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Introduction

The idea of foliations of manifolds emerged from works of C. Ehresmann
and G. Reeb in the 1940's. One of directions of its study in differential geometry
and topology has been to research possibility of fibering of manifolds, and many
works in this field were synthetically reviewed by H. B. Lawson Jr. [5] and
B. L. Reinhart [13].

Another direction is to research structures and properties of fibred space,
and it goes back to a unified field theory in a 5-dimensional Riemannian space
due to Th. Kaluza and O. Klein. Fibred Riemannian spaces were first con-
sidered by Y. Muto [7] and treated by B. L. Reinhart [12] in the name of foliated
Riemannian manifolds. B. O'Neill [11] called such a foliation a Riemannian
submersion and gave its structure equations and in the almost same time K. Yano
and S. Ishihara [20, 21, 22] developed an extensive theory of fibred Riemannian
spaces. M. Ako [1] and T. Okubo [10] studied fibred spaces with almost
complex or almost Hermitian structure. These works were synthetically reported
in S. Ishihara and M. Konishi's monograph [4].

In connection with almost contact structure, S. Tanno [17] and Y. Ogawa [9]
investigated principal bundles over almost complex spaces having a 1 -dimensonal
structure group. Generalizing Calabi-Eckmann's example, S. Morimoto [6]
defined an almost complex structure in the product of two almost contact spaces
and obtained a condition on the normality, and S. Goldberg and K. Yano [3]
researched similar properties for the product of two framed manifolds.

On the other hand, the tangent bundle of a Riemannian space can be endowed
with a Riemannian metric, see S. Sasaki [14, 15], and with an almost complex
structure associated with the Riemannian connection, see S. Tachibana and
M. Okumura [16]. P. Dombroski [2], T. Nagano [8], S. Tanno [18],
Y. Tashiro [19], I. Yokote [23] and other geometers investigated properties of
tangent bundles related with metric and almost complex structure.

In this point of view, the purpose of the present paper is to study relations
among structures of fibred spaces with almost Hermitian or almost contact
metric structures and those of base spaces and fibres, and to apply results to
tangent bundles of Riemannian spaces. In §§1-3, we shall explain preliminaries
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and fundamental equations on fibred Riemannian spaces with projectable metric.

In §4, we shall treated fibred almost Hermitian spaces with anti-invariant fibres

and obtain a condition for such a fibred space to be Kaehlerian. It will be shown

in §5 that the tangent bundle of a Riemannian space is one treated in §4. In §§6

and 7, we shall consider a fibred almost contact metric space with invariant fibres

tangent to the structure vector. §8 is devoted to the study of relations among the

almost complex structure induced in the total space from the lift of an almost

contact structure of the base space and that of each fibre. Finally, in the last

section, we shall deal with the tangent bundles of almost contact manifolds with

nearly Kaehlerian or almost Kaehlerian structure.

§ 1. Preliminaries on fibred Riemannian spaces

Let {M, M, g, π) be a fibred space, where {M, g} is the total space with

Riemannian metric g, M the base space and π the projection M->M of maximum

rank everywhere. We suppose that the dimensions of M and M are r and n

respectively. The fibre at any point P of M, the inverse image π~1(P), is of

dimension s = r — n and denoted by M{P) or generally by M. We suppose that

every fibre is connected. In the total space {M, g}, the horizontal distribution D

is by definition of dimension n and perpendicular to the tangent space of the fibre

M at each point.

The horizontal and vertical parts of a tensor field T in the total space M are

tensor fields of the same type as f and denoted by TH and Tv respectively. For

a function /, a vector field X and a 1-form ώ in M, we have

If T=TH or T=TV

9 then T is said to be horizontal or vertical respectively.

We shall denote by jSfjp the Lie derivation with respect to a vector field X in

M. If a tensor field T in M possesses the property

(&VT
B)H = 0

for any vertical vector field V, then T is said to be projectable. A function /

in M is projectable if and only if «£V/= K/= 0 f° r a n v vertical vector field V,

that is, / is constant along each fibre. Then there is in the base space M a unique

function / such that / = π*/, π* being the induced map of the projection π. The

function/is called the projection of/and denoted by/=/?/. Conversely, given a

function / in the base space M, the π*f is a projectable function in M, which is

called the lift of/and denoted by fL.

If the metric tensor g is projectable in a fibred space {M, M, g9 π}, the space

is called a fibred Riemannian space.
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Several kinds of indices will run on the following ranges respectively:

h, j , U fe, / = 1, 2, , r,

a9 b, c, d, e = 1, 2,..., n,

<*9 β9 γ, δ, ε = n + 1,..., r,

A,B, C,D,E = 1,2,..., n, n + 1,..., r.

The summation convetion will be used on their own ranges.

We consider coordinate neighborhoods (U9 zh) in M and (I/, xa) in M such

that π(U)=U9 where zΛ and xα are coordinates in Ό and U respectively. The

projection π: M-+M can be expressed by certain equations

xa(π(P)) = x"(z*(P))

for any point P e 0, or generally

(1.1) xα = xfl(zΛ)

which are differentiable functions of coordinates zh in U with Jacibian (dxa/dzi)

of maximum rank n. Take a fibre M such that M Π ΌΦ0. Then there are in

M (]ϋ local coordinates yα, and (xα, j α ) form a coordinate system in U.

Differentiating (1.1) in z\ we put

(1.2) Ef = dtx
a, dt = djdz*.

For each fixed index α, £ f

f l are components of a local covector field Ea defined

in U. On the other hand, each fibre M(P) at P e M n U is parameterized as zh =

zft(xα, yα), and we put

(1.3) C*β = 3βz*, da

which are components of a local vector field Cα in U for each fixed index α. The

vector fields Cα form a natural frame tangent to M(P). We have

(1.4) Efσβ = 0.

We denote by gμ components of g in (U, zh) and put (§<*) = (§y i)"1.

Components of the induced metric tensor ^ of the fibre M are given by

If we put (gβ*)=(gyβ)~1 and

(1.6) C, = gih9°βC β,

then, for each fixed index α, Cf

α are components of a local covector field C in £7.
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The covector fields Ea and Cα form a base of the cotangent space of M at each

point P in U. We choose vector fields Eb such that Eb together with Cβ form the

base, denoted by Σ, of the tangent space of M(P) dual to the base (£ f l, Cα).

