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ABSTRACT. We give necessary and sufficient conditions for the modp Whitehead

element vvn e π2,ψ-3(S2n~1) to be represented as a composition of some elements of

positive stems in the homotopy groups of spheres. We also give necessary and

sufficient conditions for vvn to be represented as Toda bracket of some elements of

positive stems in the homotopy groups of spheres. Our problem is the odd primary

version of the one studied by Iriye and Morisugi who treated the Whitehead product

[i2n-ι>'2n-ι] for the identity map z2«-ι of S2""1.

1. Introduction

Let p be a fixed prime. In this paper we always assume that spaces are
all localized at p. We study the decomposability of the mod p Whitehead
element wn e π2np-3(S2n~l). Let C(n) be the homotopy fiber of the double sus-
pension Σ2 : S2"-1 -> Ω2S2n+l, and ε : C(n) -> S2"-1 the inclusion of the fiber.
Then, it is known that C(n) is (2np — 4)-connected and π2np-3(C(n)) ^ Z/p. We
denote a generator of n2np-3(C(ri)) by z. Then, according to the terminology
due to [2], the modp Whitehead element wn is defined as wn = ε*(z)e
π2np-3(S2n~1)' We will be concerned with wn for an odd prime p.

Our main results are stated as follows; let otj e πfi(p-i)-ι = ^/P for ί = 1, 2
be a generator and <—,—,—> denote the Toda bracket [7].

THEOREM A. Let p be an odd prime and n>2. Then, wn is decomposed
as wn = Σiaibi for some elements {a^bi} of positive stems in the homotopy
groups of spheres if and only if one of the following holds:

(1) p is odd and n = 2, for which wn =
(2) p = 3 and n = 3, for which wn =

THEOREM B. Let p be an odd prime and n>2. Then, wn is represented

as wn e Σi^ f l i ϊ^i> c i) for some elements {aι,bi,Ci} of positive stems in the
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homotopy groups of spheres if and only if one of the following holds:

(1) p > 5 and n = 3, for which wn e <αι,αι,αι>;

(2) p = 3 and n = 3, for which wn e 3<αι, αi, αι>;

(3) p = 3 and n = 4, for which wn e <<%ι, αi, αι>.

The decompositions of wn in Theorem A and the representation of wn by

Toda brackets in Theorem B are shown by Toda [7], that is, the if part of

each theorem is already known. The present paper is devoted to prove the

only if part of each theorem, that is, we show that such decompositions or

representations of wn occur only when p and n satisfy the conditions in

Theorem A or Theorem B respectively.

Our problem is the odd primary version of the one studied by Iriye and

Morisugi [3] who treated the Whitehead product [ΓZH-I, *2«-ι] of a generator

i2n-ι e π2n-ι(S2π~~1) = ^(p), which is equal to wn when p = 2. They gave the

following result:

THEOREM ([3, TH. B, D]). Let n Φ 1,2 or 4. Then the following holds:

(a) The Whitehead product [ϊ2n-ι,*2n-ι] is written as [i2n-ij*2n-ι] = Σ, fli&i
for some elements {α, ,fe, } of positive stems in the homotopy groups of spheres if

and only if n = 3,5,6 or 8;

(b) The Whitehead product [i2n-ι»*2n-ι] can be represented as [i2n-ι,*2n-ι] e

Σi (ai > bΐ, cί) for some elements {α,-, bi, cι\ of positive stems in the homotopy

groups of spheres if and only if n = 3,5,6,7,8,9,10 or 12.

In the course of the proof of our main theorems, we get the next

proposition which, we believe, has its own interest.

PROPOSITION C. Let Wbe a (In - l)-connected CW-complex with dim W <

2np — 3. Suppose that there exists a map φ : 52np~3 —> W such that φ* = 0 :

H2np-3(S2np~3',Z/p) -» H2np-3(W',Z/p). Then, the fallowings are equivalent:

(1) There exists a map u : W —» S2""1 such that wn = uφ.

(2) There exists μ : Σ2Cφ -> S2n+1 such that 0>n Φ 0 on #2n+1(Cμ;Z/p),

where 0*n is the reduced p-th power operation.

(3) There exists δ : ΣCφ -» ί252n+1 such that up + 0 for a generator

_

(4) 77ιm? exisίs 5 : C^ -> ί22S2n+1 swcΛ ίΛαί ^ Φ 0 on H2np-2(Cφ',Z/p).

