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1. Introduction

In this paper all measurable spaces are assumed to be standard. Let
(Q, #, P) be a probability space and let o be a P-preserving transformation on Q.
For measurable spaces (S, #s) and (M, %,,) consider a &g x &), | By-measurable
map f: (s, x)—f,x and a stationary sequence of S-valued random variables {£,}®,
which are defined as &,=¢&-6""! (n=1) for some S-valued random variable &.
A random dynamical system X =({X,}%,, f, £) with state space (M, %,,) and
parameter space (S, %s) is defined as a sequence of randomly iterated trans-
formations:

{ X, (w)x =f.§,.(m)Xn—1(w)x (nz1)
(1.1)

Xo(w)x = xe M.

We often write X ={X,}2, instead of X =({X,}%,, f, £). The ergodic properties
of such a random dynamical systems are studied in [1], [3], [4], [5], [6], [7],
and [9]. In the present paper we assume that the random variables £,’s are
mutually independent and they generate &, i.e., F=%(&,, &,,...). We have to
notice that there is no work, except [7], which is concerned with the case when
&,’s are not independent as far as we know. Under the above assumption, we
shall show the deterministic version lemmas in Section 3, and we shall give their
applications to the study of asymptotic properties of random dynamical systems.
Precisely, as it is known in [4], [5] and [9], the random orbit X ,={X ,(w)x}%,
becomes a Markov process starting from xe M and it is closely related to the
skew product transformation Ty on M x Q which is defined by

(1.2 Tx(x, ) = (X{(w)x, cw) for (x, w)eM x Q.

For example, a probability measure 4 on M is X-invariant if and only if the
product measure u X P is Ty-invariant (see Lemma 3.1). One of the deterministic
version lemmas which we will prove asserts that if a function ®e L'(ux P)
satisfies @oTy=AP for some A€ C, then there is a function ¢ e L'(u) such that
®=¢ uxP-ae. From this lemma we can obtain some interesting phenomena
which reflect the difference between the ergodic behaviors of a random
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dynamical system and those of a single transformation (see Section 4).

In Section 2, we shall give some definitions and facts which will be used
later. In Section 3, we shall prove the deterministic version lemmas and in the
final section, we shall give three applications of them. The first application is
a generalization of the result in [9], the second one is concerned with the asymp-
totic properties of random rotations on a circle, and the third one is concerned
with the characteristic exponents of random products of matrices.

The author would like to express his thanks to Professors H. Totoki and
H. Ishitani for their encouragements.

2. Preliminaries

First of all we will define some concepts. Let (M, #) be a standard measur-
able space and let T be a measurable transformation on M. Let Y,={Y,(w)x}%,
be a time homogeneous Markov process on a probability space (Q, &, P) with
state space M and starting from xe M. We denote by g(v, A) (yeM, Ae %)
the transition probabilities of Y,. In what follows the terminology Markov
process is used for the family Y={Y,},.,. The Markov operator 2 associated
with Yis defined by

@.1) (26) (x) =f¢(y)q(x, dy)

for any bounded £-measurable function ¢. The following definitions are
well-known but we summarize them for convenience.

DEerINITION 2.1 (c.f. [11]). Let T be a transformation and Y be a Markov
process as above.

(T.1) A probability measure u is called T-invariant if u(A)=u(T-'A) for
any Ae #.

(T.2) A T-invariant measure yu is called T-ergodic if T-'A= A implies u(4)=
Oor1for Ae &.

(T.3) A T-invariant measure p is called T-weakly mixing if there exists

a subset J of NV such that #(J n {1, 2,..., n})/n—0 (n—o0) and

[ @ omx) — f O [ W) (nsc0), T

for any ¢, Y € L2(p).
(T.4) A T-invariant measure u is called T-strongly mixing if

f(qsoT") W () (dx) — f ¢(X)u(dX)f¢(X)ﬂ(dX) (n—c0)

for any ¢, Y € L2(u).
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(T.5) A T-invariant measure u is called T-exact if N\&o T™"%# is trivial
with respect to u.
(Y.1) A probability measure u is called Y-invariant if

jq(x, Au(dx) = w(A) forany Ae 4.

