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Introduction

The idea of foliations of manifolds emerged from works of C. Ehresmann
and G. Reeb in the 1940’s. One of directions of its study in differential geometry
and topology has been to research possibility of fibering of manifolds, and many
works in this field were synthetically reviewed by H. B. Lawson Jr. [5] and
B. L. Reinhart [13].

Another direction is to research structures and properties of fibred space,
and it goes back to a unified field theory in a 5-dimensional Riemannian space
due to Th. Kaluza and O. Klein. Fibred Riemannian spaces were first con-
sidered by Y. Muto [7] and treated by B. L. Reinhart [12] in the name of foliated
Riemannian manifolds. B. O’Neill [11] called such a foliation a Riemannian
submersion and gave its structure equations and in the almost same time K. Yano
and S. Ishihara [20, 21, 227 developed an extensive theory of fibred Riemannian
spaces. M. Ako [1] and T. Okubo [10] studied fibred spaces with almost
complex or almost Hermitian structure. These works were synthetically reported
in S. Ishihara and M. Konishi’s monograph [4].

In connection with almost contact structure, S. Tanno [17] and Y. Ogawa [9]
investigated principal bundles over almost complex spaces having a 1-dimensonal
structure group. Generalizing Calabi-Eckmann’s example, S. Morimoto [6]
defined an almost complex structure in the product of two almost contact spaces
and obtained a condition on the normality, and S. Goldberg and K. Yano [3]
researched similar properties for the product of two framed manifolds.

On the other hand, the tangent bundle of a Riemannian space can be endowed
with a Riemannian metric, see S. Sasaki [14, 15], and with an almost complex
structure associated with the Riemannian connection, see S. Tachibana and
M. Okumura [16]. P. Dombroski [2], T. Nagano [8], S.Tanno [18],
Y. Tashiro [19], I. Yokote [23] and other geometers investigated properties of
tangent bundles related with metric and almost complex structure.

In this point of view, the purpose of the present paper is to study relations
among structures of fibred spaces with almost Hermitian or almost contact
metric structures and those of base spaces and fibres, and to apply results to
tangent bundles of Riemannian spaces. In §§1-3, we shall explain preliminaries
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and fundamental equations on fibred Riemannian spaces with projectable metric.
In §4, we shall treated fibred almost Hermitian spaces with anti-invariant fibres
and obtain a condition for such a fibred space to be Kaehlerian. It will be shown
in §5 that the tangent bundle of a Riemannian space is one treated in §4. In §§6
and 7, we shall consider a fibred almost contact metric space with invariant fibres
tangent to the structure vector. §8 is devoted to the study of relations among the
almost complex structure induced in the total space from the lift of an almost
contact structure of the base space and that of each fibre. Finally, in the last
section, we shall deal with the tangent bundles of almost contact manifolds with
nearly Kaehlerian or almost Kaehlerian structure.

§1. Preliminaries on fibred Riemannian spaces

Let {M, M, §, n} be a fibred space, where {M, §} is the total space with
Riemannian metric §, M the base space and 7 the projection M— M of maximum
rank everywhere. We suppose that the dimensions of M and M are r and n
respectively. The fibre at any point P of M, the inverse image n~'(P), is of
dimension s=r—n and denoted by M(P) or generally by M. We suppose that
every fibre is connected. In the total space {M, §}, the horizontal distribution D
is by definition of dimension n and perpendicular to the tangent space of the fibre
M at each point.

The horizontal and vertical parts of a tensor field T in the total space M are
tensor fields of the same type as T and denoted by TH and T" respectively. For
a function f, a vector field X and a 1-form & in M, we have

f=fi=f, X=X1+X", ®=0c"+a"
If T=TH or T=TY", then T is said to be horizontal or vertical respectively.
We shall denote by .5 the Lie derivation with respect to a vector field X in
M. If a tensor field T in M possesses the property

(& THHE =0

for any vertical vector field V, then T is said to be projectable. A function f
in M is projectable if and only if ., f=Vf=0 for any vertical vector field V,
that is, f is constant along each fibre. Then there is in the base space M a unique
function f such that f=n*f, n* being the induced map of the projection 7. The
function f is called the projection of f and denoted by f=pf. Conversely, given a
function f in the base space M, the n*f is a projectable function in M, which is
called the lift of f and denoted by fL.

If the metric tensor § is projectable in a fibred space {M, M, §, n}, the space
is called a fibred Riemannian space.
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Several kinds of indices will run on the following ranges respectively:

h, j, i, k, 1 =1,2,.0ccccieinnin. , T
a, b, c,d, e=1,2,...,n,
a, ﬂ: Vs 6, € = n + 1,..., r,

A, B,C,D,E=1,2,....nn+1,..,r.

The summation convetion will be used on their own ranges.

We consider coordinate neighborhoods (U, z*) in M and (U, x9) in M such
that n(0)=U, where z* and x¢ are coordinates in U and U respectively. The
projection 7: M—M can be expressed by certain equations

x*(n(P)) = xa(z*(P))
for any point P e U, or generally
(1.1) x? = x%(z")

which are differentiable functions of coordinates z# in U with Jacibian (0x?/dz%)
of maximum rank n. Take a fibre M such that M n U#¢. Then there are in
Mn U local coordinates y*, and (x4, y*) form a coordinate system in U.
Differentiating (1.1) in z¢, we put

(1.2) Eia = aix", 5i = a/azi.

For each fixed index a, E;# are components of a local covector field E¢ defined
in U. On the other hand, each fibre M(P) at Pe M n U is parameterized as z#=
zh(x4, y*), and we put

(1.3) Ch, = 0,2", 0, = 0/0y*,

which are components of a local vector field C, in U for each fixed index «. The
vector fields C, form a natural frame tangent to M(P). We have

(1.4) Eiaciﬁ = 0.

