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ABSTRACT. The cohomology ring H*(BO; Z,) is the polynomial algebra Z,[w;, w,,
ws, --*], where w; is the i-dimensional universal Stiefel-Whitney class. The i-dimen-
sional universal Wu class v; is defined inductively as follows: vy, =w, =1 and w; =
v; + Y 5oy S¢/v;_i(i > 1), where S¢’ is the Steenrod squaring operation. We can describe
explicitly the polynomials on w;, w, and w; in v,

1. Introduction

Let BO be the space which classifies stable real vector bundles. Then
its mod 2 cohomology H*(BO; Z,) is the polynomial algebra over Z, on the
universal Stiefel-Whitney classes w; € H/(BO; Z,) for i > 1 (cf. [4], [10]).

The i-dimensional universal Wu class v; (i>0) is the element of
H'(BO; Z,), and this is defined inductively by using the Steenrod squaring
operations S¢’ in the following way (cf. [3], [6], [7], [8]):

(L.1) vo=wo=1and w,=v;+ Sq'v;_, + -+ Sq'v, if i>1.

The i-dimensional Wu class v;,(M) of a closed n-dimensional manifold M
is the unique element of H!(M; Z,) such that

Sq'x = xv (M)  for all xe H"{(M;Z,),

and the following relations between the Stiefel-Whitney classes and the Wu
classes of M hold (cf. [4], [9]):

(1.2) vo(M) =1 and w;(M) = v;(M) + Sq*v,_; (M) + - + Sq'vo(M) if i>1.
So if f denotes the classifying map for the stable tangent bundle of M, then
f*w;=w(M) and f*v,=v(M) if i>0.
Let J be the ideal of H*(BO; Z,) generated by the squares w?, wa, w3, ---.
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Then the total universal Wu class v =1+ v, + v, + --- mod J is as follows
(cf. [13]):
v=14+Yw, w, modJ,

where X is taken over all sequences 1 <i; <--- <i, (I > 1) satisfying {i,, ", i;}
= {0y, By, Oy B> V1> "> Yu} (1 =2m + n,m > 0, n > 0) such that a; + §; and
y; are all powers of 2.

So the final goal is to describe all monomials in » which belong to J. It
is known that w? appears in v; (i = 2j > 0) if and only if a(ij) =1 or 2, and
also w,w}{™(i > j > 2) appears in v; if and only if a(i))=1 and i/2<j <i, or
a(i)=2 and 2° <j<2% with i =2+ 2% (a> b >0), where a(i) denotes the
number of 1’s in the dyadic expansion of i (cf. [2]).

Now applying the Wu formula (cf. [S], [11])

(13) quWi=i<l_]_tl+t

t=0

)Wj—tWHt O<j<i),

we can suppose the following (cf. Theorem 4.9, [12]):
(w, + w2 mod I; ifj=2"(@>1)),

(14) vy=< (ot wiwf? =) mod I, if j=2°4+2 (a>b>0),
0 mod I, if a(j) =3,

where I, generally I, denotes the ideal of H*(BO; Z,) generated by wy, W41,

But the Wu classes modulo I, seem very complicated. So we study

these classes in this paper.
Let P, be the element of H2"'*1(BO; Z,) defined by

P, =8¢*Sq* " Sq'w, ift>0;and PL=0 ift=—1.
Then the Wu classes modulo I, are given by the following theorems.

THEOREM 1.5.

(1) v =) =(wyw, + w2 + wiY* modI, if j=2°(a=2)

(i) v;=P,_ w2 4 wiD2y modI, if i=2°+1(a>1).

(i) v;=P_ywy + (Po_y + Po_yw™2M 4 wli=Di4y 32 + wowi=2 mod I,
ifi=2"+2@>2); and v;=(v;y" modl, if j=2°+2"(a>b=>1) and
P = j/2,

(iv) v;=P_ w2 +P¥_w, +P_w? modl, if i=2°+2"+1
(@a>b>1); and v;= v}y modl, if j=2°4+2"+2°(@a>b>c>0) and
i= /2.

(v) v,=0 modl, if a(j)=4
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The above theorem will be proved in §3.
Let F,, be the element of H2"2""(BO; Z,) defined by

m—1 . .
Fpn= Y W3 w}™ 2™ if m>n>0;and F,,=0 if n>m>0.
i=n

And if p = 2Pt 4+ 272 4 --- 4 2P= with s > 1 and p, > p, > --- > p, > 0, then set

G,= Fp"p2+1FP2rP3+1“'Fp,_l,p,+1 ifs>2,
T ifs=1;

and also set h(p) = p, and I(p) = p,.

Let P,(p) be the sum consisting of all monomials on w;, w, and w, in
P, such that each power of w; for such monomials is p. If there are no
such monomials, then also set P(p) =0 in H*"'*(BO; Z,).

Then we have the following, which will be proved in §4.

