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1. Introduction

Consider the initial value problem

(11) y, =f(x’ y)s )"(xo) = Yo>

where the function f(x, y) is assumed to be sufficiently smooth. Let y(x) be the
solution of (1.1), let

(1.2) X, =Xxo+th (t>0, h>0)

and denote by y, an approximation of y(x,), where h is a stepsize.
We consider block one-step methods of the form

(1.3) Ve = Yo+ h X%y puk;

that provide y, for any values of ¢, where

(1.4) ky = f(xo, Yo),

(1.5) k; = f(xo+a;h, yo+h X izl bk, (i=2,3,..., m),
(1.6) a; =Xkt by, a;#0 (i=2,3,...,m),

a; and b;; (j=1,2,...,i—1;i=2, 3,..., m) are constants and p,, (k=1, 2,..., m)
are functions of t. Gear [1] has shown that for m=3, 4, 6 there exists a method
(1.3) of order 2, 3, 4 respectively and that m must not be less than nine to obtain
a method of order 5.

Let a be a specified value of ¢. Then in our previous paper [3] we have
shown that for m=3, 4, 6, 9 there exists a method (1.3) which is of order 2, 3, 4, 5
respectively for t#a and is of order 3, 4, 5, 6 for t=a respectively.

On the basis of one-step methods of order p

1.7) yi=Yo+ hZipuki,
Horn [2] has proposed scaled one-step methods

(1.8) Ve = Yo + h 282 puk;
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that provide y, for any values of t (¢# 1) with r additional derivative evaluations,
where k; (i=1, 2,..., q+r) satisfy (1.4), (1.5) and (1.6) with m replaced by g+r.
Using Fehlberg’s (4)5 formula with g=6, she has constructed a method (1.8)
of order 4 with r=1 and that of order 5 with r=5. A scaled one-step method
can be considered as a block one-step method (1.3) which is of order p for t=1
at the g-th stage, and it is well known that for p=2, 3, 4, 5 the minimum of ¢
is 2, 3, 4, 6 respectively. Hence we require that the methods (1.7) and (1.8) are
of the same order p and raise the question whether there exists or not a scaled
one-step method (1.8) of order p with r=m —q for these values of q.
Let

(1.9) e=hX{iqk;.

Then it will be shown that for g=2, 3, 4, 6 and r=0, 1, 2, 3 there exist a method
(1.7) and a method (1.8) for which p=2, 3, 4, 5 respectively, that for s=0, 0, 1, 1
there exists a formula (1.9) such that y, + e is a method of order p—1 respectively,
and that the minimum of such ris 0, 1, 2 for (p, q)=(2, 2), (3, 3), (4, 4) respectively.
The quantity e can be used to control the stepsize. Finally numerical examples

are presented.

2. Preliminaries

Let
Q1D ¢ =Ybab,, dy=3Xihab;, e =XiZbalb; (i=3,4,..),
22) Li=3XiZkeiby, my=3YiZhdb;, g,= XiZhaic;b; (j=4,5,..).
Let D be the differential operator defined by