We denote by §;; components of § in (U, z%) and put Gm=@G;) "
Components of the induced metric tensor g of the fibre M are given by

(1.5) Gyp = §,;;C/,Cip.
If we put (g#*)=(g,s)* and
(1.6) Ci* = §,g**Chy,

then, for each fixed index a, C;* are components of a local covector field C* in U.
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The covector fields E4 and C* form a base of the cotangent space of M at each
point Pin U. We choose vector fields E, such that E, together with C, form the
base, denoted by X, of the tangent space of M(P) dual to the base (E¢, C%).
We write (E4) or (Ep) for (E?, C*) or (E,, Cp) in all, if necessary. Then they
satisfy the relations

EiaEib = 5;, Eiaciﬂ =

(1.7) EAE; = 64:
CPEY, =0, CoCip =65,
and
(1.8) EAE!, = EfE*, + C#CH, = ot
If we put
(1.9) 9o = §E/E'y and  (g°%) = (9.)7",

then we obtain
(1.10) E', = grig,Ep.

The local vector fields E, and the covector fields E¢ are horizontal. The local
vector fields C; and the covector fields C# are vertical.
Any tensor field in M, say T of type (1, 2), is represented in U in the form

(1.11) T=TH'ECQ EEQE,
=T, E°QE ®E, + Ty EC Q E'® C, + T,4E* ® C* @ E, + -
+ T C"Q@CPRE, + Tp*C' ® CF® C,
with respect to the base X, where T,9, T,* T,%..., T,;* and T,* are local
functions in U. The first term T,,9E® E*®E, in the right hand side determines
a global tensor field in M, which is the horizontal part TH of T, and the last term

T,;*C?®C?®C, determines a global tensor field, which is the vertical part TV
of T.

§2. Connections

Denoting by %, the Lie derivation with respect to the vector field C4, we have
2.1) LpE® =0 and £,C,=[Cy C,]=0.

Applying %; to (1.7), we see that Z4E, is vertical and #,C* is horizontal and
we may put
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(2.2) Z4Ey, = [Cy, E,] = — Py*C,,
-Slpﬂca = Pc#aEc’

where P, are local functions in U.

Assume that a tensor field T in M is of type (1.2) and represented as (1.11).
Then, by use of (2.1) and (2.2), we have

(ngH)H = (-gﬂ(chaEc@Eb@Ea))H
= (0pT)E° @ E* ® E,.

Therefore a tensor field T in M is projectable if and only if 6,T,,*=0, i.e., the
local functions T, are all constant along each fibre M nU. Then the pro-
jections pT,° are functions in the neighborhood U of the base space, and
determine a global tensor field T of type (1,2), which has T,* as components
with respect to the coordinates x2. The tensor field T is called the projection
of T and denoted by T=pT.

Given in M a tensor field T having components T,,* with respect to (U, x9),
we can have the tensor field T in M defined by

T=mT,)E°QE*QE,

in U =n~1(U), which is called the lift of T and denoted by T'=TL.
We put 0,=E/ ;. If a function fin M is projectable and f=pf, then so is
0.f and we have

p(@.f) = afjoxe.

An affine connection 7 in M is said to be projectable if Py X" is a projectable
vector field for arbitrary vector fields X and Yin M. Given an arbitrary affine
connection | in M, we put

(2.3) PEhg = ['43E,CE",
or
(2-4) F(Aén = ch( VthB)EhA’

which are coefficients of the connection y with respect to the base Z and local
functions in U. An affine connection | is projectable in M if and only if the
functions I'%, given by (2.4) with A=a, B=b, C=c are all projectable in each U.
Then, putting

Py X = p(PyrXh)

for any vector fields X and Y in M, we can define an affine connection / in the
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base space M, which is called the projection of | and denoted by F =py. The
projection ¥ has I's,=pI's, as coefficients in the neighborhood U=nr(0J). The
projection of the torsion tensor of J coincides with the torsion tensor of the
projection V = py.

We now suppose that {M, M, g, n} is a fibred Riemannian space, i.e., the
metric tensor § is projectable. Since E, are perpendicular to C,, § has a local
form

2.5) Jd=9sE°®E®+ g,C"®CF

in U. The projection g=pj has components g, in U and defines a Riemannian
metric in the base space M. If we put g=g§"=g,C?®C?, then § is written as
(2.6) §g=g"+g"=g"+g.

Let 7 be the Riemannian connection of § in M. Then the projection V =pp
is the Riemannian connection of the metric g=pgj in M and the coefficients I'8,
are equal to those of g in (U, x9), i.e.,

~ 1
rs,=rg = Tgae(acgbe-i_abgce_aegcb)'

Taking account of the local form (2.5) of § and (1.7), (2.1), (2.2), the expres-
sion (2.3) of the Riemannian connection |7 in M can be separately rewritten in
the forms

P,Et, = I'%E;E", — LyeE <Ch, + L2 C;"E*, — h,%,C;*Ch,,
PiCts = LgE;E", — (hg®.— Po®)E;*C, + hyyC7E" +T'5,C7Ch,

J

(2.7)

and the covariant derivatives of the covectors E;* and C;*

2.8 PEf = —T'%E/E} — L(ECF+C,PEf) — h,z°C;7CF,
P,C% = Ly ESEP + (hg*.— Py)E;C# + h,%,C,7Eb — [2,C;7CF,
where L%, h,,* and I'%; are local functions in U and

Lcaﬁ = chagbagaﬂa hyab = hyﬁagﬂagba'

For later convenience, we use L,* and h,,° in place of —h,* and —L,,® in [4].
We put f,=E/_f;and p,=C/ p;. From (2.7), we have

2.9) P,E, = L,",E, — h,%C,, F,Cp = h,°E, + I'%C,.

The second equation is Gauss’ equation of each fibre M as a submanifold in M.
Hence, along each fibre M in M, h,s* are components of the second fundamental
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tensor with respect to the normal vector E,, and I}, are coefficients of the
Riemannian connection 7 of the induced metric g in M. Therefore, we see that

(2.10) hys® = hg,”
and
@.11) P55 = 2%, pet 9pGra—0:op)

The first equation of (2.9) is Weingarten’s equation of each fibre M in M, and
L,,” are coefficients of the normal connection of M and satisfy

(2.12) L,*+ L,*=0.
It follows from (2.7) together with (2.1) and (2.2) that
(2.13) [E., E,] = — 2L,*C,, [C,,Csl =0, [E., Cpl= P,4C,,
which are equivalent to
(2.14) 0.0y — 040, = — 2L4"0,, 0,05 = 040,, 0.05 — 040, = P.4%0,,
respectively. Denoting by .#, the Lie derivation with respect to E_, we have
Y.E, = 2Ly,*C,, £.Cy = P,*C,,
Y.E* =0, Z.C*=2L4*E®— P Ct.