THEOREM 1.6. Let p > 2 be an even integer. Then
(i) P(1) = w3F4q -

(ii) P(p) = WiF 41,0y +1 GpFip), 0 W2 W1 -

@) P(p+1)= W§+1F:+1,h(p)+1 G,Fy).0-

If we apply Theorem 1.6 to Theorem 1.5, then common monomials will
appear and they will cancel each other. Explicit descriptions by the distinct
monomials of the Wu classes modulo I, will be obtained in §5.

2. Iterated Steenrod operations on the Stiefel-Whitney classes

Let 6° be the elements of the mod 2 Steenrod algebra defined inductively
by
0°=8¢°=1, 0' = Sq' and
@n . ‘ . ,
0' = Sq' + Sq" 10 + Sq'7%6% + --- + Sq*0'? if i>2 (cf [12]).

Then 6 = XSq’t---Sq’s, where X is taken over all sequences (j, -, j,)
consisting of positive integers such that j, + .- +j, =i for i>1; and this
implies the following equality:

(2.2) 0'=8Sq' +60'Sq"™* + 6?Sq" "% + -+ + 0"7'Sq* ifix>2.
From (2.1) and (2.2), the following equalities hold:
(Sq° + Sq* + Sq% + - )(° + 6" + > +---) =1,

(2.3
(6°+ 6"+ 6% +-)(Sq° + Sq' + Sq> + -+ ) =1.
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Thus the inverse Sq~' of Sq =Sq° + Sq' + Sq* + -- is given by
(2.4) Sg'=0"+06"+6%+-.
PROPOSITION 2.5. Let i >0. Then
v; = 0wy + 077w, + -+ + 0w, .

PrROOF. Set w=wy+w; +w,+-- and v=vy+ v, +v,+---. Then
using (1.1) we see w=Sq v, and so v = Sq”'w. Thus (2.4) implies the con-
clusion. [

The following lemma is well-known (cf. [12]).
LEMMA 2.6. (i) Let x be a one dimensional cohomology class. Then

gty — xitt if i + 1 is a power of 2,
10 otherwise .

(ii) Let x and y be cohomology classes. Then

0'(cy) = Y. (6x)(6"y).

jtk=i

Proor. (i) For a sequence (j;,j,, '",Jjs) consisting of positive integers,
we see

z if(jlaj29.”7js)=(2s—la 28—23“'11),
0 otherwise .

qulquZ qu‘x — { X

Thus we obtain (i).

(i) It holds that Sq{Sq '(xy)} = Sq{(Sq'x)(Sq'y)} since the left side
is (SgSq™")(xy) = xy and the right side is (SgSq~'x)(SqSq~'y) = xy. Applying
Sq~' on both sides of this equality, we see Sq'(xy) = (Sq"'x)(Sq”'y). Thus
(i) follows from (2.4). O

PROPOSITION 2.7. Let i and j be positive integers such that a(i) > j. Then
6" w; = 0.

Proor. Let BO(n) be the space which classifies real n-plane bundles.
Then H*(BO(n), Z,) is the polynomial algebra over Z, on the Stiefel-Whitney
classes w,(y")€ H"(BO(n); Z,) (1 <m <n) of the universal bundle y" over
BO(n). And if g: BO(n)—» BO denotes the natural inclusion map, then
g*w,, = w,(y") and

g*: H(BO; Z,) » HXBO(n); Z,)
is an isomorphism for all k < n (cf. [4], [10]).
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Now by the splitting principle, there exists a space X and a map f: X —
BO(n) such that the induced bundle f*y” is isomorphic to the Whitney sum
£, @ @ ¢, of suitable real line bundles & (1 < s <n) over X, and also

f*: HY(BO(n); Z,) » HY(X; Z,)

is a monomorphism for all k (cf. [5]).
Let x,=w; (&) (1 <s<n). Then

(f*g* ) = *wO") =w(f*") =w: @ @ &)=Y x, X,

where X is taken over all sequences (t;, ", t;) such that 1 <t; <---<t;<n.
So we see

(f*g*)0"Iw; = 0" I((f*g*)w) = 3, 0" I(x,, -~ x,) -
From Lemma 2.6 we have
Bi_j(le xr,) — Z x’lix v xéj ,

where X is taken over all sequences (p;,- -, p;) consisting of powers of
2 such that p, + -+ p;=i But such a sequence does not exist since
a(py + -+ p) <j<a@). Thus (f*g*)0''w;=0, and so 6" w;=0 by
choosing n such that i<n. [J

Next we consider the case a(i) <j, and obtain the following.

ProrosITION 2.8. Let i and j be positive integers such that a(i) <j <
a(i) + 1(i). Then
Oi—jwj = (0i/2’"—jwj)2'" ,
where m = a(i) + I(i) —j.