(Y.2) A Y-invariant measure y is called Y-ergodic if u(A)>0 and g(x, 4)=1
u-a.e. xe A imply u(A)=1, for A€ &.

(Y.3) A Y-invariant measure u is called Y-weakly mixing if there exists a
subset J of N such that #(J n {1, 2,..., n})/n—>0 (n— ) and

[corpromeantan) — [ seoudx) [ weoutdn) (nse0), ne s

for any ¢, ¥ € L2(u).
(Y.4) A Y-invariant measure u is called Y-strongly mixing if

[ o) cmmian — [#eoutan [peoux) n->e0)

for any ¢, Y € L%(u).
(Y.5) A Y-invariant measure y is called Y-uniformly mixing if

[ 1@rex - [ $u@nIun) — 0 (1)

for any ¢ € L'(u), where 2’ denotes the dual operator of 2.

REMARK 2.1. The operator 2’ is defined as the dual operator of 2 in L2(u).
But in this case it is uniquely extended to the operator on L*(x). This is the
reason why we call 2’ the dual operator of 2 without designating its domain.

If u is a T-invariant measure, we often call the triple (M, i, T) a dynamical
system. Then it is clear that the operator Uy: ¢—¢poT is an isometry on L2(u).
Next we define:

DEFINITION 2.2 ([6]). Let T be a u-nonsingular transformation. We define
an operator ¥ =%r ,: L'(u)—L'(u) by

2.2) .z’¢=7dﬁ ddu  for ¢eLi(u),

T-1(%)
and we call it the Perron-Frobenius operator of T with respect to .

REMARK 2.2. In the case when u is T-invariant, % is just the dual operator
of Uy.

If a Markov process Y has an invariant measure u we can consider a dynamical
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system on Y=M XM X :--={x=(xg, X1,...): X, € M for any k=0} as follows:
We induce a probability measure P, on X which is uniquely determined by

@3 Plgx Ay xAD = [ udxo | alxondr [ a1 dx)

for any n=0 and A,, A,,..., A,€ B where [Agx A; X ---xA,]={x€>; x, € A
for 0£k<n}. Then it is easy to see that the shift transformation t: x—tx with
(tx);=(x);+, preserves P,, that is, P, is T-invariant.

DEFINITION 2.3.  The shift dynamical system (3, P,, 1) is called the Markov
transformation induced by a Markov process Y and its invariant measure u.

The following propositions will be used frequently in this paper. The
proofs are found in [6, Proposition 2.2 and Proposition 3.2]. So we omit them.

PROPOSITION 2.1.  Let (M, u, T) be a dynamical system and ¥ =%r , be
the Perron-Frobenius operator of T with respect to p. Then we have

(2.4) El¢|T"®] = Ut £7¢ = (L d)T"

for any ¢ € L'(n), where E,[¢ | T~"%] denotes the conditional expectation of ¢
given T~"% with respect to p.

PROPOSITION 2.2. We use the same notation as in Proposition 2.1. u is
T-exact if and only if

fl(z"«zs)(x) - [#em@niudx) — 0 (n->o0)

for any ¢ € L'(p).

PROPOSITION 2.3.  Assume that p is T-weakly mixing. Then, u is T-exact
if and only if { L P}, is relatively compact in L'(u) for any ¢ € L'(p).

PROPOSITION 2.4, Assume that p is T-invariant. Then for ¢ € L'(u) and
A€ C, the following are equivalent:

(1) Urp=71é.
Q) A% ,.b=6, and |A|=1.

3. Deterministic version lemmas

As we mentioned in Section 1, we consider a random dynamical system
X=({X,}20, [, &) on a probability space (2, &, P) with state space (M, By)
and parameter space (S, #s). Recall that we assume that S-valued random
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variables &,’s are independent and & =%(¢,, &,,...). Under the assumption,
the random orbit X, ={X (w)x}5-, (x € M) becomes a Markov process starting
from x € M and with transition probability

G.1) a(x, A = [ LX (@0P(de)

= f IA(fé(w)x)P(dw) .

Let Ty: M x Q- M x Q; (x, w)—(X(w)x, cw) be the skew product transformation
induced by the random dynamical system X.
First we prove:

LEmMMA 3.1. Let p be a probability measure on the state space (M, #,,) of
X. Then, uis X-invariant if and only if ux P is Ty-invariant.

