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§1. Introduction and theorems

The aim of this paper is to provide a simple model of discrete time
interactive exclusive random walk of infinitely many particles (i.m.p.’s) which
yields a simple exclusion process after a simple limiting procedure, and then to
show that the method of relative entropy is also applicable to the analysis of
stationary measures for a random walk of i.m.p.’s such that i.m.p.’s can move
simultaneously.

Suppose & = {0, 1}* represents the space of all configurations of
indistinguishable im.p’s on one dimensional lattices Z. For a given
n=_(--n_1non, )X, the site i is regarded to be occupied by a particle if #;
=1. Let & ={e, €}% We associate w = (- w;_,0;0;4,--)€E with ne&
and consider that the states n; and #;,, on the edge (i, i + 1) are exchangeable
[resp., unexchangeable] if w; =e[resp., €]. Then we define an exclusive
movement of im.p’s on Z by the mapping W,: ¥ > Z defined by W,(n)
= (---n"_ynony ---) where

NiMiv1 = Mivrm T 0 00,4, = €8,
n; =mn; otherwise.

More intuitively, the movement of each particle of # is defined through w of &
in such a way that a particle on the site i moves to the site i + 1 [resp., i — 1] if
and only if w;,_ ,ww;,, =€€ and 5, =1, n;,, =0 [resp., w;_,w;_ w; = &€
and n,_, =0, n; =1]. We remark that if #; = 5., there occurs no change of
states on the sites i and i + 1 even if w,;_;w;w;,, = €eE.

Now suppose that the configuration of im.p’s on Z at time ¢ is 5. Let
¢(n, t) be a random element which takes the value in & Then W;, (1) defines
a random configuration of i.m.p.’s at time ¢ + 1 which comes from # at time ¢.
In the following we treat the case where the distributions Q,,,, of €(, t), e %,

t=0, 1,..., are independent of ¢, and their common distributions Q,, ne %, are
given as follows: For some fixed constants 0 <a <1 and 0 < f < 1
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a if n; # My
B if n;=m4y

>

Q,,(a)eé”:wi=e}={
(1.1)
L—a if n; # 144
L—B if ny=n4,y

Q,,{weé”:wi=é}={ ,
and random variables =;: & — {e, €} defined by n(w) = w;, i€ Z, are mutually
independent under Q,. This assumption leads us to define transition
probabilities P(y, A) from ne% to a Borel set 4 =« ¥ by

P(n, A) = Prob{W,, ,(Ne A} = Q,{weé&: W,(n)eA}.

We will denote by (EP), ; the Markov process defined by the above transition
probabilities (“EP” stands for the “exclusion process”). In (EP),, the exchange
of n; and n;,, and that of n; and #5;,, are independent if |i —j| > 3; and so
infinitely many particles on Z can move simultaneously under P(x, -) when ) ;#;
=Y.(1 —n)=oc0. Moreover if « = §, then Q,’s are independent of ne %, that
is, the exchange of #; and #;,, is not affected by the configuration of the other
sites, and its probability is given by aaa, where @ = 1 — a. Thus the Markov
process in the title of this paper is obtained.

Up to now various results have been obtained concerning simple exclusion
process. (Remember that the simple exclusion process is a continuous time
Markov process on &, and the number of particles which jump at the same
time is one. For details, see the textbook of Liggett [7]). However there are
not so many results about discrete time exclusion process. In this paper we
first show that a well-known simple exclusion process is obtained from our
discrete time model (EP),, by a simple limiting procedure. Then we
investigate the structure of the set of stationary measures for (EP), ;.

Let us denote by S,4k), k=0, 1,..., the semigroup corresponding to
(EP), 5. Let T(t), te[0, o0) be the semigroup of the simple exclusion process on
Z whose generator is given by

.....

for a %, ;-measurable function g, where 4, ; is the o-field generated by {,,
Mi+15-..» M;} and n'~ Yt is the element of & such that ,_, and #, are exchanged
in n. Let C(Z) be the set of all continuous functions on Z (the topology of
is the product of the discrete topology on {0, 1}). Then using the theorem of
Kurtz [1] we have

THEOREM 1. For each fe C(¥),
limn—boo “ Sa/n,ﬁ/n([nt])f_ T(t)f “oo =0 for all ¢ = 0’
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where [r] is the largest integer not exceeding r.

When one sees the proof of Theorem 1, one will recognize at once the
mechanism that, differently from S, 4/,, only one particle can jump at each time
in the limit process T.