We write (EA) or (EB) for (Ea, Cα) or (Eb9 Cβ) in all, if necessary. Then they

satisfy the relations

£,-£'» = δt, £, C', = 0,
(1.7) £/£'. = 5ί:

and

(1.8) V £ \ = £,"£*. + Q-C*. = 3?.

If we put

(1.9) Qch=~QjiEicE\ and (flr*β) = ί ^ ) " 1 ,

then we obtain

(1.10) £ " α = 9hiQahEl>.

The local vector fields Eb and the covector fields Ea are horizontal. The local

vector fields Cβ and the covector fields Cα are vertical.

Any tensor field in M, say T of type (1,2), is represented in 0 in the form

(1.11) f = TCB

AEC ® EB ® EA

= Tcb

aEc ®Eb®Ea+ Tcb*Ec ® Eb ® C α + T c / £ c ® C^ ® £ f l + •••

+ τyβ°cy ®σ®Ea+ τyβ*cy ®σ®cΛ

with respect to the base Σ, where Tcb

a, Tcb

a, Tcβ

a,...9 Tyβ

a and Tγβ

a are local

functions in C. The first term Tcb

aEc®Eb®Ea in the right hand side determines

a global tensor field in M, which is the horizontal part TH of T, and the last term

Tyβ

aCy®Cβ®Ca determines a global tensor field, which is the vertical part fv

of f .

§ 2. Connections

Denoting by J?β the Lie derivation with respect to the vector field Cβ, we have

(2.1) &βE< = 0 and &βCΛ = [Cβ, C J = 0.

Applying ^ to (1.7), we see that 3?βEb is vertical and ^βC
a is horizontal and

we may put
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(2.2) <eβEb = [ C , , Eh~\ = -Pbβ«CΛ,

where Pcβ

a are local functions in U.

Assume that a tensor field T in M is of type (1.2) and represented as (1.11).

Then, by use of (2.1) and (2.2), we have

(J?βT
H)H = (<?β(Tcb°E

c®Eb®Eaψ

= (dβTcb«)Ec®Eb®Ea.

Therefore a tensor field T in M is projectable if and only if dβTcb

a = 0, i.e., the

local functions Tcb

a are all constant along each fibre M (]U. Then the pro-

jections pTcb

a are functions in the neighborhood U of the base space, and

determine a global tensor field T of type (1,2), which has Tcb

a as components

with respect to the coordinates xa. The tensor field T is called the projection

of T and denoted by T=pT.

Given in M a tensor field T having components Tcb

a with respect to (I/, xfl),

we can have the tensor field T in M defined by

T = (π*Tcb°)Ec ® Eb ® Ea

in U = π-ι(U), which is called the lift of Tand denoted by T=TL.

We put dc = EJ

cdj. If a function/in M is projectable and/=p/, then so is

dj and we have

Pidj) = dfldx'.

An afrlne connection y in M is said to be projectable if PYLXL is a projectable

vector field for arbitrary vector fields X and Y in M. Given an arbitrary affine

connection y in M, we put

(2.3) FjE

or

(2.4) n B j

which are coefficients of the connection y with respect to the base Σ and local

functions in U. An affine connection y is projectable in M if and only if the

functions Γa

cb given by (2.4) with A = α, B = b, C = c are all projectable in each U.

Then, putting

VYX= p(V

for any vector fields X and Y in M, we can define an affine connection F in the
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base space M, which is called the projection of y and denoted by V =py. The

projection V has Ta

ch — pTa

cb as coefficients in the neighborhood U = π(U). The

projection of the torsion tensor of y coincides with the torsion tensor of the

projection V = py.

We now suppose that {M, M, g, π} is a fibred Riemannian space, i.e., the

metric tensor g is projectable. Since Ea are perpendicular to Cα, g has a local

form

(2.5) g = gcbE
c ® Eb + ^ C ? ® C

in U. The projection g = pg has components #cf, in (7 and defines a Riemannian

metric in the base space M. If we put g = gv = gyβC
y®Cβ, then $ is written as

(2.6) g=gH +gV = gL + g,

Let p be the Riemannian connection of g in M. Then the projection V =py

is the Riemannian connection of the metric g = pg in M and the coefficients Γ?fc

are equal to those of g in (U, xfl), i.e.,

f ?* = Γ% = -jgae(Scgbe^dbgce-degcb).

Taking account of the local form (2.5) of g and (1.7), (2.1), (2.2), the expres-

sion (2.3) of the Riemannian connection y in M can be separately rewritten in

the forms

VjE\ = Γ°cbEfE\ - Lcb*EfC\ + V y C/£" f l - /ι/,C/CΛ

α,

pyC*, = Lc*βEfE*a - Qιfc-Pcβ*)EfC\ + hyfCjyE\ + Γ*βCjyC\

and the covariant derivatives of the covectors Ef and Cf

α

ΓjEf = - Γ%bEfEf - Lc°β(E/Cβ + C/Ef) - hΊfC?C?,
(2.8)

Vj^i — Lcb Zj Cu{ -h yriβ c — rCβ )ί^j Lsf -h nγ b^j ^i ι γβ^j c i >

where Lcft

α, /iy/?

α and Γ ^ are local functions in U and

L a Γ anba7i U a U a7iβcLn

c β — ^cb 9 GoLβ-> ny b — nγβ 9 Gba'

For later convenience, we use Lcb

a and hγβ

a in place of —hcb

a and —Lyβ

a in [4].

We put Γc = EJ

c Fj and Γy = C\ Vy From (2.7), we have

(2.9) ΓγEb = L , % £ α - hy*bCa, VyCβ = hyβ°Ea + Γ"γβCa.

The second equation is Gauss' equation of each fibre M as a submanifold in M.

Hence, along each fibre M in M, hγβ

a are components of the second fundamental
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tensor with respect to the normal vector Ea, and Γy

βoc are coefficients of the

Riemannian connection y of the induced metric g in M. Therefore, we see that

(2.10) V = V

and

(2.11) Γ'β = ±- gaε(dγgβE + dβgyε - dεgyβ).

The first equation of (2.9) is Weingarten's equation of each fibre M in M, and

Lba

y are coefficients of the normal connection of M and satisfy

(2.12) Lcb" + Lbc* = 0.

