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ABSTRACT. The cohomology ring H*(BO',Z2) is the polynomial algebra Z2[w1,W2,

w3, ], where w, is the i-dimensional universal Stiefel-Whitney class. The i-dimen-

sional universal Wu class u{ is defined inductively as follows: ι;0 = w0 = 1 and wt —
vί + ΣJ=I S4Jvi-β ^ 1)» wnere Stf is the Steenrod squaring operation. We can describe
explicitly the polynomials on wl9 vv2 and w3 in vt.

1. Introduction

Let BO be the space which classifies stable real vector bundles. Then

its mod 2 cohomology H*(BO; Z2) is the polynomial algebra over Z2 on the

universal Stiefel- Whitney classes wf e Hf(BO; Z2) for i > 1 (cf. [4], [10]).

The i-dimensional universal Wu class vt (i > 0) is the element of

Hl(BO', Z2), and this is defined inductively by using the Steenrod squaring

operations Sqj in the following way (cf. [3], [6], [7], [8]):

(1.1) υ0 = w0 = 1 and Wj = vt + Sqίυί_ί -f 4- Sqlv0 if i > 1 .

The ί-dimensional Wu class vt(M) of a closed n-dimensional manifold M
is the unique element of H*(M; Z2) such that

Sqlx = xvt(M) for all x e H"-''(M; Z2) ,

and the following relations between the Stiefel- Whitney classes and the Wu

classes of M hold (cf. [4], [9]):

(1.2) υ0(M) = 1 and wf(M) = vt(M) + Sq^v^M) + - + Sqlv0(M) if i > 1 .

So if / denotes the classifying map for the stable tangent bundle of M , then

/*w. = wf(M) and f*vt = vt(M) if i > 0 .

Let J be the ideal of H*(BO', Z2) generated by the squares w^, vv|, wf,
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Then the total universal Wu class v = 1 + i^ + υ2 + ''' mod J is as follows
(cf. [13]):

v = 1 + ̂  wiA "' wij m°d «/ ,

where Σ is taken over all sequences 1 < il < - - - < it (I > 1) satisfying {ι\, , i,}

= {«!,/?!, , αm, /fm, yu ,?„} (/ = 2m + n, m > 0, n > 0) such that α, + ft and
7y are all powers of 2.

So the final goal is to describe all monomials in v which belong to J. It
is known that w/ appears in vt (i = 2j > 0) if and only if α(i) = 1 or 2, and

also Wjw[~j(i >j>2) appears in vt if and only if α(i) = 1 and i/2 <j < i, or
α(ι) = 2 and 2b <j < 2a with i = 2a + 2b (a>b> 0), where α(i) denotes the

number of Γs in the dyadic expansion of i (cf. [2]).
Now applying the Wu formula (cf. [5], [11])

(1.3) Sq'wt = iHW, (0
t=o\ t J

we can suppose the following (cf. Theorem 4.9, [12]):

2 + ™ϊy/2 mod 73 if J =

(1.4) ι;,= s '̂1 w| V2b-2s+1)2b mod J3 if = 2* + 2* (α > b > 0),

0 mod /3 if α(;) > 3 ,

where /3, generally Ik denotes the ideal of H*(BO;Z2) generated by wk, wk+1,

But the Wu classes modulo /4 seem very complicated. So we study
these classes in this paper.

Let Pt be the element of H2t+ί+1(BO:>Z2) defined by

Pt = Sq2tSq2t-*'-Sq^2 if ί > 0 and Pt = 0 i f ί = - l .

Then the Wu classes modulo I4 are given by the following theorems.

THEOREM 1.5.

(i) Όj = (v4y
/4 = (w3W! + w| + wfy74 mod/4 ίfj = 2a(a>2).

(ii) Vi = Pfl_2w{/-1)/2 + wΓ1)/2HΊ mod /4 ι/ i = 2α + 1 (α > 1).

(iii) i ̂ P^Wi+ίP^ + P^wΓ^ + wr^vvJ' + w^Γ2 mod /4

i f i = 2a + 2(a> 2); and i^ = (i;^/' mod I4 if j = 2a + 2b (a > b > 1) and

(iv) Όi = Pa.^Γ + Pfl

2-6-ι Wi + Pb-, w2a mod J4 i/ i = 2fl + 2b + 1
(a > b > 1); and .̂ = (i;,̂ ' mod /4 ϊ/ j = 2a + 2b + 2C (a > b > c > 0) and

i=j/2c

(v) vj = 0 mod /4 if a(;) > 4.
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The above theorem will be proved in §3.
Let Fm>n be the element of H2m-2"+1(BO; Z2) defined by

Fm,n = "Σ w|'-2X"-2l+I if m > n > 0 and FM,n = 0 if n > m > 0 .
i=n

And if p = 2Pl + 2P2 + + 2Ps with s > 1 and pί > p2 > - - > ps > 0, then set

GP =

and also set h(p) = p1 and l(p) = ps.
Let Pt(p) be the sum consisting of all monomials on w3, vv2 and W j in

Pt such that each power of w3 for such monomials is p. If there are no
such monomials, then also set Pt(p) = 0 in H2t+ί+ί(BO; Z2).