Proor. We use the same notations as the proof of Proposition 2.7.
Then

(f*g*)0 ™ wy = LR xB - xfy.
Here we have p, > 2™ for all k (1 <k <j). To show this equality, if j =1,
then a(i)=1, and so p; =i =2"®=2" Next let j>2. If p, =2°<2™ for
example, then a(p, + - + p;) = a(i — p;) = (@(i)) — 1) + (I(i) — a) > (x(i) — 1) +
(j —a(i)) =j — 1, which is incompatible with a(p, +:--+ p) <j—1. Thus
we obtain

(f*g*)gi—jwj = (Z Z x'qll ng)z"' ,

where 2X are taken over all sequences (t;, ', t;) and (q,, ", g;) such that
1<t <-<t;<nand q, + +¢q;=i/2" with g, (1 <s <j) powers of 2.
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Thus (f*g*)0"/w; = (f*g*)(0"*"w;)*", and so 6'Jw; = (6" ~Iw;)*" by choos-
ing n such that i<n. [

We obtain the following by using the above propositions.

THEOREM 2.9. Let j and k be positive integers such that o(j)+ 1 <k <
a(j) + 1(j)+ 1. Then

v; = (v)*" modI,,
where i =j/2™ and m = a(j) + I(j) + 1 — k.

Proor. Since I(j)—m=k—a(j)—1>0, i is a positive integer, and
also i > k — 1 holds because of i > 2¥72 4 2k73 4 ... 4 2k=al)=1 > 2k=2 > | [,
Now from Proposition 2.7 and (1.3), we see 6w, =0 (1 <s < a(j)) and
677w, =0 mod I, (k <s <j). Thus by Proposition 2.5 with 6w, =0 (j > 1),
we have

v = kil 677w, mod I, .
s=a())
Using Proposition 2.8 because of a(j) <s <k —1<a(j)+ I(j), we see
077w, = (072" wy)*” for p = a(j) + I(j) — s.
Similarly noting a(i) = «(j) < k — 1, we have
v, = ki(l.) 0w, mod I, .
Since a(i) + I(i) = a(j) + I(j) —m =k — 1, we see
07w, = (072**w,)?* for q = a(i) + I(i) — s .
Since /27 = j/2™*1 = j/2P, we obtain
(O W)™ = (072w 2™ = (127w,

Therefore v; = (v;)*” mod I,. O

ReMARK 2.10. Let j and k be positive integers such that a(j) > k. Then
in the proof of Theorm 2.9, it is shown that v; =0 mod I,.

3. The Wu classes modulo 7,

In this section we will study the Wu classes modulo I, and prove Theorem
1.5
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PROPOSITION 3.1.

(i) v=@)™ modl, if a(j)=1(j=4).

(i) vy=@)" modI, if a(j)=2 and i=j2'07 I(j)>1.
(i) v;=(@)" modI, if a(j)=3 and i=j/2'0.

(iv) 1vb,=0 mod I, if a(j)=4.

ProofF. Let 1 <a(j)<3. Then Theorem 2.9 implies
v;=(v)*" modI, if I(j)=3-a(j),

where i=j/2™ and m = a(j) + I(j) — 3. Thus (i), (ii) and (iii) follow from
this. Also (iv) follows from Remark 2.10. []

Thus we have the following remark from the above proposition.

RemMARK 3.2. To describe the Wu classes v; modulo I, (i > 3), it is
sufficient only to describe v; modulo I,, where i=4, 2°+1 (a>1), 2° + 2
@>2) and 2°+2°+1 (@a>b>1).

The following lemma is known (cf. [1], [12]).

LemMmA 3.3. Let i be a power of 2. Then

(i) 67! =S8q'?8q"*---Sq* if i>2.

(ii) 0717 = §qi27s¢i271-U"9) 4 §qiRQiR171 if 1 <j<i/2 and s = 2",
(i) 0'7 = Sq?Sq"*---Sq*0°~7 if 1 <j<h(i) and s =21,

(iv) 6%*' =0%*Sq' if k>0.

The Wu classes modulo I, of the dimenions in Remark 3.2 are as follows:

PROPOSITION 3.4. Let i be 2°+1 (@>1), 2°+2 (@a>2), 2°+2°+1
(@a>b=>1). Then

v = (ei/2_2W2)2 + Bi_3(W2W1) mOd 14 if i = 2“ + 2 N
T 03 (wywy) mod I, otherwise .

PrOOF. We use Propositions 2.5 and 2.7. For i > 1, 8w, = 0; and using
(1.3), 9w, =0 mod I, for 4 <s <.

Let i=2+1 (@a>1). Then since w;y= Sq'w, + w,w;, by (1.3), and
0i738Sq! = 6""2 by Lemma 3.3 (iv), we see

Ui = 0i‘2w2 + oi_3W3 = 0i_2W2 + Bi_s(sqlwz + W2W1) = Bi_s(W2W1) mOd 14 .
Let i=2+24+1 (@a>b>1). Then similarly we see
0; = 03w, = 0773(Sqtw, + wowy) = 602w, + 073 (wyw,) = 077 3(w,w,) mod I,

since 0" 2w, = 0 also by Proposition 2.7.
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Let i=2°+2 (a>2). Then
Ui = ei_ZWZ + Bi_3W3 = oi_ZWZ + Oi_38q1W2 + Oi_a(WZWI) mOd I4 .

Here 62w, = (6"*~%w,)* by Proposition 2.8, and 0"~ 3Sq* = 6°"*Sq'Sq' =0
by Lemma 3.3 (iv) and the Adem relation Sq'Sq' =0. [

In the following proposition, we consider 6°3(w,w,) in the above proposi-
tion.