It follows from (2.7) together with (2.1) and (2.2) that

(2.13) [JBC, Eb~\ = - 2Lcb«Ca, [Cy, C,] = 0, [JBC, C,] = P c / C α ,

which are equivalent to

(2.14) dcdb - dbdc = - 2Lcb"da, dγdβ = dβdv dcdβ - dβdc = Pcβ"da,

respectively. Denoting by S£c the Lie derivation with respect to Ec, we have

&cEb = 2Lbc"Ca9 <?cCβ = Pcβ"Ca,

SecE
a = 0, &cC

a = 2L c f e

α£ f c - Pcβ*σ.

The tensor field L = (Lcb

a) is called the structure tensor of the fibred Riemannian

space {M, M, ^, π}. From (2.13, 1) we see that, in a fibred Riemannian space,

the horizontal distribution D is integrable if and only if the structure tensor L

vanishes identically.

Applying Jacobi's identity to triple combinations of the vector fields Eb

and Cβ, we have the identities

(2.16) {dΛLcb* + Pdβ*LJ) + (dcLb

(2.17) 2dyLcb* - (dcPby« - dbPcγ* + Pcβ*Pb/ - Pbβ*Pc/) = 0,

(2.18) arp<,« - < y v = o

Using (2.5), (2.8) and (2.15), we obtain the equations

(2 19) {

= - 2(hyβ°xa)σσ,
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for any vector field X = Xbdb in M, Xa = gabX
b being covariant components of X,

and hence the identity

(2.20) dbgyβ - Pbγ

εgεβ - Pbβ

εgγε = - 2hγβ°gab.

Let γ be a curve through a point P in the base space M and X be the tangent

vector field of y. There is a unique curve y through a point Peπ~ι(P) such

that the tangent vector field is the lift XL. The curve y is called the horizontal

lift of γ passing through P. If a curve y joins points P and Q in M, then the

horizontal lifts of γ through all points of the fibre M(P) define a fibre mapping

Φγ: M(P)-+M(Q), which is called the horizontal mapping covering y.

If the horizontal mapping convering any curve in M is an isometry of fibres,

then {M, Λf, g9 π} is called a fibred Riemannian space with isometric fibres.

A necessary and sufficient condition for M to have isometric fibres is

(.2WT = 0

for any vector field X in M, or, by means of (2.19),

(2.21) V = °

If Lcb

a = 0 and hγβ

a = 0, then the fibred Riemannian space M is locally a

Riemannian product of the base space and a fibre, and is said to be locally trivial.

If the horizontal mapping covering any curve in M is a conformal mapping

of fibres, then {M, M, g9 π} is called a fibred Riemannian space with conformal

fibres. A condition for M to have conformal fibres is

(2.22) V = gyfiA;

where A = AaEa is the mean curvature vector along each fibre in M.

§ 3. Curvature tensors and structure equations

The curvature tensor K of a fibred Riemannian space M is defined by

(3.1) K(X, Y)Z = VχV?Z - ΓfFxZ - fafl2

for any vector fields X, Y and Z in M. If we put

(3.2) K(ED, EC)EB = KDCB

AEA = KDCB

aEa + KDCB

aCa,

then KDCB

Λ are components of the curvature tensor K with respect to the base Σ.

Denoting by Kkji

h components of K in (U9 z
Λ), we have the relations

(3.3) KDCB* = K*E\EiQVBEh\
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Substituting (2.7) into the definition (3.1) of the curvature tensor R, we have

the structure equations of a fibred Riemannian space as follows [4]:

(3.4) Ricb° = Kdcb° - L/εLcb° + Lc\Ldh° + 2L./LΛ,

(3.5) Ricb" = - * ΓdLcb° + * VcLdb« - 2Ldc%«b,

(3.6) Kdcβ* = * Vchβ\ - * Vdhβ\ + 2** ΨβLd* + Lde<Lc'β - Lce°L/β

(3.7) Kdyb° = * F,V v - L/εh/b + Ldb%ε° - Lb°εh/d,

(3.8) Kdyb« = - * Pdhy\ + ** VyLdb« + L/yLeb« + h/dhε«b,

(3.9) Kδyb° = Lδyb° + hδ\hyε° - V A Λ

(3.10) Kδyβ» = ** Γ,hjt- - ** Vyhδβ-,

/") i i \ is α Tζ α _ι_ U eU α U eU α

where we have put

C\ \Ί\ TC a r\ Γa 7\ Γa _ι_ Γa Γe Γa Γe
yόΛA) JS.dcb — Cdl c b — Ocl d b -h 1 del c b — 1 c e l d b ,

(3.13) *VdLcb* = dtLΛ> - ΓdcLeb* - ΓdbLce* + Qd*Lcb\

(3.14) * VάLc"β = dΛLe-β + Γ J Λ , - ΓdcLe-β - Qdβ*Lc\,

(3.15) * Fdhyβ° = ddhyβ° + Γdehyf - (2,,/V - QoβεKa,

(3.16) * Vdhβ\ = ddhβ\ - Γdbhβ*e + Qdε%\ - Qdβ%*b,

Qcp
a being defined by

e α p α La
Cβ — ΓCβ nβ C9

and

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

* * π τ α _
Vδ^cb ~

** π T a —
vδ^b β —

* * U L a —
Yδnγβ -

Vδnβ b —

Lδyb- = dδL

K-δyβ* = dδ

dsLcb"

dδWβ

Sδhyβ

a •

Sδhβ"b •

b°y ~ d

Γ% - >

+ Γ%L

- rδβi

- r%yh

+ Πεh

yWδ *

VyΓϊβ -

a
εβ

βεb —

-Le",

K'δU

- Le%L

a j
>b H

<bβ

Γδβhyε" -

T e

^b y

f'yβ ~

I 1

b τ~

1 γε

U T e T a
' ^b δ^ce 9

1 J e T a
^ ^b δL'e β >

J a U e
^e δnyβ »

•*^b δ^β e 5

1 L e

r%β.
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Among these, the functions Kdcb

a are projectable in ϋ and its projections, denoted

by Kdcb

a too, are components of the curvature tensor K of the base space {M, g}.

On each fibre M, the functions Kδγβ

a are components of the curvature tensor K

of the induced Riemannian metric g and Lδγb

a those of the curvature tensor of

the normal bundle of M in M. The components KDCB

A satisfy the same algebraic

equations as those KkJi

h satisfy. By means of the first Bianchi identity, we have

the identity

(3.23) * VdLcb* + * VcLbd« + * FbLdc" + Ldc%*b + Lcb%«d + Lbd%*c = 0,

which can be also obtained from (2.16).

