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Introduction

The moduli space of 1-instantons on S* = HP! is isomorphic to Sp(2)\
SL(2, H) ([2], [3], [9])- The main purpose of this paper is to generalize
this basic fact to the case of HP". More precisely, we consider self-dual
connections, i.e. solutions to a first order equation which is a reduction of the
Yang-Mills equation given by physicists [4], [20].

At present a general theory for self-dual connections on quaternionic
Kihler manifolds is developed by M. Mamone Capria & S. M. Salamon [12]
and T. Nitta [15]. Thus it would be worthwhile to study self-dual connections
concretely. In this point of view E. Corrigan, P. Goddard & A. Kent [5] have
provided an interesting family of self-dual connections on HP", as a generaliza-
tion of the ADHM construction. They have also counted the number of
parameters of this family. For l-instantons (see §1), from the table of H. T.
Laquer [11], we know that this number coincides with the nullity of the second
variation of the Yang-Mills functional at the canonical connection for the
symmetric space Sp(n + 1)/Sp(1) x Sp(n). However, even in this case, the
completeness of the ADHM construction is a problem [5]. In Theorem 1.1,
we will give an affirmative answer to this, using a result in algebraic geometry
due to H. Spindler [19]. In Theorem 1.2, we will give a compactification
of the moduli space of l-instantons. In Theorem 1.3, we will examine the
convergence of the Yang-Mills action densities.

1. Notation and the results

We begin with a review of quaternionic geometry (for details, see [12],
[14, 15], [16, 17, 18]). Let M*" be a quaternionic Kihler manifold. By defini-
tion its holonomy group is contained in Sp(n)-Sp(1) = SO(4n). Note that the
natural representation of GL(n, H) x Sp(1) on A?%(C*"® C?) is decomposed
to A2C*"® S2C? + S2C*"® A*C?.  Accordingly, we have a decomposition
A’T*M ® C = A, + A,. Let E be a complex unitary vector bundle over M
with a unitary connection D. We assume that its curvature form F(D) is a
section of A, ® u(E). Then D is said to be self-dual. Note that D becomes a
Yang-Mills connection. If a transformation g: M — M preserves the GL(n, H)-
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Sp(1)-structure of M, then g*D is also self-dual. Let Z be the twistor space
of M and let p:Z—> M be the canonical projection. We note that Z has
a complex structure, and that F(p*D) is a (1, 1)-form. Hence the pull-back
connection p*D defines a unique holomorphic vector bundle structure on p*E.
Moreover, if the scalar curvature of M is positive, then Z has a Kdhler metric
and p*D turns out to be an Einstein-Hermitian connection. In particular,
D attains the minimum of the Yang-Mills functional. Also, it should be
remarked that the Atiyah-Ward correspondence is established by T. Nitta [15].

Clearly the symmetric space HP" = Sp(n + 1)/Sp(1) x Sp(n) is a quater-
nionic Kidhler manifold. We set E = Sp(n + 1) x, H" for the projection v:
Sp(1) x Sp(n) = Sp(n), and we call self-dual connections on E 1-instantons. Let
V be the unique invariant connection on the homogeneous vector bundle
E. Then V is self-dual and called the standard 1-instanton. The action of
GL(n + 1, H) on HP" preserves the GL(n, H)- Sp(1)-structure. Thus we have a
self-dual connection g*V on g*E for ge GL(n + 1, H). Using an Sp(n)-bundle
equivalence y,: E — g*E, we obtain a l-instanton yfg*V =V -g, which is unique
up to Sp(n)-gauge transformations on E. Now we can state the main result.

THEOREM 1.1 Let 4, denote the moduli space of l-instantons on HP".
Then M, is identified with Sp(n + 1)\SL(n + 1, H) via the correspondence g+
V-g for ge SL(n + 1, H).

Let M(m, H) denote the set of m x m quaternionic’ matrices. We set
Py ={AeMmn+ LLH;'4=4,4>0}and 2,,, = {Be M(n + 1, H); 'B = B,
B >0}, where ' denotes the Hermitian conjugation. Then Sp(n + 1)\
SL(n+1,H)— 2,,,/R}, g—'g-g, is an isomorphism. Therefore we may
identify .#, with 2,,,/RY and we will usually use the notation D, instead of
V-AY for Ae ?,,,.