As for the tools for the analysis of stationary measures for exclusion
processes we know the method of coupled Markov process and the method of
relative entropy. The former is very useful and clear [6, 7] if the movement of
each particle is not influenced by the other particles, and is also applicable to
our (EP),; if « =B. However we employ in this paper the latter method
because it can treat the interactive case o # 8 as well. This method was used
for stochastic Ising models in [4, 5] and for interactive exclusion processes in
[3, 8, 10]. Especially in [10], the structure of stationary measures is
completely determined. However in our (EP),, differently from [10], i.m.p.’s
can move simultaneously. Hence we can not make use of the argument given
in [10] which bases on the property that no more than one particle can move
at the same time. So the argument given here, which evaluates the internal
entropy in [ — N, N], NeN, by the entropy on the boundaries, is different from
that of [10]. Our result about stationary measures for (EP), ; is the following:

THEOREM 2. A probability measure v on ¥ is stationary for the Markov
process (EP), g if and only if v has the regular clustering property (RCP),) with
index y = [(1 — a)/(1 — B)]%.

The definition of (RCP),, which is equivalent to the condition that a
measure is a canonical Gibbs state in the statistical mechanics, is given in
§2. It is shown in [2 + 3, 10] that the extremal points of the set of (RCP),-
measures are {u’}oc,<;, where u” is a renewal measure on Z with
P {neZ:n; =1} =p (more precisely u’ is a Gibbs state with nearest
neighbor potential — kTlogy). For details, see §2. Thus the structure of
stationary measures for (EP),, is completely known. As a corollary of
Theorem 2 we have

Corollary. Every stationary measure v for (EP),, is reversible, that is,

J‘fSa,ﬁ(t)gdv = ‘[gSa,,,(t)fdv, t>0,

for every f, ge C(%).

If we denote by .#, the totality of (RCP),-measures, Theorem 2 states that
the set of stationary measures for S,,z,(k) is 4, with y,=[(1—a/n)/
(1 — B/n)]%. Then Theorem 1 suggests that the set of stationary measures for
T(t) will be .#,. This coincides with the well-known fact that a probability
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measure v on & is stationary for the simple exclusion T(t) if and only if it has
the exchangeable property, ie, ve.#;. Thus we think our (EP),, is an
interesting discrete time interactive model which has a close connection with
simple exclusion processes, and the structure of whose stationary measures is
completely determined.

The proofs of Theorems 1 and 2 are given in §2 by using three
lemmas. The proofs of lemmas will be given in §3.

§2. Difinitions and proofs of theorems

In this section we give the proofs of Theorems 1 and 2. We first prepare
some notation and definitions. Notation given in the previous section will be
used without any comments.

By #%., i<j, i,jeZ, we denote the set of basic cylinders
L@y -a_10];={neX:m=a, i<I<j}, a;---a;€{0, 1})""*1. Elements
of €, ; are sometimes denoted by a, b or a(i, j), b(i, j) and so on. The o-field
B, ; is generated by €, ;, ie, &, ;= 0(%,;). We set ¥ = {@}U{U;c;¥:,;} and Z
= o(¥). We endow & = {e, &} with the Borel structure generated by U;s; %,
where &, ; = {,[E;--- E;];: E;--- E;e{e, &}/ '*'}. [Elements of #,;_, are some-
times denoted by E, F or E(i,j — 1), F(i,j — 1) and so on.

Given E=[EE;_,---E;_|];_ €%, -, let Wg: €, ;> €, ; be the mapping
defined by Wg([a:a;+1 - a;-1a;]) =ilaa;,, -~ aj-,a;]; where aja;, | = a;4 0, if
and only if E,_,EE,, ,=¢¢& for | with i<l<j—1, and a;=gq
otherwise. We note that Wgo W is an identity mapping on %;; as well as
W,oW, on Z.

In what follows probability measures Q,(-), ne%, will be written by
Q(n, -). Since for E€e #,;_; Q(n, E) depends only on #;, #;14,..., n;, We can
define Q(a, E), ac%,;, Ec#,;_,, to be Q(n, E) for some neZ satisfying
nea. Probabilities Q(l[a;---a;l;, ;[E;--- E;—;];-;) will be sometimes ab-
breviated such as Q(a;---a;, E;---E;_;). We note that

Q@a Et)e{a, 1—o, B, l—ﬁ}
by (1.1), and
Q(ai"'aj, Ei"'Ej—l): {;il O(aa,, 4, E)

by the mutual independence of {n;},,. We also define P(b(i—2,j+2),
iLa;--- a;];) analogously.