PROPOSITION 3.5. Let i be 2°+1 (@>2), 2°+2 (a@>2), 2°+2°+1
(@a>b=>1). Then

03 (wywy)
wiw, + P,_,w[" if i=24+1and m=2""1,
=< P_w, +wywZ + P2 wl+w,w?™ if i=2°+2 and m=2""",
Py Wy + Po_ Wi+ Py_ W™ if i=2°42"+1 and m=2"1, n=2%.

Proor. Let i=2+1 (a>2) and m=2""'. Then using Lemma 2.6
and Proposition 2.7, we see

a-1
0i—3(w2w1) = (92m_2W2)W1 + Zl {0(2m—2p+1)—2w2}(02P—1w1)
p=

= (6> 2wy)wy + (0™ 'wy)wl

since a2m — 2+ 1)=a—p+1>2for 1<p<a-1
Here from Proposition 2.8 and Lemma 3.3 (i), we see

0*m 2w, = (°wy)" = wl and 0™ 'w, = Sq"?Sq™*--- Sq'w,=P,_, .

Let i=2°+2 (@a>2) and m=2°"1. Then similarly we see
a-1
0i—3(w2w1) = (02m—1w2)w1 + (02m—2w2)wf + 22 {0(2m—2P+2)—2w2}wa + W2W12m
=

= (07" Iw)wy + (02" 2wy)wi + (0w WP + wywi™

since a2m —2?+2)=a—p+1>2for 2<p<a-—1.
Here 0" 'w, = P,_;, 6*" 2w, = w} and 0™w, = (0™? 'w,)?> = P2, for a > 3.
Thus noting P2 ; =0 for a =2, we obtain the conclusion.

Let i=2+2+1(@>b>1) and m=2""1, n=2% Then similarly we
see
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b—-1
0'_3(W2W1) — (02m+n—2w2)w1 + Zl {0(2m+n—2?+1)—2w2}w1217 + (02'"“w2)w{'
p=

a-1
+ Z {9(2m—2P+n+1)—2w2}w12P+(0n—1w2)w12m
p=b+1

= (02" 2wy)wy + (0P wy )Wl + (0" wy)wim
since a@m+n—2°+1)=b—p+2>2for 1<p<b-1, and also a(2m —

24+n+l)=a—p+2>2forb+1<p<a-—1.
Here 6?>™*" 2y, = (0*"" w,)" =P ,_,, 6> 'w,=P,_, and 6" 'w, =P,_;. [

We are now in a position to prove Theorem 1.5.

PROOF OF THEOREM 1.5. (i) v, = 03w, + 0?w, + 0'w; mod I,. Here by
Proposition 2.8 and (1.3), we see 03w, = (6°w,)* = w}, 6%w, = (0°w,)*> = w2
and 0'w; = Sq'w; = wyw,. Hence (i) follows from Proposition 3.1 (i).

(ii) v; = w,w,; by Proposition 3.4. So (ii) holds for a =1 since P_;, =0
by the definition. Next let i =2°+ 1 (a > 2). Then Propositions 3.4 and 3.5
imply (ii).

(iii) Using Propositions 3.4, 3.5 and letting m = 2°7!, we see

v; = (0" 'wy)? + 03 (wywy)
=P2, + P,_,w; + wiw? + P2 ,wl" + ww?™

=™ + (Pa—2 + Pa—SWI"/Z + win/zwl)z + W2W12m mOd I4 s

which is the result for v;. And the one for v; follows from Proposition 3.1 (ii).
(iv) Propositions 3.4 and 3.5 imply the result for v;, And the one for
v; follows from Proposition 3.1 (iii).
(v) This follows from Proposition 3.1 (iv). O

4. Sq¥Sq*™" -+ Sq'w, modulo I,

In this section we will study the terms P, = Sq*'Sq* " --- Sq'w, which
remain to be known in Theorem 1.5.
The following lemma will be used often.

LemMA 4.1 ([6]). Let a= X;a;2" and b= X;b;2' (0 <a;,b;<1). Then

(3)=11(5) moa

We have the following formula on P,



198 Toshio YOSHIDA

PROPOSITION 4.2. Let x =w; + w,w; and y =w, + w. Then

@.3) P= ¥ <3.i>x2i+1yn—3i—1 mod I, ,
0<Ti<n \ i

where n=2" (t > 0).

Proor. We notice the following (4.4):
(44) Sq'x=0, Sqg>x=xymodI,, Sq¢°x=x*, Sq'y=x, Sq%y=y*.

In fact using (1.3) and the Cartan formula, we see

Sq'x = wyw, + wyw? + (w3 + wow)w; =0,
Sg%x = ws + wawy + waw, + (W + wow)w? + wiw, = xymod I, ,
Sq'y = Sq*w, = wy + wyw; = x.

And since dim x =3 and dim y = 2, S¢3x = x? and Sq?y = y? hold.

