Moduli space of 1-instantons on a quaternionic projective space HP^n

Hideo Doi and Takayuki OKAI (Received May 20, 1988)

Introduction

The moduli space of 1-instantons on $S^4 = HP^1$ is isomorphic to $Sp(2) \setminus SL(2, H)$ ([2], [3], [9]). The main purpose of this paper is to generalize this basic fact to the case of HP^n . More precisely, we consider self-dual connections, i.e. solutions to a first order equation which is a reduction of the Yang-Mills equation given by physicists [4], [20].

At present a general theory for self-dual connections on quaternionic Kähler manifolds is developed by M. Mamone Capria & S. M. Salamon [12] and T. Nitta [15]. Thus it would be worthwhile to study self-dual connections concretely. In this point of view E. Corrigan, P. Goddard & A. Kent [5] have provided an interesting family of self-dual connections on HP^n , as a generalization of the ADHM construction. They have also counted the number of parameters of this family. For 1-instantons (see § 1), from the table of H. T. Laquer [11], we know that this number coincides with the nullity of the second variation of the Yang-Mills functional at the canonical connection for the symmetric space $Sp(n+1)/Sp(1) \times Sp(n)$. However, even in this case, the completeness of the ADHM construction is a problem [5]. In Theorem 1.1, we will give an affirmative answer to this, using a result in algebraic geometry due to H. Spindler [19]. In Theorem 1.2, we will give a compactification of the moduli space of 1-instantons. In Theorem 1.3, we will examine the convergence of the Yang-Mills action densities.

1. Notation and the results

We begin with a review of quaternionic geometry (for details, see [12], [14, 15], [16, 17, 18]). Let M^{4n} be a quaternionic Kähler manifold. By definition its holonomy group is contained in $Sp(n) \cdot Sp(1) \subset SO(4n)$. Note that the natural representation of $GL(n, H) \times Sp(1)$ on $\Lambda^2(C^{2n} \otimes C^2)$ is decomposed to $\Lambda^2C^{2n} \otimes S^2C^2 + S^2C^{2n} \otimes \Lambda^2C^2$. Accordingly, we have a decomposition $\Lambda^2T^*M \otimes C = \Lambda_2 + \Lambda_0$. Let E be a complex unitary vector bundle over M with a unitary connection D. We assume that its curvature form F(D) is a section of $\Lambda_0 \otimes \mathfrak{u}(E)$. Then D is said to be self-dual. Note that D becomes a Yang-Mills connection. If a transformation $g: M \to M$ preserves the GL(n, H).

Sp(1)-structure of M, then g^*D is also self-dual. Let Z be the twistor space of M and let $p:Z \to M$ be the canonical projection. We note that Z has a complex structure, and that $F(p^*D)$ is a (1,1)-form. Hence the pull-back connection p^*D defines a unique holomorphic vector bundle structure on p^*E . Moreover, if the scalar curvature of M is positive, then Z has a Kähler metric and p^*D turns out to be an Einstein-Hermitian connection. In particular, D attains the minimum of the Yang-Mills functional. Also, it should be remarked that the Atiyah-Ward correspondence is established by T. Nitta [15].

Clearly the symmetric space $HP^n = Sp(n+1)/Sp(1) \times Sp(n)$ is a quaternionic Kähler manifold. We set $E = Sp(n+1) \times_{\nu} H^n$ for the projection ν : $Sp(1) \times Sp(n) \to Sp(n)$, and we call self-dual connections on E 1-instantons. Let V be the unique invariant connection on the homogeneous vector bundle E. Then V is self-dual and called the standard 1-instanton. The action of GL(n+1,H) on HP^n preserves the $GL(n,H) \cdot Sp(1)$ -structure. Thus we have a self-dual connection g^*V on g^*E for $g \in GL(n+1,H)$. Using an Sp(n)-bundle equivalence $\gamma_g: E \to g^*E$, we obtain a 1-instanton $\gamma_g^*g^*V = V \cdot g$, which is unique up to Sp(n)-gauge transformations on E. Now we can state the main result.