Denote by SCB components of the Ricci tensor S of {M, g} with respect to

the base Σ in 09 and by Scb and Syβ components of the Ricci tensors S and S of

the base space {M, g} in (C/, xa) and each fibre {M, g} in (E7, j>α) respectively.

Then we have

(3.24) Scb = 5C, - 2LC/L,% + hfch*b + j (* ΓCΛΛ + * hKε

c),

C\ ?SΪ ^ — ** F h ε — ** F h ε -I- * F ϊ e — ?h ε J e

\D.ΔJ) δyb — Vynε b *εny b ' v e^b γ A n y e^b ε?

Π JfsΛ ? — ^ — h eh ε 4- * F h e — J e T a

yj.^yjj yβ — yβ yβ ε e ' enyβ *-^a y^e β

Denoting by K, K and K the scalar curvatures of M, M and each fibre M respec-

tively, we have the relation

CX Ίl\ {> — K L I j? Γ Γ cftε ι U Uyβe U γ U βe

§ 4. Fibred almost Hermitian spaces with anti-invariant fibres

Now we suppose that the total space M is an almost Hermitian space with

almost complex structure J = (J *) and each fibre M is anti-invariant. Then

{M, M, g, π} is called a fibred almost Hermitian space with anti-invariant fibres.

The dimension r of the total space M is equal to r = 2n, and indices α, /?,..., ε run

on the range n + 1 , . . . , 2«. Since the transform of the tangent space of each fibre

M by J is normal to M, we may put

The almost complex structure J with respect to the base Σ in U has the local form

(4.2) J= Jβ

aσ ®Ea + Jb"Eb (g) Cα

and the components satisfy the equations
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Covariant components of J are given by

(4.4) Λα = 0, Jβa = Jβe9ea, h« = h*9 w J β« = 0

and satisfy the relations

(4.5) Jβa + Jaβ = 0.

Components of the covariant derivative p J with respect to Σ are given by

(pjJih)Ej

cE
i

BE
h

A, and we can obtain the following expressions by means of

(2.7) and (4.4):

O^E^ = h/bJEa + /

(PjJih)EJcσβE\ = dcJβa - Γ*caJβe - Qcβ*Jεa,

(4.6) (VjJ ih)C\OβE\ = dyJβa - ΠyβJεa - La%Jβe,

EJcσβC
h

a = - L/βJeΛ - Lc*aJβe,

If the total space M is almost Kaehlerian, i.e., J satisfies the equation

Pjhh + Vthj + FhJβ = 0,

then we have

Lcb*Jεa + Lba*Jεc + Lac*JEb = 0,

(4.7) dbJγa - Pbγ*Jεa = daJyb - Pay*Jεb,

SγJβa = SβJγa

We see from (4.7, 3) that there are locally functions ψa in U such that Jβa = dβφa.

By means of (2.14, 3), we have

(4.8) dbjya = dbdyψa = dydbψa + Pb/dειl/a,

and hence the equation (4.7, 2) is equivalent to

(4.9) dydbψa = dydaψb,

which means that dbil/a — dail/b is projectable. Therefore we can state the following

PROPOSITION 4.1. A fibred almost Hermitian space {M, M, g9 π} with

structure J and anti-invariant fibres is almost Kaehlerian if and only if the

equation (4.7, 1) holds and there are local functions φa in each neighborhood

U such that Jβa = dβΨa and ^bΦa~^aΨb a r e projectable.
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Now we suppose that the total space M is Kaehlerian, i.e., F}.7iΛ = 0. Then,

from (4.6, 1), we see Lcb

εJεa is symmetric in a and b. On the other hand, Lcb

a

is skew-symmetric in b and c, and hence we have Lcb

εJεa = 0 or

(4.10) Lcb* = 0.

By means of the remainders of (4.6), we have

(4.11) djβa - Γ%aJβe + ( V c - PcβVsa = 0,

SyJβa ~ ΠpJn, = 0.

Computing [ Q , Cy~]Jβa = 0, we have Kδyβ*Jxa = 0 or

Kδyβ" = 0

and, by means of (3.11), KδyβaL are expressed as

(4.12) Kδγβa = hδβ*hyae - hγβ*hδae.

Since Jβa = dβΨa> t n e equation (4.11, 3) turns to

dγdbψa = Γe

baJγe-h/bJεa.

Computing [ Q , Cy]dbφa = 0 and taking account of (3.10), we have Kδyb

aJaa = 0 or

Kδγb

a = 0. In this case, the curvature tensor of the normal connection of each

fibre M vanishes, and we have

(4.13) Kδγba = hδ%hγεa-hγ

ε

bhδεa,

by means of (3.8). The covariant components Kkjih of the curvature tensor K

of M are hybrid in the pairs (/*, /) and (j, k) of indices, so are the components

KDCBA with respect to J = (JB

A). Therefore we have

(4.14) κdcba = κδybaj/jcy = (hδ%hγεa-h/bhδεa)J/jcy.

On the other hand, we have Kdcba = Kdcba. Thus we have the following

PROPOSITION 4.2. If a fibred almost Hermίtian space M with anti-invariant

fibres is Kaehlerian, then the structure tensor L vanishes identically, each fibre

M is locally Euclidean and the curvature tensor K of the base spacee M is given

fcy(4.14).

In particular, if M has isometric or conformal fibres, then the total space M

itself and the base space M are locally Euclidean.
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§ 5. Tangent bundles of Riemannian spaces

Let {M, g} be a Riemannian space and M=T(M) the space of the tangent

bundle of M. If (I/, xa) is a local coordinate neighborhood in M and we denote

by ya cartesian coordinates in the tangent space TP(M), the fibre M(P), with

respcet to the natural base {da}, then (xa, ya) are local coordinates in U = π~1(U).

We shall write a, 5,..., e for indices α, /?,..., ε belonging to the fibres M and

running on the range n + 1,..., In. Then the projection π: M-*M is expressed by

and the immersion of each fibre M into M by

xfl = const, and x° = ya.

Therefore the covectors Ea and the vectors Cb in U have components

(5.1) E^ = δf9 C»b = δh

B.