Let {D,} be a sequence of 1-instantons. Proposition 3.3 will provide the
following situation: There exist a subsequence {j} = {i}, a linear subvariety S
in HP", gauge transformations {y;} on E, and a self-dual connection D, on
E|HP™"\S such that y*D; converges to D, in Cj. on HP"\S. For the above
{j}, we remark that if an exceptional set S is minimal, then S is unique. So,
Proposition 3.3 would imply

TaeorReM 1.2. Let M, = {(D,,S); Dy is a limit of l-instantons, S is the
minimal exceptional set}/~, where (D, S) ~ (D.,, S') means that S = §' and D, is
gauge equivalent to D,,. Then we have an identification

‘/?n = ('@n+1\{0})/Ri .

Thus we have a natural compactification .#, of #, in view of
H. Nakajima’s work [13].
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In [7], S. K. Donaldson introduces the rough compactification of the
moduli space of (anti) self-dual connections on 4-manifolds, using the conver-
gence of the Yang-Mills action densities |F|*> as measure. We also investigate
the behavior of |F|? when the connections converge to .4, \ ./,.

We give first some definitions. For X = (X;;)e M(m, H), let tr X =) X,,.
Then tr (9gAg™') =tr A for ge Sp(n + 1) and A€ 2,,,. For | x m quaternionic
matrices X and Y, we define an inner product (X, Y) = tr (XY). Let §4"*3 =
{ze H"*';(z,z) = 1} and equip HP" = S*"*3/Sp(1) with the standard metric
induced from that of $*"*3. For Ae #,,, and z e H""', we set

®(A)(z) = 8(Az, z) (2, 2)*{3(A%z, 2)* + (tr A% + 2(tr A)?)(Az, z)*
—4tr A(A%z, z)(Az, 2) — 2(A3z, 2)(Az, 2)}

and we consider @(4) as a rational function on HP". Let F, denote the
curvature of D, for A€ 2,,,. We shall prove that |F,|?> = &(A4) in Proposition
3.1. Now we can state the following

THEOREM 1.3. Let A€ ?,.,, Be?,,,\{0} and let Sy denote the linear
subvariety {z € HP"; Bz = 0}. We assume that A approaches B.

(i) If rank B > 2, then lim,_ z|F,|*> = &(B) in L*(HP").

(ii) If rank B =1, then for any continuous function ¢ on HP", we have
lim,_ p [gpn @ F4|* = 4n? fs,, @, where the integrals stand for those with respect to
the canonical Riemannian volume elements.

2. The moduli space of 1-instantons

In this section, we give a proof of Theorem 1.1, following the program of
R. Hartshorne [9]. Hereafter we denote H"*! by V when it is regarded as a
right C-vector space. Let p:P(V)=(V\{0})/C* - HP" = (H"*'\{0})/H* be
the natural projection. We note that P(V) is the twistor space of HP".
Therefore, as mentioned in §1, a l-instanton D gives a holomorphic vector
bundle Nj, which is C*-isomorphic to p*E. We know that c,(Np) =1 and
Nplp~!(point) is holomorphically isomorphic to the trivial bundle CP! x C?".
Due to H. Spindler [19, p. 20, Cor.] it follows that Nj is a null correlation
bundle.

Let N be a null correlation bundle on P(V). Then, by definition, there
exists a resolution

0-0(-1)-»Q2(1)>N-0,

where © denotes the holomorphic contangent bundle of P(V). We know
that Hom (O(—1), Q(1)) = {p e Hom (V, V"), ¢V = —¢}, where V" is the
dual vector space of V and ¢Y is the transposed mapping of ¢. Let
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A ={peHom(V, V"), ¢" = —¢, ¢ is bijective} and let A4 denote the
moduli space of null correlation bundles on P(V). Then A" is naturally
identified with o//C* [19, Satz 4.2, a)].

For a complex manifold X, we denote by X~ the manifold with the
opposite complex structure. The right action of je H on V defines an iso-
morphism jg: P(V)— P(V"). We define an action of j on A4 by j-N =j¥N~
for N e 4. Clearly, we see that if N € 4/ is induced by a l-instanton, then
j*N=N.

Let ey, **, e, be the standard basis of H"*! and set e,,,,; = je;, Thus we
have a basis ey, ", e,,4; of V, and by this, we identify Hom (V, V') with the
space M(2n + 2, C) of (2n + 2) x (2n + 2) complex matrices. Let A denote the
standard embedding of M(n + 1, H) into M(2n + 2, C), and set J = A(jl,,).
We define an action of j on /¢ by j-@ ='J@J for ¢ € /¢, where 'J is the
transposed matrix of J and ¢ is the usual complex conjugate of ¢. Then the
induced action of j on &/°/C* coincides with the action of j on A4 under the
above identification.

