]). Then, we have the following:
(2.4.2) [1; Lemma 3.19] $d_{1} \zeta^{p^{n}}=0$ in $\Omega^{2} M\left(1, p^{n}\right)$ and $\zeta^{p^{k}}=\zeta^{p^{n}}(k \geqq n)$ in $H^{1} M\left(1, p^{n}\right)$.
(2.4.3) [4; Prop. 3.7] There exists an element $G_{0} \in \Omega^{2} v_{2}^{-1} A$ such that $G_{0}=g_{0}$ in $\Omega^{2} M(1,1)$ and $d_{1} G_{0}=v_{1} \rho$ in $\Omega^{3} M(1,2)$.
v_{1} acts on $H^{*} M(1)$ by (2.2.1), and the $F_{p}\left[v_{1}\right]$-module $H^{*} M(1)=H^{*} M_{1}^{1}$ is determined by $[4 ; \mathrm{Th} .4 .4]$. Besides, the \boldsymbol{F}_{p}-module $H^{*} M(1, k)$ is determined by the $\boldsymbol{F}_{p}\left[v_{1}\right]$-module $H^{*} M(1)$ and (2.3.3). In particular, [4; Th. 4.4] implies immediately the following:
(2.5.1) Each element in $H^{2} M\left(1, p^{n}\right)(n \geqq 1)$ at degree 0 is 0 in $H^{2} M(1$, a_{n-1}), where $a_{0}=1, a_{i}=p^{i}+p^{i-1}-1$.
(2.5.2) $\quad H^{3} M(1, l)\left(l=2 p^{n}\right)$ at degree $m(p+1) q\left(m=s p^{n}, p \nmid s(s+1)\right)$ is the \boldsymbol{F}_{p}-vector space spanned by $\partial_{l} v_{m, i}(i=0,1)$, where

$$
\begin{equation*}
v_{m, 0}=v_{2}^{m} g_{0} / v_{1} \quad \text { and } \quad v_{m, 1}=v_{2}^{m} t_{1} \otimes \zeta / v_{1} \quad \text { in } \quad H^{2} M(1) \tag{2.5.3}
\end{equation*}
$$

Noticing that $\zeta \otimes \zeta / v_{1}=0$ in $H^{2} M(1)$, we see by (2.2.1) that

$$
\begin{equation*}
v_{m, 1} \otimes \zeta=0 \quad \text { in } \quad H^{3} M(1) \tag{2.5.4}
\end{equation*}
$$

Furthermore, we have $\partial_{l} v_{m, 0}=(m+1) v_{2}^{m} \rho$ in $H^{3} M(1,1)$ by (2.4.3), (2.2.1) and the definition of ∂_{l} and $v_{m, 0}$. Then, $v_{2}^{m} \rho \otimes \zeta \neq 0$ in $H^{4} M(1,1)$ (by (2.4.1)) implies

$$
\begin{equation*}
\partial_{l} v_{m, 0} \otimes \zeta^{p^{k}} \neq 0 \text { in } H^{4} M(1, l)\left(l=2 p^{n}\right) \text { for } k>n, \text { if } p \nmid m+1 . \tag{2.5.5}
\end{equation*}
$$

Lemma 2.6. There exists a cycle ζ_{n} in $\Omega^{1} M\left(n+1, p^{n}\right)(n \geqq 0)$ such that $\zeta_{n}=\zeta^{p^{2 n}}$ in $\Omega^{1} M\left(1, p^{n}\right)$, and so $\zeta_{n}=\zeta$ in $H^{1} M(1,1)(b y(2.4 .2))$.