(2.15)

The tensor field L=(L_,*) is called the structure tensor of the fibred Riemannian
space {M, M, §, n}. From (2.13, 1) we see that, in a fibred Riemannian space,
the horizontal distribution D is integrable if and only if the structure tensor L
vanishes identically.

Applying Jacobi’s identity to triple combinations of the vector fields E,
and C;, we have the identities

(2.16) (O4Lep*+ Pyg®Ly?) + (0.Lypg* + P 4Ly .F)
+ (OpLac* + PyppLy?) = 0,
2.17) 20,L,,* — (0.Py,*—0pP,,*+ P 4*Py P — Pyy*P ) = 0,
(2.18) 0,Pyp* — 0pPy,* =
Using (2.5), (2.8) and (2.15), we obtain the equations

(ZLxg") = (Lxrg)” = Xb(abgyﬂ_Pbyegaﬁ_Pbﬂegyz)cycp

(2.19)
= — 2(h,;°X,)C7CH,
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for any vector field X = X%, in M, X,=g,,X® being covariant components of X,
and hence the identity

(220) 6b§yﬂ - Pbyegeﬁ - Pbﬁcgye = - 2hyﬂagab .

Let y be a curve through a point P in the base space M and X be the tangent
vector field of y. There is a unique curve j through a point Pen~!(P) such
that the tangent vector field is the lift X~. The curve 7 is called the horizontal
lift of y passing through P. If a curve y joins points P and Q in M, then the
horizontal lifts of y through all points of the fibre M(P) define a fibre mapping
®,: M(P)—M(Q), which is called the horizontal mapping covering y.

If the horizontal mapping convering any curve in M is an isometry of fibres,
then {M, M, §, n} is called a fibred Riemannian space with isometric fibres.
A necessary and sufficient condition for M to have isometric fibres is

(Zx:g") =0
for any vector field X in M, or, by means of (2.19),
(2.21) h,z® = 0.

If L,*=0 and h,°=0, then the fibred Riemannian space M is locally a
Riemannian product of the base space and a fibre, and is said to be locally trivial.

If the horizontal mapping covering any curve in M is a conformal mapping
of fibres, then {M, M, §, n} is called a fibred Riemannian space with conformal
fibres. A condition for M to have conformal fibres is

(2.22) h},ﬂa = gyﬂAa,

where A= A°E, is the mean curvature vector along each fibre in M.

§3. Curvature tensors and structure equations

The curvature tensor K of a fibred Riemannian space M is defined by

(31) k()?, Y)Z = ‘7x V}Z - 7y ‘Zgz - V[X,Y]Z
for any vector fields X, ¥ and Z in M. If we put
(3.2) R(Ep, EQEg = RpcyE4 = Rpcp®E, + Rpep®C,,

then K cp# are components of the curvature tensor K with respect to the base X.
Denoting by K, ;;* components of K in (U, z*), we have the relations

3.3) KDCBA = IzkjihEkDEjCEiBEhA'
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Substituting (2.7) into the definition (3.1) of the curvature tensor K, we have
the structure equations of a fibred Riemannian space as follows [4]:

(3.4 Ries® = Kaey® — Li®,Ley® + L% Lay® + 2La"Ly?,,

(3.5) Rip® = = *FiLoy* + *F.Ly* — 2Ly °h3,

(3.6) Ryep® = *Vhg*y — *Phy*, + 2**F,L,.* + L,*L.°s — L. *Ls%
— h2hg®. + h2hgy,

(3.7) Rupw® = *FiLy®, — Lo h5 + Lypth,® — Ly bty

3.9) Kdy,,“ = — *Fh + **VLy* + Lo, L% + h,5h2%,

3.9 Iz‘,y,,“ = Lsp® + hsph,® — h.2hs0,

(3.10) R;5% = **Ph,p® — ** F,hsp°
(3.11) Ri,% = Kspg* + hsg®h® — hysthys®,,
where we have put
(3.12) Ko = 04T — 0TG4y + T'gI'ey — TGy,
(3.13) ¥Paley® = OaLop* — I'gcLep® — T'gpLeo® + Qae* Loy’
(3.14) *Val%p = 04L% + I'§cLcfp — T'acLe%s — Qup°L.",,
(3.15) *Pih,p® = 04h,5® + T30, — Qu,fhep® — Qupth,o,
(3.16) *Vihg®y = 04hp®y — T'php®e + Quthg®y — Qu°h%,
Q.* being defined by

Qcﬂa = Pcﬂa - hﬁ"c,
and
3.17) ** P Ly* = 0sL* + T'%Ley® + L.sLo® + LyesL..%,
(3.18) **PsLyp = 05L,% — I'55L4% — L,%5Ly¢p + Ly©5L,%,
(3.19) ** Psh,p® = Osh,® — I'5,hp% — [5ph,* — L2h.,°,
(3.20) ** Pshpty = Oshg® + Tty — Tiph,% + Lyshg®,,
(3.21) Lsp® = 05Ly%, — 0,Ly% + L,%Ly¢, — L, Ly,

(3.22) K;,p% = 05% — 0,3y + '3, 55 — I'2,.T5p.
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Among these, the functions K, are projectable in U and its projections, denoted
by K,.,* too, are components of the curvature tensor K of the base space {M, g}.
On each fibre M, the functions Kj,,* are components of the curvature tensor K
of the induced Riemannian metric § and L;,° those of the curvature tensor of
the normal bundle of M in M. The components K z* satisfy the same algebraic
equations as those K, ;i satisfy. By means of the first Bianchi identity, we have

the identity
(3.23) * VaLop* + *V.Lys* + *PLg* + deshsab + chshsud + Ly *h*. = 0,

which can be also obtained from (2.16).

Denote by S.; components of the Riccitensor S of {M, §} with respect to
the base X in U, and by S,, and S,, components of the Ricci tensors S and S of
the base space {M, g} in (U, x?) and each fibre {M, g} in (U, y*) respectively.
Then we have

(324) gcb = Scb - 2LceELbee + hbechsab + _é, (* Vchceb+ * VbhsEc) ’

(325) gyb = ** Vyheab — X Vahyeb + *VeLbey - 2hyeeLbee’
(3.26) §yﬁ = S_ﬂ, — hy°hf, + *P,h° — L, L1%.