Let Γa

cb be coefficients of the Riemannian connection V in U of the base space

M. Putting

(5.2) δ r = dya + Γ?</xc, Γ? = Γa

cby\

S. Sasaki [14] introduced a Riemannian metric $ = (gih) in M by

(5.3) g^άz^z11 = gbadxbdxa + 6

with respect to the coordinates (zΛ) = (xα, >̂ α) in ί7. Covariant components of

the metric tensor g in £7 are given by

(5.4)

where we have put Γba = Γe

bgea. The vector fields Eb and the covector fields Cά

have components

(5.5) (Eb

h)=[ , (CΛ = (ΓJ, 5g)

in (0, zh).

Components of the metric tensor g defined by (5.3) are given by
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(5.6) gha = gihC\E\ = 0,

9ba = 9ihCiBChά = 9ba>

that is

(5.7) g = gbaE
b ® E° + </6aC* ® Cδ,

and the metric tensor g induced in T(M) is projectable.

By simple computations, we have

[£ c , £ J = - Kcbm'Cδ, LC-C, C5] = 0
(5.8)

where Kdcb

a are components of the curvature tensor K of the base space {M,

and we have put

Kdc.
a = Kdcb°y».

Thus the structure tensor Lcb

δ and PcB

a are equal to

(5.9) 2Lcb* = Kcb°, Pch* = Γ°cb.

Substituting (5.6, 3) and (5.9, 2) into (2.19), we see

= Xc{dcghά-Γecbgea-Γlagbe)C*σ = 0.

Therefore the tangent bundle M has isometric fibres and we have hdh

a = 0. On

the other hand, noting that the functions gba in ϋ are projectable, applying dd to

(5.6, 3), and using (2.7), we have

^c9la = Γh9ea + Γξa9eb = 0.

Since Γf5 is symmetric in b and c, we have Γfβ = 0. Therefore we have

PROPOSITION 5.1. The space of the tangent bundle T(M) of a Riemannian

space {M, g} has a structure of fibred Riemannian space with the metric tensor

g defined by (5.3) and isometric fibres.

Substituting (5.9) into the structure equations (3.4) to (3.11), we can express

the curvature tensor K of M by use of the components Kdcb

a of the curvature

tensor K of the base space M and Kdc

a = Kdcb

ayb. In particular, the expression

(3.13) is now equal to

and we have
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K a _L 17 If a ΊS a Jf a Λ
deb — 2 y^dc. -> J^dch — A 3 c 5 — υ

S. Tachibana and M. Okumura [16] introduced an almost complex structure

J in the tangent bundle A?= TM, covariant components J j{ of which are

/ Γcb~Γbc Qcb

(5.10) (J,,) =
V -Qcb 0 j

with respect to a coordinate neighborhood (U, zh). Its components JCB with

respcet to the Σ = {Eb, Ch} are given by JCB = JjiE
j

cE
i

B and have expressions

(5.11) cb~_ ' ~cb~9cb^
Jch — — Qcbτ Jch — 0 ,

and the components JC

A = JCB9BΛ of type (1, 1) are

(5.i2) Jf,Z°L I''~ ?L 0

Hence each fibre M=Tp(M) is anti-invariant with respect to the almost complex

structure J defined above in M.

Let ? be the vector field in M defined by

(5.13) Ϋa = 0, Ϋδ = ya.

Then y is vertical and has the same components (0, ya) with respect to the base Σ.

If we put the transform Θ = J(Ϋ), then the vector θ has components

(5.14) θa = y*9 θ* = 0,

and covariant components

We denote the 1-form by

θ = θBdzB = ybdxK

The almost complex structure J can be interpreted as one associated with the

derived form dθ9 and hence it is almost Kaehlerian. Then we have

PROPOSITION 5.2. The space of the tangent bundle M of a Riemannian space

{M, g} has an almost Kaehlerian structure J, and isometric and anti-invariant

fibres with respect to the structure J.

If the structure J defined above in M is Kaehlerian, then combining Propo-

sition 4.2 and 5.2, we can show the following proposition due to S. Tachibana and

M. Okumura [16]:
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PROPOSITION 5.3. The almost Kaehlerian structure J induced above in the

tangent bundle M of a Riemannian space {M, g} is Kaehlerian if and only if

the base space M is locally Euclidean. Then the tangent bundle M is locally

trivial.

§ 6. Fibred almost contact metric spaces

We suppose that a fibred Riemannian space {M, M, g, π} has an almost

contact structure (φ, ξ, ή) associated with Riemannian metric g, i.e., φ, I and ή

satisfy the relations

= o, ή(ξ) =
(6.1)

g(X, Ϋ) = g($X, φΫ) + ή(X)ή(Ϋ)

for any vectors X, Ϋ in M. In addition, we suppose that φ is projectable and

each fibre M is φ-invariant and tangent to the structure vector ξ. We call such a

space a fibred almost contact metric space with φ-invariant fibres tangent to ξ,

and shall confine ourselves to such a space in §§6 and 7.

We can easily verify that the distribution D spanned by Ea is also

(^-invariant, φ has the local form

(6.2) φ = φb°E
b ®Ea + φβ«σ ® Cα,

J = (φb°) defines an almost complex structure in the base space M, and (φ, g9 ξ, ή)

an almost contact metric structure in each fibre M, where φ = φβ

aCβ®Ca and g is

the induced metric tensor in M. Hence the base space M and the fibre M are

even- and odd-dimensional respectively.

By means of (2.7) and noting ηb = 0, components of the covariant derivative

yή of the covector ή with respect to the base Σ are given by

(6.3)

(?jήdEJ

cσβ = dcήβ

Now we consider the case where (φ, g, ξ, fj) is a contact metric structure,

i.e., they satisfy the equation

(6.4) φjΊ = ̂ {djηi-diήj) = ̂ (Fjηi - tfij).

Then, using (6.2) and (6.3), we have the equations
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(6.5) φcβ = dcηβ - Pcβ*ηΛ = 0,

By means of (2.14), (2.17) and (6.5), we have

dy(Lcb*ηJ = 2Lcb"φγa.

In order for φ to be projectable, it is necessary and sufficient that

Lcb*φγa = 0

or

(6.6) L c b« = φcbξ«,

by using of the fact that (φ, g, ξ, rj) is almost contact. From (6.5, 1) and (6.5, 2),

we have

(6.7) ddφcb = (ddLc

and by means of (2.14),

(6.8) ddφcb + dcφbd + dbφdc = 0.