Then we have the following, which will be proved in §4.

THEOREM 1.6. Let p>2 be an even integer. Then

(ii) P(p) = wpF G F w w
(iii) Pt(p + 1) = w^Ft+1^GpFl(p}t0.

If we apply Theorem 1.6 to Theorem 1.5, then common monomials will
appear and they will cancel each other. Explicit descriptions by the distinct
monomials of the Wu classes modulo /4 will be obtained in §5.

2. Iterated Steenrod operations on the Stiefel- Whitney classes

Let θ1 be the elements of the mod 2 Steenrod algebra defined inductively
by

0° = Sq° = 1, θ1 = Sql and

C 1) -θ1 = Sql + Stf'-^1 + S^-202 + + Sq^1'1 if i > 2 (cf. [12]).

Then θ'! = ΣSqJί'"SqJs, where 27 is taken over all sequences (7ι, ,js)

consisting of positive integers such that Λ + "" +Λ = l f°Γ * ^ 1> an(^
implies the following equality:

(2.2) θi = 5^f + elSql~l + Θ2^f-2 + + Θ^Sq1 if i

From (2.1) and (2.2), the following equalities hold:

(Sq° + Sq1 + S42 +—)(θ° + θ1 + θ2 + •••) = 1 ,
(2.3)

(0° + θ1 + θ2 4- " )(S<?° + Sq* + Sg2 + •••)= 1 -
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Thus the inverse Sq'1 of Sq = Sq° + Sq1 + Sq2 + is given by

(2.4) Sq-l = θ° + θ1 + 02 + .

PROPOSITION 2.5. Let i > 0. Then

PROOF. Set w = vv0 + w^ + vv2 + and ι> = ι;0 4- ι?ι + ι>2 + ' ' ' Then
using (1.1) we see w = Sq v, and so v = Sq^w. Thus (2.4) implies the con-
clusion. Π

The following lemma is well-known (cf. [12]).

LEMMA 2.6. (i) Let x be a one dimensional cohomology class. Then

. __ J xl+1 if i + 1 is a power of 2 ,

{ 0 otherwise .

(ii) Let x and y be cohomology classes. Then

θl(χy)= Σ (θjχ)(θky).

PROOF, (i) For a sequence (Jι9J2>'"9Js) consisting of positive integers,
we see

SqJlSqj2 - - - SqJsx = , Λ( 0 otherwise.

Thus we obtain (i).

(ii) It holds that Sq{Sq~1(xy)} = Sq{(Sq~ίx)(Sq~ly)} since the left side
is (SqSq~1)(xy) = xy and the right side is (SqSq~ix)(SqSq~iy) = xy. Applying
Sq'1 on both sides of this equality, we see Sq~1(xy) = (Sq~1x)(Sq~1y). Thus
(ii) follows from (2.4). Q

PROPOSITION 2.7. Let i and j be positive integers such that α(ί) > j. Then

PROOF. Let BO (ή) be the space which classifies real n-plane bundles.
Then H*(BO(n\ Z2) is the polynomial algebra over Z2 on the Stiefel-Whitney
classes wm(y") e Hm(BO(ή)'9 Z2) (1 < m < n) of the universal bundle yn over
B0(n). And if g: B0(n) -> BO denotes the natural inclusion map, then
g*wm = wm(yn) and

g*:Hk(BO Z2)^Hk(BO(n) Z2)

is an isomorphism for all k < n (cf. [4], [10]).
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Now by the splitting principle, there exists a space X and a map /: X -*
B0(n) such that the induced bundle f*yn is isomorphic to the Whitney sum
f i Θ ••* Θ ζn of suitable real line bundles ξs (1 < s < n) over X, and also

f*:Hk(BO(n);Z2)-+Hk(X;Z2)

is a monomorphism for all k (cf. [5]).
Let xs = w^J (1 < s < n). Then

(/ VK = f*Wj(yn) = w,.(/ V) = w/ίi Θ θ ίj = Σ **! ' **>

where 27 is taken over all sequences (ίl5 •••, ί,-) such that 1 < tί < ••• < tj < n.
So we see

= Σ β'-

From Lemma 2.6 we have

where Σ is taken over all sequences (Pι, ",p/) consisting of powers of
2 such that Pi + '" + Pj = i. But such a sequence does not exist since

α(Pι + ' ' ' + Pj) ^ 7 < «(0 τhus (/ V)0'~S = °> and so Θ<"S = ° bv

choosing n such that i < n. Π

Next we consider the case α(i) < j, and obtain the following.

PROPOSITION 2.8. Let i and j be positive integers such that α(i) < j <

α(i) + /(i).

vv/iere m = α(ι) + /(i) — jf.