We prove (4.3) by induction on t. Since P, = Sq'w,=x and P, =
Sq*P, = Sq*x = xy mod I,, (4.3) holds for t =0, 1. Assume that (4.3) holds
for t —1 (t >2). Then since Sq'l, <1, and n=2'=dim P,_; — 1, the left
side of (4.3) for t is as follows:

3i

‘ >x2i+1yn/2—3i—l
i

P,=5q"P_, =5¢" } <
0<3i<n2

3i . .
- ¥ ( .’> {21 + 1)(Sg2x)x*y"=6i-2
0<3i<ni2 \|'!

+ (n/2 —3i— 1)x4i+2(sq1y)yn—6i—4}

6j i . 12/
. 62 , <2j>{(sq2x)x8)y 12j-2 + x81+2(Sq1y)y 12j 4}
<6j<n

<6j +3
0<6/T3<n2 \2j + 1

6j ; . ; ;
. 62 . <2;>(x8]+1yn—121—1 +x81+3yn—12]—4)
<6j<n

+ ) {(Sq2x)x8j+4yn—12j—8}

<6j +3
o<6iT3<nz \2j + 1

On the other hand, using Lemma 4.1, we see

+ )(x8j+5yn—12j—7) mod 14 .

3i\ .
0<;< <i>x21+1y”_3l_1 =8 +8+8+5,,
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where

12\ ai 6\ aii o
S, = x81+1 n—12j-1 _ ( >x81+1 n—12j—-1 ,
! 05122j<n ( 4j > Y 05;0/2 2j y

12j + 3 . . 6j . -
S, = x8]+3 n—12j—4 _ ( )x81+3 n-12j—4 s
2 051212'+3<n < 4j + 1 > Y 05;«-/2 2j Y

12j +6 6j + 3)xsj+syn—12j—7 ,

S, = x8j+5 n—12j=7 _
37 o<ifre<n < 4j + 2) y 0<6jT3<n2 <2j +1

. 12+ 9) .
and since : is even
4j +3

S (12j +9
4T o<ifho<n \ 4j + 3

Therefore (4.3) for ¢t holds. [J

>x8j+7yn—12j—10 =0.

Next we have another inductive formula on P,.

PROPOSITION 4.5. Let x = wy + wow; and y = w, + wZ. Then
(4.6) F,=y"P_, +x"P_, modl,,
where n = 2" (t > 1).

Proor. We prove (4.6) by induction on t. Since P, =0, P, =x, P, =
xymod I,, P, =Sq*P, = Sq*(xy) = (Sq*x)y* + x*(Sq'y) = xy* + x*> = y?P, +
x2P, mod I,, (4.6) holds for t = 1, 2. Assume that (4.6) holds for t — 1 (¢t > 3).
Then the left side of (4.6) for ¢ is as follows:

P, = Sq*"P,_y = Sq*"(y"?P,—, + x"*P,_3)
= (S¢"'y"*)PL; + y"(Sq"P.-5)
+ (Sq"*t"2~1x"2)P2 . 4 x"(Sq"*P,_3) mod I, .

Here Sq" 'y"? = 0 and Sq"*"*7'x"? = 0 since n — 1 and n + n/2 — 1 are both
odd and n/2 is even; Sq"P,_, = P,_, and Sq"?P,_; = P,_,. Thus P,=y"P,_, +
x"P,_, mod I,, which completes induction on t. [

COROLLARY 4.7. Let t>0. Then

m_2i+l

wi'w] mod I, ,

-

4.8) P=

[}

where m = 2'*! 4+ 1.
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ProorF. We prove (4.8) by induction on t. Since P,= Sq'w, =
w,w,mod I; and P, = Sq°P, = Sq*(w,w;) = (Sq'wy)w? + wiw, = wow} +
wiw; mod I, (4.8) holds for t =0, 1. Assume that (4.8) holds for less than
t — 1 (t = 2). Then the left side of (4.8) for ¢ is as follows by using Proposition
4.5 and letting n=2"1, m=2"1 + 1:

P, = (w; + wi)'P_y + (Wow,)"P,_,

-1 =2
= (05 + Wi T wEWiIE 4 wpwg) 3w
1= =

t—1 t—1 t—2
2i4 2n+1-—-2i+1 i +1-—2i+1 it 2n+1-—2i+1
= w3 nwln 2 + Z W% Waltn 1 + Z W% nwln 1-2
i=0 i=0 i=0
! i i+1
=Y wiwP "' modlI,,

i=0

which completes induction on t. [
We obtain the following theorem which is (1.4) in §1 (cf. [12]).

THEOREM 4.9.

(i) 5, =OY?=w, +wiy? modl; if j=2"(a=1)

(i) v, =Y23wi'wi™®" modl; if i=2°+1 (a>1); and v, = (v;)"
modI; if j=2°+2"(a>b=>0)and i=j2"

(i) v,=0 modl, i a(j)> 3.

Proor. (iii) follows from Remark 2.10. So assume a(j) <2. Then by
Theorem 2.9, we have

v = ()" modly if I(j)>2—a(j),

where i = j/2™ and m = a(j) + I(j) — 2.