Here, Ch denotes the cofiber of a map h.

In the proof of our main theorems, we only use the fact that (1) implies

(2) in the above proposition.

The paper is organized as follows: In §2, we outline the method of the

proofs of Theorems A and B. In § 3 we prove Proposition C, and in § 4 we

complete the proof of the main theorems.
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2. Outline of the proofs of Theorems A and B

In this section, we state the methods to prove Theorems A and B by

assuming Proposition C. Here and throughout the paper, a homotopy class

α e [X, Y] is identified with the map α : X —> Y itself as conventionally.

We assume that 2np - 4 > d > e > In- 1. Then, for aeπe(S2n~i),

beπd(Se) and c e π2np-4(Sd) with ab = bc = Q, the Toda bracket <α, b, c> <=

π2np-ι(S2n~l) is defined as a class formed by compositions uυ, where v : S2np~3 —>
Cb and u : Q, —>• S2""1 are maps induced from relations αi? = 0 and be = 0.

Concerning Theorem B, if wn e ΣJ=1 <α, , b/, Cj> holds, then, putting W =

VU C*,, u = VU »i : ̂ 2np~3 -> W and ιι = VU "i•' W -> S2""1 for 11,0, E
<ίϊi, fej, Cj>, we have wn = wt;. Conversely, wn = MI; for some v : S2np~3 —> VΓ and

M : W -> 52"-1 implies wn e ^Li <«i,fr i ,Cj>.
Similarly, concerning Theorem A, the necessary and sufficient condition

for wn to be wn = ̂ |=1 a/ f t j is also wn = wt; by taking W = \/l

i=l Sdi, v = \/l

i=l bt :
S2nP-3 _^ w and u = y/=ι a. : W ̂  S2n-i instead, where α2 : S

dί -* S2"-1 and

fc, : S2^-3 ̂  Sdί for 1 < i < /.

From now on, we assume that wn is represented as wn = uv e

Σ!=I <αίj^ή ci) Then, the equivalence of (1) and (2) of Proposition C yields
the following:

COROLLARY 2.1. Under the above situation, for any integer m with m> n,

there exists a map μ: Σ2(^-n^Cυ -> S2m for which 0>n Φ 0 on H2m(Cμ\Z/p).

From the above fact, once Proposition C is proved, Theorem B will be

established by showing the following: 0>n ^ 0 on H2m(Cμ\Z/p) (m > n) occurs

only when p and n satisfy one of (l)-(3) of Theorem B. In order to examine

such property about ^", we use the result of Atiyah [1] about the complex

X-theory.

For a finite complex 7, the p-localized K-group K(Y) has the filtration

defined by Kq(Y) = Ker[;* : K(Y) -» ^(y^-1)], where 7« is the ^-skeleton of

Y. Then, we have the associated graded ring GtK(Y) = Kt(Y)/Kt+ι(Y). If
Y has no p-torsion, then we have an isomorphism G2tK(Y) (x) Z/p ^

H2t(Y-,Z/p). In this case, we denote by α e H2t(Y\Z/p) the element corre-

sponding to aeK2t(Y) through the isomorphism. Then, the following is

known:

THEOREM ([!]). Assume that Y has no p-torsion, and let xeK2m(Y).

Then,
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(1) there exists Xi e K2m+2i(P-i)(Y) (0 < i < w) such that ψp(x) =
Σί=QPm~iχ^ where ψp is the Adams operation on K(Y);

(2) for the elements xt e H2m+2i^-^(Y',Z/p) corresponding to x, of (1),
Xi = ^'(x).

Suppose that we have a map μ : Σ2(m~nϊ+1Cv -> S2m with ^"^0 on
H2m(Cμ,Z/p). Note that Cμ has the following cell structure:

Cμ = S2m U V (e2m+* U έ?

where 4 < 4, + 2 < r/ < 2n(p - 1) - 2. Thus, we have X2m(Cμ)/X2m+2(Cμ) ̂
H2m(Cμ,Z(p^) ^ Z(p) and ^2m+2n(p-i)(Cμ) = Z(P), and we choose x and w which
represent the respective generators. Then, xe H2m(Cμ\Z/p] =Z/p is a gen-
erator, and thus 3?n(x) φ 0 by Corollary 2.1. Using these properties and
Atiyah's theorem, we can represent the Adams operations on K(Cμ) as in the
following lemma, we note (2) corresponds to the fact that ^n(3c) φ 0.