9 )
2.3) D= go+kigs

and put
(24)  DIf(xp, yo) = T/, DIf(xo, y0) =8/ (j=1,2,.),
(Df)*(x0, yo) = P, (Dfy)*(xo, yo) = @, Df,\(xo, yo) = R,
Fxo0, o) = fys fy(X0, Yo) = £,y
Then y, can be expanded into power series in h as follows:
(2.5) y.=yo+ hAk; + h?A, T+ (h32Y)(A3T*+2A4,f,T) + (h*/3!)(B, T3
+6B,TS+3B;f,T>+6B,f2T) + (h®/4")(C,T*+12C,TS?
+12C3T?S+12C, f, P+4Csf, T3+ 12C¢ f2T?+24C, f3T
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+24C4 f,TS) + (h/5!) (D, T5+20D,TS*+ 30D, T2S%+ 20D, TS
+60Ds ,, TT? +60D¢PR + 120D, TQ + 60Dy £, f,,P+ 60D f, TS
+60D;0f,T2S+120D,  f2TS + 5D, f,T4+20D, s f2T3+ 60D,  f3T2
+120D,5£4T) + O(h7),
where
(26) Ay =2 P A= 2T aiDs,
(27 As;=Xmyaipy, By =Xmaips Cy= XI,atp
D, = 37, aipy,
(2.8)  Ay=2XTscps, By =XTsacipy, By = XT3dips,
C, = Xrsafepy, Cs=Xrsadpy,, Ci= XTscipy,
Cs=Xrsepy, Dy =Xlsalcpy, Diy= XTsaidpy,
Dy = ¥Tsaepy, Ds=2Tscdipy, Do = XTzaicipy
29) By=3Xmilipy, Co=Xrampy, C;=3Xrs(XiZh;bi)py,
Cs = X1a(@li+g)ps, D7 = XTsagipu,
(210) Dg = X71s Qeli+ X525 c3bidpus Do = X alatli+ X5 aje;bipi,
Do = XTs(am;+ X2y a;d;b;j)p;,,
Dy, = ¥s [Xizh(aid;+a;li+9)bi1pu s
Dy, = Y3 (Xihathipis Dis = s (i ejbij)pirs
D= Yrs(XiZimib;)py, Dys= Xre 2% (Zizh bbb s -
Put
QA1) Ay=A, —t, Ay=A, — 222, Ay = Ay — 133, Ay = A, — 136,
(212) B, =B, — t4(4u) (i=1,2,3,4), C,=C;—15/(50) (j=1,2,...,8),
Dy, = D, — 15/(6w) (k=1,2,...,15),
where

(2.13)

=
Il

i (i=1,2,3), u,=6, v
v, =24, vg = 24/T.

i=i (I=1929 3,4)9 vS=4’ 1)6=12,

Q.14) w,=i (i=1,2,3,4), ws=6 wg=4, w,=8, wg=60/13,
we = 15/4, wyo =203, wyy; =10, wi, =5 w3 =20, w =60,
wys = 120.



116 Hisayoshi SHINTANI

Then we have

(2.15)  y, — p(x) = hAyky + h2A5,T + (h3)2) (A3, T2+ 2A4,f,T) +-- .
Similarly we have

(2.16) e = hAk, + h?A,T + (h32)(A;T?+24,f,T) +---,

where A,=3%5q;, A,=Y "35a,q;, A;=Y %5 a?q; and so on.
If we impose the condition

2.17) P2:=0, ¢;=a?2, d;=a}/3 (i=3,4,..),
then we have
(2.18) 244 = As,, 2B, , =3B;,=B,,, 2C,, =3C;, =4C,, =Cy,,
2D,, = 3D3, = 6Ds, = 4D¢, = Dy,
(2.19) 3a, = 2a,,
(2.20) a3b;; + 3% ihalaj—ay)b;; = a¥(a;—az) (i=4,5,...).
Put
(221) Ly=a;[li=2(ai—a), My =a;Tli=3(@a;—a) (i>)),
222) X,=a,+a3, Y =a,a;, U, =a,+X,, Vi,=a,X,+ Y,
W, =a,Y;,
X=as+ay, Y=a3a,, U=as+X, V=asX+Y, W=asY,
Uy=a¢+ U, Vo=asdU+V, Wy=asV+ W, X,=asW,
(2.23) Q1) =312 —4X,t + 6Y,, Q,(t) = 1213 — 15U 1> + 20Vt — 30W,,
Q5() = 312 — 5X,t + 10Y,, Q,(t) = 3t2 — 4X;t + 8Y,,
Ri(t) = 3t — 4Xt + 6Y, R,(t) = 1263 — 15U¢? + 20Vt — 30W,
R5(2) = 312 — 5Xt + 10Y, R (1) = 10t* — 12U,13 + 15V,12 — 20W,t
+ 30X,,
(224) Q;=0Qi1), Ri=R(1) (i=1,23,4),
(2.25) 60,(t) = t3(2t—3a,), 120,(t) = 12Q(1), 24v4(t) = 3(3t—4a;),
120,4(2) = t3(t—2a,),
(2.26) Py = XiZhe1 Mpuby; (i2k+2), Qu = Xizhi2 Puby; (i2k+3),
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(227) Py =YW MuE; (i25), Py = XS M,F; (iz6),
Pis =Y ik MG, (i27), P = X2ty M;H; (i28),
Py =34 MJ; (i29).
3. Construction of the methods
We shall show the following
THEOREM. For q=2,3,4, 6 and r=0, 1, 2, 3 there exist a method (1.7) and
a method (1.8) for which p=2, 3, 4, 5 respectively, and for s=0, 0, 1, 1 there exists
a formula (1.9) such that e=O0(hP) respectively. The minimum of such r is
0, 1, 2 for (p, 9)=(2, 2), (3, 3), (4, 4) respectively.
3.1. Case ¢g=2
The choice r=s=0 and 4,,=A4,,=A4, =0 yields