Denoting by &, x and & the scalar curvatures of M, M and each fibre M respec-
tively, we have the relation

(3.27) R =KL + & — LepyLe% + h gohv8e — h v hyfe.

§4. Fibred almost Hermitian spaces with anti-invariant fibres

Now we suppose that the total space M is an almost Hermitian space with
almost complex structure J=(J;*) and each fibre M is anti-invariant. Then
{M, M, §, n} is called a fibred almost Hermitian space with anti-invariant fibres.
The dimension r of the total space M is equal to r=2n, and indices a, §,..., € run
on the range n+1,..., 2n. Since the transform of the tangent space of each fibre
M by J is normal to M, we may put

4.1 JCiy = Jy°E*,, JPE', = J,*Ch,.

The almost complex structure J with respect to the base X in U has the local form
4.2 J=J;C*P Q E, + J,"E* ® C,

and the components satisfy the equations

(4.3) Jﬂanﬂ = — 63, Jb(ZJﬂb = - 6;-
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Covariant components of J are given by
4.4 Joa =0, Jgo=JsGeur Jbu = Ip°Fer Jpa =0
and satisfy the relations
4.5) Jga+ Jop = 0.
Components of the covariant derivative 7J with respect to X are given by
(P Jw)EicE'gE*,, and we can obtain the following expressions by means of
(2.7) and (4.4):
(P JmEi EWEY, = Loy oy + Lo,
(P J)CI,EWER, = hfd oy + by,
(Zjih)chCitha = acJﬂa - rga‘]ﬂe - Qcﬂs‘]ea’
(4.6) (P w)CI,CipEr e = 0y g = T5pTea = Lo e
(P B CiyChy = — LfpJ ey — Lefudges
(P CI,CHChy = — hyy®dy — hyy®Jg,.
If the total space M is almost Kaehlerian, i.e., J satisfies the equation
PiJw+ PJa;+ BJ ;i =0,
then we have
L., + Ly2J.. + L, 2J,, =0,
4.7 Opdya — Ppyid e = 0y — PoyJ ey
0,0 g0 = 0pJ 1.

We see from (4.7, 3) that there are locally functions ¥, in U such that J pa=0pW,.
By means of (2.14, 3), we have

4.3) Oyl ya = 0w0 N, = 0,00, + P20 W,,

and hence the equation (4.7, 2) is equivalent to

4.9) 0,00 = 0,00,

which means that d,,— 0,¥, is projectable. Therefore we can state the following

PROPOSITION 4.1. A fibred almost Hermitian space {M, M, §, n} with
structure J and anti-invariant fibres is almost Kaehlerian if and only if the
equation (4.7, 1) holds and there are local functions , in each neighborhood
U such that J,,=0,p, and 0,0, — 0,0, are projectable.
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Now we suppose that the total space M is Kaehlerian, i.e., V,«j #=0. Then,
from (4.6, 1), we see L%/, is symmetric in a and b. On the other hand, L_*
is skew-symmetric in b and ¢, and hence we have L_*J,,=0 or

(4.10) L, =
By means of the remainders of (4.6), we have
hysb‘]ea = hyea‘,eb b
hyﬁe']ea = hyae‘]eﬂ ]
(4'] 1) ac']ﬂa - rga‘]ﬂe + (hﬂec_Pcﬂe)Jm = 0,
a},-]ﬂu - r‘?;ﬁ']ua bl 0.
Computing [C;, C,1J5,=0, we have K;,;,%J,,=0 or
Kéypa = 0
and, by means of (3.11), IZMa are expressed as
(4.12) Iz‘;yﬂa = héﬂehyde - hyﬂehaae'
Since Jg,= 0¥, the equation (4.11, 3) turns to
ayablt[/a = Fga']ye - hyebJea .

Computing [C;, C,]10,¥,=0 and taking account of (3.10), we have IZ,,V,,“JM=0 or
Kay,,a=0. In this case, the curvature tensor of the normal connection of each
fibre M vanishes, and we have

(4'13) Iz&yba = hésbhysa - hyﬁbhéea’

by means of (3.8). The covariant components Kkjih of the curvature tensor K
of M are hybrid in the pairs (h, i) and (j, k) of indices, so are the components
K pcp4 with respect to J=(Jp4). Therefore we have

(4.14) Kicha = Kciyba‘]dé']cy = (hésbh)'ea—-hyebhdsa)Jdecy'
On the other hand, we have K,.,,=K,.;,» Thus we have the following

PROPOSITION 4.2. If a fibred almost Hermitian space M with anti-invariant
fibres is Kaehlerian, then the structure tensor L vanishes identically, each fibre
M is locally Euclidean and the curvature tensor K of the base spacee M is given
by (4.14).

In particular, if M has isometric or conformal fibres, then the total space M
itself and the base space M are locally Euclidean.
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§5. Tangent bundles of Riemannian spaces

Let {M, g} be a Riemannian space and M =T(M) the space of the tangent
bundle of M. If (U, x4)is a local coordinate neighborhood in M and we denote
by y° cartesian coordinates in the tangent space Tp(M), the fibre M(P), with
respcet to the natural base {d,}, then (x4, y°) are local coordinates in U =n~"1(U).
We shall write a, b,..., & for indices a, B,..., & belonging to the fibres M and
running on the range n+1,..., 2n.  Then the projection n: M— M is expressed by

x%(x, y) = x°
and the immersion of each fibre M into M by
x% =const. and x% = y°,
Therefore the covectors E¢ and the vectors Cy in U have components
6.1 Ep# =8¢, Chy =6k

Let I'?, be coeflicients of the Riemannian connection F in U of the base space
M. Putting

(5.2) oy® =dy* + I'*dxc, TI'?=TI%yb,

c

S. Sasaki [14] introduced a Riemannian metric §=(§,) in M by
(5.3) Judzidz" = g, dxbdx® + g,,0y?5y°

with respect to the coordinates (z#)=(x¢, y9) in U. Covariant components of
the metric tensor § in U are given by

- gba+gdcrgrz Fab
(5.4) G =

Fba ba

where we have put I',,=I{g,,. The vector fields E, and the covector fields C4
have components

o3

(5.5) (Ebh)=< ) (Ci%) = (I'5, 6%)

_.I"g

in (U, z#).
Components of the metric tensor § defined by (5.3) are given by
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Gva = GinEWE", = Gpas

(5.6) g5a = GuC'sE"; = 0,

gﬁﬁ = gihCiEChﬁ = Yba>
that is
(5.7) § = 95E® ® E* + ¢,C* ® C7,

and the metric tensor § induced in T(M) is projectable.