ProOF. Write T for Tyx. Assume that u is X-invariant. Let A€ %, and
I'e #. Then we have

(ux YT A D) = [ [Laur(T(x, () P(de)
- [ [ X @91, @ niax)Pde)
= [ uax [ P (X @001 -11(@)
= [ uanpeD) [ P (X (@)
since 01T € F(&,, &3,...) and I (X,(w)x) is #(&,)-measurable. Thus we have
(ux P)(T~HA X)) = P(T) [ ud) [ 10X @)0)Pldo)

= P(D) [ u(dxa(, 4)

= u(A)P(I)

from the assumption. Therefore ux P is T-invariant. Obviously if ux P is
T-invariant, we have

HA) = (uxP)(AxQ) = (ux P)(T"H(Ax Q)

- [ [Lax s@wu@npa)

= [latx, ducax).
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Thus p is X-invariant.

From now on, unless otherwise stated X denotes a random dynamical system,
T denotes the skew product transformation Ty induced by X.

LeMMA 3.2. Assume that T is nonsingular with respect to a product measure
uxP. & denotes the Perron-Frobenius operator of T with respect to pux P.
k

—————————
For a function ¢ € L'(1) and for a bounded Bsx Bgx --- x Bs-measurable func-
tion y, put

(32 (x, @) = p(xXW(&1(@),..., E(w)).

Then £"® has a version in L' (u) for nzk. In particular, & | i, =2 where
2’ is the dual operator of the Markov operator 2 associated with X.

PROOF. Let Ac®, and I'e #. Then we have
| (@D 0)(ux PYdx, w)
= [ Loer (T, @)0(x, @) (ux P d(x, @)
= [ | aanPE (X @)1, (DS CNE @), &)
= [ W09 [ P - (X @PWE@),., &)

=PI )fu(dX)cb(X)_[P(dw)I AX (@)XW (&1 (@),..., S(@))

since 67" '€ F (&1 15 Ensas-..) and [ (X (@)XW (& (),..., E(w)) is F(&Ey, &y,
¢,)-measurable if n=k. Therefore we have

|, @D 0)ux P, 0) = wAPT)
where p,(A)= [ p(dx)$(x) | P(dw)I (X (@)xW(& (w),..., E(w)). Tt is easy to see
that u, is a p-absolutely continuous o-additive set function. Thus there exists

a function ¢, eL'(y) such that p,(A4)=[, ¢,(x)u(dx). Therefore we conclude
that (Z"®)(x, w)=¢,(x) ux P-a.e. Next for any A € &F,, we have

[ @) maxn = [(21) 06 uiax
= [(J 141 @»)P (de) Y mta)



Deterministic version lemmas 21

=f Liso(T(x, ©))p(x) (1 x P) (d(x, w))

- [L(H@wx P, o)

~ | 2 ux).

Here we have used the first assertion of the lemma. Thus £¢=2'¢ ux P-a.e.
Now we can give one of the main theorems:

THEOREM 3.1 (A deterministic version lemma for eigen-functions of the
Perron-Frobenius operator). Assume that the skew product transformation T
is nonsingular with respect to a product measure ux P. Let % be the Perron-
Frobenius operator of T with respect to uxP. If a function ®eL'(ux P)
satisfies AL ®=® for some Le C with |A|=1, then there exists a function ¢ €
LY(p) such that ®(x, w)=d(x) ux P-a.e.

Proor. First we show that
3.3) lim,, , infyep1) LY — Dl Li(uxp) =0

for any ¥ e L'(ux P). Since the linear hull of such elements that have the form
as (3.2) is dense in L'(u x P), we can see that for any ¥ € L'(u x P) and for any
£>0, there exists an element ¥, e L!(ux P) such that #"¥, has a version in
L(u) for sufficiently large n. Therefore we have

inf¢ “3"'1’—45”1,1(,“}’)
S| LY =LY |l Liuxpy + infy [ LY, — Dl L1uxp)
<e

for sufficiently large n, since the operator norm of .# on Li(ux P)is 1. Thus we
obtain (3.3).