LEMMA 2.2. (1) The Adams operation has the following forms on K(Cμ).

Li bi WZi + c^w

t 4- di(k)zi + et(k)w (1 < i < /)

Here, yt e K2m+2ti(p-i)(Cμ) and zt e K2m+2si(P-i)(Cμ) are some elements with
ti < si} and {ai(k),bi(k),c(k},di(k),ei(k),fi(k]} are some p-localized integers.

(2) When k = p in (1), c(p) = pm~nβ for some β=£Q mod p.

In the next section, we prove Proposition C, and in §4 we show that all
the relations in Lemma 2.2 hold only when p and n satisfy one of (l)-(3) in
Theorem B. In this way, we establish the proof of Theorem B. As for
Theorem A, the corresponding lemma and corollary to Lemma 2.1 and
Corollary 2.2 respectively hold, and the proof is almost the same.

3. Proof of Proposition C

In this section we prove Proposition C, and so we assume that W is a
(In - 1) -connected CW-complex with dim W < 2np - 3 and the map φ :

_ w satisfies φ^ = o . H2np-3(52^-3;Z/p) -> H2np.3(W] Z/p).
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(I) The proof of (1) <=> (4): First we remark that Σ2 : [W, S2n~l]-*

[W,Ω2S2n+1] is surjective. This follows from the Toda fibrations F -> ί2S2n+1 -»
ΩS2np+l and S2n-l _> βF _» QS2np-l ([6]) since dim W < 2np - 3, whβΓC F =

Jp-\(S2n] is the (p— l)-th space in the James construction.

Now, if u : W —» S2n-1 is given and satisfies uφ = εz = wn, then there

exists <5 : Cφ —> ί22S2n+1 which makes the following diagram homotopy

commutative:

Then the following diagram is commutative:

H2πp_2(ί32S2»+1)

H2np-2(Cφ),

where all the coefficients of the homologies are in Z/p. Hence, δ* / 0 on

H2np-2(Cφ), since z e n2np^(C(n)} = Z/p is a generator.

Conversely, if δ : Cφ -» Ω2S2n+l is given, then there exists ΰ : W -> 52n-1

such that 272M ^ Ji. Since Z2Mφ ^ δίφ ^ *, there exists z = az : S2np~3 —^ C(n)

such that εz ̂  ΰφ, where a e Z/p is a unit. Then, u = a~lΰ : W —* S2""1

the required map with uφ ~ εz.

s

(Π) The proof of (2) «=> (3): Let μ : Σ2Cφ -* S2n+1 for which ^n ̂  0 on

H2n+l(Cμ-,Z/p) be the map given in (2). We define δ : ΣCφ -> Ω52n+1 by the

adjoint of μ. Then, we have the following homotopy commutative diagram

Σ2C(C

ΣCδ

where e is the evaluation map and e is the map induced on the cofibers. Using

the five lemma we have an isomorphism β* : H2n+i(Cμ-, Z/p) ^ H2n+l(ΣCδ; Z/p),
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and the following diagram:

H2»P(Σ2Cφ]Z/p)

d—H2«P(Σ2Cδ-,Z/p)

H2»(Cδ]Z/p) H2n*(Cδ]Z/p).

Note that 5* is injective. The three squares in the diagram are commutative,
and 0>n(u) = up for a generator u e H2n(Cδ\Z/p) ^ Z/p. Therefore, δ is the
required map as in (3). By taking the converse way in the above, it is ob-
vious that, if δ is given as in (3), then the required map μ of (2) is given by the
adjoint.

(ΠI) The proof of (3) <=^ (4): Let h : K(Z/p, 2n) -> K(Z/p, 2np) be the map

defined by h*(ι2np) = ^n(iιn) = *L and r : E -> K(Z/p,2n) the homotopy fiber
of ft, where ij e H j ( K ( G J ) ] G ) denotes the fundamental class for any abelian

group G. Since Ωh*(i2np) = ^n(i2n-\) = 0, it follows Ωh ~ *, and hence
ΩE ~ K(Z/p, 2n - 1) x K(Z/p, 2np - 2). Thus, we put x = (Ωr)*(ι2n-ι) e
H2n-\ΩE;Z/p) and y e H2nP~2(ΩE',Z/p) with (Ωi)*(y) = 12^-2- Then, we
have the following lemma, the proof of which is postponed until the last of this
section.