Thus the structure φ in the base space M is almost Kaehlerian. The equation

(6.5, 3) means that the structure (φ, g, ξ, ή) on each fibre M is contact metric.

Conversely, suppose that the equations (6.6) and (6.8) are valid. Then,

substituting (6.6) into (2.14) and using (6.8), we obtain

φdc(bξ bβξβ) = 0.

Contracting this equation with φcb, we see that

(6.9) ddξ* + Pdβ"ξβ = 0

provided n>2.

Thus we have the following

PROPOSITION 6.1. Suppose that a fibred almost contact metric space M with

structure (φ, g, ξ, ή) has φ-invariant fibres tangent to ξ. In order that the

structure in it? is contact metric, it is necessary and sufficient that the almost

Hermitian structure (/, g) of the base space M is almost Kaehlerian, the

structure (φ, g, ξ, ή) of each fibre M is contact metric, the equation (6.5, 2) is

valid and the structure tensor is equal to

Lcb* = φcbξ'

Next we suppose that, in addition to the assumptions of Proposition 6.1,
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the total space M has isometric fibres, i.e., hyβ

a = 0, and is an ^-Einstein,

Sji = agji + bήjήi9

a and b being constants. Then, taking account of (3.24), (3.25) and (3.26), we

have

Scb = (a + 2)gcb,

Syβ = agyβ + (b-n)ηyηβ,

and

*ΓaLc°β = (Vaφc°)ηβ + ΦΛSariβ-Paβ%) = (rΛφe'}ηβ = 0.

Thus we have the following

PROPOSITION 6.2. If a fibred contact metric space M with isometric and

^-invariant fibres tangent to ξ is an η-Einstein space, then the base space M is

an Einstein space, each fibre M an η-Einstein space, and the fundamental form

θ = — φcbdxc A dxb is harmonic.

If, in addition to the assumptions of Proposition 6.1, M is a K-contact space,

i.e.,

then it follows from (6.3) that, in addition to the properties of Proposition 6.1,

we have

and

Φyβ= Vyfjβ.

Therefore we have

PROPOSITION 6.3. A fibred contact metric space M with ^-invariant fibres

tangent to ξ is a K-contact space if and only if the base space M is almost

Kaehlerian, each fibre M is a K-contact space, the structure tensor is given by

(6.6) and hyβ

a satisfies the equation

(6.10) hyβ ξ* = 0.

§ 7. Fibred Sasakian spaces

By means of (2.7) and the local form (6.2), components of the covariant

derivative p<f> with respect to the base Σ are given by
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{Pjφih)OyE\E\ = - Lb%φea - La%φbe,

{V^ih)EicOβE»a = - L/βφea + Lc/φβε,

(7.1) (pjφ~ ih)σyOβE\ = - hyβ*φea + h/aφβε,

A fibred contact metric space A? is called a fibred Sasakian space if the

structure (φ, g, ζ, ή) is Sasakian, that is,

Referring this equation to the base Σ, we have the equations

KΦba = 0,

V A « + L°eyΦ»e = 0,

(7.2) Lca°φβε - L/βφea = ηβgca,

h/aΦβs ~ hyβ

eφea = 0,

dcΦβ* + ( V c - V ) £ « + (K*c-Pc/)Φβe = 0,

PγΦβ* = ήβdγ* ~ tjjγβ •

The second and third relations are fulfilled by use of Lcb

x = φcbξ
Λ. Since hyβ

a

is symmetric in β and γ, it follows from the fourth that

(7.3) h/aφεβ = hβ<aφεy.

Two times of the left hand side of the fifth is equal to

= δβdcηx - dxdcηβ + Pcβ'd,ηε - Pcx*δβfjε

- Pcx%ηε

= (dβPcx°-dxPcβ°)ηε = 0

by means of (2.14), (2.18) and (6.5). Therefore the first, fourth and the last

equation of (7.2) are essential, and we can state the following

PROPOSITION 7.1. A fibred contact metric space Λ? with φ-invariant fibres

tangent to ξ is Sasakian if and only if the structure (J, g) of the base space M is
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Kaehlerian, the structure (<β, g, ξ, ή) of each fibre is Sasakian, and the equations

(6.6), (7.2, 4), (7.2, 5) hold.

Since we have

Vd^cb — U> Vδ^cb — ΨcbcbΨδ

in a fibred Sasakian space, the structure equations (3.4) to (3.9) are reduced to

Kdcba = Kdcba - φdaφcb + φcaφdb + iφdcΦba 9

Kdcba = 0,

RdCβa = - *rdhfiec + *rchβad ~ hmdhβ\ + U Λ + 2 ψ d c ^ β ,

(7.4) ^ y Λ β = 0,

Kdγba = - *Pdhyab + hy

ε

dhεab + φdbφya - gdbηyfja9

Kδyba = ί̂ fcβ^ay + VΛ«* ~ K^δεa'

τ? — ** p L ** 17 U

— hyβ

ehδae .

Since Rdyba = Kbady9 we have

(7.5)

§ 8. Almost complex structure in a fibred Riemannian space

In this section, we consider a fibred Riemannian space such that the base

space M and each fibre M are almost contact spaces. Let n = 2k + 1 and s = 2/ + 1

and we denote the almost contact structure of M and its lift in the total space St

by (φ9 ξ, η) and that of each fibre M by (φ, ξ, ή). Then we can define an almost

complex structure J on the total space M by

(8.1) JEb = φb

aEa + ηbξ, JCβ = -ηβζ + φβ«Ca

where (φ, ξ, η) is independent on the fibre. We call J the induced almost complex

structure on M.