PROOF. We use the same notations as the proof of Proposition 2.7.
Then

Here we have pk > 2m for all k (1 < k <;')• To show this equality, if j = 1,
then α(i) = 1, and so p^ = i = 2l(i) = 2m. Next let j > 2. If pί = T < 2m for
example, then α(/?2 + ••• + pj) = α(i -pl) = (α(ϊ) - 1) + (/(i) - α) > (α(ι') - 1) +
(j — α(0) =j — l, which is incompatible with α(p2 H- ' * ' + Pj) ^7 — l Thus
we obtain

where ΣΣ are taken over all sequences (ίι, ,ί/) and (^ι, ",^ ) such that
1 < ίi < < tj < n and q1 + * 4- ήf/ = i/2m with ^s (1 < s <j) powers of 2.



194 Toshio YOSHIDA

Thus (f*g*)θl-JWj = (f*g*)(θί/2rn-jWj)2m

9 and so θ1'^ = (0ί/2m-χ)2w by choos-
ing n such that i < n. Π

We obtain the following by using the above propositions.

THEOREM 2.9. Let j and k be positive integers such that a(j) + 1 < k <

«(j) + l(j) + 1- Then

Vj = (Vi)2m mod 4 ,

where i =j/2m and m = a(j) + /(;) + 1 - fc.

PROOF. Since l(j) — m = k — a(j) — 1 > 0, i is a positive integer, and
also i > k - 1 holds because of i > 2*~2 + 2fc~3 + + 2k~Λ(j)~l > 2k~2 > k - 1.
Now from Proposition 2.7 and (1.3), we see θj~sws = 0 (1 < s < a(j)) and
07'~X = 0 mod Ik (k < s <j). Thus by Proposition 2.5 with 0J'w0 = 0 (j > 1),
we have

Ό= * θj~sws mod 4.

Using Proposition 2.8 because of a(j) < s < k — 1 < a(j) + /(;), we see

0^ -χ = (0^2p-χ)2P for p = α(7) + /( j) - 5 .

Similarly noting α(i) = α(j) < fc — 1, we have

fc-l

ι>ι= Σ 0I'~X mod 4.
s=α(ί)

Since α(i) -f /(O = αO') + /(;) — m = fc — 1, we see

0<-χ = (0//29-χ)29 for q = α(i) + /(i) - s .

Since i/2q =j/2m+q =j/2p, we obtain

(0''-χ)2w = (0ί/29-χ)2w+9 = (0'72P-χ)2P .

Therefore Vj = (v^ mod Ik. Π

REMARK 2.10. Let j and fc be positive integers such that α(7) > fc. Then
in the proof of Theorm 2.9, it is shown that Vj = 0 mod Ik.

3. The Wu classes modulo 74

In this section we will study the Wu classes modulo /4 and prove Theorem
1.5.
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PROPOSITION 3.1.
(i) Vj = (v4γ

/4 mod/4 if α(;) = 1 (j > 4).
(ii) υj = fa)j/ί mod /4 if α(y) = 2 and i = jβl(»-\ /(;) > 1.
(iii) i?; = fap mod I4 if α(y) = 3 and i =;/2I0λ
(iv) Vj = 0 mod /4 if a(;) > 4.

PROOF. Let 1 < a(;) < 3. Then Theorem 2.9 implies

ι>,. = fa)2m mod/4 if /(;)>3-a(7),

where i=j/2m and m = α(;) H- ί(j) — 3. Thus (i), (ii) and (iii) follow from
this. Also (iv) follows from Remark 2.10. Π

Thus we have the following remark from the above proposition.

REMARK 3.2. To describe the Wu classes vt modulo /4 (i > 3), it is
sufficient only to describe vt modulo /4, where i = 4, 2α + 1 (a > 1), 2fl + 2
(a > 2) and 2* + 2b + 1 (a > b > 1).

The following lemma is known (cf. [1], [12]).

LEMMA 3.3. Let i be a power of 2. Then
(i) 0'-1 = Sqi/2Sqi/4'"Sq1 if i > 2.
(ii) θi~l~j = sβ'/2- 0i/2-ι-ϋ- ) + Sqii2θi/2-ι-j if l <;. < //

(iii) θ'- ' = Sqil2Sqi/4 Sgsθs^' if \<j< h(i) and s = 2j~l.
(iv) 02k+1 = θ2^1 if k > 0.

The Wu classes modulo /4 of the dimenions in Remark 3.2 are as follows:

PROPOSITION 3.4. Let i be 2fl + 1 (a > 1), 2a + 2 (0 > 2), 2α + 2b + 1
(α > b > 1).

r (0*/2-2W2)2 + 0«-3(W2Wι) mod /4 ,/ j = 2" + 2 ,
1 I 0I~3(w2w1) mod/4 otherwise.

PROOF. We use Propositions 2.5 and 2.7. For i > 1, Θlw0 = 0; and using
(1.3), 0''~X = 0 mod /4 for 4 < s < i.

Let i = 2a + 1 (α > 1). Then since w3 = Sg^ + w2w1 by (1.3), and
θi~3Sq1 = 0'~2 by Lemma 3.3 (iv), we see

vt = Θl~2w2 + 0ί~3w3 = 0 f~2w2 + 0ί~3(5^f1w2 + w2wj = 0'~3(w2w1) mod /4 .