ProoF oF THEOREM 1. We use the theorem of Kurtz [1] by taking D(Z) in
§3 of Chapter I of Liggett [7] as a.core for A,. Set A, =n{A,, (1)
— I}. By definition we have for ae%,;
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PO @) = Yoy, ... OOt EYaWelnli — 2, j + 2)),
where n(i — 2, j+2) = ;_,[M;—2Mi—1 = Nj42)j+, for neZ and

1 if Wei—2, j+2)<a

Xa(Welnli =2, j +2))) = { 0 otherwise .

Therefore for %, -measurable functions g, A4,g(n) is represented as the sum of
the terms of the form

k 1 u v
"(%) <§) <1 - 3) <1 - g) {gWeni — 2, j + 2))) — gn(i — 2, j + 2))},

k+l+u+v=j—i+4,

over E satisfying We(n(i — 2, j +2))) #n(i — 2, j +2). This condition on E
implies that only terms with k > 1 and hence only terms with k=1 and [ =0
can remain in the limit of 4,g, which gives lim,_  A,g = A,g. Then it is not
hard to show that A4,f— A, f for every fe D(Z). Thus the condition (c) of
Theorem 6.5 in [1] is satisfied. [

A probability measure v on & is said to have the regular clustering property
(RCP), with index y > 0 if it satisfies

7@ v(a) = 77 v(p)

for all a = [a;--a;]j, b= [b;---b;];€%,;

j 1<, i, jeZ, with

a;=b, a;=b; and Y’ _,a,=%)_.b,
where
#aoGla;-al)=#k aqa ., =uw, i<k <j—1}.
We remark that (RCP), of p is equivalent to

21 Q(a, E)u(a) = Q(Wg(a), E)u(Wg(a))

for every ae%,; and E=%,;_,, i <j (to understand the meaning of (2.1) just
consider the simple case E = ;[€---&&---€];—,). Further this relation essenti-
ally relies upon the property that Q(01, ¢) = Q(10, ¢) = «. The reader who is
familiar with the statistical mechanics can easily check that (RCP), is equivalent
to the condition that a measure is a canonical Gibbs state with the nearest
neighbor potential — kT'logy ([2, 3]).

It is shown [2 + 3, 10] that the set of extremal points of regular clustering
measures with index y is {u’}o<,<;. Here u{’ is the translation invariant
probability measure on Z defined by
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(1) =p, wP([0D)=1-p,
1 ([a, -+ a,00]) = qu? ([a, -+~ a,0)),
W ([, a11]) = q'u ([a; -+ a;1]),
where g and ¢’ is a unique pair of numbers in the interval (0, 1) satisfying
q¢'/l1 — @)1 —q)] =y and (1 —¢)/(1 —q)=(1—4q)/p;

and pf [resp., 4] is the Dirac measure J,[resp., 6,] which concentrates at
0=(---000---) [resp., 1 =(---111---)]. It is easy to check that u{ is a Gibbs
state with the nearest neighbor interaction on Z such that the chemical
potential J, = J,(y, p) and the interaction potential J, = J,(y) are given by

Jo=kT {2logq —log(l — q) —log(l —¢q)} (=kTlog[yq/q'])
and
Jy = — kT {logq + logq' — log(1 — q) —log(1 — q)} (= —kTlogy),
respectively, where k is the Boltzmann constant and T is the absolute
temperature. Here a probability measure v on & is said to be a Gibbs state on
Z with a chemical potential J, and a nearest neighbor interaction potential J, if

its conditional probability v{;[a; - a;1;|%{;}(n) of ,[a;---a;];€%,; for a given
%;; (= the o-field generated by 4, ,, I <J <i and j<I<J) is equal to

Ei,j(ﬂ)_lexl)[ - (l/kT){JOZi=iak + Ji(mi-qa; + ajfjvr + Z:‘;,l Ay + 1)}],

where Z /(1) is the normalizing factor.
A probability measure v on & is said to be stationary for the Markov

process (EP), , if it satisfies

f dV(n)f(n)=J dV(ﬂ)f P(n, dd)f (%)
x x x

for all bounded #-measurable functions f.