3.1) Pie+ D=1, 2a,p, =13

3.2) Az = —v,(t), 64, = — 13,

(3.3) 41 = — 43 A, =ayq,, Ay =alq,, A, =0
3.2. Case ¢=3
Choosing r=1 and 4;,=0 (i=1, 2, 3, 4), we have

(3.4 bape=1t 2%¥toap,=1, 6Xiicp, =1,

(3.5) 23 Lizpi = v,(2).

Put n;=L;,,—(2-3a,)c; (i=3,4).
The choice t=1 and p,, =0 yields

(3.6) c3;#0, ny=0,
so that from (3.4) and (3.5) we have
3.7 2n,p4, = at¥(t—1).
Hence p,,#0 for t#1, so that r>1. If
(3.8 ng #0,
then p;, (i=1, 2, 3, 4) are determined from (3.4) and (3.7) for any ¢t and we have
(3.9 By, = La3par — 02(1), By = (as—az)pa — v3(1),
By, = L3ybaspar — va(t), Bay = L3zbsspa, — 1424
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Choosing s=0 and A, =A,=0, we have
(3.10) 14:=0, X} ,a4q; =0,
3.11) Ay =Q-3a)u, A, =u, B, =@2-3a,)X,u, B, =aju,
B, =a,u, B,=0,
where u=c3q3#0.

3.3. Case g=4
The choice r=2 and A,,=B,=0 (i=1, 2, 3, 4) yields
(3.12) Yaipe=1t 2Xiaap. =1 6X{;cp =1,
24304 lipy = 1%,
(3.13) 203 Liapic = 04(),  X0-4 Lizpi = v2(0),
Yea(@i—az)eipy = v3(1), XP-q (X523 Linbipy = va(1).
Put
n; =L, —2(1—-2a,)c; (i=3,4,5,6).

In order that (3.12) and (3.13) have a solution for t=1 and p;, =0 (j=35, 6),
the following conditions must be satisfied:

(3.14) C3bss #0, a, =1, az+#1,
(3.15) L3, = 2(1—2a,)c;,

(3.16) (as,—as)cy = (3—4aj)c3b,;,
(3.17) L,y =2Q,¢3b,5.

Since I,=c;b,3 and n,=4a,l,, it follows that [,#0 and n,#0.
Put

Z=X1—2Y1, u,=z;:in1b” (i=5, 6).