Let i = 2a H- 2b + 1 (a > b > 1). Then similarly we see

since 0 f~2w2 = 0 also by Proposition 2.7.
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Let ί = 2α + 2 (a > 2). Then

Όt ΞΞ 0<-2w2 -f β'-3w3 = 0f~2w2 + 0''-3S41w2 + Θί~3(w2w1) mod /4 .

Here 0f-2w2 = (0ί/2-2w2)
2 by Proposition 2.8, and Θ^Sq1 = Θ^Sq^q1 = 0

by Lemma 3.3 (iv) and the Adem relation SqlSql = 0. Π

In the following proposition, we consider Θ ί~3(w2w1) in the above proposi-

tion.

PROPOSITION 3.5. Let i be 2a + 1 (α > 2), 2α + 2 (α > 2), 2α + 2* + 1

(a > b > 1). Then

+ Pα_2wΓ ι/ i = 2fl + 1 and m = 2a-1 ,

i -f w^w2 + Pa

2-3 w?1 + w2 w
2m if i = 2β + 2 anrf m = 2Λ~1 ,

wt + Pβ-! w? + Pi,-! w2m i/ i = 2a + 2* + 1 and m = 2a~1, n = 2b .

PROOF. Let i = 2a + 1 (a > 2) and m = 2a-1. Then using Lemma 2.6
and Proposition 2.7, we see

since α(2m -2 p -hl) = α - p - f l > 2 f o r l < p < α - l .
Here from Proposition 2.8 and Lemma 3.3 (i), we see

Θ2m~2w2 = (0°w2)
w = w2

m and θm~^2 = Sqm/2Sqm/4 - - - Sq1^ = P^2 .

Let i = 2α + 2 (α > 2) and m = 2fl~1. Then similarly we see

0l'-3(w2w1) = (02m~1w2)w1 + (02w-2w2)w2 + Λχ {0(2m-2P+2)-2w2}w2P + w2w
2m

p=2

= (02m-1w2)w1 + (Θ2m-2w2)w2 + (0mw2)wf + w2w
2m

since α(2m - 2P + 2) = α - p + 1 > 2 for 2 < p < a - 1.
Here 02m~1w2 = P f l_1? 02m~2w2 = w2

m and 0mw2 = (0m/2~1w2)
2 = Pfl

2_3 for α > 3.

Thus noting Pα

2_3 = 0 for α = 2, we obtain the conclusion.
Let i = 2α + 2b + 1 (α > fe > 1) and m = 2α~1, n = 2b. Then similarly we

see
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Λ

since α(2m + n — 2P + I) = b — p + 2 > 2 for I <p <b — 1, and also α(2m —
2p + n + l ) = α - / ? + 2>2 for ί ? + l < p < α - l .
Here 02m+n~2w2 = (Θ2nln~lv>2γ = P;.b.l9 Θ2m~1w2 = Pα_! and β"'1^ = P .̂ D

We are now in a position to prove Theorem 1.5.

PROOF OF THEOREM 1.5. (i) v4 = Θ3w^ + 02w2 + Θlw3 mod /4. Here by
Proposition 2.8 and (1.3), we see 0^ = (ΘV)4 = w4, 02w2 = (0°w2)

2 = wf
and 0^3 = S^1w3 = W3W!. Hence (i) follows from Proposition 3.1 (i).

(ii) v3 = w2wx by Proposition 3.4. So (ii) holds for a = 1 since P_x = 0
by the definition. Next let i = 2a + \ (a> 2). Then Propositions 3.4 and 3.5
imply (ii).

(iii) Using Propositions 3.4, 3.5 and letting m = 20"1, we see

Όt ΞΞ (0m~1w2)
2 + 0/~3(w2w1)

= Pα

2_2 + Pα-iWi + W^W2 + P?-3W? + W 2 W 2 m

= ία-lWi + (Pβ-2 + Pfl-3</2 + W^WJ2 + W 2 VV 2 m Πlθd /4 ,

which is the result for vt. And the one for ΌJ follows from Proposition 3.1 (ii).
(iv) Propositions 3.4 and 3.5 imply the result for i^. And the one for

Vj follows from Proposition 3.1 (iii).
(v) This follows from Proposition 3.1 (iv). Π

4. Sq2tSq2"1 Sq^2 modulo 74

In this section we will study the terms Pt = Sq2tSq2t~l ••• Sqίw2 which
remain to be known in Theorem 1.5.

The following lemma will be used often.

LEMMA 4.1 ([6]). Let a = Γίαί2
ί and b = Σ^ (0 < αf, bt < 1). Then

We have the following formula on Pt.
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PROPOSITION 4.2. Let x = w3 + w2wx and y = w2 + w2. Then

(4.3) P,EE £
0<3i<n

where n = 2* (t> 0).