LEMMA 3.1. There exists a map f : ΩS2n+l -> E such that (Ωf)*(x) and
(Ωf)*(y) are generators ofH2n~l(Ω2S2n+1]Z/p)^Z/p and H2nP~2(Ω2S2n+l',Z/p)
= Z/p respectively.

In the lemma, we use the following well known fact:

REMARK 3.2. For k < 2n(p + 1) - 3, we have

for k = 0, 2n — 1, 2np — 2, 2np — 1

otherwise.

Now, we continue the proof of the equivalence of (3) and (4). Let / :
ΩS2n+1 —> E be the map in Lemma 3.1. First, we assume that δ :

ΣCφ —> ΩS2n+1 is given as in (3), and prove (4).

assume

Let ΣCf0 Λ ΩS2n+i

Cs —> Σ2Cφ be the cofiber sequence given from δ. Since W is (2n — 1)-
connected, K* : H2n(Cδ\Z/p) -> H2n(ΩS2n+l\Z/p) is an isomorphism. Hence,
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there exist f2 : C& —> K(Z/p, 2ri) with f2κ ~ rf, and maps f\ : ΣCφ —>

K(Z/p, 2np — 1) and /3 : Σ2Cφ —> K(Z/p, 2np) which are adjoint to each other
and make the following left diagram homotopy commutative up to sign:

ΣCff

Cδ

/I
K(Z/p,2np-l)

K(Z/p,2n)

K(Z/p,2np-2)

ΩE,

where the right sequence in the left diagram is the fiber sequence mentioned

before Lemma 3.1. By assumption, u =f£(ι2n) is a generator of H2n(C^Z/p)

and UP * 0. Then, /3*(/2np) * 0 since λ*f3*(ι2np) =f^(ι2np) =f*2(ιp

2n] =fϊ(ι2n)
p =

up Φ 0. Let δ and / be the adjoint of δ and f\ respectively. Then, the above

right diagram is homotopy commutative, and it follows δ*(Ωf )*(y) =f (Ωι)*(y) =

f (i2np-2) ^ 0. Hence, <5* Φ 0 on H2np-ι(Cφ', Z/p), and δ is the required map of
(4).

Conversely, we assume that δ : Cφ —> Ω2S2n+l is given as in (4), and show

that the adjoint δ : ΣCφ —> ΩS2n+i of δ is the required map. Consider the
above right diagram. Then, it holds δ (Ωf )*(y) Φ 0, since (Ωf)*(y) e

H2nP-2(Ω2S2n+ΐ',Z/p) ^ ZJp is a generator by Lemma 3.1. Let/ be the map

defined by f (17*1-2) = $ (Ωf)*(y). Then, (Ωϊ)f ^ (Ωf)δ. In fact, ΩE ~

X(Z/p, 2n - 1) x K(Z/p, 2np - 2) and /*(fli)*(x) = δ*(Ωf)*(x) = 0 since Cφ is
(In - l)-connected. Since f*(Ωί)*(y) = δ*(Ωf)*(y) by definition, we have

(Oί)/- (Ωf)δ Let /i be the adjoint of/, and /3 the adjoint of /i. Then,
there is a map f2 which makes the above left diagram homotopy commutative

up to sign. LetM=/2*(/2w). Then, ιι' = (Λ/2)*fcnP) = λ*f3*(ι2np). But/3*(z2wp)^

0 since/*(/2wp-2) ^ 0. Since H2"?'1(ΩS2n+l•; Z/» = 0, A* is a monomoφhism,
and hence up Φ 0, which completes the proof of Proposition C.

PROOF OF LEMMA 3.1. Let r : E —> K(Z(p),2n) be the homotopy fiber of

the composition K(Z^p^2n) —> K(Z/p,2n) —» K(Z/p,2np), where p is the map

induced from the mod p reduction. Then, we have the following homotopy
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commutative diagram:

K(Z/p, 2np - 1) — ?

K(Z/p,2np-l)

K(Z/p,2np-l)

^— > K(Z/p, 2n) K(Z/p,2np)

X(Z(p),2n) —ίU K(Z/p,2np)

ξ

K(Z/p,2np),

where all horizontal sequences are fiber sequences. In fact, ξ is defined by

ξ*(i2nP) = *2nj and Ά and C are induced maps from the homotopy commutativity
of the right squares of the above diagram.