Then (3.13) can be rewritten as follows:

(3.18) 338 sMp, = Z83(t—1),
(3.19) 6 3 %-s Nip;, = ast3(t—1),
(3.20) 6 2 0-s u;py = at¥(t—1),

(3.21) 6 3 9-s Pipy = a,*(1—1)(3—1),
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where

M; = a;L;; — 20,41 — 2a3(1—-2a,)c; (i=5, 6),

N; =(a;—asz)c; — 3—4ay)l;, P;=n;— 4a,l; (i=5,06).
The choice
3.22) a,M; =2Zu;, a,N;=asu; (i=5,6)

reduces (3.18) and (3.19) to constant multiples of (3.20). From (3.22) it follows
that

(3.23) 2q;L;l; = aya;Liy — 2(Za;— Y)u; (i=5,6),
2Lic; = 3—4as)a;L;; — 6(1 —2a3)u; (i=5,6),

where

(3.24) L,=aQ, —2Y, (i=5,6).

Hence if

(3.25) L,#0 (i=5,6),

then ¢; and [; (i=S5, 6) are determined from (3.23) for any given u; (i=35, 6) and
a; (j=2,3,...,6).
Suppose ps,=0 for t#0, 1, 3. Then from (3.20) and (3.21) we have tPs=
(3—1tus+#0, so that P5 and us cannot be constants. Hence we must have r=2.
Eliminating ps, from (3.21), we obtain

(3.26) 6Mpg, = t2(t—1)a,[(3—tus—1tPs],
where

(3.27) M = usPgs — ugPs.

If

(3.28) M #0,

then pg, is determined from (3.26) for any ¢ and if
3.29) bss #0,

then ps, is determined from (3.20), because us=nybs,. The coefficients p;,
(i=1, 2, 3, 4) are obtained from (3.12) and we have

(3.30) Cy = X0-sLyypy — wi(1), Cy = 365 S;pi — wi(1),
Cs = X0s(a;—a)Tip, — wi(t), (1—a3)Cq = X85 U;pi — wa(b),



120 Hisayoshi SHINTANI

Cse = X85 Vibi — ws(t), Co = 20=5 (X2 Tjbij)pi — we(D),
Cy = Zi=s (X5zh Libip)py — 1°/120,  Cg = T0=s Wipy — ws(1),
where
(3.31) 60w, (1) = £2Q,(1), 120w,(t) = (12— 15X +20Y),
120w,(1) = P[812—5(3a, +2a,)t +20a3a,], 60ws(t) = BO4(1),
120w,(8) = 2(1—a,)2(32— 10¢5) — 120(cq — c3)05(1),
120we(t) = 1421 —5a,), 120wy(t) = (715X ),
(3.32) S;= Msc; — a,(3—4aj)l;, Vi= X iZ4 Lj3b;,
Ui = (1—a3)(c;—c3) — (a;—a3)(ca—c3),
W= (a;—a)li + Xiz5(a;—az)cby; (i=4,5),
T; = Yizd Loby (j=4,5,6).
The choice s=1 and 4;=0 (i=1, 2, 3, 4) yields
(333) ¥-14:=0, ¥¥ya4,=0, Xi;3649;=0, X{-4nq; =0,
(3.34) B, =20,w + Lsyqs, B, = (3—4asy)w + (as—as)csqs,
By =2(1-2a,)w + Tsqs, B,=w + lsqs,
(335 C,=2U,Q,w + (a,+as+as)Lssqs,
C, = 3—4a3)Xw + (as+as)(as—as)csqs,
Cs=Q2—a,—4Y)w + Y4 ,(asa;—a,as)absqs,
(1—a3)Cy = B—4a3)(ca—c3)w + (1—ajz)(cs—c3)esqs
Cs =2(1-2a,)X,w + X4.3(a;+a,)L;,bs,qs,

Cs=aw+ X43d;bsjqs, C;=14bseqs, Cg=Yw+ (asls+95)qs,
where w=c3b,3q,. Hence if

(3.36) ns # 0,

then g,#0 and g; (j=1, 2, 3) are determined from (3.33) for any g5 #0.
For instance the choice