PROOF. We notice the following (4.4):

(4.4) Sq*x = 0 , Sq2x = xy mod /4 , Sq3x = x2 , Sq^y = x , Sq2y = y2 .

In fact using (1.3) and the Cartan formula, we see

Sq1x = w3wt + vv2w
2 + (w3 H- H^W^W! = 0 ,

Sq2x = w5 + w4wt + w3w2 + (w3 + W2WJW1 + wfwj = xy mod /4 ,

Sqίy = ̂ ^^2 = w3 + w2wx = x .

And since dim x = 3 and dim y = 2, S#3x = x2 and S#2j; = y2 hold.

We prove (4.3) by induction on ί. Since P0 = Sg1w2 = x and /^ =
5^f2P0 = S<72x = xj mod /4, (4.3) holds for t = 0, 1. Assume that (4.3) holds
for t - 1 (ί > 2). Then since S^ s /4 and n = 2t = dim P^ - 1, the left

side of (4.3) for ί is as follows:

Pt = SqnPt^ = Sqn X
0<3i<π/2

= Σ
0<3/<«/2

+ (n/2 - 3i -

= Σ
0<6j<π/2 2/

+ Σ
0<6j+3</ι/2

= Σ ί
0<6j<n/2 \2j

+ Σ (^TiWv-1*-7) mod/ 4.
0<6j+3<π/2 \^/ H- I/

On the other hand, using Lemma 4.1, we see

Σ ( 3ί) x2l+y -3'-1 = st + s2 + s3 + s4 ,
0<3ί<« \ I /
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where

Σ .o s 1 2j<« \ 4; / o < 6j<π/2 \2;

-1?'-4 = Σ
Os6j<n/2Osl2j+3<n

0<12j+6<n \ 4/ + 2 / 0<6j+3<n/2

, . j + 9 .
and since I ^ is even

; + 9

 8.+ 12._10 =

Therefore (4.3) for * holds. Π

Next we have another inductive formula on Pt.

PROPOSITION 4.5. Let x = w3 + w2wx and y = w2 + wf. TTien

(4.6) Pt Ξ ̂ P^ + x»Pt_2 mod/ 4 ,

n = 2ί-1 (ί > 1).

PROOF. We prove (4.6) by induction on t. Since P_t = 0, P0 = x, Pt =

xy mod /4, P2 = Sq4Pί = Sq4(xy) = (Sq2x)y2 + x2(Sq1y) = xy3 + x3 = ^2PX +

x2P0 mod /4, (4.6) holds for t = 1, 2. Assume that (4.6) holds for ί - 1 (ί > 3).

Then the left side of (4.6) for t is as follows:

Pf = Sq2nPt_, = Sq2n(ynl2Pt-2 + x^P^)

Here Sqn~lyn'2 = 0 and Sqn+nl2~lxnl2 = 0 since n - 1 and n + n/2 - 1 are both

odd and n/2 is even; SqnPt_2 = Pt^ and Sqn/2Pt.3 = P f_2. Thus Pt = ynPt^ +

xnPt-2 mod /4, which completes induction on ί. Π

COROLLARY 4.7. Let t > 0. Then

t
(4.8) pt=Σ wfwΓ~2i+1 mod /3 ,

i=0

m = 2ί+1 4- 1.
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PROOF. We prove (4.8) by induction on ί. Since P0 = Sq1w2 =

w2Wi mod 73 and P^ = Sq2P0 = Sg2(w2w1) = (Sq1w2)wι + w|wx = w2wf +

wf W j mod /3, (4.8) holds for ί — 0, 1. Assume that (4.8) holds for less than

t — 1 (ί > 2). Then the left side of (4.8) for ί is as follows by using Proposition

4.5 and letting n = 2'"1, m = 2ί+1 + 1:

Pt = (W2 + wfrP,-! + (w2Wl)nPt-2

= (w2

n + w2") Σ wf X"+1-2<+1 + (w>ί) X w|X+1-2ί+1

2ί+1 + Σ wfχ-+ι-2'+1 + χ2 w|<+χ"+l-2l+l

i=0 i=0

mod 73 ,

which completes induction on ί. Π

We obtain the following theorem which is (1.4) in §1 (cf. [12]).

THEOREM 4.9.

(i) Vj = (ι;2X/2 = (w2 + w2y/2 mod/3 '/./ = 2fl (α > 1).

(ii) t?£ = Σsβ4 vvfvvΓ2"1 mod /3 if i = 2* + 1 (a > 1); and Vj = (t .y/1

mod /3 if j = T + 2b (a > b > 0) and i =j/2b.

(iii) Vj = 0 mod 73 i/ a(j) > 3.

PROOF, (iii) follows from Remark 2.10. So assume α(;) < 2. Then by

Theorem 2.9, we have

Vj = (Vi)
2m mod/3 if /(7)>2-α(;),

where i =;/2m and m = α(j') + /(;) — 2.

(i) If j = 2° (a> 1), then v} = (v2)>/2 mod /3. Here we see that υ2 =

θ1^ + Θ°w2 = w2 + w2.