THEOREM 1.1 Let \mathcal{M}_n denote the moduli space of 1-instantons on HP^n . Then \mathcal{M}_n is identified with $Sp(n+1)\backslash SL(n+1,H)$ via the correspondence $g\mapsto V\cdot g$ for $g\in SL(n+1,H)$.

Let M(m, H) denote the set of $m \times m$ quaternionic matrices. We set $\mathscr{P}_{n+1} = \{A \in M(n+1, H); {}^{\dagger}A = A, A > 0\}$ and $\mathscr{P}_{n+1} = \{B \in M(n+1, H); {}^{\dagger}B = B, B \geq 0\}$, where † denotes the Hermitian conjugation. Then $Sp(n+1) \setminus SL(n+1, H) \to \mathscr{P}_{n+1}/R_{+}^{\times}$, $g \mapsto {}^{\dagger}g \cdot g$, is an isomorphism. Therefore we may identify \mathscr{M}_n with $\mathscr{P}_{n+1}/R_{+}^{\times}$ and we will usually use the notation D_A instead of $V \cdot A^{1/2}$ for $A \in \mathscr{P}_{n+1}$.

Let $\{D_i\}$ be a sequence of 1-instantons. Proposition 3.3 will provide the following situation: There exist a subsequence $\{j\} \subset \{i\}$, a linear subvariety S in HP^n , gauge transformations $\{\gamma_j\}$ on E, and a self-dual connection D_{∞} on $E|HP^n\setminus S$ such that $\gamma_j^*D_j$ converges to D_{∞} in C_{loc}^{∞} on $HP^n\setminus S$. For the above $\{j\}$, we remark that if an exceptional set S is minimal, then S is unique. So, Proposition 3.3 would imply

THEOREM 1.2. Let $\hat{\mathcal{M}}_n = \{(D_{\infty}, S); D_{\infty} \text{ is a limit of 1-instantons, } S \text{ is the minimal exceptional set}\}/\sim$, where $(D_{\infty}, S) \sim (D'_{\infty}, S')$ means that S = S' and D_{∞} is gauge equivalent to D'_{∞} . Then we have an identification

$$\hat{\mathcal{M}}_n = (\hat{\mathcal{P}}_{n+1} \setminus \{0\})/R_+^\times$$
 .

Thus we have a natural compactification $\hat{\mathcal{M}}_n$ of \mathcal{M}_n in view of H. Nakajima's work [13].

In [7], S. K. Donaldson introduces the rough compactification of the moduli space of (anti) self-dual connections on 4-manifolds, using the convergence of the Yang-Mills action densities $|F|^2$ as measure. We also investigate the behavior of $|F|^2$ when the connections converge to $\mathcal{M}_n \setminus \mathcal{M}_n$.

We give first some definitions. For $X=(X_{ij})\in M(m,H)$, let $\operatorname{tr} X=\sum X_{ii}$. Then $\operatorname{tr} (gAg^{-1})=\operatorname{tr} A$ for $g\in Sp(n+1)$ and $A\in\widehat{\mathscr{P}}_{n+1}$. For $l\times m$ quaternionic matrices X and Y, we define an inner product $(X,Y)=\operatorname{tr} ({}^{\dagger}XY)$. Let $S^{4n+3}=\{z\in H^{n+1};(z,z)=1\}$ and equip $HP^n=S^{4n+3}/Sp(1)$ with the standard metric induced from that of S^{4n+3} . For $A\in\widehat{\mathscr{P}}_{n+1}$ and $z\in H^{n+1}$, we set

$$\Phi(A)(z) = 8(Az, z)^{-4}(z, z)^{2} \{3(A^{2}z, z)^{2} + (\text{tr } A^{2} + 2(\text{tr } A)^{2})(Az, z)^{2} - 4 \text{ tr } A(A^{2}z, z)(Az, z) - 2(A^{3}z, z)(Az, z)\}$$

and we consider $\Phi(A)$ as a rational function on HP^n . Let F_A denote the curvature of D_A for $A \in \mathcal{P}_{n+1}$. We shall prove that $|F_A|^2 = \Phi(A)$ in Proposition 3.1. Now we can state the following

THEOREM 1.3. Let $A \in \mathcal{P}_{n+1}$, $B \in \widehat{\mathcal{P}}_{n+1} \setminus \{0\}$ and let S_B denote the linear subvariety $\{z \in HP^n; Bz = 0\}$. We assume that A approaches B.