() If j=2% (a>1), then v;=(v,/* mod I,. Here we see that v, =
0'w, + 0°w, = w? + w,.

(ii) Ifj=2°+2"(a>b>0), then v; = (v, mod I, where i =j/2". Also
if i=2+1 (a>1), then using Corollary 4.7, we see

i—2s+1

a-1
0, =02w,=P,_; =) wiw| modI,. O
s=0

ReMARK 4.10. Using Theorem 1.5, we can also prove Theorem 4.9 in
the following way:

(i) Letj=2%(a>2). Then Theorem 1.5 (i) implies that v; = (w3 + wiy*
= (w, + w?)? mod I,.
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() Leti=2°+1(a>1) and m=2°"'+1. Then Theorem 1.5(ii) and
Corollary 4.7 imply

a—2 a-1
—79s+1 —- - j—2s+1
v; E( ) wawp~ 2 >w{" O A Xb wiwi™?" mod I, .
= =

Let j=2°4+2 (a=2), i=j/2 and m=2°+ 1. Then Theorem 1.5(iii),
Corollary 4.7 and the above result for i =j/2 imply

a—1
— s m—.2u+l
e (Z;) w'w] )wl
=

a=2 a—3 2
s - —2s+1 s - —2s - -
+ {Z w22 w{m 1)/2+1-2s% + <Z w22 w{m 1)/4+1-2 “) w{m 1)/4 + wém 1)/4W1}

s=0 s=0
acl 2 +1 al +1
-— s j—2s8 — s j—12s8
+wwr =Y wiwiTE twwP = Y witwi?
s=0 s=1

a—2 2
= (Z w§‘w{"2'“> =)y modl, .
t=0
Let j=2°+2° (@a>b>1) and i =j/2b. Then Theorem 1.5(iii) and the
above result for v,; imply that v; = (v,,)*' = (v;}* mod I;.

(i) Let i=2+2"+1 (a@a>b>1), m=2°+1 and n=2%+1. Then
Theorem 1.5(iv) and Corollary 4.7 imply

a—1 - a—b—-1 " n—1
—_ S ,,m=28 n-1 25, ,(m—1)/(n—1)+1—-2*%
Ui = Zo W2 Wl Wl + Z WZ W{ )/( ) Wl
s= s=0

b—-1

s —8+1 -

+(Z w2 wp—2 >w{" t
s=0

SN

a— a-1 b—1

j—2s+1 i—2s+1 i~ 1
=Y wiwiT + Y wiwiTFT + Y wiwit? =0 mod ;.
s=0 s=b s=0

Let j=2°4+2"+2 (a>b>c>0) and i=j/2°° Then Theorem 1.5(iv)
and the above result for j/2° imply that v; = (v;)*" = 0 mod I,.
Let a(j) >4. Then v; =0mod I; by Theorem 1.5(v). [

We are now in a position to prove Theorem 1.6.

PrOOF OF THEOREM 1.6 (i). By the definition of F,,; o, (i) means the
following:

r :
(4.11) P(1) =wy Y w3 twp2™,
i=0

where m = 2%,
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We prove (4.11) by induction on t. Since P, =w; + w,w; and P, =
(w3 + wyw;)(w, + wi) mod I, we see that Py(1) = wy and P;(1) = ws(w, + wi).
So (4.11) holds for t =0, 1. Assume that (4.11) holds for less than ¢ — 1
(¢t =2). Then the left side of (4.11) for ¢t is as follows by using Proposition
4.5 and letting m = 2'*1;

P(1) = (w, + WIZ)MMPt—l(l) + (W w, )m/4Pz—2(1)

t—1 t—2
— 2\m/4 2i-1 2-21%1 4. 2i—1 4—2i+1
= (wy + W)™ wy Y wiTtw + (waw )™ wy Y. wi T wp

i=0 i=0

t
= i—-1,,m—2i+1
=W3 z;) w2 w ’
s

which completes induction on t. [

ProoOF OF THEOREM 1.6 (ii). We prove (ii) by induction on t. We see
that Py(p) =0 and P,(p) = 0 since dim P, = 3 < 3p and dim P, =5 < 3p. On
the other hand, F, ,,+; =0 and F, 4+ =0 since h(p) + 1> 2. Thus (i)
holds for t =0, 1. Also using Propositions 4.2 or 4.5, we see that P, =
xy*® + x> mod I,, where x = wy + wow; and y = w, + w2 So P,(2) = wiw,w,
and P,(p)=0 for p>4. On the other hand, wiF; ,G,F, qw,w; = wiw,w,
and F; )+ = 0 for p >4 since h(p) > 2 for p > 4. Hence (ii) also holds for
t =2. Assume that (i) holds for less than ¢t — 1 (¢t > 3). Then the left side
of (i) for t is as follows by using Proposition 4.5 and letting n = 2'"*:

Case 1. p<n.
In this case ¢t > h(p) + 2 holds, and we see

P(p) = (W, + wi)"Pr_1(p) + (Wowy)"P,_,(p)
= WiG,Fy,) owow; {(W3 + W12")Fz,h<p)+1 + WIWIF, i hpy+1 ) -

Here by letting m = h(p) + 1, we see

t
n 2n n,.n — i—2m  4qp-—2i+1 __
W3 + Wi F, py + WiWIF, g = Y, w3 2wt = Lrrtym -
=m

Thus P,(p) = WiF11 npy+1GpFip), 0W2W1, Which completes induction on t.