(ii) If j = 2* + 2b (a > b > 0), then ΌJ = (v^1 mod /3 wfcβrβ i = j/2b. Also

if i = 2fl -h 1 (α > 1), then using Corollary 4.7, we see

Vi = 0< -2w2 = Pα_x = "Σ w2χ-2s+1 mod/3. D

REMARK 4.10. Using Theorem 1.5, we can also prove Theorem 4.9 in

the following way:

(i) Let j = 2° (a> 2). Then Theorem 1.5 (i) implies that Vj = (wf + wf X74

= (w2 + w1

2y/2mod/3.
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(ii) Let i = T + 1 (a > 1) and m = 2""1 + 1. Then Theorem 1.5(ii) and
Corollary 4.7 imply

vi = ( ? w2

2swr 2S+1 ) wΓ"1 + wΓ1

 Wl = Σ* wfwΓ2s+1 mod /3 .
\s=0 / s=0

Let j = 2β + 2 (α > 2), ί = y/2 and m = 2a + 1. Then Theorem 1.5(ϋi),
Corollary 4.7 and the above result for i = j/2 imply

s=0

Σ w|Xm-1)/2+1-2s+1 + (V wf'w<'»-1>/4+1-2'+lw><'"-1>/4 +
5=0 \S=0

Σ^ 2 twΓ 2 t + 1-(^ / ί mod/3.
ί=0 /

Let j = 2° + 2b (a>b>\) and i =;/2h. Then Theorem 1.5(iii) and the
above result for v2i imply that t^ = (v2i^

l2i = (v^11 mod /3.
(iii) Let i = 2a + 2b + 1 (α > b > 1), m = 2α + 1 and n = 2* + 1. Then

Theorem 1.5(iv) and Corollary 4.7 imply

Σ wfvr'
s=0 / \ s=0

1

s=0

= "Σ wf wΓ2"1 + "f wrwr2ί+ι + *£
s=0 s=b s=0

*1 = o mod /3 .
Let = T + 2b + 2C (α > b > c > 0) and i =j/2c. Then Theorem 1.5(iv)

and the above result for j/2c imply that ΌJ = (v^ = 0 mod 73.
Let α(;) > 4. Then ΌJ = 0 mod /3 by Theorem 1.5(v). Π

We are now in a position to prove Theorem 1.6.

PROOF OF THEOREM 1.6 (i). By the definition of Fί+lj0, (i) means the
following:

(4.11) Pt(l) = w3

where m = 2ί+1.
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We prove (4.11) by induction on ί. Since P0 '= w3 + w2™\ an(l Λ =

(vv3 + W2w1)(w2 + W j ) mod 74, we see that P0(l) = w3 and Px(l) = w3(w2 + wf).

So (4.11) holds for ί = 0, 1. Assume that (4.11) holds for less than ί-1

(ί > 2). Then the left side of (4.11) for t is as follows by using Proposition

4.5 and letting m = 2ί+1:

Pt(l) = (w2 + wfr^

ί-1 ί-2

Σ \A)2 l~l.j.wι/2 — 2l I /.j, »,. yw/4 ,«.
W2 Wi -h IVV2WJ W3

i=0 ί=

4^

which completes induction on t. Π

PROOF OF THEOREM 1.6 (ii). We prove (ii) by induction on t. We see

that P0(p) = 0 and P^p) = 0 since dim P0 = 3 < 3p and dim P1 = 5 < 3p. On

the other hand, Fi>h(p}+ΐ = 0 and F2ffc(p)+ι = 0 §ince *(p) +1^2. Thus (ii)
holds for t = 0, 1. Also using Propositions 4.2 or 4.5, we see that P2 =

xy3 + x3 mod /4, where x = vv3 4- w 2Wi and y = w2 + wj. So P2(2) = WIW2W!

and P2(p) = 0 for p > 4. On the other hand, w|F3>2G2F1>0w2w1 = w^w^

and F3>Λ(P)+1 = 0 for p > 4 since ft(/?) > 2 for p > 4. Hence (ii) also holds for

t = 2. Assume that (ii) holds for less than ί-1 (ί > 3). Then the left side

of (ii) for t is as follows by using Proposition 4.5 and letting n = 2t~1:

Case 1. p < n.

In this case t > h(p) + 2 holds, and we see

Here by letting m = h(p) + 1, we see

t
Λ4»" _J_ \Ai2n\J? _ι_ t4»"t4,"I7 _ V vt»2f-2m..,4n-2ί+1 _
(W2 + H>! j^ί>m + WjWi-Γ^!^ - 2, W2 Wl -

Thus Pt(p) = w^Fί+1 >Λ(p)+1GpFZ(p) ,ow2wι> which completes induction on t.

Case 2. p = n.

In this case, using Corollary 4.7 and noting P^^p) = 0, P f_2(p) = 0, we see

wf'wΓ2<+1+1

On the other hand, since Λ(p) = l(p) = t — 1, Fί+1>ί = 1 and Gp = 1, we see
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ί-2

wSFt+ι,h(p)+ιGpfΊ(p).oW2Wι = W3nF ί_1>0w2w1 = wj £ w|χ-2ί+1+1 ,

which completes induction on t.