(337 a,=a3=1/2, a,=1, as=1/4, ac=3/4, by, =1/2,
bss = bes =1/32, bes =0, gs=1/3
yields
(3.38) by, =1/2, b3y =by =b,, =0, bs, =7/32, bs, = — bsy =15/32,
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be, = 7/32, be, = 11/32, bez = 5/32,
(3.39) 6p,, = H(—12634+24:2—171+6), 24p,, = r3(7T12+32t—31),
D3t = P2, Opa = t3 (4128t +5),
3ps, = 8t2(t—1)(2t—1), 3pe = 8t3(t—1),
(3.40) p11 = pa1 =1/6, pry =p31 =1/3, ps; =P =0,
Cll = — C51 = 1/120, C21 = C61 = — C31 = — C71 = 1/240,
C,, = 1/80, Cg = — 1/60,
(341) qr=q,=q:=—1/8, q,=1/24,
B, = —2B, =3B, =6B, =1/64, C, =2C, =17/256, C, = 3/1024,
C,=2C,=4C, = — 1192, C5=4Cq = 1/128.

3.4. Case ¢g=6

We impose the condition (2.17) and assume that a; (i=2, 3,...,9) are all
distinct. Choosing r=3, A4,=B,=0 (i=1,2,3,4) and C;;=0 (j=1, 2,..., 8),
we have
(342) pu+ Xiapu=1t 2X}zaipy =1 Xi-aMpup,=ri1),

(3.43) X5 Muupy = 15(1), X 3=6 Mispy = r5(1),

(3.44) 3 2-5 Piapie = ra(t),  Xi=6 Piabie = 15(1), 2 3=6 QisPie = 16(1),
2i=6(a;—as)Pip;, = ry(1),

where

(3.45) 12r,(t) = 3(3t—4aj), 12r,(t) = 2R(1), 60r;(t) = t2R,(1),
12r,(t) = t3(t —2a,), 60rs(f) = t3R5(1), 20rq(t) = t*(2t—5a;),
120r,(t) = t3[8t2—5(3a3 +2as)t+20a;as] .

Making use of (2.26), (2.27) and (3.43) and eliminating ps, and pg, from (3.44),
we have

(3.46) 237 (X526 MyF py = rs(t) — Fsra(1),
(3.47) 77 (X IZZE;P;j)py = re(t) — E4rs(1),
(3.48) P71 (XL Z;M;p)py = r4(t) — Zsra(2),
(3.49) 2 0=7 (T2 ME))py = ra(t) — Eury(t) — Esry(t),

where
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(3.50) Z,=E;_; +(a;+,—as)E; (j=5,6,..,9).
The choice t=1 and p;; =0 (j=7, 8, 9) yields

(3.51) 5(1—2a3) = 5SRyE, + R,E;,

(3.52) R; = R,Fs,

(3.53) 2 — Sa; = 2R;E,,

(3.54) 8 — 15a; + 10a¢(2a3;—1) = 2(12—15X+20Y—-5a4R,)E, .

Elimination of E, from (3.53) and (3.54) leads to

(ag—1)[2a4(5a3—4a3+1)—a3] = 0.

Hence we choose

(3.55) ag =1,

so that (3.54) coincides with (3.53). If

(3.56) R, #0, R;#0,

then E,, E5 and Fs are determined from (3.53), (3.51) and (3.52) for any given
a; (j=3,4,5,6); py (i=1,2,3,...,6) are determined from (3.42) and (3.43);
b;; (j=4,5,...,i—1; i=5, 6) are obtained from (3.26) and (3.27); b;; (i=4, 5, 6)
are determined from (2.20); b;, (j=3,4,..., 6) are obtained from (2.17); b,
(i=2, 3,..., 6) are determined from (1.6).