PROOF OF THE SUFFICIENCY PART OF THEOREM 2. The sufficiency of the
condition (RCP), is almost obvious from (2.1) for v. Indeed for
a=;la;-- aj]je(gi,j

j dv(mP(n, @) = Y ey, _, ., VO)P(b, @)
X

=20 Qb, {(FEF 5 ;412 We(b) = a})v()
= Yo L Lo Qb, {F: We(b) = 1 an})v(b)
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= e 2o 2ok 2 QW(B), F) Sypaq(B) V(W (D))
[6,(y) =1 if y=x, =0 otherwise]

2.2 =Y e Donr 2 QW' an®), Fyv(We(n' an’))
=Y D 2 Qntan”, Fyvin‘an)  [by (2.1)]
= v(a) [by >.r 00, F)=1],

where ), and ), are summations on {0, 1}?, and
ntan” = _,[n'li-ynan; [0+, for n*, n"e{0, 132
This implies the stationarity of v. O

Now let us begin the proof of the necessity part of Theorem 2. Let y =
[(1 — a)/(1 — B)]? as in Theorem 2. In the following, by u we represent a fixed
nontrivial (RCP) ,-measure x4, and by v an arbitrary probability measure on
Z. We denote by ¥(x) the function x-logx, x>0, with P(0)=0 as
usual. The relative entropy of v with respect to p on {— N, —N+1,...,N
—1, N}, NeN, is then defined by

HN(v) = Zas@-N 1% ﬂ(a) T<M> .
‘ p(a)
Suppose that the distribution of (EP), ; at t = 0is v. Then the distribution

vatt=11is given by ¥(:) = fv(dn)P(n, *), and hence for ac@_y y

2.3) @) = Ypes -, 0@ E)R(@, E)

by (2.2), where
szEm’ ! " 2 ‘ Eo”
R(a’ E) = Z(M Zw'zﬂ? Z'I’ Q( g}a,anE; — )

and Y _,, Y . and > e an are summations on {e, €}? and {0, 1}2 respectively
(@' Eo" = _y [0 -yt NENy[0 ]y, 1)

Let us introduce
FN(V) = HN({;) - Zae‘é’—n_zv'u(a)z'ze‘g“"’”_ ! Q(a’ E) Y’<RL'a(,a)E'))

in order to estimate the range of R(a, E)/u(a) over E€F _yy_,. It is
immediate from

V( Ww!Ew r (1” ¢ a”r))

R(a, E))

Hy() = Taee_y, 1(@) ”(ZW-”“ oD@
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and the convexity of ¥ that
24 Fy(v) <0 for every N.

The key of the proof of Theorem 2 is to show that Fy(v) = 0 for all stationary
measures v.

To prove Theorem 2 we prepare three lemmas. Proofs of them will be
given in the next section. The next lemma brings us a recursive relation
concerning Fy(v). Let us write

LN(V) = Zae@-u,u ZEefAN,N_l Q(a’ E)R(aa E)

x log {waw”‘l Q(a'", w—N)Q(a(r)’ wy-1)R(a, o _yE wy_,) }
R(a, E)

where a'> =a(— N, —N+1),a” =a(N -1, N)and E = E(— N+ 1, N —2)).

LemMmA 1. Suppose v(a) > 0 for every nonempty ac¥. Then we have
FyO) < Fy_1(v) + Ly(v), N=>2,
and Ly(v) <0.

The next lemma states that if v is stationary, then Fy(v)’s are bounded
below.

LEMMA 2. Suppose v is stationary for (EP), ; and v(a) > 0 for all nonempty
ac¥. Then there exists a positive constant ¢ such that Fy(v) > — c for all N.

Then, combining Lemmas 1 and 2, we can prove

LEMMA 3. Suppose v is stationary for (EP),  and v(a) > 0 for all nonempty
ac¥. Then limy_  Fy(v) =0, and hence Fy(v) =0 for all NeN.

With these Lemmas we can complete the proof of Theorem 2.

PROOF OF THE NECESSITY PART OF THEOREM 2. It is clear that d, and 6, are
stationary measures and have (RCP),. Hence it is sufficient for the proof of the
necessity to show that every stationary measure satisfying v({0, 1}) =0 has
(RCP),. Just as in the proof of Proposition 4.1 in [10] we can show that v(a)
>0 for all nonempty ac¥. By Lemma 3 we have Fy(v)=0 for every
N. Since ¥(x) is strictly convex, this implies that if we fix N then for each
ac%_yy there exists a constant I'(a) such that R(a, E) = I'(a) for every
Ece% _yn-i. From (2.3) and #=v it is known that I'(a) = v(a) and so

2.5) R(a, E)=v(@) for all EeF _yy_,.
Further if E is taken to be E;,_,E;E;,, = €€ and E, = ¢ for the others (— N
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+ 3 <i< N —4), then by the definition of R(a, E)