Case 3. n < p <2n.
In this case h(p) = t — 1 and p — n (> 0) is even. So noting Pt-ι(p) = 0,

Pt-2(p) = 0, F,_! ,,,(,_,,)+! Gp_n = Gp and /(p - n) = /(p), we see

On the other hand, since Ft+ίth(p)+1 = Ft+ltt = 1, we see

which completes induction on t.

Case 4. p > 2n.
Since dim Pt = 4n + 1 and 3p > 6n > 4n + 1, we see Pr(p) = 0. On the

other hand, since h(p) + 1 > f + 1, we see Fί+1>Λ(p)+1 = 0, which completes
induction on t. Π

PROOF OF THEOREM 1.6 (iii). We prove (iii) in the same way as the proof
of (ii). Then we see that (iii) holds for f = 0, 1. And since P2(3) = w| and
PI(P + 1) = 0 for p > 4, (iii) also holds for t — 2. Assume that (iii) holds for
less than t — 1 (t > 3). Then the left side of (iii) for ί is as follows by using
Proposition 4.5 and letting n = 2ί-1:

Case 1. p + 1 < n.
In this case t > h(p + 1) + 2 = h(p) + 2 holds, and we see

Pt(p + 1) = (w2

Case 2. p + 1 = n + 1.
In this case, using Theorem 1.6(i) and noting Pt_ι(p + 1) = 0, Pί_2(p + 1)

= 0, h(p) = /(p) = t - 1, Ft+lMp)+1 = Ft+lft = 1 and Gp = 1, we see

Pt(p + 1) = w3'P,_2(l) = w3-
+1Ft.li0 = w3

p+1Fί

Case 3. n + 1 < p + 1 < 2n.
In the same way as the Case 3 in the proof of Theorem 1.6(ii), we see

Pt(P + 1) = w3"Pt_2(p - n + 1) = wξ+1Ft-1Mp-n}+1Gp.nFl(p_n},0

= W3 ^t
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Case 4. p + 1 > 2n.

Since 3(p + 1) > dim Pί5 we have Pt(p + 1) = 0. Also since h(p) + 1 >

t + 1, we have Ft+lMp)+ί = 0. Π

5. Some explicit descriptions of the Wu classes modulo 74

In this section, using Theorems 1.5 and 1.6, we will describe vt modulo

/4 by the distinct monomials on w3, w2 and wx. We will do it only for

i = 2a + 1 (a > 1), 2a + 2 (a > 2) and 2a + 2* + 1 (α > b > 1), but this is suffi-

cient by Theorem 1.5.

In the following theorems, p = q(ή) denotes p = q mod n.

THEOREM 5.1. Let i = 2α + 1 (a > 1). Then

+ Σ W3 ̂ α-ι.*(p)+ι GpF/(p)>0(w3 + w2 wJwΓ mod /4 ,
P=0(2)

where p > 0 and m = 2fl-1.

PROOF. By Theorem 4.9(ii) or Remark 4.10(ii), we have

α-l

u* = Σ wfw{~2s+1 = F f l>0w2w1 mod /3 .
s=0

Thus the conclusion follows from Theorems 1.5 and 1.6. Π

THEOREM 5.2. Let i = 2a + 2 (a> 2). Then

»l = (fβ-l.θW2Wι)2 + W3^α,θWι + wKwJ1'2 + F f l > 2 W 2 W 2 )

+ Σ
P = 0(2)

+ Σ
P = 0(4)

p=0(4)

p > 0, m - 2Λ(P)+1 > 0 and m = 2α~1.

PROOF. By Remark 4.10(ii), we have

/3

Let ^-(p) be the sum consisting of all monomials on w3, w2 and wx in

ΌJ such that each power of vv3 for such monomials is p. If there are no

such monomials, then also set VJ(P) = 0 in Hj(BO; Z2).
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Then using Theorem 1.5(iii) and Theorem 1.6(i), (ii) and noting (FmιH)2' =

ί.π+ί. we see

P..-Λ2K + (Pa_2(l) + Pa_3(l)<2)2

= w2Fa,2G2F1)0w2w
2 + (w3Fa_lι0 + w3Fa_2,0wΓ/2)2

= wKF^w^l + Fβ>1 + Fa_1Λw?) = w3

2(Fa>2w2w
2 + wΓ2) .

Let p = 0(2) and p > 0. Then from Theorems 1.5(iϋ) and 1.6(iii), we see

»ι(P + 1) = Pa-ι(P + 1)"Ί = wξ+1FaMp)+ίGpFl(p}t0wί .

Let p = 0(4) and p > 0. Then using Theorems 1.5(iii), 1.6(ii) and noting
(Gp/2)

2 = Gp, we see

«Ί(P) = P.-I(P)WI + (P.-2(p/2) + Pa_3(p/2)wΓ/2)2

= w3

p{Fa,Λ(p)+1Gp(Fί(p)>0w2w
2 + F^^wlvv2) + Fa_ljΛ(p)+1GpFI(p)>1wK+2} .