By means of (2.7), (2.8) and (8.1), we can derive

(8.2) ( rJ)Eb = ( Γcφb* - Lcb%ξ° + Lc\ηbξ*)E

+ {(r Λ b )ξ*+( rcξ*)ηb+Lcft«

(8.3) ( fc fy:, = ( - Le<βφ* - ξ°* Γcηβ - rjβ Vcξ°
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(8.4) ( py3)Eb = (* Vyφb° - h/bηεξ" + hyt°ξ*ηb)Ea

+ (ξ'** Fγηb + ηb** Vyξ* + h/bφ* - hy"eφb<)Ca,

(8.5) (?y3)Cβ = { ( - * * Γyηβ)ξ- - ηβ(** Fγξ') - hyβ<φe° + hyε°φβ°}Ea

+ (** ryφf - hyβ°Άel*+hτ«Λ^β)c.,

where we have put

(8.6) Fcφh" = d e φ b + Γ°ceφb° - Γ*cbφe°,

(8.7) K*ίb = Scηb-Γ"cbηa,

(8.8) *rcξ~> = dcξ? + ξ*Qcay,

(8.9) *Vcηy = dcηy-Qcy%,

(8.10) * Feφβ = dj,' + φβ°Qcε* - $'Qet;

(8.11) ** rrφh' = drφb' + Lebyφ« - L°eyφh*,

(8.12) **Vyηb = dyηb-Lb%ηe,

(8.13) **ryξ" = dyξ* + r*yεξ°,

(8.14) **ryηβ = dγrjβ-Γ'yβηε,

(8.15) * Γ,ίί = 3 r ί
ί + £'„{',

(8.16) ** Fy0, = δ y ^ + Γ tφβ* - Γ*βφt>.

Now we suppose that the induced structure 3 in M is Kaehlerian. Then we
get

(8.17) reφb- - Lcb%ξ" + LΛffcί = 0,

(8.18) ( Γ ^ ί + (* Γcξ*)ηb + Lrt«$.« - !.„«&• = 0,

(8.19) * Feφ," - Lc<βηeξ* + Lee'ξ'ηp = 0,

(8.20) ** ryφb° - hy%W + V ^ f * = °>

(8.21) (** Γ^ξ" + ηβ(** Vyξ°) + hyβ°φ/ - hye°φβ* = 0,

(8.22) ** F#f - hyβ°ηaξ* + hy\t\βζ° = 0.

If M is a Sasakian manifold, **Fγφβx=ηβgyΛ—ηjjyβ, then it follows from
(8.22) that
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and we have

(8.23) gβ* + hβ/ηe = ληβηa

λ being a proportional factor. If, in addition, NJ has isometric fibres, hβa

a = Q,

then

PROPOSITION 8.1. // St is a fibred Kaehlerίan manifold with isometric

fibres and the fibre M is a Sasakian manifold, then the dimension s of the fibre M

should be one.

If we assume that M is a Kaehlerian space with conformal fibres, i.e., haβ

a =

Aagβ(X, then the transvection of (8.23) with ηβηa yields λ=\+Aaηa and we have

(A'ηa+l)(gΛβ-fjjjβ) = O.

Provided s>l, λ = \+Aaηa = § and we obtain hyβ

aηa= — gyβ. Conversely, if

hγβayla=-9γβ, we have Paήβ = φaβ and FaΦβ

y = δa

yήβ-gaβξ
y by means of (8.21)

and (8.22). Hence we can state that

PROPOSITION 8.2. // M is a fibred Kaehlerian manifold with conformal

fibres and s>l, then a necessary and sufficient condition for M to be Sasakian

is hγβ

aηa=-gγβ.

On the other hand, if the base space M is a contact manifold, i.e., 2φcb =

Vcηb— Vbηc, then transvecting (8.18) with ήa, we see

2φcb + (Lba«φc°-Lca*φb°)ηΛ = 0,

and transvecting this equation with φd

c,

2(-gdb + ηdηb) = (Lca"φ/φb°-Ldb*-Lba«ξ°ηd)ήa9

moreover, transvecting with ξb, and noting the skew-symmetry of Lba

a in b and a,

we have Ldb

aξbήa = O. Hence the above equation reduces to

2( ~ Qdb + ηdηb) = (LCa
aΦdcΦb

a - Ldb

Λ)ήa.

However the left hand side is symmetric and the right is skew-symmetric in b and

d respectively, and the both sides should be equal to 0. Therefore we have

PROPOSITION 8.3. Let M is a fibred Kaehlerian manifold and the base

space M is a contact manifold, then the dimension of M should be one.

When M is a Kaehlerian manifold with conformal fibres and M is a contact

manifold, the equation (8.21) implies

Vofiβ ~ KedΦβ

εrid = 0,

from which we get
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V«ηβ ~ VβηΛ - Kε

dφβ*ξd + hβε

dφa*ξd = 0,

that is,

2φ*β ~ hJΦβεξd + hβε*φΛ*ξd = 0.

By use of hOLβ

a = gaβA
a, we get 2(f>0Lβ{\+Adηd) = ΰ. Hence by the same argument

as that of Proposition 8.2, we have the following.

PROPOSITION 8.4. Let M be a fibred Kaehlerian manifold with conformal

fibres. Then the contact manifold M induces the Sasakian structure provided

s>l.

Combining Propositions 8.3 and 8.4, we obtain

PROPOSITION 8.5. Let M be a fibred Kaehlerian manifold with conformal

fibres. Then the manifolds M and M are contact manifolds if and only if

(a) n = l and s = l or (b) n = l and Λaηa= — 1.

Next, if we assume that the total space {M, g} is a Kaehlerian manifold of

constant holomorphic sectional curvature £, then the equations (3.4)—(3.11) turn to

(8.24) Kάcb- = ^(δa

dgcb-δ°cgdb+φfφcb-φc°φdb-2φdcφb' )

(8.25)

(8.26) * F c W - * FdLcb* = A {φcbηd - φdbηc - 2φdcηb)ξ* + 2Ldc%\,

(8.27) * ΓdLb% - Ld\hy\ + Ldb%e° - Lb\hy'd

yO.ZO) — V&nβ c -V rc

nβ d ' ^ "β^dc ~~ ^de ^c β ' ^ c e ^d /3

- Kadhβεc + hε

a

chβ

ε

d = - — φdcφβ

a,

(8.29) - * FA% + ** ̂ d b

α + Ld%Lβb- + VΛ%

(8.30) ^ w - = A ( « j ^ .
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(8.31) **Γδ V " **W =^(-

(8.32) V = " y ^ A β " VΛ-β + V*Λ*β

If, in addition, M have conformal fibres, then the equation (8.31) is reduced to

(8.33) g7£**FsA-) - gδβ(**ΓγA°) = ^(-

the transvection with gγβ gives (s — 1) (** PgA")=0, provided s > l , and moreover

we see £ = 0 . Hence the equations (8.24), (8.25), (8.27), (8.30) and (8.32) reduce to