0(a;-10;4,0,0;, 5, EEE)
Ra E’: — V(_ A_~n- ' A:_1Q; a.a. ..a
( ' Q(ai—laiai+1a,’+2, CCC) ( N[ N i—1%i+1%i%i+2 N]N)a

which together with (2.5) implies (RCP), of v. O

Proor OoF COROLLARY. For the proof it is sufficient to check the case f
=y, and g = y,, @, be¥. But this is almost immediate from (2.1). In fact,
suppose a€%,, be®é,; and i<I<j<J. Then

J SSa,5(1)gdv =j P(n, b)dv(n)

=2 Qi an, {FEF, 5 ;.11 Weln'an") < b})v(n‘an’)

= Zne Zy]’ Za Z{' ZF Q('? ¢ a’7'a F)V(ﬂ ¢ anr)ém’an’(WF(é ¢ bér))
[by Wee Wile) = c]

=3 Y Y e S p QW& ), FYV(We(E* BE))Spuan- (Wi(E* HET)
= e Dor e e g QEBE, FYV(E B E)S g (We(E4BE) [y (2.1)]

=j P(n, a)dv(n) =j 9S.,5(1) fav,
Znb T

where Z”e, Z,’,, de and Zé, are summations on the set {0, 1}%. O

§3. Proofs of lemmas

In this section we give the proofs of lemmas which are used in the
preceding section.

Proor OoF LEMMA 1. We have

Fy() =Y., 3¢ Qa, E)R(a, E)log {_Z_LQ(_I‘;(;E%_E)}

= 2.2 2@ E)R(a, E)

<o { Y:0(a, E)R(a, E) }
g
Z«B-N&m_, Q(a(“, C'l\)—zv)Q(a(r)» @y_1)R(a, O_yE QOn-y)

+ Ly(v),

where ), and ) are summations on F_yy_;, and Y, . = on
{0, 1}2. Then the first term on the right-hand side is less than or equal to
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(3'1) Zbe‘f-u+1y~-12£ef-u+1,n_z Q(b7 F)
X (Lo vaw - xion -1 Qs _3)Q(, Oy 1)R(a_ybay, &_yFioy_,)}

X log { Za-yan ZE Q(a—NbaN’ E)R(a—NbaN, E) }
Y e van - i O, D_y)Q(v, Oy_)R(a_ybay, &_yFiy_,)

where u=a_yb_y,, and v = by_,ay; because

alog(b/a) + clog(d/c) < (a + c)log[(b + d)/(a + ¢)] (a, b,c,d>0)

which follows from the concavity of logx. It is easy to check that the
denominator [resp., numerator] in the log function in (3.1) is equal to R(b, F)
[resp., Y Q(b, F)R(b, F), FeF _y.,y_,]. Thus we have Fy(v) < Fy_,(v)
+ Ly(v). The inequality Ly(v) <O is an immediate consequence of the
convexity of ¥(x) and ), . 0@, o_y) @, oy_)=1. O

In the rest of this section, for a given ae%_y 5, N€N, we denote by @', @’
and @” the elements of ¥_y,;y—; i =1, 2 and 3 respectively such that the
configuration from — N +i to N —i equals that of a. We also use F, E” and
E" for Ee¥ _yy-1, NeN, just as a', a" and a” for a. Hence, for example, we
use the notation E=E_yFEy_ ,=E_yE_n,,E'"Ey_,Ey_;, and so
on. Given E€# _y_, v, and ae%_y_, y+2, We denote by W{(a) the basic
cylinder in € _y y such that the configuration from — N to N is equal to that of
We(a).

PrOOF OF LEMMA 2. Writing

HY0) = Ter_yosnss Tt nosmer 0@ E)(@)log (Z‘;;)

(WE ’(a))}

= Y& 2. Q(W(a), E)v(We(a) log{ @)

and, using ¥ = v, we have

v(WE (@)  pa") }

= 2 Y. 0(Wsa) E)v(WE(a))log{ WO @) R F

v(We(@) p(WE"(a) pa)
YWP(@) p(We(@) ua)

VWP @) ua)
* y'<u(wg”’ (@) R, E"))

=2£2.0(a E)R@, E)

by (2.1). Then the lemma follows immediately from the facts that ¥(u) >



Interactive exclusive random walk 277

—e ! for u>0, fractions outside of W-function are bounded, and
Ye).Q@ E)R(@', E') =2* by (23). O