Case 2. p=n.
In this case, using Corollary 4.7 and noting P,_,(p) = 0, P,_,(p) = 0, we see

t—2 . .
P,(p) - W; ZO wzxwr—21+l+1 X
i=

On the other hand, since h(p) =Il(p)=t—1, F,,;,=1 and G, =1, we see
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-2
p o . i op—2it141
WEE 1 hp+1 GpFip), 0 W2 Wi = WiFi_y oW, Wy = w3 ), wy wi ’

i=0

which completes induction on t.

Case 3. n<p<2n
In this case h(p)=t—1 and p — n (> 0) is even. So noting P,_,(p) =0,
R—Z(p) = 09 E—l,h(p—n)-ﬂ Gp—n = Gp and l(p - n) = l(p)9 we sec

F(p) =w3iP_,(p—n)
= WiWSF 1 wp-m+1 Op—nFip-ny, 0 W2 W1 = W§ G, Fyp) oWa Wy .
On the other hand, since F.; yp)+1 = Fiq,, = 1, We see
WEF, 11,00y+1 Op Fip), 0 W2 W1 = WG, Fyp) oW, Wy
which completes induction on t.

Case 4. p=>2n

Since dim P,=4n+1 and 3p>6n>4n+ 1, we see P(p)=0. On the
other hand, since h(p)+1>t+ 1, we see F ;41 =0, which completes
induction on t. [J

ProoF oF THEOREM 1.6 (iii). We prove (iii) in the same way as the proof
of (ii). Then we see that (iii) holds for t =0, 1. And since P,(3)=wj; and
Py(p + 1) =0 for p > 4, (iii) also holds for t =2. Assume that (iii) holds for
less than t — 1 (t > 3). Then the left side of (iii) for ¢ is as follows by using
Proposition 4.5 and letting n = 2'"1:

Case 1. p+1l<n
In this case t > h(p + 1) + 2 = h(p) + 2 holds, and we see

P(p+ 1) = (wy + wiY'P_y(p + 1) + (Wow,)"P,2(p + 1)
= W3p+leFl(p),0E+1,h(p)+l .

Case 2. p+1=n+1.
In this case, using Theorem 1.6(i) and noting P,_;(p + 1) =0, P,_,(p + 1)
=0, h(p)=Up)=t—1, Fyy ypp+1 = Fi41, =1 and G, = 1, we see

P(p+1)=wiP_,(1)= W5'+1Fz—1,o = wg+1E+1,h(p)+1GpE(p),0 .

Case 3. n+l<p+1<2n
In the same way as the Case 3 in the proof of Theorem 1.6(ii), we see

P(p+1)=wiP_,(p—n+1)= W§+1F:—1.h(p—n)+1 Gyo-nFip-m,0

_ p+1
= Wi Fivt w1 GpFipy 0 -
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Case 4. p+1>2n
Since 3(p + 1) > dim P,, we have P(p + 1)=0. Also since h(p)+ 1>
t+1, we have Fiy 4p+1 =0. O

5. Some explicit descriptions of the Wu classes modulo I,

In this section, using Theorems 1.5 and 1.6, we will describe v; modulo
I, by the distinct monomials on w,, w, and w,. We will do it only for
i=2"+1@=>1),2°+2@>2) and 2°+ 2>+ 1 (a> b > 1), but this is suffi-
cient by Theorem 1.5.

In the following theorems, p = q(n) denotes p = q mod n.

THEOREM 5.1. Let i=2°4+1 (@a>1). Then
v; = F, oW, Wy + W3 F,_y owWi'

+ 20:(2) WEF, 1 woy+1 GpFipy,0(Ws + wyw )w* mod I,
p=

where p >0 and m = 2°71,

Proor. By Theorem 4.9(ii) or Remark 4.10(ii), we have

a-1
i— 1
v, = Z;)wz’w; ' = F,ow,w; modl;.
=

Thus the conclusion follows from Theorems 1.5 and 1.6. O
THEOREM 5.2. Let i=2°+2 (a>2). Then
0; = (Foy, oW, w2 + WaF, owy + wi(W)™2 + F, ,w,wi)

+1
+ ) WEF )41 G FigyoWt

p=0(2)

2Up) 2 +2
+ 202(4) WE(F, hioy+1 GoWa W™ + Fo i wipy+1 GoFipy, 1 WIWIH2)
P=

+2 2 —2hpr+1
+ Zo:(4) WA (Fo hipy+1 GpFigp), 2 W2 Wi + W3 G,Fyp),1) modl,,
P=E

where p >0, m — 2"P*1 > 0 gnd m = 2°71,
Proor. By Remark 4.10(ii), we have
v; = (v3)* = (Foeq,ow,w;)? mod I .