(8.34) Kdcb° = Ld\Lcb° - Lc\Ldb° - 2Lic*Lb\,

(8.35) κ = 3\\Lcdψ,

(8.36) * VdLch* = Lib«Ac - Lic*Ab + LcbΆd,

(8.37) Kόγβ* — ^Ae^
2{gyβδδ

a — gδβδy

Λ)

and

(8.38) Lδγb° = 0

respectively. Thus we have the following

THEOREM 8.6. If for a fibred space M with conformal fibres of dimension

5>1, the induced almost complex structure in M is Kaehlerian one of constant

holomorphic sectional curvature k9 then M is locally Euclidean,

(a) the base space M has the curvature tensor of the form (8.34),

(b) /c>0,

(c) each fibre is a space of constant curvature,

(d) the curvature tensor of the normal connection of each fibre vanishes,

and

(e) the mean curvature vector A is parallel with respect to the normal

connection along each fibre.

§ 9. Tangent bundle over an almost contact manifold

Let {M, g} be an almost contact manifold and M the space of the tangent

bundle TM of M, and use the same notations and indices as those in §5. Then

the induced almost complex structure J on M is defined by

J =
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where fJB = ηb, ξa = ξ", <j>Ba = φb" and the quantities φ, ξ, η are independent of the

fibre.

As seen in §5, the tangent bundle M has isometric fibres and the local scalar

fields hΐt

α and Γs

Bε vanish. Therefore, by virtue of (2.7), (2.8) and (8.2)-(8.5),

we obtain the equations

(9.1) (pjh" + ^Jjh)EJcE>bEh" = Fbφe' + Fcφb" + Le'Λbξ* + Lb\ηcξ«,

(9.2) ( Pjίf + ftJ/)E>cE W = (Fcηb + Fbηc)ξ δ + (* Fbξ*)ηc

+ (*Fcξ*)ηb-LJφb<-Lbe*φ/,

(9.3) (Fjh" + Pih")EJCC'SEH* = - Le'tφ.' - (* Fcηh)ξα - U W)

(9.4) (PjJ," + WfiEicCW = * Fcφs* - Lc'Bηeξ* + Lc/ηhζ
e

+ ( *rBηe)ξ',

(9.5) (Fjh" + FiJJ

h)CJ-cσBEh' = - U** W) ~ U** ?£-),

(9.6) (^.J i"+^J/)C^C6'C ft- = 0.

If M is nearly Kaehlerian, that is,

Fjh" + Fjjh = 0,

then the equation (9.2) is reduced to

(9.7) ( Fcηb+ Fbηc)ξ* + (* Fbξ
s)ηc + (* Fcξ*)ηb - LJφ*b - Lb/φ/ = 0.

Transvecting this equation with ξb, then we get

(9.8) ξ»( Fbηc)ξs + ξ\* Fbξ
s)ηc + (* Fcξ°) - Lbe

aφ/ξ» = 0,

and transvecting again with ξc, ξc(* F cξ
s)=O. Therefore (9.8) leads to

(9.9) *Fcξ
s = Lbe

sφ/ζ",

or equivalently

(9.10) φ/(* Fcξ*) = - Lb/ξ»

by the skew-symmetry of L and the equation (6.1, 1). Consequently we obtain

Lb/ξ"ηa = 0.

On the other hand, the equation (9.5) turns to

(9-11) L/aξ* + L/tξ*ξ'ηa = 0,
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by virtue of (8.15). If we combine (9.11) with Lb/ξbηδ = O, then we have

(9.12) Lcb*ξ> = 0

and, by means of (9.9),

(9.13) * F c | * = 0

Substituting (9.12) and * * F 5 ηc = 0 into the expression (9.4) equated to zero,

we see

(9.14) *PcφB~
a = 0.

Since Qci
a = Pch" = Γacb m t h e present case, the equations (9.13) and (9.14) are

equivalent to

(9.15) Fc£- = 0, Fcφb° = 0

on the base space M, respectively. Hence, from the equation (9.2), we have

(9.16) LJφf + Lbe*φ/ = 0.

Applying Ricci's formula to the equations (9.15), we have

(9.17) KM

aξb = 0,

(9.18) Kdce

aφb* - Kdcb*φe° = 0

and, substituting 2Lc/ = Kced

ayd into (9.16),

(9.19) Kdcbeφ/ + Kdcaeφb* = 0.

By means of (9.18) and (9.19), we can see Kdcb

eφe

a = 0, and this together with (9.17)

gives Kdcb

a = 0. Thus we have

THEOREM 9.1. The almost complex structure] induced above in the tangent

bundle of an almost contact space M is nearly Kaehlerian if and only if the

base space M is locally Euclidean.

Next, we investigate the case where the induced almost complex structure

of the tangent bundle of an almost contact manifold is almost Kaehlerian. The

condition VjJih+ViJhj+vJμ — ® splits essentially into the three following

equations:

(9.20) Vcφba + Fbφac + Vaφcb - 2{LJη-eηa + LbSη-eηc + LJή-eηb) = 0,

(9.21) ( Fcηb- Vbηc)ή-a + ( Γcη,)ηb - (* Fbη,)ηc + LJφ-e-a

- Lce-aφb* - Lb*άφec + LM$j + **V-aφcb = 0,
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(9.22) * Feφsa + (** r,ηe)ηB - (** Vbηc)r\-α - L/bηerjs + Lceaξ<ηt = 0,

by use of (8.11) and (8.12), the equations (9.21) and (9.22) reduce to

(9.23) (V c Ά h - Γbηc)ήs + (* Fcηs)ηb - (* Fbηs)ηc + 2Lcb3φB* = 0

and

(9.24)

Transvection of (9.23) with ξ" implies Fαηc= Vcηα. The remainder of

(9.23) is equivalent to

(Knb)r\c - {Vcηb)nα + Kαcedφb

dye = 0,

by use of (5.9) and (8.9). Separating the terms containing ye or not, we have

Fbηα = 0 and Kdcb

eφe

α = 0. By the same argument of the Theorem 9.1, we have

the following

THEOREM 9.2. The almost complex structure J induced above in the tangent

bundle of an almost contact space M is almost Kaehlerian if and only if the

base space M is locally Euclidean.
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