ProoF oF LEMMA 3. 1°. By Lemmas 1 and 2 we have limy_, , Ly(v)
= 0. Let us write

(3.2 Ly(v) = Yact - non 2uFes - a2 C0QWe(@), V(W™ (a)
X [W(Zw- NON -1 Q(a(”a w—N) Q(a(r), wN— l)uw_ NON - 1)

=Y o o1 0@, ©_y) 0@, 0y 1) Pty yan_ )],

where
Up re s = p v (@ F)
- {cov(wg"-”(a'»%’ﬂ}_l R(a, F_yFFy_)
(3.3) = N(a, F)R(a, F_yFFy_,),
— {Q(b”’, G") max (QVI (), G), QWe-(b"), G} '
o, ) 0We- "), G7)

be¥ _n-2n+2 GEF _y_an+1s NGN}-

Here we have introduced up_,r,,,’s so that they are in [0, 1] (note that if « = 8
then ¢, = 1). It is elementary from limy_, ,(3.2) = 0 to conclude that the limit
of

(34)
Y-a 2 rCoQ(Wr(@), ”V(W(FN_3)(“'))25-N5~_.Za,-m?m-l Uy _won-1 — Ud_ndn-,

is zero, that is,
(3.5)
Hy oo 3D D5 wis— 1 2o wn- s |[R*(@ &y Fldy—y) — R*(@, & yFory-y)| =0,
where
R*(a, w_yFoy_,) = Q(a, F)R(a, o _yFoy_).
In fact for real numbers u,e[0, 1], s = 1, 2, 3, 4, define
Yo, (Uy, Uy, Us, ug) = P(0,0,uy + 0,0,u; + 0,0,us + 0,6,u,)
—[6,0,%(u,) + 0,0, (u,) + 0,0,¥(us) + 6,0,¥(u,)],
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4
(p(ul’ Uy, Uj, u4) = Zs,s’=1 |us - us’l’

where 6, and 0, vary over « and 8, and 6, = (1 — 6)), 8, = (1 — 6,). If we set for
e>0

Dyp,.. = {(uy, Uz, U3, Ug): Yo, (g, Uy, U, uy) < — ¢} and
Dig,.c = {(uy, Uy, U, ug): Yoy, (Uy, Uz, Uz, Ug) > — &},
we can choose constants I, and 6*(¢) such that 6*(¢) |0 as ¢|0 and

(0(“1, u2’ u3, u4)
Yoo, (U1, Uy, Us, Uy)

< T, for every (uy, Uy, Uz, uy)€Dgy .,

©(uy, Uy, uz, uy) < 6*(e) for every (uy, u,, us, u)€DF, ..
Then dividing the summation ) Y, in (3.4) into
Dgy,..n = {(a, F): Q(a'"), ¢) = 0,, Q(a™, €) = 6, and
Vo0, (Uees Uers Uges thez) < — ),
D}q. .n = {(a, F): Q(a'¥, ¢) = 0,, Q(a™, €) = 6, and
Vouo, (Uees Uers Use, Use) > — £},
(note that 6, and 6, vary over o and ff), we have
(3.4) < TILyO)| + 6*()co Y0 2 Q(We(@), F)v(WE ™ ().
Hence we obtain (3.5) by taking limsupy_, ., in the both sides and letting ¢ | 0.
2°. For ac¥_yy and E€ ¥ _y y_ put
V(We(a) = Q(We(a), E)v(Wg()) and R(a, E) = Q(a, E)R(a, E).
By the stationarity of v we have Hy(¥) = Hy(v), and so using (2.1)

F0) = Y., 0, E)u(a)[ (m> _ W(W)]
_Z ZE}?((: E/ [ (E—NEN l) ql(uE—NEN—l)]

Q(a, E) 1
+ ZEN( E,[ENEN T UE yEy -, 1] 8 @ONW@.E)
= FPO) + FP0),

—_ "
where ug gy, = Ug_y5y_,(@ E),
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N(a, E))
Q(a, E_yE'Ey_,)
and N(a', E') is the one defined in (3.3). By performing a computation like (3.9)

below, we can check that for every €_yian-2 X F _y+1.n-o-IEasurable
function G

VE_NEn-1 = Vg_nEn-.(@ E) = {’(WE_NE’EN_l(a))

Z ZE ]\?((a’ ? [ E—NEN—I - uE-NEN—I]G(a(_ N + 2’ N—'Z), El)