Let x = (Ωη)*(x) and y = (Ωη)*(y). Then, it is sufficient to find the map
f:ΩS2n+1-^E such that (fl/) (x) and (Ωf)*(y) are respective generators.
Let Λ! : ΩS2n+1 ^ K(Z(p},2n) and h2 : ΩS2n+1 -^ K(Z(p},2np) be maps such

that Λί(i2n) and h$(i2np) are generators of H2n(β52n+1;Z(p)) ̂  Z(p) and
H2np(ί2S2n+1;Z(p)) = Z(P) respectively. We can choose ΛI and Λ2 to satisfy

h*^*(i2np} = hl(i2n)p = plh*2(i2nP) since H*(OS2»+1; Z(p)) is the divided poly-
nomial algebra. Since the lower square in the middle of the above diagram is
a weak pull back diagram, there exists / : ΩS2n+l — > E such that rf ~ hi and

ζf^(p- 1)!Λ2. Then, we have (fl/)*(Jc) = (i2f)*(flf)*p*(i2»-i) = (OΛι)*P*(ϊ2»-ι)
and (iy)*(OC)V*('2V-i) - (P- l)!(fl*2)V*('2^-i). Thus, (O/)*(Jc) is a gen-
erator of H2n-l(Ω2S2n+1]Z/p) as required, and also (fl/)*(flC)*p*(i2«p-ι) is a
generator of H2n^l(Ω2S2n+i',Z/p).

Now (ΩΊ)*(ΩζYp*(i2np-ι) = βi2nP-2 = (Ωϊ)*β(y), where j8 is the Bock-
stein operation. Since ΩE ~ K(Z^,2n - 1) x K(Z/p, 2np - 2), we have
H2^-1 (ί2E; Z/p) s H2^-1 (K(Z(p) , 2n - 1) Z/p) φ H2^-1 (X(Z/p, 2np - 2) Z/p)
for dimensional reason. Thus there exists y e Im(flf)* so that (Ωζ)*p*(ι2np-ι) =
βy + y (^C)*P*(^2np-ι) and βy are primitive by definition, so is j;. Thus y =
(βf)*0p*(ϊ2n-ι) = θ(x) for some Steenrod operation θ, and we have (Ωf)*(y) =
θ(ΩfY(x) = 0 by Remark 3.2. Hence, we have β(Ωf)*(y) = (Ωf}*(Ωζ) *p*(z2Wp-ι)
and thus β(Ωf)*(y) is a generator of H2n^(Ω2S2n+l',Z/p). Therefore, (fl/)*(y)
is itself a generator of fί2wp~2(f22S2n+1;Z/p), and we have completed the proof
of Proposition 3.1. q.e.d.

4. Proof of Main theorems

In this section, we compute the Adams operation to complete the proofs
of Theorems A and B. Since the computations are similar for both the



Decomposability of the mod p Whitehead element 63 1

theorems, we write them for Theorem B mainly and only outline them for
Theorem A.

First, we prepare the next lemma, which is necessary in the proof. We
omit the proof of it, since it is easy. We use the notation that v(n) is the
exponent of p in the primary decomposition of the integer n.

LEMMA 4.1. // p is an odd prime, then v((p 4- l)m — 1) = v(m) -I- 1.

The action of the Adams operation on K(Cμ) is given in Lemma 2.2.
We prove Theorem B by dividing the following two cases (I) and (II).

(I) The case of n = pN for some N > 0: First we compare the coefficients of
yι on the both sides of \l/p+1ψpx = \l/pψp+lx. Then, we get
p«(p'i(r-D _ ι)β|(p + 1) = (p + l)*((p + l)"^1) - l)α,(p). Hence, α,(P) Ξ 0
modpm~v^~1. Since v(ί, ) < N we have

at(p)=Omodpm-N (1 < i < /). (1)

Next we compare the coefficients of z\ on the both side of ψp+lψpyi =
Ψpψp+lyi By computing similarly, we get dt(p) = 0 modp111^^-1)"^"^"1.
Since v(s, — ί, ) < N we have

dt(p) = 0 mod p"H-(p-i)-* (1 < ί < /). (2)