Let /"={N € #/*=C*; j N=N} and o/ ={4 € M(n+ 1, H),
tA = A, det A(A) #0}. Then we have an isomorphism .&//R* — 4" induced by
A(j ). We note that A(jTgAg)="A(g)A(jA)A(g) for ge GL(n + 1, H) and A € o.
Clearly 4" is stable under the action of GL(n + 1, H) on A" which is induced
by the action on HP".

Lemma 2.1. (1) A/GL(n + 1, H) has a finite set of complete representa-
tives {J; = A(j diag (1,4,-, — 1)) 0 <1 < (n + 1)/2}.

(2) Let N, be the null correlation bundle corresponding to J,. If 0 <1<
(n + 1)/2, there exists a point ze€ HP" such that N)|p~'(z) is holomorphically
non-trivial.

Proor. (1) This is immediate if we consider in o//GL(n + 1, H).

(2) Let N be a null correlation bundle corresponding to ¢ € &/°. Let w,,
w, € V be linearly independent and let P(W) denote the projective line
(w;C + w,C \{0})/C* = P(V). Then it is easy to see that N|P(W) is holo-
morphically non-trivial if and only if ‘w, ow, = 0. When w, = ¢, + €,,,_; and
w, = w, j, we have ‘w, Jw, =0. [

ProoF oF THEOREM 1.1. From Lemma 2.1, it follows that for 0 < <
(n+ 1)/2 and g € GL(n + 1, H), g*N, is not isomorphic to any null correlation
bundle induced by a l-instanton. On the other hand, N, is induced by the
standard l-instanton V. Let D be a l-instanton and let N denote the null
correlation bundle induced by D. Considering the action of GL(n + 1, H), we
may assume that there exists a holomorphic isomorphism ¢ : N, — N. Then
Y*p*D is an Einstein-Hermitian connection on N,. From the uniqueness of
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Einstein-Hermitian connections due to S. K. Donaldson [6, 8] (see also [10]), it
follows that y*p*D = p*V and ¥ is an isometry. Furthermore, { is constant
along the fibers of p because p*D and p*V are trivial on the fibers. Hence ¥
defines a gauge transformation y on E. Therefore, y*D = V. Thus we know
that GL(n + 1, H) acts transitively on .#,. Clearly the isotropy subgroup of ¥
isSpn+1). O

3. Limits of 1-instantons

In this section, we give proofs of Theorems 1.2 and 1.3. To begin with, we
notice that E = {(z,v)€ HP" x H"*'; Tz0 = 0}. Let p; denote the orthogonal
projection HP" x H"*! - E. Then the standard 1-instanton V is given by a
covariant derivative pgod. Let n denote the projection H"*'\{0} - HP" and
let s be a mapping H" — H"*'\ {0} defined by s(x) = e, + x with x =Y 1_, e;x; €
H". Now we identify H" with = o s(H") and regard s as a local section of
HP" x H"*'. Then we have an expression of the curvature of : F, = |s|™?pg-
ds A d's- pg (see [1]).

Next, we shall prove that |F,|> = &(4) for Ae?,., as mentioned in
§ 1. Recall that |F(V-g)|*> = |g*F,|* for any g € GL(n + 1, H) and in particular,
|a*F,|? = |F,|? for ae #,,, with A = a*.

PROPOSITION 3.1. |a*F,|?> = ®(a?) for ae 2,.,.

PrOOF. For A€ 2,,, and g € Sp(n + 1), we know that g*®(4) = &(gAg)
and |Fi, ,|*> = g*|F,|*. Therefore we may assume that a = diag (ao, ***, a,). If
g€ Sp(n + 1) is diagonal, then ga = ag. Hence it is enough to show that
|a*F,|> = ®(@®) at y=Y"_,ey; with y,eR. Let fi= (L4, — s/ 2s-Ts)e.
Then at y,

F, = |S|—22'il,j=1f;"1:f}dxi A dfj.

Let 0, =dz; A dz; — y;dzy A dZ; — y;dz; A dZy + y;y;dzo A dZ,, where zg, -,
z, are the standard coordinates of H"*'. Let (, )yp» and (, ) denote
the standard metrics on HP" and H"*! respectively. Then we have that
(dx; A d%;, dx, A dX)gpn = |s[*(6;, 64) at y because n*(dx; A dX;) = ;. Let
Qiju = aiajakal(éik(azs’ s) — aiak)’i,"k)(éjl(azsa s) — a;a,y;y;)- Then we have at y,

|a*F1[2 = (‘125, 5)_4|5|4 Z';.j,k,t=1 Qijkl(eij’ O -

Note that (dz; A dzj, dz; A dz;) =16, (dz; A dz;, dz; A dz;)=8 for i # j, (dz; A dz;,
dz; A dz;) = 24, and the others are 0. Then a straightforward calculation
shows that |a*F,|?(y) = @(a?)(s(y)). O
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COROLLARY 3.2. Let A and B be as in Theorem 1.3. Then we have
lim,_ 3 |F|?(z) = o0 for any z € S,.