= Zc ZF {Zn‘ Zn’ Zw_uwn_ 1 [{’(WE(a)) - R(a’ E)]}G(cs F)
= ZcZFO.G(C’ n = 0’

where )’ and ), are summations on €_y., y-, and F _y,, y_, resectively,
and a=n'cy", E=w_yFoy_,. Therefore we can replace v(W® 3(a)) in
log N(a, E) of F{P(v) by u(Wg.(a”)). Thus we have

Ha) p(We-(@) } |

@) (y) = v -
(3.6) FQW) =YY [¥(Wg(a) — R(a, E)]log {co wa) w(Wy(d))

3° Let us show that (3.5) gives

(€} By s oo Yace_ . n 2ubes - -1 |V (We@) — R(a, E)]| =
To see this it suffices to check that the limit of

Dy(e*s &) = Ynce_ w265 - ns2m—s |V (Wieger(@) — Ra, &' Ge")|

is zero every fixed &', e"e{e,€}>. If ¢’ =¢ =ee, this is true because
R(a, eeGee) equals ¥(W,.g..(@). If one of &' and ¢ is ee, the story is rather
simple. We first treat the case &’ = ee.

By (3.5), for every fixed & _y, &_y, @_y, Oy-1€{e, &} and @ _y, 0 _y42,
wy-30y-,€{e, €%, we have

limy., Zae‘ﬂ_N_NZHef-N+3,N_4|R*(a’ D _NO_N+ 1Oy HOy_ 30550y )
— R*@, & _y@_y1+ 10y HOy 051Dy 4)]
(3.8) = limy_, o Sy(@ - NO - N+ 10 -N+25 ON-3ODN-—2DN-1;
D_NO N1 1O Ny Oy-30y-2Dy—1) =0

Below we give a computation for Sy(eew_y 4, Wy—3E€; €€W_y 45, Wy_38€) as
an example (this kind of computation will be omitted in the rest): Given a(i, j)
and E(i — 1, j) let us denote by W§;_, ;(a(i, j)) the element a(i, j) of ;; such
that a4d,,,=a,,,4, f E,_EE,,, =¢®8€ i<l<j—1, and a, = q
otherwise. In the summations below, w* and w" run over {e, €}% n' and 7"
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over {0, 1}%, and a@” over €_y,, ny_,, respectively. Then

(39) Sn(Eew 1,5, 0y 388; €W _y 42, Wy 3E€)

= Za Zn

i’)( WweeeE"EEw '(’1 ¢ a”r)) il’( WweeeE"Eew ,(?] ¢ a’,r))
ZmzZerqezn'{ Q(a(”, €)0(@™, ¢) - Q(am’ e)Q(a"’, e) }'

Q@O Weg(a"){", eeE"Eee’)

Zm,z,,, { 0(a®, €)0(a™, &)

Q@ Wg-o(a)e™, eeE"zew)

0(a'"), e)Q(a", €)

where E" = _y,,Hoy_3 and &8Pl = Wi o ooor @y, )y+,.  Since
Wega(€-n+2.n-2) = €-ni2.n-2, the above equals

Za(e) alr) ZH Za"

Y@ W Ego(@)E)

= Za ZH

s

V(@' Weg(a') f”‘)}

) Q(a'Va" ", eeE'een")
e Qe e)Q(a®, ®)
Q(a@'Va"t"*, ee E"gew")

0(a”), €)Q(a™, ¢)

Yaa"Er)

v(a”’a"cm)}

=2

Zw'Zq’
Q(a(—= N, — N +3), eew_y,,)Q(ay_3ay_L"°, oy_3880")
Q(@a'), e)Q(a", ?)

. Q(@a(— N, —N +3), eewr_y.,)Q(ay_3ay_,¢"°, wy_3€e0")

(@™, €)0(a"™, ¢)
[by Y, Qa(—N+3,N—~3), H) = 1]

Wa'Va'Er)

v(a“’a"é“)}

= ZaQ(a(—N+ I, —=N+3),ew_y17)
Q(a(N —3, N —1), wy_3€)
* 0@, &)
_ Q(a(N—3a N_z)’ wN—3)
Q(a", e)

Z"rAN,N+ I(anr)

Z”N+ . AN_l’N(anm 1)

by E"° = ay_ N+ 1anln+2 if ©" = €€ and so on. Here 4"'*1(b), be®, ;, i <1
< j—1, is given by

ANTHYB) = O(b(I — 1, I + 211+, geg)v("1*1) — Q(b(I — 1, I + 2), &e&)v(b)

and b"'*! = [b;---by_,b; 4 byby,,---bj];. Similarly we have
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(310) SN(CCCD_N+2, eeé; CCW _N+25 eee)
=Y. 0@(—N+1, —N+3),e0_y;,)

Q(a(N — 3, N — 1), ee)
* 0(d", 9)

Z'I’AN,N+ l(anr) .