By simple computations, we have
[El.‘9 E] = - Kc .acﬁ’ [CE’ C ] =0
(5.8) b b b
[E., C5] = I'pCa,

where K,.,* are components of the curvature tensor K of the base space {M, g}
and we have put

Kie.® = Kiep"y".
Thus the structure tensor L% and P_;? are equal to
(5.9 2Ly" = K% P =T
Substituting (5.6, 3) and (5.9, 2) into (2.19), we see
(Zx19%)" = X(0.955—'és9ea—T2a9)CPC* = 0.

Therefore the tangent bundle M has isometric fibres and we have h;;=0. On
the other hand, noting that the functions g,, in U are projectable, applying 0, to
(5.6, 3), and using (2.7), we have

aEgEE = I:gﬁgea + fgﬁgeb = 0.
Since I'Z; is symmetric in b and ¢, we have I'3;=0. Therefore we have

PROPOSITION 5.1.  The space of the tangent bundle T(M) of a Riemannian
space {M, g} has a structure of fibred Riemannian space with the metric tensor
g defined by (5.3) and isometric fibres.

Substituting (5.9) into the structure equations (3.4) to (3.11), we can express
the curvature tensor K of M by use of the components K, of the curvature
tensor K of the base space M and K, . *=K,,°y*. In particular, the expression
(3.13) is now equal to

* Vde:b‘i = % Vchb.aa

and we have
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Ki" = 3 FoKue®, Kaes® = Kaey® = 0.

S. Tachibana and M. Okumura [16] introduced an almost complex structure
J in the tangent bundle M =TM, covariant components J ;i of which are

o rcb—rbc 9eb
*gcb 0 /
with respect to a coordinate neighborhood (U, z*). Its components J-p with

respcet to the £={E,, Cy} are given by J.p=J ;;EicE‘z and have expressions

‘Ir: =0’ JE =gc )
(5.11) i b T

Js=—9s Je5 =0,
and the components J4=J 5384 of type (1, 1) are

Ja=0, Jo=35e
(5.12)

Jai=—06s, JA=0,

Hence each fibre M =T,(M) is anti-invariant with respect to the almost complex
structure J defined above in M.

Let ¥ be the vector field in M defined by
(5.13) Fa—0, P7=ye.

Then Y is vertical and has the same components (0, y¢) with respect to the base Z.
If we put the transform §=J(¥), then the vector § has components

(5.19) gs = ya, 63 =0,
and covariant components

0y = yp = goay*, 05 =0.
We denote the 1-form by

6 = eBdZB = ybdxb.

The almost complex structure J can be interpreted as one associated with the
derived form d0, and hence it is almost Kaehlerian. Then we have

PROPOSITION 5.2.  The space of the tangent bundle M of a Riemannian space
{M, g} has an almost Kaehlerian structure J, and isometric and anti-invariant
fibres with respect to the structure J.

If the structure J defined above in M is Kaehlerian, then combining Propo-

sition 4.2 and 5.2, we can show the following proposition due to S. Tachibana and
M. Okumura [16]:
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PROPOSITION 5.3.  The almost Kaehlerian structure J induced above in the
tangent bundle M of a Riemannian space {M, g} is Kaehlerian if and only if
the base space M is locally Euclidean. Then the tangent bundle M is locally
trivial.

§6. Fibred almost contact metric spaces

We suppose that a fibred Riemannian space {M, M, §, =} has an almost
contact structure (¢, &, 7j) associated with Riemannian metric §, i.e., ¢, & and #
satisfy the relations

X =-X+iX)E $& =0, #(dX)=0, A =1,

JX, ¥)=9($X, $7) + A(X)i(¥)
for any vectors X, ¥ in M. In addition, we suppose that ¢ is projectable and
each fibre M is @-invariant and tangent to the structure vector &. We call such a
space a fibred almost contact metric space with ¢-invariant fibres tangent to &,
and shall confine ourselves to such a space in §§6 and 7.

We can easily verify that the distribution D spanned by E, is also
@-invariant, ¢ has the local form

(6.1)

(6.2) ¢ = p"E* ® E, + ¢4°C* ® C,,

J =(¢,?) defines an almost complex structure in the base space M, and (@, g, &, )
an almost contact metric structure in each fibre M, where ¢ =¢,*C*Q®C, and 7 is
the induced metric tensor in M. Hence the base space M and the fibre M are
even- and odd-dimensional respectively.

By means of (2.7) and noting 5,=0, components of the covariant derivative
77j of the covector 7 with respect to the base X are given by

( ~jﬁi)chEib = ch“'—la,

(6'3) (Zﬁi)cijib = hyabﬁa ’

I

jﬁi)chCiﬂ = acﬁﬂ + (hﬂacﬁPcﬂa)ﬁa’

(
(Pi)CI,Cig = Pyt

Now we consider the case where (&, §, &, #j) is a contact metric structure,
i.e., they satisfy the equation

(6-4) éji = %(6jﬁi"aiﬁj) = %(7,"7;' - Viﬁj)-

Then, using (6.2) and (6.3), we have the equations
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by = Loy 1>
(6.5) d;cp = acﬁﬂ — Py, = 0,
Fop = 5 (P,ig= Pyl
By means of (2.14), (2.17) and (6.5), we have
0)(Ley’ M) = 2Ly
In order for ¢ to be projectable, it is necessary and sufficient that
cha$ya =0
or
(6.6) Lo = ¢,

by using of the fact that (@, g, &, ) is almost contact. From (6.5, 1) and (6.5, 2),
we have

6.7) 04Pcp = (O4Lcp* + Pye® Loy,
and by means of (2.14),
(6.8) 04Pcp + Octhpa + Opdy. = 0.