We impose the condition

(3.57) wy DIZEF My + wy 3 IZ2E P + wy I8 ZM;

so that (3.47) can be expressed as a linear combination of (3.46), (3.48) and (3.49)
for any ¢t. Then by (3.46)—(3.49) we have

(3.58) 3(1—4Fs)w, + (1-3E)w, + 4(1-3Z5)w3 — 12Esw, =0,
2BUFs—X)w, + 2XE,—a3)w, + (6UZs—3a;—2as)w;
+ 2(1-3E,+3UEs)w, =0,
(Y=-2VFs)w, — YE,w, + (azas—2VZs)w; — (a3—2XE,+2VE5)w, = 0,
WFsw, + WZsw; + (WFs—YE )w, = 0.
Using (3.51), (3.52) and (3.53) and setting

(3.59) ws = azas(as—a,),
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we have from (3.58)

(3.60) w, = — (azas+t,E,+2t,E3), w, = — (azas+2t,E,),
w3 = aias + 2a4(a,—2a3)E,,

where

(3.61) t, =2a4(as+as) — Saszas, t, = as(4a,—5a;) — 3as(a,—as).

Expressing P, (k=5,6,...,j—2;j=7,8,9) in terms of M;; (j=6,7,...,i—1;
i=7,8,9), substituting them into (3.37) and equating the coefficients of M;; to
zero, we have

(3.62) wiFg + wyEsGg + wiZg + wEg =0,

wF; + wy(EsG,+EgH;) + wyZ; + wE; =0,

wiFg + Wy(EsGg+EgHg+E;Jg) + wyZg + wyEg = 0.
Hence if
(3.63) ww,EsEg # 0,

then F¢, G, and Hg are determined for any given a; (j=3, 4, 5, 6), Gg, H,, F,
Fg, Gg, Jg, E;and Z; (i=6, 7, 8).

Put
(3-64) Ei4 =fiEi+5’ Fiy 5= hiEi+5 (i=1, 2, 3),
(3.65) zv=fH—fitag—a; zy=f3—f,+as—as.

Then the system of linear equations (3.46), (3.48) and (3.49) has a solution p;,
(i=7, 8, 9) if and only if

(3.66) fof3Eg[zy(hy—hy)—z,(hy—hy)] # 0.

The coefficients p;, (i=1, 3, 4, 5, 6) are determined from (3.42) and (3.43); b;;
(j=1,2,...,i—1;i=17,8,9) are obtained from (2.26), (2.27), (2.20), (2.17) and
(1.6).

The choice s=1, 4;=B,=0 (i=1, 2, 3, 4) and ¢,=0 yields
(3.67) 4+ Xl=34i=0, ¥l;aq,=0, 217=4Mi3qi>= 0,
YlsMigi=0, Yo (XiZiME)q; =0,
(3.68) C;=3XtoMisqi, Cs=3Cs=3]-6Pudi,
Cr=0Cs/2 — 2726 Qi3qi, 2C5 = C; + C5 — 2 X6 (a;—as)Pi3q;.
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For instance, setting
(3.69) a;=1/4, a,=1/2, as=3/4, as=1, a,=3/8, ag=15/8,
ag =118, G¢=0, Ec=—16/7, H, =0, E,=F,=32/7,
Fg=Gg=Jg=0, q,=0, q;,=2/9,
we have
(3.70) a, = by, =1/6, by, =1/16, by, = 3/16, by, =1/4, b,, = — 3/4,
bys =1, bsy =3/16, bs, = bsy =0, bs, =9/16, be, = — 4/7,
be, = 3/7, bes = — bgy = 12/7, bgs = 8/7, b,y = 111/1792,
b,, = — 729/3584, b,y = 621/896, b,, = — 909/3584, b,s = 69/896,
b,e =0, bgy =279/896, bg, = — 615/896, by, = 327/448,
bg, = 249/896, bgs = 1/64, bge = — 3/128, bg, =0,
by, = — 31/1536, by, = 381/512, bgy = — 53/64, by, = 151/512,
bys = 1/192, bge = 49/512, by, =7/12, beg =0,
(3.71) 945p,, = 128t%(t—1) (108412 — 14491 +468) ,
45pg, = 25612(t—1) (8812 —119t+ 39),
1215p,, = 128t%(t— 1) (17241> — 24571 + 828),
45(128pg, + 3p7:— Sps: +35pq,) = 6412(19213 — 36012 + 220t — 45),
3(16ps,+64ps,— p7,+ 5pg.+35po,) = 32t2(2t—1)2,
3(8p4+24ps, +48pe,+3p5,.+ 15pg, +35p,,) = 8t%(8t—13),
2ps, + 4py + 6ps, + 8pg, + 3pq, + Spsy + Tpo, = 412,
Put Xi3Pu=1,
(3.72) p11 =Per =7/90, Py =0, p3; = psy = 16/45, ps =2/15,
Dyy=Dy;,=0, Dyy=2D,,=Dy;;=—Dy3, =— 1/960,
Dg, =Dy, =— D5, =—1/5760, Do, = — Dy, = 1/2880,
(3.73) g, =11/576, q;= —17/48, q, = — 3/32, qs= — 1/144,
96 = 1/192,
(3.74) C, =1/1024, C5=3Cq = 31/14336, C, = — 31/57344,
Cy = 121/114688,
D, = 35/16384, D, = 757/516096, D, = 87/32768,
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Dy = 921/458752, D, = 1665/917504, D,,= 533/49152,
D,, = 1/4096, D,, =93/28672, D,, = 31/28672,
D,y = 31/172032, D,s = 93/229376.