- (i) If rank $B \ge 2$, then $\lim_{A \to B} |F_A|^2 = \Phi(B)$ in $L^1(HP^n)$.
- (ii) If rank B=1, then for any continuous function ϕ on HP^n , we have $\lim_{A\to B}\int_{HP^n}\phi|F_A|^2=4\pi^2\int_{S_B}\phi$, where the integrals stand for those with respect to the canonical Riemannian volume elements.

2. The moduli space of 1-instantons

In this section, we give a proof of Theorem 1.1, following the program of R. Hartshorne [9]. Hereafter we denote H^{n+1} by V when it is regarded as a right C-vector space. Let $p: P(V) = (V \setminus \{0\})/C^{\times} \to HP^n = (H^{n+1} \setminus \{0\})/H^{\times}$ be the natural projection. We note that P(V) is the twistor space of HP^n . Therefore, as mentioned in §1, a 1-instanton D gives a holomorphic vector bundle N_D , which is C^{∞} -isomorphic to p*E. We know that $c_2(N_D) = 1$ and $N_D|p^{-1}$ (point) is holomorphically isomorphic to the trivial bundle $CP^1 \times C^{2n}$. Due to H. Spindler [19, p. 20, Cor.] it follows that N_D is a null correlation bundle.

Let N be a null correlation bundle on P(V). Then, by definition, there exists a resolution

$$0 \to \mathcal{O}(-1) \to \Omega(1) \to N \to 0$$
.

where Ω denotes the holomorphic contangent bundle of P(V). We know that $\operatorname{Hom}(\mathcal{O}(-1), \Omega(1)) = \{\varphi \in \operatorname{Hom}(V, V^{\vee}); \varphi^{\vee} = -\varphi\}$, where V^{\vee} is the dual vector space of V and φ^{\vee} is the transposed mapping of φ . Let

 $\mathscr{A}^c = \{ \varphi \in \text{Hom}(V, V^{\vee}); \ \varphi^{\vee} = -\varphi, \ \varphi \text{ is bijective} \}$ and let \mathscr{N}^c denote the moduli space of null correlation bundles on P(V). Then \mathscr{N}^c is naturally identified with \mathscr{A}^c/C^{\times} [19, Satz 4.2, a)].

For a complex manifold X, we denote by X^- the manifold with the opposite complex structure. The right action of $j \in H$ on V defines an isomorphism $j_R: P(V) \to P(V^-)$. We define an action of j on \mathcal{N}^c by $j \cdot N = j_R^* N^-$ for $N \in \mathcal{N}^c$. Clearly, we see that if $N \in \mathcal{N}^c$ is induced by a 1-instanton, then $j \cdot N = N$.

Let e_0, \dots, e_n be the standard basis of H^{n+1} and set $e_{n+1+i} = je_i$. Thus we have a basis e_0, \dots, e_{2n+1} of V, and by this, we identify $\operatorname{Hom}(V, V^{\vee})$ with the space M(2n+2,C) of $(2n+2)\times(2n+2)$ complex matrices. Let λ denote the standard embedding of M(n+1,H) into M(2n+2,C), and set $J=\lambda(j1_{n+1})$. We define an action of j on \mathscr{A}^c by $j\cdot\varphi={}^tJ\bar{\varphi}J$ for $\varphi\in\mathscr{A}^c$, where tJ is the transposed matrix of J and $\bar{\varphi}$ is the usual complex conjugate of φ . Then the induced action of j on \mathscr{A}^c/C^{\times} coincides with the action of j on \mathscr{N}^c under the above identification.

Let $\mathcal{N} = \{N \in \mathcal{N}^c = \mathcal{A}^c/C^*; j \cdot N = N\}$ and $\mathcal{A} = \{A \in M(n+1, H); ^\dagger A = A, \det \lambda(A) \neq 0\}$. Then we have an isomorphism $\mathcal{A}/R^\times \to \mathcal{N}$ induced by $\lambda(j)$. We note that $\lambda(j^\dagger gAg) = {}^t\lambda(g)\lambda(jA)\lambda(g)$ for $g \in GL(n+1, H)$ and $A \in \mathcal{A}$. Clearly \mathcal{N} is stable under the action of GL(n+1, H) on \mathcal{N}^c which is induced by the action on HP^n .