Thus the structure ¢ in the base space M is almost Kaehlerian. The equation
(6.5, 3) means that the structure (¢, g, &, 7) on each fibre M is contact metric.

Conversely, suppose that the equations (6.6) and (6.8) are valid. Then,
substituting (6.6) into (2.14) and using (6.8), we obtain

Dp(0.8%+ PupCP) + dpa(0.L%+ P g*EP) + $y(0pE% + Pyyg®P) = 0.
Contracting this equation with ¢<?, we see that
6.9 0,8% + Pyt =0
provided n>2.

Thus we have the following

PROPOSITION 6.1.  Suppose that a fibred almost contact metric space M with
structure (§, §, &, ) has ¢-invariant fibres tangent to E. In order that the
structure in M is contact metric, it is necessary and sufficient that the almost
Hermitian structure (J, g) of the base space M is almost Kaehlerian, the
structure ($, g, &, ) of each fibre M is contact metric, the equation (6.5, 2) is
valid and the structure tensor is equal to

L,* = ¢ch“-

Next we suppose that, in addition to the assumptions of Proposition 6.1,
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the total space M has isometric fibres, i.e., h,s*=0, and is an #n-Einstein,
§ji = ag; + bij fl;,

a and b being constants. Then, taking account of (3.24), (3.25) and (3.26), we
have

Sep = (@+2)gcs>
S5 = agyp + (b=n)i iy,
and
*P,L.% = (V0.5 + &0, — Pogfl) = (VMg = 0.
Thus we have the following

PROPOSITION 6.2. If a fibred contact metric space M with isometric and
@-invariant fibres tangent to & is an n-Einstein space, then the base space M is
an Einstein space, each fibre M an y-Einstein space, and the fundamental form

0= —é— ¢dx¢ A dxP is harmonic.

If, in addition to the assumptions of Proposition 6.1, M is a K-contact space,
ie.,
J’ ji = 7;"7;',
then it follows from (6.3) that, in addition to the properties of Proposition 6.1,
we have
hyabﬁa = hyab&al =0
and
b = Pyflp-
Therefore we have
PROPOSITION 6.3. A fibred contact metric space M with ¢-invariant fibres
tangent to & is a K-contact space if and only if the base space M is almost
Kaehlerian, each fibre M is a K-contact space, the structure tensor is given by

(6.6) and h,z° satisfies the equation
(6.10) h,z°E¢ = 0.

§7. Fibred Sasakian spaces

By means of (2.7) and the local form (6.2), components of the covariant
derivative @ with respect to the base X are given by
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(7j$ih)chEibEha = Vc¢ha s
(Vjﬁgih)cijibEha = — Ly*,Pea — L%, Pte>
(Pim)EI ClyEry = — Lsteq + Lot Bpe
(7.1) (Pi¢w)CI,Cl4Ery = — hyp®beq + hy%upe,
(Pi)E! C'4Ch, = 0:Bp, + (hg*c— Pop?)P,
+ (hec— Poi)Pspe s
(Z(ﬁih)cjyciﬂcha = Vy%.

A fibred contact metric space M is called a fibred Sasakian space if the
structure (¢, §, &, #) is Sasakian, that is,

71'(55;. = ﬁigjh - ﬁhgji-

Referring this equation to the base X, we have the equations

Vc¢ba = 0,
Lb2y¢ea + Laey¢be = 0’
(7'2) Lcas(-ﬁﬁe - Lceﬂ¢ea = ﬁﬂgca9

hyea(-ﬁﬂe - hyﬂe¢ea = 0’
acaﬁa + (hﬁec—Pcﬂg)am + (hazc—Pcas)$ﬂs = 0,
Vy‘ﬁﬁa = ﬁﬂgya - ﬁagyﬁ'

The second and third relations are fulfilled by use of L,*=¢,E* Since h,,°
is symmetric in f and y, it follows from the fourth that

(7.3) hyfabep = hyube, -
Two times of the left hand side of the fifth is equal to
004ty —04fg) — P g (Ocfly— 0ile) + Po,*(0,i1— Ol
= aﬂacﬁa - aaacﬁﬁ + Pcﬂ:aaﬁe - Pcacaﬂﬁe
= 0p(PeyMs) — 0(Pep ) + P g0, — P04,
= (aﬂPcae_aaPcﬂc)ﬁa =0

by means of (2.14), (2.18) and (6.5). Therefore the first, fourth and the last
equation of (7.2) are essential, and we can state the following

PROPOSITION 7.1. A fibred contact metric space M with ¢-invariant fibres
tangent to & is Sasakian if and only if the structure (J, g) of the base space M is
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Kaehlerian, the structure (§, g, &, 7)) of each fibre is Sasakian, and the equations
(6.6), (7.2, 4), (7.2, 5) hold.

Since we have
*Palp* = 0, **FL4% = ¢pfs”

in a fibred Sasakian space, the structure equations (3.4) to (3.9) are reduced to

chba = chba - ¢da¢cb + ¢ca¢db + 2¢dc¢ba’

chﬂa = — *Phgee + *Vohpg — hegahp®e + hegchp®s + 200 Ppas
(74 Ripa =0,
Rippe = = *Pahoap + hyfihewy + GasPra — Gl s
Kisppe = 2¢ba‘-ﬁay + hstyhyea — hyouhsea s
K&yﬂa = ** Vahypa — x* Vyhdpa’
Riype = Koypa + hag®hyse — hyphsge .
Since Kyp,=Kpaay» We have

(7.5) * thﬁac = * VchBad .