Then by (3.8) and (3.10)
(3.11) limy_ o 1, -4V an")| =0,
which together with (3.9) yields
My Y0l X, 4" M@y ) = 0.

On the other hand we have

Dylee, wy—,8) =Y, 0(a(— N, — N +2), ee)Q(ay_,an-1, Oy—»)

x [, AVN+ 1 (apr)],
Dy(ee, &) = ), Q(a(— N, — N+2), ee)ly,, ~ AY " Nany,,),

which gives us limy_, ,Dy(ee, wy_,€) = limy_, . Dy(ee, €€) = 0.
To treat Dy(e’, "), ¢* # ee, let us put

ARTAB) = Qb — 1, 1+ 2+, Be@) 4"+ (b1 )
— Qb — 1,1 +2), ee€)4”7*1(b).
By combining

SNEW _ N4+ 1W_ N2, €€8; EW_y i1 W_ N5, €CE)

281

Q@(—N+1, —N+3), 0_y+10-n+3) Q@N —3, N —1), ee)

=2 Q@@ §) Q(a”, &)
X ALy ™ @) - Ly AN a)|
with (3.11) we have

limy 3,13, Y, AYNEL (' an’) = 0.

Just as (3.11) we also have

limN—’oo ZaIZq:A_N_I’_N(nea)l = O

These results imply limy_,  DyEw_y4 1, @y-,8) =0. Indeed we have only to

use the relation

Dy@w_y+1, Oy-28) = ZaQ(a—N+ 18-N+2, O-n+1)QAy-2ay-1, Oy-2)
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X |Q(ay-1an, é)Z.,,A'”“""(n’a) +Q(a_ya_y+1, é)z,,rAN’NH(aﬂ')
+ Y L AN n (' an’).

The remaining Dy’s can be treated analogously.

4°. Now we can complete the proof as follows: It is obvious from (3.6)
and (3.7) that limy,F{?(v) =0 holds. The equality limy_  F{(v)=0 is
obtained immediately from (3.7) and the fact that for every ¢ > 0 there exists M,
> 0 such that |ulogu — vlogv| < ¢ + M,|u — v| for every 0 <u,v <1. Thus
we have limy_,Fy(v)=0. This with (2.4) and the monotonicity of Fy(v),
which follows from Lemma 1, yield Fy(v) =0, NeN. O

Concluding remarks. 1. If § =0, our argument for the proof of necessity
part of Theorem 2 does not go through because, for example, limy_, ,(3.10) =0
does not immediately imply (3.11) (there occurs a case that Q({, E) =0). To
treat this case a more precise argument will be needed.

2. Our argument also does not go through in the asymmetric case such as
Q01,e)=0a, Q(10,e)=0 and Q(11,&) = Q(00,&) =1, because (2.1) is not
equivalent to (RCP),. This case was treated in [9], and it was shown there
that for 0 < « < 1/2 a (nontrivial) probability measure on & is stationary for
the above asymmetric exclusion process iff it has (RCP),_,. The proof was
based on the method of coupled Markov process.

3. We can consider another limiting procedure different from Theorem
1. Let P(y, A) be the transition probabilities which define (EP),,. For fixed
neN define new transition probabilities P*(y, A), by

1 .
;P(I’], i[ai"'aj]j) if ;- a;#E N
P*(n, [a;- alp), =

1 1 .
1— - + ;p(”, i[a;---a;]y) otherwise,

and denote by S¥(k), k=0, 1,---, the corresponding semigroup. Let T*(t) be
the semigroup on C(Z) defined by the bounded operator

(A% N)n) = f P(n, dO) f(Q) — f(n), feC(Z)
x
(we refer to Example 2.3 and Proposition 2.8 in §2, Chap. I of [7]). Then we
have
lim,_ | S*([tn])f — T*(®)f1l, =0 for all t>0

for feC(%). We remark that in the Markov process associated with A%
i.m.p.’s can change their position at the same time, and that a probability
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measure v on % is stationary for A% if and only if it has (RCP),. Indeed the
condition that v is stationary for A% is equivalent to the one that v is stationary
for (EP),, that is, for ac®

»

j AL =0 = | B)PO @) = ).
x x
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