- LEMMA 2.1. (1) $\mathcal{N}/GL(n+1, H)$ has a finite set of complete representatives $\{J_l = \lambda(j \text{ diag } (1_{n+1-l}, -1_l)); 0 \le l \le (n+1)/2\}.$
- (2) Let N_l be the null correlation bundle corresponding to J_l . If $0 < l \le (n+1)/2$, there exists a point $z \in HP^n$ such that $N_l|p^{-1}(z)$ is holomorphically non-trivial.

PROOF. (1) This is immediate if we consider in $\mathcal{A}/GL(n+1, H)$.

(2) Let N be a null correlation bundle corresponding to $\varphi \in \mathscr{A}^c$. Let w_1 , $w_2 \in V$ be linearly independent and let P(W) denote the projective line $(w_1C + w_2C \setminus \{0\})/C^\times \subset P(V)$. Then it is easy to see that N|P(W) is holomorphically non-trivial if and only if ${}^tw_1\varphi w_2 = 0$. When $w_1 = e_0 + e_{n+1-l}$ and $w_2 = w_1 j$, we have ${}^tw_1 J_l w_2 = 0$. \square

PROOF OF THEOREM 1.1. From Lemma 2.1, it follows that for $0 < l \le (n+1)/2$ and $g \in GL(n+1,H)$, g^*N_l is not isomorphic to any null correlation bundle induced by a 1-instanton. On the other hand, N_0 is induced by the standard 1-instanton V. Let D be a 1-instanton and let N denote the null correlation bundle induced by D. Considering the action of GL(n+1,H), we may assume that there exists a holomorphic isomorphism $\psi: N_0 \to N$. Then $\psi * p * D$ is an Einstein-Hermitian connection on N_0 . From the uniqueness of

Einstein-Hermitian connections due to S. K. Donaldson [6, 8] (see also [10]), it follows that $\psi^*p^*D = p^*V$ and ψ is an isometry. Furthermore, ψ is constant along the fibers of p because p^*D and p^*V are trivial on the fibers. Hence ψ defines a gauge transformation γ on E. Therefore, $\gamma^*D = V$. Thus we know that GL(n+1, H) acts transitively on \mathcal{M}_n . Clearly the isotropy subgroup of V is Sp(n+1). \square

3. Limits of 1-instantons

In this section, we give proofs of Theorems 1.2 and 1.3. To begin with, we notice that $E = \{(z, v) \in HP^n \times H^{n+1}; \ ^tzv = 0\}$. Let p_E denote the orthogonal projection $HP^n \times H^{n+1} \to E$. Then the standard 1-instanton V is given by a covariant derivative $p_E \circ d$. Let π denote the projection $H^{n+1} \setminus \{0\} \to HP^n$ and let s be a mapping $H^n \to H^{n+1} \setminus \{0\}$ defined by $s(x) = e_0 + x$ with $x = \sum_{i=1}^n e_i x_i \in H^n$. Now we identify H^n with $\pi \circ s(H^n)$ and regard s as a local section of $HP^n \times H^{n+1}$. Then we have an expression of the curvature of V: $F_1 = |s|^{-2} p_E \cdot ds \wedge d^{\dagger} s \cdot p_E$ (see [1]).

Next, we shall prove that $|F_A|^2 = \Phi(A)$ for $A \in \mathcal{P}_{n+1}$ as mentioned in § 1. Recall that $|F(V \cdot g)|^2 = |g^*F_1|^2$ for any $g \in GL(n+1, H)$ and in particular, $|a^*F_1|^2 = |F_A|^2$ for $a \in \mathcal{P}_{n+1}$ with $A = a^2$.

PROPOSITION 3.1. $|a^*F_1|^2 = \Phi(a^2)$ for $a \in \mathcal{P}_{n+1}$.