For Be ?,,,, we set My = HP"\Sy;, Kz = Mj x Ker B, Py = ((Ker B)*\
{0})/H*, and Eg = {(z,v) € Py x (Ker B)*; 'z = 0}. Let x5 be the orthogonal
projection H"*' > Ker B and let g5 = 1,,; — k5. Then ¢ induces a projection
ng: My — P;. By Theorem 1.1, B|(Ker B)! defines a l-instanton dg on Ejp. Let
tg denote the trivial connection on K. Clearly n}¥dg + tg is a self-dual connec-
tion on nfEg + K. From this connection, we obtain a self-dual connection
Dg on E| My, because E| My is isomorphic to nfEp + Kp.

PROPOSITION 3.3. Let A and B be as in Theorem 1.3. Then, after suitable
gauge transformations on E, D, approaches Dg on M.

PrOOF. We assume, without loss of generality, that B = diag (f?,0),
A = diag (2 «?) and that « converges to zero. Let us define an isometry
1:15Eg + Kg— E|Myg by

7,(vy, 03) = vy + (kg — |882,_2832'T(KBZ))hz(02) s

where ze My, v, €(nEp),, v,e€(Kp), and h, = (1 + |egz| 2Kpz-T(kpz)) 2 €
Hom (Ker B, Ker B). Let a = diag(f,«) and i1, = diag(l,«). We note that
a*(nfEg + Kg) = diag (B, )*(z} Eg + Kg). Hence it is enough to show that
lim,_,oa*t*V = n§f*Vy + tg, where Vy denotes the standard 1-instanton on Eg.
Moreover, this is reduced to the case f = 1 € Hom ((Ker B)*, (Ker B)%).

Let o be a section of n¥E, + Kp. Setting u, = 1,,, — |z| 72z 'z for z e My,
we have

ZFt*P)o = 1¥t7 - i*u-d(i*t-0).

Also we see that lim, ¥t = 1,,, and lim,_o(*u), = 1., — |egz| 2epz- (ep2).
From this, it follows that lim,_o*t*FV = (1,., — |epz| 2epz- T(egz)) 0d =
Ve +tg. O

Now the proof of Theorem 1.2 is completed as mentioned in § 1.

PrOOF OF THEOREM 1.3. We may assume that 4 and B are diagonal, and
we use freely the notations in the proof of Proposition 3.1.

(i) From Lebesgue’s dominated convergence theorem, it follows that @(A)
converges to @(B) in L!(HP").

(i) Note that lim,_z|F,|*(z) =0 for ze HP"withBz # 0. Thus we can
assume that B = diag (0, 1,0,---,0) and a = AY? = diag (a,, 1, a,, ", a,). Let
p = (ai + a3r? + - + a?r?)"?* with r, = |x;/. Then (4s,s) = p? +r? and
Q1111 = p*, where we substitute r; for y,. For ¢ >0, w, € S* and ¢ e C°(H")
with compact support, we have
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&
lim,_p f (As, 5)7*Qy1118(r 04, X5, +, X,)17 dry
0

e/p
= limA-'B f t3(1 + tz)_4¢(ptwl, X5, X,,) dt = ¢(0’ X2, xn)/lz .
0

Note that Q,,,, = ajp*(ad +ri+air+ - +a2r?) and (4s,s)* >
Q(p* )2 - 20} - a3r})? - (@2 + r? + air2 + -+ + a?r?). Hence
(As, 8)™*Q 21207 12 < ayr3r3---r}/8. Similar arguments show that if Q;, #
Q1111, then lim,_g(As, 8)7*Qyur? - 1) =0. We notice that the Riemannian
volume element on HP" has an expression (s, s)"2"~2d*". Here we denote the
standard volume element on R™ by d™ Now for ¢ € C°(H") with compact
support, we have

limA_,B J‘ ¢ '(AS, S)_4(S, s)z ZQijkl(BiP gkl)(s’ S)—2n—2d4n
HVI
:47r2f B0, X5y, X)) (1 + 72 + -+ + p2)"2nd4n4
Hn-1

This completes the proof. []
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