The theorem is easily proved if we apply (3.3) to &.
From Theorem 3.1, we obtain the following:

COROLLARY 3.1. Under the same assumption as in Theorem 3.1 any
ux P-absolutely continuous T-invariant measure has the form u, x P, where
Uy is a p-absolutely continuous X-invariant measure.

Proor. Let @ be the Radon-Nikodym derivative of a u x P-absolutely
continuous T-invariant measure Q. Then we have ¥®=¢. Therefore @ has
a deterministic version ¢ € L'(u) in virtue of Theorem 3.1. Putting p, =¢u,
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we conclude that Q=p, x P and y, is X-invariant from Lemma 3.1.
The following theorem is also a corollary of Theorem 3.1.

THEOREM 3.2 (A deterministic version lemma for eigenfunctions of Ur).
Assume that u is X-invariant measure. If a function ® e L'(ux P) satisfies
Ur®=DT=AP for some Le C then there exists a function ¢ € L'(u) such that
D(x, w)=¢(x) ux P-a.e. In particular, there is a I'e F with P(I')=1 such
that w eI implies that ¢(fy(,x)=AP(x) p-a.e.

Proor. This is an easy consequence of Proposition 2.4 and Theorem 3.1.
In the rest of this section we give two corollaries of the above theorem.

COROLLARY 3.2 (The random ergodic theorem [4]). Assume that for
each s€ S, u is feinvariant and ¢ € L\(u). Then, there is a I' € & with P(I')=1
such that for any sample wel', (1/n) X124 (X (w)x) converges p-a.e. and in
LY(n). Moreover the limit function has a version in L'(u).

PrROOF. Put &(x, w)=¢(x). Then (1/n) X =8 (X (w)x)=(1/n) X2 (Po
T*)(x, w) converges u x P-a.e. and in L!(u x P) from the Birkhoff ergodic theorem
since ux P is T-invariant. The limit function @* is T-invariant. Therefore it
has a version in L!(u) in virtue of Theorem 3.2.

COROLLARY 3.3. Assume that for each s€ S, p is f-invariant. Then,

(1) P{w; pis fywm)ergodic} >0 implies that ux P is T-ergodic.

(2) P{w; p is fyoy-weakly mixing}>0 implies that pxP is T-weakly
mixing.

PrOOF. (1) Assume that I' € &), x & with (ux P)(I')>0 satisfies T-'I'=T,
i.e., [;oT=1I,. Thenfrom Theorem 3.2, there is a measurable set 4 € &), such that
I(x, w)=1I,x) px P-a.e. and I joX,(w)=1, in LY(u). From the assumption we
have u(4)=1. Therefore (ux P)(I')=1. Hence ux P is T-ergodic.

(2) We use the fact that a dynamical system is weakly mixing if and only if
it is ergodic and it has no eigenvalue except 1. For the proof see [11, p. 48] in
the invertible case and consider the natural extension in general case. Let @oT=
A® for some A€ C. In virtue of Theorem 3.2, there exists an element ¢ in L!(u)
such that @=¢ in L'(ux P) and ¢oX,(w)=A¢ in L' (u) for a.e. w. Therefore 4
has to be 1, from the assumption. Hence p x P is T-weakly mixing.

ReMARK 3.1. In [6] we considered a more general situation than Corollary
3.3 to prove the spectral decomposition of the random iteration of one-dimensional
transformations. Corollary 3.3 asserts that we can expect the weakly mixing
property of T if the family {f,},.s consists of transformations having distinct
spectral types one another.
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4. Applications

In this section we give some applications.

4.1. Ergodic properties of Markov transformations. Let X be a random
dynamical system as in the previous section and let u be an X-invariant measure.
As before we denote by 2 and 2’ the Markov operator and its dual operator
associated with X, respectively. Recall that the Markov transformation (3,
P,, 7) is, the shift dynamical system on Y ={x=(xo, x4,...); X, € M, k=0, 1,...},
where P, is the probability measure satisfying the equation (2.3). The following
theorem is a generalization of the results in [4] and [9].