Let vj(p) be the sum consisting of all monomials on w;, w, and w; in
v; such that each power of w; for such monomials is p. If there are no
such monomials, then also set v;(p) =0 in H/(BO; Z,).
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Then using Theorem 1.5(iii) and Theorem 1.6(i), (ii) and noting (F,, ,)*" =
Foitn+es WE S€E
vi(1) = Py (W = w3 F, ow; .
Ui(z) Pa—1(2)wl + (Pa—Z(I) + Pa_3(1)Wi"/2)2

2 2 m2\2
= WiF, ;G F; ow,wi + W3F,_; o + w3 F,_; ow"?)

I

= Wi(F,2woWi + F,  + F,_y W) = W3(F, ;w,wi + wp™2).
Let p=0(2) and p > 0. Then from Theorems 1.5(iii) and 1.6(iii), we see
vi(p + 1) = Py (p + Dwy = WE™'F, 45)41 G, Fiy, oW1 -
Let p=0(4) and p > 0. Then using Theorems 1.5(iii), 1.6(ii) and noting
(G,2)?* = G,, we see
vi(p) = Pacr(P)W1 + (Pa—2(p/2) + Pos(p/2)w]"?)?
= WE{F, hp)+1 Gp(Fipy, 0 W2 Wi + Fipy 1 W3 W3) + Foy )41 GpFiy, 1 WIWP 2}

Here we see that Fy,, ow,w? + Fy,) ywawi = wyw?'®

Let p=0(4) and p > 0. Then using Theorems 1.5(iii) and 1.6(ii), (iii) and
noting G,., = G,F, ,, we see
v(p+2) = Py (p + 2wy + (Pass(p/2 + 1) + Poy(p/2 + DwW?)?
= W {F, by 41 GpFip), 2 W2 Wi + (Funiye1 + Fami iy +1 W) GpFip, 1} -

Here we see that F, 41 + Fuoy ppyea Wit = wi™2"""" if h(p) < a —2; 0 other-
wise. [

THEOREM 53. Let i=2+2"+1(a>b>1). Then

<Z 2ot g2 1)

a-1
+ wp+1
p=0(2),h(p)<a—2 s=max(b, h(p)+1)

2s—2h(p)+1 i_2.1+1 -1
w2 w1 ) G,Fip).0

a—-1

25—2h(p)+1_ j_2s+l_1
+ w) wy ) G, Fyp),0W2 W1

wi
p=0(2), p£O(m), h(p)<a—2 <s=max(b,h(p)+1)

+ WI(F, pi1 Fypowa Wittt + F, ywy)

+ +1
+ %2 ) W F, woy+1 Gp(Fipy, b+1 Fp, 0 W2 WT " + Fypy 5W1)
p=0(2m

2s 2ltp)+ —2s5%141
+ Y WF, 11 G, (Zw "= ) mod I, ,

p=0(2m)

where p >0 and m = 2".
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Proor. We have v, = 0mod I; by Theorem 4.9(iii) or Remark 4.10(iii).
We also use the notation v;(p) used in the proof of Theorem 5.2.
From Theorems 1.5(iv) and 1.6(i), we see

a-1
0(1) = Pos (W2 + By y (w2 = ws( » ww) .
s=b

Let p=0(2) and p > 0. Then using Theorems 1.5(iv), 1.6(iii) and letting
m=2% n=2° we see

vi(p+1)=P,_(p + Dwi" + Py (p + Dwy

_ .+l
=wj (Fa,h(p)+1 wi + Fb,h(p)+1wil)GpFll(p),0 .

. -1 s—2h(p)+1 '—2""1—1 .
Here we see that F, ;)W + Fy uyr1 Wi = D om baxhipy+1) Wa wi if

h(p)<a—2; 0if h(p)>a— 1.
Let p=0(2), p>0 and p#0(m). Then since v;(p) = P,_,(p)W" + P,_,(p)W?!
(m = 2%, n = 2°), we obtain the conclusion in the same way as the above case.
From Theorems 1.5(iv), 1.6(i) and (ii), we have

vi(m) = P,_ (m)wi* + (P—py—1 (1))"wy = W3'(F, p4q Fb,oWzW{"Jrl + F,ywy).

Let p=0(2m) and p > 0. Then using Theorems 1.5(iv), 1.6(ii) and (iii),
we see

vi(p +m) =Py (p + MW" + (Poey—1 (p/m + 1))"w;
= W8 o1 Gp(Fipy.p 41 Fo, o Wa Wi + Fypy 1) -
Let p=0(2m) and p > 0. Then using Theorems 1.5(iv) and 1.6(ii), we see
v(p) = Poy(DIWT" + (Pap—1 (P/M))" Wy

= wlF,

+1 +1
a,hp)+1 Op(Fiip), o W2 WI' " + Fipy ywzwi™ ).

—_ Up) —2s+1
Here we see that Fy, ow,w!*! + F, ,wywptt = Y Poi wi'wi @ rm-2"41 O
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