PROOF. For $A \in \mathcal{P}_{n+1}$ and $g \in Sp(n+1)$, we know that $g^*\Phi(A) = \Phi({}^\dagger gAg)$ and $|F_{{}^\dagger gAg}|^2 = g^*|F_A|^2$. Therefore we may assume that $a = \mathrm{diag}\,(a_0, \cdots, a_n)$. If $g \in Sp(n+1)$ is diagonal, then ga = ag. Hence it is enough to show that $|a^*F_1|^2 = \Phi(a^2)$ at $y = \sum_{i=1}^n e_i y_i$ with $y_i \in R$. Let $f_i = (1_{n+1} - |s|^{-2} s \cdot {}^\dagger s) e_i$. Then at y,

$$F_1 = |s|^{-2} \sum_{i,j=1}^n f_i \cdot {}^\dagger f_j \, dx_i \wedge d\overline{x}_j \,.$$

Let $\theta_{ij} = dz_i \wedge d\overline{z}_j - y_i dz_0 \wedge d\overline{z}_j - y_j dz_i \wedge d\overline{z}_0 + y_i y_j dz_0 \wedge d\overline{z}_0$, where z_0, \dots, z_n are the standard coordinates of H^{n+1} . Let $(\ ,\)_{HP^n}$ and $(\ ,\)$ denote the standard metrics on HP^n and H^{n+1} respectively. Then we have that $(dx_i \wedge d\overline{x}_j, dx_k \wedge d\overline{x}_l)_{HP^n} = |s|^4 (\theta_{ij}, \theta_{kl})$ at y because $\pi^*(dx_i \wedge d\overline{x}_j) = \theta_{ij}$. Let $Q_{ijkl} = a_i a_j a_k a_l (\delta_{ik}(a^2 s, s) - a_i a_k y_i y_k) (\delta_{il}(a^2 s, s) - a_j a_l y_j y_l)$. Then we have at y,

$$|a^*F_1|^2 = (a^2s, s)^{-4}|s|^4 \sum_{i,j,k,l=1}^n Q_{ijkl}(\theta_{ij}, \theta_{kl}) \,.$$

Note that $(dz_i \wedge d\overline{z}_j, dz_i \wedge d\overline{z}_j) = 16$, $(dz_i \wedge d\overline{z}_j, dz_j \wedge d\overline{z}_i) = 8$ for $i \neq j$, $(dz_i \wedge d\overline{z}_i, dz_i \wedge d\overline{z}_i) = 24$, and the others are 0. Then a straightforward calculation shows that $|a^*F_1|^2(y) = \Phi(a^2)(s(y))$.

COROLLARY 3.2. Let A and B be as in Theorem 1.3. Then we have $\lim_{A\to B} |F_A|^2(z) = \infty$ for any $z \in S_B$.

For $B \in \widehat{\mathcal{P}}_{n+1}$, we set $M_B = HP^n \setminus S_B$, $K_B = M_B \times \text{Ker } B$, $P_B = ((\text{Ker } B)^{\perp} \setminus \{0\})/H^{\times}$, and $E_B = \{(z,v) \in P_B \times (\text{Ker } B)^{\perp}; {}^{\dagger}zv = 0\}$. Let κ_B be the orthogonal projection $H^{n+1} \to \text{Ker } B$ and let $\varepsilon_B = 1_{n+1} - \kappa_B$. Then ε_B induces a projection $\pi_B \colon M_B \to P_B$. By Theorem 1.1, $B \mid (\text{Ker } B)^{\perp}$ defines a 1-instanton d_B on E_B . Let t_B denote the trivial connection on K_B . Clearly $\pi_B^* d_B + t_B$ is a self-dual connection on $\pi_B^* E_B + K_B$. From this connection, we obtain a self-dual connection D_B on $E \mid M_B$, because $E \mid M_B$ is isomorphic to $\pi_B^* E_B + K_B$.

PROPOSITION 3.3. Let A and B be as in Theorem 1.3. Then, after suitable gauge transformations on E, D_A approaches D_B on M_B .