§8. Almost complex structure in a fibred Riemannian space

In this section, we consider a fibred Riemannian space such that the base
space M and each fibre M are almost contact spaces. Let n=2k+1 and s=2[+1
and we denote the almost contact structure of M and its lift in the total space M
by (¢, &, n) and that of each fibre M by (&, &, 7). Then we can define an almost
complex structure J on the total space M by

8.1) JE, = ¢,°E, + €, JCp= —js¢ + $5*C,

where (¢, &, n) is independent on the fibre. We call J the induced almost complex

structure on M.
By means of (2.7), (2.8) and (8.1), we can derive

(82  (PDE, = (Fdy*— Lol + Lo n,EIE,

+ {(Pn)e*+(* Py + Loy do® — Lo $p°} o
(83)  (PI)Cp = (=L —E* Vg —Tiy V.6 + L2 P4 )E,

+ (* Vc‘-ﬁpa - chpﬂbfa + Lce"fe’_lﬂ)ca ’
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(84) ( 7yJ)Eb = (* Vy¢ba - hyzbﬁzéa + hyzafanb)Ea
+ (Ea** Vynb + nb** Vyéa + h*,'eb(—ﬁea - hyue¢be)ca s
(85) ( 7yj)cﬁ = {( — X yﬁﬁ)éﬂ - ﬁﬁ(** Vycﬂ) - hyﬂed’ea + hyzaaﬁs}Ea
+ (** Vy[ﬁﬂa _ hyﬂe"eéa + hyaeﬁﬁée)ca s

where we have put

(8.6) Ves® = 0cp” + T'éepp® — I'épd.”,
(8.7 Ve = 0.y — T,

(8.8) & =08 + &,

(39 ¥V, = 0.1, — Qe

(8.10) *P.pt = 0.05" + 520" — 620"
(8.11) *EP By = 0,05° + Loy, — L2, 0,°,
(3.12) ** Vs = 0yny — Lp°yme,

(8.13) #hple = g & + [l

(8.14) ** iy = 0,p — T'%4Ml,,

(8.15) ¥*pLd =084 + LA, Le,

(8.16) PPpt = 0,0,% + [t — epd .

Now we suppose that the induced structure J in M is Kaehlerian. Then we
get

(8.17) Pehp® — Ley',&e + Loyt = 0,

(8.18) (Pen)® + (*P.Emy, + Lep*d,* — Lehye = 0,
(8.19) *Pbg* — Leogn L + L *Eefjg = 0,

(8.20) **P.hy — hiEe + hy &, =0,

(8.21) (** P + fp(** V,E9) + hp°¢," — h,2Ps° =0,
(8.22) **P.Pp* — hpinE® + ho g = 0.

If M is a Sasakian manifold, **7,¢z,=nsg,,—1.J,p then it follows from
(8.22) that

ﬁy(gﬂa + hﬂaa”a) - ﬁﬂ(gya + hyaeée) = 0;
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and we have

(8'23) gﬁa + hﬂaer’e = )'ﬁﬁr—,a

A being a proportional factor. If, in addition, M has isometric fibres, hg,* =0,
then

PROPOSITION 8.1. If M is a fibred Kaehlerian manifold with isometric
fibres and the fibre M is a Sasakian manifold, then the dimension s of the fibre M
should be one.

If we assume that M is a Kaehlerian space with conformal fibres, i.e., h,z%=
A°gg,, then the transvection of (8.23) with ##7* yields A=14 4%, and we have
(Aana+ 1) (gaﬁ _ﬁaﬁﬁ) =0.

Provided s>1, A=1+4°,=0 and we obtain h,n,= —g,,. Conversely, if
h,s*N.=—g,s, We have P,fi;=¢,, and F,b,"=0,"7;—g,,E? by means of (8.21)
and (8.22). Hence we can state that

PROPOSITION 8.2. If M is a fibred Kaehlerian manifold with conformal
fibres and s> 1, then a necessary and sufficient condition for M to be Sasakian
is h,g™n,= —gp.

On the other hand, if the base space M is a contact manifold, i.e., 2¢_,=
Py, — Pyn., then transvecting (8.18) with 7,, we see

2¢cb + (Lbaa¢ca —Lcaa¢ba)ﬁa = 0’
and transvecting this equation with ¢,°,
2(—9ga+ M) = (LeaDaPp® — Lap™ — Lug*Ena)1,s

moreover, transvecting with £, and noting the skew-symmetry of L,,* in b and a,
we have L;,*£%7,=0. Hence the above equation reduces to

2(—9gap+namp) = (Leg®ba” bp” — Lap™), -

However the left hand side is symmetric and the right is skew-symmetric in b and
d respectively, and the both sides should be equal to 0. Therefore we have

PROPOSITION 8.3. Let M is a fibred Kaehlerian manifold and the base
space M is a contact manifold, then the dimension of M should be one.

When M is a Kaehlerian manifold with conformal fibres and M is a contact
manifold, the equation (8.21) implies

Vaﬁﬂ - huedaﬂand = 0)

from which we get
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Vaﬁﬁ - Vpﬁa - haed[ﬁ[iaéd + hﬂsdaae‘fd =0,
that is,
250:;3 - hasdaﬁséd + hﬂad{ﬁatéd =0.

By use of h,%=g,5A4% we get 2¢,4(1+A%,;)=0. Hence by the same argument
as that of Proposition 8.2, we have the following.

PROPOSITION 8.4. Let M be a fibred Kaehlerian manifold with conformal

fibres. Then the contact manifold M induces the Sasakian structure provided
s>1.

Combining Propositions 8.3 and 8.4, we obtain

PROPOSITION 8.5. Let M be a fibred Kaehlerian manifold with conformal

fibres. Then the manifolds M and M are contact manifolds if and only if
(@ n=1and s=1o0r (b) n=1 and A°n,=—1.

Next, if we assume that the total space {M, §} is a Kaehlerian manifold of
constant holomorphic sectional curvature k, then the equations (3.4)=(3.11) turn to

k
(8.24) Kyp® = vy (099 —029ap+ Da*Pco— D" Pap— 2PucPp®)
+ LdachbE - LcasLdbE - 2I‘dc£Lba£ s

825 k=K m2ron-3) + 3L

(8.26) *PLp* — *PyLley® = (¢cb’74 Gaptlc—2Pacp)E® + 2Ly h,",
8.27) *PuLp®, — Lg%hy + Lyth,® — Ly%.h.%,
= K (g ot dui 2008,
(8.28) —*Vihg®c + *V.hgy + 2**PgL,* — Ly°L.%p + L. .*Ls%
— hhg* + R hgty = — %d’dcap",
(8.29) —*Vh,%y + **V,Lyp* + Ls°, Ly + h,55h7,