We compare the coefficients of z, on the both side of ψp+lψpx =
ψpψp+lx. Then, by considering them modpm~N and applying (1) and (2), we
get (p + l)m((p + l)5^-1* - l)fci(p) = 0 mod pm~N. But v((p + l)Sί(p-1} - 1) =
v(s, ) + l by Lemma 4.1, and we get 64(p) = 0 mod pm~N-v^-1 . Since
v(s, ) < N, we have

m-2N ( l < i < / ) . (3)

We compare the coefficients of w on the both side of ψp+i\l/pZi =
Then, (p + l)m+s'(p-1}((p + l)(n-Si)(p-1} - l)/,(p) =p^(P-i)(p(^)(P-i) _ l)/ί(p + 1).
But, v((p + I)(Π-S')(P-I) _ 1) = v(n - s,-) + 1 by Lemma 4.1, and we get ft(p) =
0 mod pm+*(p-i)-v(»-si)-i. since v(n _ s.) < N and s. > 2j We have

= 0 mod p"*^-1)-" (1 < i < /). (4)

We compare the coefficients of w on the both side of ψp+1ψpyi =
ψp\l/p+*yi. Then, by considering them mod pm-N+(p-V and applying (2) and (4),
we get (p + lΓ+'^^Kp + l)*"-'')^ Hence
we get et(p) = 0 mod pm-N+(P-V)-v(n-ti)-\ ^ since v^n _ ̂  < jv we have

et(p) = 0 mod p«-^+p-i (1 < i < /). (5)
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Finally we compare the coefficients of w on the both side of ψp+lψpx =
\l/pψp+lx. Then, by considering them mod pm~2N and applying (1), (3), (4) and
(5), we get (p + \)m((p + \)n(p~l] - l)c(p) = 0 mod pm~2N. Since v(c(p)) =
m — n by Lemma 2.2, (p + l)"^"1) — 1 = 0 mod pn~2N. Since n = pN, using
Lemma 4.1, we have v((p + i)"^"1) — 1) = N + 1. As a conclusion of this case
(I), we obtain N+l>n-2N, and it holds only if N = 1, n = 3 and p = 3,
which establishes Theorem B (2).

(II) The case of n φpN for any N > 0: In this case, £Pn is a decomposable
element in the Steenrod algebra. We use the following theorem on the non
existence of the mod p Hopf invariant 1 due to [4] or [5].

THEOREM 4.2. Let p be an odd prime. Then, the necessary and sufficient
condition for a complex K = Sl U/ eί+2m(p-i) to satisfy ^H^K Z/p) ^ 0 is
that m = 1 and f = αi.

Now, by the cell structure of Cμ shown in the above of Lemma 2.2, &n

should not be 4-fold decomposable, and it is sufficient to consider the fol-
lowing cases (i) and (ii).

(i) The case that &>n is 3-fold decomposable: By Theorem 4.2, the chance for
^n to operate non trivially on H2m(Cμ,Z/p) in this case is that p > 5 and 3?n

has a factor of the form of ^1^>1^)1 = 3!̂ 3 in its decomposition. Therefore,
we have n = 3, and it yields Theorem B (1).

(ii) The case that &*n is not 3-fold decomposable: By Theorem 4.2, in this case
&n operates non trivially on H2m(Cμ-,Z/p) only if 0*n has a factor of the form
of 0>l0>pM or 0>pM 0>l in its decomposition for some M > 1. We compute
similarly as in the case (I). Then the conclusions (1), (2) and (4) are just the
same as (I) replacing simply N by M. The conclusions (3) and (5) are the same
other than the points that v(s<) < M and v(n - ί, ) < M. For the last step,
doing the same way, we have (p + l)m((p + l)"^"1' — l)c(p) = 0 mod pm~2M-1.
Then, we get v((p + l)n(p~1} - 1) = 1. Thus, we get 2M + 1 > pM, and it holds
only when M = 1, n = 4 and p = 3, which establishes Theorem B (3). This
completes the proof of Theorem B.

PROOF OF THEOREM A. For the cases of n = pN for some N > 1, we can
compute similarly as in (I) above using Lemma 2.2 and Lemma 4.1, and we
establish Theorem A (2), that is, n = 3 and p = 3.

For the cases of n ̂  pN for any N > 1, by Theorem 4.2 and the cell
structure of Cμ, 0*" operates non trivially on H2m(Cμ,Z/p), in this case, only if
0>n has a factor of the form of έP1^ = 2\0>2 in its decomposition. Thus, this
yields Theorem A (1), that is, n = 2 and p > 3. q.e.d.
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