THEOREM 4.1. In the following, (a), (b) and (c) are equivalent:
(1) (a) uis X-ergodic.
(b) uxPis T-ergodic.
(c) P, is t-ergodic.
(2) (a) upis X-weakly mixing.
(b) uxP is T-weakly mixing.
(c) P, is t-weakly mixing.
(3) (a) pis X-strongly mixing.
(b) uxP is T-strongly mixing.
(c) P, is t-strongly mixing.
(4) (a) pis X-uniformly mixing.
(b) uxPis T-exact.
(c) P, ist-exact.

ProoF. Denote by %, and &, the Perron-Frobenius operators of T and 7
with respect to uxP and P, respectively. Before proving the theorem, we
claim: First, the assertion (c) follows directly from (b), since the dynamical
system (3, P,,7) is a factor of the dynamical system (M xQ, uxP, T).
Precisely, if we define a map n: M x Q-3 by n(x, w)=(x, X,(w)x, X,(w)x,...)
then noeT=7om and n*(ux P)=P,. Secondly, for ¢ € L'(u) define a function ¢
on > by ¢(x)=¢(xe) for xe>. Then (Z)d(x)=(2'¢)(x). In fact, putting
J(x, w)=1,,(x)] 4 (X (w)x)---1 4 (X (@)x) for Ay, Ay,..., A, € By, We have

f oo ) ()(Z,0) (x) P(dx)
=II[onAlx...xAk](tz)Q(z)P,,(dx)

=J‘I[M><onAx x--.xAk](i)Q(i) Pu(dé)
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— [ LXK (@L (X3(0)0) L Xy (@090 (X P) d(x, @)
=[x, 0D W Py, )
— [Jx, @)(£10) () (e x P (d(x, @)
= [, @)(2'9) () (ux Py (. @)
g PURNCOCLE)

since Zr¢ =2'¢ in virtue of Lemma 3.2.

Now we prove the theorem.

(1) Assume (a) and T~ 'I'=T for some I'e By x F with (ux P)I")>0.
Then by Theorem 3.2, there is a measurable set 4€ #,, such that I,=I  in
L'Y(ux P) and I oX,(w)=1, in L'(u) for P-a.e. . Thus

g(x, A) = f (X (@)x)P(dw) = 1,(x) pa.e.

Therefore p(A4)=1 from (a). Hence (ux P)(I')=1. Next we prove (a) under the
assumption that (c) holds. If 21,=1, for some A € %, with u(4)>0, we have
2'I,=1,. In fact, from the definition, we have

fl A(X) (21 ) (X)u(dx) = f(ﬂ DX, (x)p(dx)

— [ Louta)
= (A).

Since 2’ is a positive operator and 2'1=1, (21 ,)(x)=14(x) p-a.e. xe A. Thus
(2'1,)(x)=14(x) p-a.e. On the other hand, 2’ preserves the value of the inte-
gration with respect to u. Therefore (2'1,)(x)=1,(x) p-a.e. By the second
claim we have (&I 4)(x)=1I4(x) P,-a.e. This implies that Iy ,(tx)=14(x)
P,-a.e. in virtue of Proposition 2.4. Hence u(A)=P,([A])=1 from (c). This
completes the proof of (1).

(2) The proof of (2) is quite similar to that of (3), so we omit the proof
of (2).

(3) Assume (a). For any ¥eL?(ux P) which has the form Y(x, w)=
(W (E (w),..., &(w)) as in (3.2) and for any @ e L?(ux P) we have, for any
nxk,
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f O(T"(x, ))¥(x, ©) (1 x P) (d(x, @)
- f B(x, 0) (L1Y)(x, ®) (ux P)(d(x, »))
— [#x, 0) (240 () (ux PY(d(x, )
- f P(dw) j O(x, @) (2')"*x) (X)u(dx)

where y denotes the deterministic version of #%¥ in Lemma 3.2. From the
assumption we have

f P(da) [ @(x, &) () (XOu(dx)
- f Pw) [@(x, o)u(dx) [1u(dn)  (n—c0)
- f ®(x, w) (1 x P)(d(x, w)) f W(x, ) (ux P)(d(x, )

since #r preserves the value of the integration. Since the linear hull of such
¥’s is dense in L2(ux P), we obtain (b). Now we assume (c). For any ¢, Yy €
L2(p), in virtue of the second claim as above, we have