PROOF. We assume, without loss of generality, that $B = \text{diag}(\beta^2, 0)$, $A = \text{diag}(\beta^2, \alpha^2)$ and that α converges to zero. Let us define an isometry $\tau : \pi_B^* E_B + K_B \to E | M_B$ by

$$\tau_z(v_1, v_2) = v_1 + (\kappa_B - |\varepsilon_B z|^{-2} \varepsilon_B z \cdot {}^{\dagger}(\kappa_B z)) h_z(v_2),$$

where $z \in M_B$, $v_1 \in (\pi_B^* E_B)_z$, $v_2 \in (K_B)_z$ and $h_z = (1 + |\epsilon_B z|^{-2} \kappa_B z \cdot {}^{\dagger} (\kappa_B z))^{-1/2} \in$ Hom (Ker B, Ker B). Let $a = \text{diag}(\beta, \alpha)$ and $\iota_{\alpha} = \text{diag}(1, \alpha)$. We note that $a^*(\pi_B^* E_B + K_B) = \text{diag}(\beta, 1)^*(\pi_B^* E_B + K_B)$. Hence it is enough to show that $\lim_{\alpha \to 0} a^* \tau^* \mathcal{V} = \pi_B^* \beta^* \mathcal{V}_B + t_B$, where \mathcal{V}_B denotes the standard 1-instanton on E_B . Moreover, this is reduced to the case $\beta = 1 \in \text{Hom}((\text{Ker } B)^{\perp}, (\text{Ker } B)^{\perp})$.

Let σ be a section of $\pi_B^* E_B + K_B$. Setting $u_z = 1_{n+1} - |z|^{-2} z^{\frac{1}{2}}$ for $z \in M_B$, we have

$$(\iota_{\alpha}^* \tau^* V) \sigma = \iota_{\alpha}^* \tau^{-1} \cdot \iota_{\alpha}^* u \cdot d(\iota_{\alpha}^* \tau \cdot \sigma) .$$

Also we see that $\lim_{\alpha\to 0} t_{\alpha}^* \tau = 1_{n+1}$ and $\lim_{\alpha\to 0} (t_{\alpha}^* u)_z = 1_{n+1} - |\epsilon_B z|^{-2} \epsilon_B z \cdot {}^{\dagger} (\epsilon_B z)$. From this, it follows that $\lim_{\alpha\to 0} t_{\alpha}^* \tau^* V = (1_{n+1} - |\epsilon_B z|^{-2} \epsilon_B z \cdot {}^{\dagger} (\epsilon_B z)) \circ d = \pi_B^* V_B + t_B$. \square

Now the proof of Theorem 1.2 is completed as mentioned in § 1.

PROOF OF THEOREM 1.3. We may assume that A and B are diagonal, and we use freely the notations in the proof of Proposition 3.1.

- (i) From Lebesgue's dominated convergence theorem, it follows that $\Phi(A)$ converges to $\Phi(B)$ in $L^1(HP^n)$.
- (ii) Note that $\lim_{A\to B} |F_A|^2(z) = 0$ for $z \in HP^n$ with $Bz \neq 0$. Thus we can assume that $B = \text{diag } (0, 1, 0, \dots, 0)$ and $a = A^{1/2} = \text{diag } (a_0, 1, a_2, \dots, a_n)$. Let $\rho = (a_0^2 + a_2^2 r_2^2 + \dots + a_n^2 r_n^2)^{1/2}$ with $r_i = |x_i|$. Then $(As, s) = \rho^2 + r_1^2$ and $Q_{1111} = \rho^4$, where we substitute r_i for y_i . For $\varepsilon > 0$, $\omega_1 \in S^3$ and $\phi \in C^0(H^n)$ with compact support, we have

$$\lim_{A\to B} \int_0^\varepsilon (As, s)^{-4} Q_{1111} \phi(r_1 \omega_1, x_2, \dots, x_n) r_1^3 dr_1$$

$$= \lim_{A\to B} \int_0^{\varepsilon/\rho} t^3 (1+t^2)^{-4} \phi(\rho t \omega_1, x_2, \dots, x_n) dt = \phi(0, x_2, \dots, x_n)/12.$$