Here we see that F/(p)j0w2w
2 + Fl(p)ilw|w2 = w2w

2'(I>>.
Let p = 0(4) and p > 0. Then using Theorems 1.5(ϋi) and 1.6(ii), (iii) and

noting Gp+2 = GpFi(p)j2, we see

vt(p + 2) = P.-^p + 2)Wl + (Pa_2(p/2 + 1) + Pa_3(p/2 + l)wΓ/2)2

= w3

p+2{Fβ,Λ(p)+1GpF1(p)>2w2w
2 + (Fa>Λ(p)+1 + Fa_1,Λ(p)+1wΓ)GpF((p),1} .

Here we see that Fa)ft(p)+1 + Fa_1?Mp)+1wΓ = wΓ2"""*1 if h(p) < a - 2; 0 other-

wise. Π

THEOREM 5.3. Let i = 2" + 2b + 1 (α > b > 1). Then

α-1
^ 2s —1 i —2S+1—1

Σ
),h(p)<a-2

Σ
),p00(m),

'
p = 0(2),h(p)<a-2 \s=max(b,h(p)+l)

°Σ
s=max(l>,A(P)+l)

pΞθ(2m)

i > mod/ 4 ,
s=0

p > 0 and m = 2b.
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PROOF. We have Vi = QmodI3 by Theorem 4.9(iii) or Remark 4.10(iii).

We also use the notation Vj(p) used in the proof of Theorem 5.2.

From Theorems 1.5(iv) and 1.6(i), we see

Let p = 0(2) and p > 0. Then using Theorems 1.5(iv), 1.6(iii) and letting

m = 2b, n = 2α, we see

υt(p + 1) = Pa-v(p + 1)< + Pb^(p + IK

WP opP that F vum -I- F w" — V0"1

 Vu2s~2h(p)+1w;i~2s+1~1 ifwe see inai rβfΛ(J,)+1w1 -h rft>h(|,)+1w1 — 2js=max(ί>,Λ(p)+i)w2 wι u

h(p) < a - 2; 0 if fc(p) > α - 1.

Let p = 0(2), /? > 0 and p £ 0(m). Then since v^p) = Pa^ (p) wj" + P^ (p) w"

(m = 2fc, n = 2Λ), we obtain the conclusion in the same way as the above case.

From Theorems 1.5(iv), 1.6(i) and (ii), we have

υfyn) = Pα-!(m)wΓ + (Pa-b-ι(l)rwι = w3

wt(Ffl,ί,+1Fί,,0w2wΓ+1 + F..M) .

Let p = 0(2m) and p > 0. Then using Theorems 1.5(iv), 1.6(ii) and (iii),

we see

υt(p + m) = Pa^(

= ̂ +w

Let /? = 0(2m) and p > 0. Then using Theorems 1.5(iv) and 1.6(ii), we see

+ F^^wJ w Γ )

Here we see that Fί(p),0w2wΓ+1 + FJ(p)fftw>Γ+1 = Σϊ=o w2

2swf(p)+w-2s+1+1. Q

References

[ 1 ] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc.,

44 (1974), 235-236.

[2] H. Ichikawa and T. Yoshida, Some monomials in the universal Wu classes, Hiroshima

Math. J., 20 (1990), 127-136.

[ 3 ] J. W. Milnor, On the Stiefel- Whitney numbers of complex manifolds and of spin mani-

folds, Topology, 3 (1965), 223-230.

[4] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies

No. 76, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo,

1974.



The polynomials on w l5 w2 and w3 in the universal Wu classes 207

[ 5 ] H. Osborn, Vector bundles, vol. 1, Foundations and Stiefel-Whitney classes, Academic
Press, New York-London, 1982.

[ 6 ] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics
Studies No. 50, Princeton Univ. Press, Princeton, New Jersey, 1962.

[7] R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology, 4 (1965), 241-256.
[ 8 ] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, New Jersey

and Univ. of Tokyo Press, Tokyo, 1968.
[ 9 ] R. E. Stong and T. Yoshida, Wu classes, Proc. Amer. Math. Soc., 100 (1987), 352-354.
[10] J. Vrabec, Bordism, homology, and Stiefel-Whitney numbers, Postdiplom. Sem. Mat.

13, Drustvo Mat. Fiz. Astronom. SR Slovenije, Ljubljana, 1982.
[11] W.-T. Wu, Les i-carres dans une variete grassmannienne, C. R. Acad. Sci. Paris, 230

(1950), 918-920.
[12] T. Yoshida, Wu classes and unoriented bordism classes of certain manifolds, Hiroshima

Math. J., 10 (1980), 567-596.
[13] T. Yoshida, Universal Wu classes, Hiroshima Math. J., 17 (1987), 489-493.

Faculty of Integrated Arts and Sciences
Hiroshima University

Higashi-Hiroshima 739
Japan