[29) mmax)
= [ 60 (@)w) (e
- [e@ e @ P
= [¢@x v Pu(dn)
= [o@ P (U Pdx) (1-c0)
= [ #Coutan [peouax.
(4) Assume (a). In virtue of Proposition 2.2, we have to prove

fl(-‘?f’ #¥)(x, w)—JT(x, w)(ux PYd(x, w))| (ux P)(d(x, @)) — 0 (n—0)

for any ¥ e L'(ux P). For any ¥ which has the form as in (3.2), we have
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ﬁm W)(x, )~ fv'(x, W) x PY(d(x, @))] (1 x P) (d(x, )

- f I((ﬂ’)”"‘x)(x)—fx(x)u(dX)lu(dx) —0 (n-o0)

by the assumption, where y is the deterministic version of Z%¥. Since the
linear hull of such ¥’s is dense in L'(u x P), we have (b). Next we assume (c).
For any ¢ € L'(u) we have

[ € rex~ [oeouan)| uax
=f |(@)y$)@) —fé(z) P,(dx)| P, (dx)

=ﬂ (Z1d)(x)— f@(&) P, (dx) { P,(dx)—0 (n—o0).

Here we used the second claim.

REMARK 4.1. In the proof of Theorem 4.1 we have shown that 2[,=1I,
implies 21 ;,=1,. Furthermore, we can prove the following: Assume that an
operator # on L®(u) satisfies:

(1) 2920 pae. if p=0 p-a.e.

(2) 21=1 p-ae.

() [2¢du={ du for any ¢ € L(u).

Then, it can be uniquely extended to the operator on L!(u) and its dual operator
2’ also satisfies (1), (2) and (3), and 29 =¢ if and only if Z2'¢=¢ for ¢ € L'(p).

4.2. The radom ratation on a circle. Here we consider the following case:
S=M=S'={xe C; |x|=1}: the unit circle in the plane, Zs=%B)=R(S):
the topological Borel field of S!, f:SxM-M; (s, x)>f;x=sx. The
probability space (2, &#, P) is defined as an infinite product measure space (S?,
B(SY), v)x (S, #(SY), v)x -, where v is a probability distribution on S*.
In this case, the coordinate functions ¢,(w)=w, are regarded as the S-valued
independent random variables, where w=(w,;, w,,...) and the random dynamical
system X =({X,}%o, f, &;) is given by X, (w)x=w,w,_,--w;x. Since the
Haar measure m on S! is f-invariant for each s, it is also X-invariant. Denote
by (3., P,., T) the Markov transformation induced by X and m. Then we have:

THEOREM 4.2. (1) P, is not t-egrodic if and only if there is an integer
p>0 such that v{1, A,..., 2=} =1 for some p-th root 1 of 1.

(2) P, is not t-weakly mixing but t-ergodic if and only if there is an
integer p>0 such that v{k, kA,..., kA’P~1}=1 for some k € S* which is not a root
of 1 and A€ S* which is a p-th root of 1.
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(3) P, is t-exact if and only if it is t-weakly mixing. In particular, in
the case except (1) and (2), P,, is T-exact.

ProoF. Before proving the theorem we notice that we may assume that if
¢ € L¥(m x P) satisfies ¢oT=A¢ in L*(m x P) for some A e C then ¢ € L%(m) and
¢of,=A¢d in L%(m) for v-a.e.seS!, in virtue of the deterministic version lemma
(Theorem 3.2).

Proof of (1). Assume that P, is not 7-ergodic. From Theorem 4.1, m x P
is not T-ergodic. Thus there is a non-constant function ¢ € L2(m) with ¢of,=¢
in L%(m), v-a.e. s. In L%*(m), ¢ is uniquely represented as @(x)= ,.z . X",
where ¢, € Cand X, .5 |p,/2<o0. Let p#0 be the integer which has the smallest
modulus among all n with ¢,#0. From the uniqueness of the representation,
we have sP=1 v-a.e. s. Thus we have v{l1, ,..., Al?I=1} =1 for some |p|-th root
Aof 1. The converse direction is obvious.