Proof. $\zeta_{n, 0}=\zeta^{p^{2 n}}$ is a cycle in $\Omega^{1} M\left(1, p^{2 n}\right)$ by (2.4.2). Assume inductively that there is a cycle $\zeta_{n, j}$ in $\Omega^{1} M\left(j+1, p^{k}\right)(k=2 n-j)$ for $0 \leqq j<n$ such that $\zeta_{n, j}=$ $\zeta_{n, 0}$ in $\Omega^{1} M\left(1, p^{k}\right)$. Then $d_{1} \zeta_{n, j}=p^{j+1} z$ in $\Omega^{2} M\left(j+2, p^{k}\right)$ for some $z \in \Omega^{2} M(1$, p^{k}), and z is a cycle because $p^{j+1}: \Omega^{*} M\left(1, p^{k}\right) \rightarrow \Omega^{*} M\left(j+2, p^{k}\right)$ is a monomorphism of complexes (since $k=2 n-j>n>j)$. Thus $z=v_{1}^{a} x\left(a=a_{k-1}\right)$ in $H^{2} M(1$, p^{k}) for some cycle x by (2.5.1), and so $v_{1}^{a} x-z=d_{1} \phi$ for some ϕ in $\Omega^{1} M\left(1, p^{k}\right)$. Hence $d_{1} \zeta^{\prime}=p^{j+1} v_{1}^{a} x$ in $\Omega^{2} M\left(j+2, p^{k}\right)$ for $\zeta^{\prime}=\zeta_{n, j}+p^{j+1} \phi$, and so ζ^{\prime} is a cycle in $\Omega^{1} M\left(j+2, p^{k-1}\right)$. Thus we have $\zeta_{n, j+1}=\zeta^{\prime}$ satisfying the statement for $j+1$. Now, the lemma holds by setting $\zeta_{n}=\zeta_{n, n}$. q.e.d.

Lemma 2.7. For $i=0,1$ and $m=s p^{n}$ with $p \nmid s$, there exists a cycle $N_{m, i}$ in $\Omega^{2} M(n+1)$ such that $N_{m, i}=v_{m, i}$ in $\Omega^{2} M(1)$. Furthermore, $2 d_{1} N_{m, 1}=m p v_{m, 0} \otimes$ ζ_{n+1} in $\Omega^{3} M(n+2)$.

Proof. Recall [4; Lemma 4.7] an element $z_{m} \in \Omega^{1} M(n+2)$ for $m=s p^{n}$ with $p \nmid s$, such that
(2.7.1) $z_{m}=2 v_{2}^{m} t_{1} / v_{1}$ in $\Omega^{1} M(1)$ and $d_{1} z_{m}=m p\left(v_{m, 0}-v_{m, 1}\right)$ in $\Omega^{2} M(n+2)$.

The last equality gives us an element w in $\Omega^{2} M(n+1)$ such that $d_{1} z_{m}=m p w$ in $\Omega^{2} M(2 n+2)$ and $w=v_{m, 0}-v_{m, 1}$ in $\Omega^{2} M(1)$. Since $p^{n+1}: \Omega^{*} M(n+1) \rightarrow \Omega^{*} M(2 n$ +2) is monomorphic, we see that w is a cycle. Thus the lemma holds for $N_{m, 0}=$ $w+N_{m, 1}$ and $N_{m, 1}=2^{-1} z_{m} \otimes \zeta_{n+1}$ by the first equality in (2.7.1) and Lemma 2.6. In fact, the last equality in the lemma follows from (2.5.4), Lemma 2.6 and the last equality of (2.7.1).
q.e.d.

§3. Proof of Theorem

We recall the following
Lemma 3.1 [4; §5]. $\quad \beta_{s} \beta_{t p / p} \neq 0$ in $\pi_{*} S$ if $t b_{s+t p-1} \neq 0$ in $H^{2} M_{0}^{2}$, where $b_{m}=v_{2}^{m} t_{1} \otimes \zeta / v_{0} v_{1}=N_{m, 1} / v_{0} \in H^{2} M_{0}^{2}$.

In fact, the last equality follows from Lemma 2.7.
In view of this lemma, the theorem in $\S 1$ follows immediately from the following

Proposition 3.2. $\quad b_{m} \neq 0$ in $H^{2} M_{0}^{2}$ if $p \nmid s(s+1)$ for $s=m / p^{n}$.
Remark. $b_{m}=0$ in $H^{2} M_{0}^{2}$ for $m=\left(r p^{i}-1\right) p^{n}$ with $1 \leqq i \leqq n+2$ by [1 ; Prop. 6.9].