= % (= 3nnaloi, — ¢, bas) ,

(8.30) Kéyﬁ ‘I;‘(éang 5ygaﬂ+$a $yp ;ﬁ 55/1 25@65

- hbﬂehyae + hyﬁehriae’
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k, _ _
(8.31) *EPsh,® — ** P hag® = vy (—715P,5+11,P 55+ 25,7550,
a — IE a & a & a
(8.32) Lsp® = — '2—$éy¢b — hgtphy® + h,fphsC.
If, in addition, M have conformal fibres, then the equation (8.31) is reduced to
. _ k., - _ _
(8.33) Gys(** V3A%) — Gsp(** F,A%) = vy (=715, +1T,Psp+ 20 5,15)E°

the transvection with g gives (s—1) (**F;49)=0, provided s>1, and moreover
we see k=0. Hence the equations (8.24), (8.25), (8.27), (8.30) and (8.32) reduce to

(8.34) K = L, L2 — Lo, Lys — 2L,5L,0,,
(8.35) k= 3| L3

(8.36) *PuLoy® = LA, — Ly *A, + L %Ay,
(8.37) Kbyﬂa = || 4]l z(gyﬂ‘saa"gapay’)

and

(8.38) Lsp* =0

respectively. Thus we have the following

THEOREM 8.6. If, for a fibred space M with conformal fibres of dimension
s> 1, the induced almost complex structure in M is Kaehlerian one of constant
holomorphic sectional curvature k, then M is locally Euclidean,

(a) the base space M has the curvature tensor of the form (8.34),

(b) k=0,

(c) each fibre is a space of constant curvature,

(d) the curvature tensor of the normal connection of each fibre vanishes,
and

(e) the mean curvature vector A is parallel with respect to the normal
connection along each fibre.

§9. Tangent bundle over an almost contact manifold

Let {M, g} be an almost contact manifold and M the space of the tangent
bundle TM of M, and use the same notations and indices as those in §5. Then
the induced almost complex structure J on M is defined by

. ( by Lonfp )
J=
—'h,f‘i 555
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where 75 =1,, £8=¢2, $7=¢,* and the quantities ¢, &, n are independent of the
fibre.

As seen in §5, the tangent bundle M has isometric fibres and the local scalar
fields h.5;? and T%, vanish. Therefore, by virtue of (2.7), (2.8) and (8.2)—(8.5),
we obtain the equations

9.1 (7]«7.""*' ijh)chEibEh" = 1. + V.p® + Lo2MmE® + Ly L0,
92) (7] + BT MEIEWC® = (Pt + Ty )E* + (FPE,
+ (L, — L by — Ly"9.S,
93) (B + BT MEICHEf = — Lopd — (*Pap)é — is(F.L%)
+ L $5° + ** 19,7,
04 (BIr+ PRI MEICHC = *Pdp® — Losnl® + Lo fise
+ (** )2,
9.5 (PIr+ BT MCICHE, = — fis(** P:9) — fls(** L),
(9.6) (PJF+ PJMCICHC,A = 0.
If M is nearly Kaehlerian, that is,
g+ pJh =0,
then the equation (9.2) is reduced to
O.7)  (Ptp+ P )€ + (* P& + (*P.E%nm, — L "¢, — Ly"¢.° = 0.
Transvecting this equation with £, then we get
(9.8) E(PN)EE + EEC* e, + (*F.E7) — Ly?¢2E* =0,

and transvecting again with &, E¢(* P, £3)=0. Therefore (9.8) leads to

(99) * Vcéﬁ = Lbeﬁd)ceéb’
or equivalently
(9-10) ¢ (*PL7) = — Ly, *E*

by the skew-symmetry of L and the equation (6.1, 1). Consequently we obtain
Ly,*&P1;=0.

a

On the other hand, the equation (9.5) turns to

(911) ' Lecﬁ ‘+ LecEEB€eﬁﬁ = 0’
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by virtue of (8.15). If we combine (9.11) with L,,?,b7,=0, then we have
(9.12) L, =0

and, by means of (9.9),

(9.13) *pta=0

Substituting (9.12) and **F; n.=0 into the expression (9.4) equated to zero,
we see

9.14) *P.dp7 = 0.

Since Q59=P.;®=TI%, in the present case, the equations (9.13) and (9.14) are
equivalent to

9.15) rie=0, Pg,2=0
on the base space M, respectively. Hence, from the equation (9.2), we have
(9-16) L. "¢ + Ly "¢ =
Applying Ricci’s formula to the equations (9.15), we have
9.17) Ky =0,
(9.18) Kice"®® — Kap*®e® = 0
and, substituting 2L =K ,*y? into (9.16),
-19) Kiche®a® + Kicuets® = 0.

By means of (9.18) and (9.19), we can see K,.,¢¢.*=0, and this together with (9.17)
gives K,;,=0. Thus we have

THEOREM 9.1. The almost complex structure J induced above in the tangent
bundle of an almost contact space M is nearly Kaehlerian if and only if the
base space M is locally Euclidean.

Next, we investigate the case where the induced almost complex structure
of the tangent bundle of an almost contact manifold is almost Kaehlerian. The
condition ;Jy+ ViJ,;+ 7yJ ;=0 splits essentially into the three following
equations:

(920) Vc¢ba + Vb¢ac + Va¢cb - 2(Lr:béﬁér,a+Lbaéﬁénc'*'Lacéﬁénb) = O’

9.21)  (Pno— Penna + (*Veiany — (*Pofiane + L¥ds;
- Lceﬁ¢be - Lbeﬁ¢ec + Lbcéaié + ** Vi¢cb = 0’
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(9.22) *P.dsa + *Panciis — (* Vsno)iia — Lfhella + Leeal®fls = 0,
by use of (8.11) and (8.12), the equations (9.21) and (9.22) reduce to

(9.23) (Pnp— Pndiia + KV, — * Pitan, + 2chﬂ$ﬁa =0

and
(9.24) *P.d5; = 0.

Transvection of (9.23) with & implies Fn.=F,q, The remainder of
(9.23) is equivalent to

(Vanb)nc - (Vcnb)r’a + Kaced¢bdye = 0,

by use of (5.9) and (8.9). Separating the terms containing y¢ or not, we have

Pin.=0 and K, ,°¢.,=0. By the same argument of the Theorem 9.1, we have
the following

THEOREM 9.2. The almost complex structure J induced above in the tangent
bundle of an almost contact space M is almost Kaehlerian if and only if the
base space M is locally Euclidean.
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