Proof of (2). Assume that P, is not t-weakly mixing but t-ergodic. From
Theorem 4.1, mx P is not T-weakly mixing but T-ergodic. Therefore, there
exists a non-constant function ¢ € L?(m) and y € C with y#1 such that ¢of,=y¢
in L2(m) for v-a.e. s€ S'. As before ¢ is represented as ¢(x)=3" ,cz ¢,x". From
the uniqueness of the representation, we have y=s? v-a.e. se S!. Thus there
exist k¥ € S! which is independent of s and an integer ¢ which may depend on s
such that s=xA4 for v-a.e. s, where A is a |p|-th root of 1. Therefore v{x, x4,...,
kAlPI-1} =1, Since m x P is T-ergodic, k is not a root of 1 in virtue of the statement
(1). The converse direction is obvious.

Proof of (3). In virtue of Proposition 2.3 and (4) in Theorem 4.1, it suffices
to show that {(2')"¢}L, is relatively compact in L'(m) for any ¢ € L'(m). Recall
that (2'¢)(x)=(LrP)(x)=[(L,,d)(x)v(ds)= [ ¢(s~1x)v(ds) in virtue of Lemma
3.2. Since the map f; is an isometry on S! for each s, {(2)"p}2, is
relatively compact in C(S!) for any ¢ € C(S') in virtue of the Ascoli-Arzela
theorem. Thus {(2)"¢}%, is relatively compact in L(m) for any ¢ e C(S?).
Noticing that the operator norm of 2’ on L!(m) is 1 and C(S?!) is dense in L!(m),
we can see that {(2")"¢}2, is relatively compact in L!(m) for any ¢ € L'(m).

REMARK 4.2. Theorem 4.2 illustrates the difference between the random
iteration and the iterations of a single transformation. In fact, consider a
rotation f;: S'—S'; x—>sx. Then,

(1) mis fiergodic if and only if s is not a root of 1,

(2) m is not fi-weakly mixing for any se S'.

4.3. Random products of matrices. Let X=({X,}:%,, f, ) be a random
dynamical system and let u be an X-invariant measure. Consider a measurable
map D(-,-): Sx M—M, where M, stands for the space of all k x k real matrices.
Write
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D(x, w) = D(¢(w), X,_(w)x)---D(&(w), x).
Then we have:

THEOREM 4.3 (see [8] and [10]). Assume that
[1og* 1065, 2)1dsIu(en < o0

where v is the distribution of ¢ and log*t x=max (log x, 0). Then, there exist
By-measurable functions A,(-), Ay(+)sees L(-), my(+), my(+)se., my(-), s(-)
and a measurable set I € B\ x F such that the following hold:

1) my(-), my(+),..., m(-) and s(-) are integer valued and 0<s(x)<k,
m(x)>0 (i<s(x)), m(x)=0 (i>s(x)) and Tk, m(x)=k.

(2) =S4 (X)=""=2p,)(X) <Ay ) + 1(X) =" = A () 4 mp)(X¥) <0+ <
Amy(x) 4 -+ my ey 1) +1(X) =+ =A(x) <00 and Af(-) e L' ().

Write AD(x)<--- <AG@)(x) for the distinct values of A(x)’s.

(3) (uxP)YI)=1, and TyI'<T.

(4) If(x, w)eTl, then the limit

lim,_, , (D"(x, w)'D"(x, w))!/?" = A(x, w)

exists and its eigenvalues are just exp (A11)(x)),..., exp (AS))(x)).

(5) Denote the corresponding eigenspaces by UL, ..., US). Then
dim U, =m(x).

(6) Write V{Q,,={0}, V{0 ,=UL +--+UP . Then,

(x,0) ™
lim, ., 1/nlog || D"(x, w)o| = AD(x) if ve VL)~ VL.

PROOF. Substituting T, u x P and D(é(w), x) for 1, p and T(x) respectively
in Theorem 1.6 in [10], we can prove the assertions except for that A;,, m; and s
have deterministic versions. Since they are Ty-invariant, we complete the proof
in virtue of Theorem 3.2.

REMARK 4.3. From Theorem 4.3, we can define the Lyapunov exponents of
differentiable random dynamical systems if we consider the case when M is a
compact smooth manifold, S is the space of all C!-differentiable maps and fx=

s(x) (see [1], [8], and [10]).
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