Now, we prove this proposition.
Lemma 3.3. For $1 \leqq k \leqq n$ and $l=2 p^{n}$, the map $p: H^{4} M(k, l) \rightarrow H^{4} M(k+1, l)$ in (2.3.2) is monomorphic at degree $m(p+1) q$ for $m=s p^{n}$ with $p \nmid s(s+1)$.

Proof. Consider the Γ-comodule $B=v_{2}^{-1} A /\left(p^{n+1}\right)$, the short exact sequence $0 \longrightarrow B \xrightarrow{\stackrel{\lambda}{\hookrightarrow}} v_{1}^{-1} B \xrightarrow{\mu} M(n+1) \longrightarrow 0$ and the projection $p_{r}: B \rightarrow M(r, l)(1 \leqq r \leqq n+1)$. Then we have a cycle $c_{i}=\lambda^{-1} d_{2} \mu^{-1} N_{m, i}(i=0,1)$ in $\Omega^{3} B$ for the cycle $N_{m, i}$ in Lemma 2.7, and $p_{1} c_{i}=\partial_{l} v_{m, i}$ for $\partial_{l}: H^{2} M(1) \rightarrow H^{3} M(1, l)$ by definition since $N_{m, i}=v_{m, i}$ in $\Omega^{2} M(1)$ by Lemma 2.7. Thus, for $\partial_{k, l}: H^{3} M(1, l) \rightarrow H^{4} M(k, l)$ in (2.3.2),

$$
\partial_{k, l}\left(\partial_{l} v_{m, i}\right)=\partial_{k, l}\left(p_{1} c_{i}\right)=p^{-1} d_{3}\left(p_{k+1} c_{i}\right)=p^{-1} p_{k+1}\left(d_{3} c_{i}\right)=0
$$

Hence, $\partial_{k, l}=0$ at degree $m(p+1) q$ by (2.5.2), which shows the lemma by (2.3.2).
q.e.d.

Proposition 3.4. $p^{n} v_{m, 0} \otimes \zeta_{n+1} \neq 0$ in $H^{3} M(n+1)$ for m in Lemma 3.3.
Proof. Note that $p^{n} v_{m, 0} \otimes \zeta_{n+1}=p^{n} v_{m, 0} \otimes \zeta^{k}\left(k=p^{2 n+2}\right)$ in $H^{3} M(n+1)$ and ζ^{k} is a cycle in $\Omega^{1} M(1, k)$ by (2.4.2). Then, for $\delta_{n+1, l}$ in (2.3.4) with $l=2 p^{n}$, $\delta_{n+1, l}\left(p^{n} v_{m, 0} \otimes \zeta^{k}\right)=p^{n} \partial_{l} v_{m, 0} \otimes \zeta^{k}$ holds by the definition of δ and ∂. On the other hand, $p^{n} \partial_{l} v_{m, 0} \otimes \zeta^{k} \neq 0$ in $H^{4} M(n+1, l)$ by (2.5.5) and Lemma 3.3. These show the proposition.
q.e.d.

Proof of Proposition 3.2. For δ_{n+1} in (2.3.5) and b_{m} in Lemma 3.1, $2 \delta_{n+1} b_{m}=2 d_{1} N_{m, 1} / p=m v_{m, 0} \otimes \zeta_{n+1}$ in $H^{3} M(n+1)$ by Lemma 2.7. Thus, $b_{m} \neq 0$ by the above proposition.
q.e.d.

References

[1] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[2] S. Oka and K. Shimomura, On products of the β-elements in the stable homotopy of spheres, Hiroshima Math. J. 12 (1982), 611-626.
[3] D. C. Ravenel, Complex cobordism and stable homotopy groups of the spheres, Academic press, 1986.
[4] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
[5] K. Shimomura, Note on some relations of β-elements in the stable homotopy of spheres, to appear.
[6] K. Shimomura and H. Tamura, Non-trivilaity of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.

> Department of Mathematics,
> Faculty of Science, Hiroshima University