Note that $Q_{1212} = a_2^2 \rho^2 (a_0^2 + r_1^2 + a_3^2 r_3^2 + \cdots + a_n^2 r_n^2)$ and $(As, s)^4 \ge (2(\rho^2 r_1^2)^{1/2})^2 \cdot 2(r_1^2 \cdot a_2^2 r_2^2)^{1/2} \cdot (a_0^2 + r_1^2 + a_3^2 r_3^2 + \cdots + a_n^2 r_n^2)$. Hence $(As, s)^{-4} Q_{1212} r_1^3 \cdots r_n^3 \le a_2 r_2^2 r_3^3 \cdots r_n^3 / 8$. Similar arguments show that if $Q_{ijkl} \ne Q_{1111}$, then $\lim_{A \to B} (As, s)^{-4} Q_{ijkl} r_1^3 \cdots r_n^3 = 0$. We notice that the Riemannian volume element on HP^n has an expression $(s, s)^{-2n-2} d^{4n}$. Here we denote the standard volume element on R^m by d^m . Now for $\phi \in C^0(H^n)$ with compact support, we have

$$\lim_{A\to B} \int_{H^n} \phi \cdot (As, s)^{-4}(s, s)^2 \sum Q_{ijkl}(\theta_{ij}, \theta_{kl})(s, s)^{-2n-2} d^{4n}$$

$$= 4\pi^2 \int_{H^{n-1}} \phi(0, x_2, \dots, x_n) \cdot (1 + r_2^2 + \dots + r_n^2)^{-2n} d^{4n-4}.$$

This completes the proof.

References

- [1] M. F. Atiyah: Geometry of Yang-Mills Fields, Lezioni Fermiane Pisa, 1979.
- [2] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Yu. I. Manin: Construction of Instantons, Phys. Letter 65A (1978), 185-187.
- [3] M. F. Atiyah, N. J. Hitchin and I. M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London A 362 (1978), 425-461.
- [4] E. Corrigan, C. Devchand, D. B. Fairlie and J. Nuyts: First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B214 (1983), 452-464.
- [5] E. Corrigan, P. Goddard and A. Kent: Some comments on the ADHM construction in 4k dimensions, Comm. Math. Phys. 100 (1985), 1-13.
- [6] S. K. Donaldson: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), 1-26.
- [7] S. K. Donaldson: Connections, cohomology and the intersection forms of 4-manifolds, J. Differential Geom. 24 (1986), 275-341.
- [8] S. K. Donaldson: Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231-247.
- [9] R. Hartshorne: Stable vector bundles and instantons, Comm. Math. Phys. 59 (1978), 1-15.
- [10] S. Kobayashi: Differential Geometry of Complex Vector Bundles, Iwanami, 1987.
- [11] H. T. Laquer: Stability properties of the Yang-Mills functional near the canonical connection, Michigan Math. J. 31 (1984), 139-159.
- [12] M. Mamone Capria and S. M. Salamon: Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517-530.
- [13] H. Nakajima: Compactness of the moduli space of the Yang-Mills connections in higher dimensions, J. Math. Soc. Japan 40 (1988), 383-392.

- [14] T. Nitta: Connections for vector bundles over quaternionic Kähler manifolds, Proc. Japan Acad. 63 Ser. A (1987), 23-25.
- [15] T. Nitta: Vector bundles over quaternionic Kähler manifolds, Tôhoku Math. J. 40 (1988), 425-440.
- [16] S. M. Salamon: Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.
- [17] S. M. Salamon: Quaternionic structures and twistor spaces, in "Global Riemannian Geometry", T. J. Willmore and N. Hitchin ed., Ellis Horwood Limited, 1984.
- [18] S. M. Salamon: Differential geometry of quaternionic manifolds, Ann. Sci. École. Norm. Sup. 4° série t. 19 (1986), 31-55.
- [19] H. Spindler: Holomorphe Vectorbündel auf P_n mit $c_1 = 0$ und $c_2 = 1$, Manuscripta Math. 42 (1983), 171–198.
- [20] R. S. Ward: Completely solvable gauge-field equations in dimension greater than four, Nuclear Phys. B236 (1984), 381-396.

Department of Mathematics, Faculty of Science, Hiroshima University