4. Numerical examples

The following six problems are solved by the method (3.37)-(3.39) and the
method (3.69)-(3.71) with h=0.5.

Problem 1. y'=y, y(0)=1.
Problem 2. y'=2xy, y0)=1.
Problem 3. y'=—y2, y(0)=1.
Problem 4. y'=1-—y2,  y»(0)=0.
Problem 5. y'=—5y, y(0)=1.
Problem 6. y'=y—2x/y, y(0)=1.

The errors e,= y(x,)—y, (t=1/2, 1) are listed in Table 1.

For h=0.5 and ¢t=0.2 (0.2) 0.8 the same problems are solved by Horn’s
method of order 4 and the method (3.37)~(3.39) ,which are denoted as H and S
respectively. The errors are listed in Table 2.

In the forthcoming paper [4] it will be shown that there exist methods with
(p, 9)=(4, 4) and (5, 6) that can provide y, for any >0 with one additional
evaluation of f. For such methods it is not preferable to use the formulas
proposed in this paper if the number of interpolation points is less than r.

Table 1.
Err order 4 order 5
Prob €2 ey €12 ey
1 8.99E-5 2.84E-4 —1.27E-6 —1.06E-6
2 1.01E4 1.71E-4 3.10E-5 —4.88E-5
3 8.18E-4 —9.97E-6 —1.77E-5 —1.70E-5
4 1.68E—4 2.96E-4 8.60E-7 1.52E-5
5 —2.75E-1 —5.66E-1 —1.41E-1 —1.34E-1

6 —35.18E-1 —1.29E-3 —2.00E-5 —2.05E-5
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Table 2.
t 0.2 0.4
Prob H S H S
1 3.35E-5 —8.42E-6 8.86F-6 —5.28FE-5
2 7.36E-5 7.07E-5 9.14E-5 1.12E-4
3 —3.22E4 —3.35E4 —4.72E-4 —7.30E-4
4 3.43E-5 —5.71E-5 4.78E-5 —1.47E-4
5 —4.75E-1 2.63E-2 —8.37E-1 1.63E-1
6 1.13E-4 6.24FE-5 1.79E-4 2.60E-4
0.6 0.8
H N H S
1.41E-5 —1.34E-4 1.31E-5 —2.25E-4
2.37E-5 8.20E-5 3.17E-5 4.75E-5
—4.07E-5 —8.21E-4 6.84FE-4 —5.81E4
2.19E-5 —1.67E-4 —6.34E-6 —1.40E4
—3.83E-1 4.02E-1 4.04E-1 6.15F-1
1.19E4 6.64E-4 5.53E-5 1.16E-3
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