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ABSTRACT. It is shown that there exist p-Dirichlet infinite p-harmonic measures on the

unit ball in the Euclidean space of dimension n ̂  2 even if 1 < p < 2. The same

is also proved to be true if the p-harmonicity is generalized to the so-called sί-

harmonicity of exponent p.

1. Introduction

The purpose of this paper is to give an affirmative answer to a problem
originally posed by Ohtsuka [11, Chap. VIII] whether there exists a p-
harmonic measure on the unit ball in the n-dimensional Euclidean space
Rn (n ̂  2) with an infinite p-Dirichlet integral for the exponent 1 < p < 2.
Actually Ohtsuka raised the question in terms of extremal distances in
an equivalent to but superfacially different from the above formula-
tion. However in this paper we will confine ourselves to the frame of
harmonic measures as mentioned above.

We will discuss the problem in a broader potential theoretic setting of £/-
harmonicity than that of mere p-harmonicity. Following the monograph [2]
of Heinonen, Kilpelainen and Martio (see also Maz'ya [6]), we say that stf is
a strictly monotone elliptic operator on the Euclidean space Rn of dimension
n ̂  2 with exponent l < p ^ n i f c δ / i s a mapping of Rn x Rn to Rn satisfying
the following five conditions (2)-(6) for some constants 0 < α ̂  β < oo:

(2) the function h »-> «s/(x, h) is continuous for
almost every fixed x e Rn, and the function
x H-> j/(x, h) is measurable for all fixed h e Rn-,

for almost every x e Rn and for all h e Rn

(3) j/(x,Λ) fc^α|Λ|p,
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(4)

(5)

whenever h\ φ ti2, and

(6)

for all λ e Λ\{0}, where R is the field of real numbers. Here |x| indicates the
length of a vector x = (x1, . . . ,xn) in Rn. The class of all operators s/ on Rn

satisfying (2)-(6) with exponent 1 < p ^ n will be denoted by jtfp(Rn}.
Using an s/ e ^P(Rn) we consider a quasilinear elliptic partial differential

equation

(7) -divjaφc,Fw(x)) = 0

on Rn. A function u on an open subset G of Λ" is a weak solution of (7) if
11 e loc W ( ? and

for every φεCQ)(G), where W^(G) is the Sobolev space on G consisting
of functions f e LP(G) = LP(G\K) with distributional gradients Vf e LP(G) =
Lp(G]Rn) and dx = dx1 - - dxn. A weak solution u of (7) (possibly modified
on a set of zero measure dx) is actually continuous. We say that a function u
is <stf -harmonic on G if M is a continuous weak solution of (7) on G. We denote
by Hrf(G) the class of all j/ harmonic functions on G. The simplest and the
most typical operator si in ^p(Rn] is the p-Laplacian s/(x,h) = \h\p~2h so that
the corresponding elliptic equation is the p-Laplace equation

-di\(\Vu(x)\p'2Vu(x)) = 0.

In this case we use the term p-harmonic instead of j^-harmonic and the
notation HP(G) in place of H^(G).

The greatest j/-harmonic minorant UAV on G, if it exists, of two s/-
harmonic functions u and v on G is the j^-harmonic function UΛV on G
characterized by the following two conditions: (i) UAV^U and UΛV ^v on
G; (ii) if there is an j/-harmonic function Λ on G such that ft ̂  u and Λ ̂  ϋ
on G, then h ̂  M Λ v on G. A function w is said to be an si -harmonic measure
on G in the sense of Heins [3] if w is j^-harmonic on G and satisfies

(8) W Λ ( ! - W ) = O

on G. An s/ -harmonic measure w on G always satisfies 0 ̂  w ̂  1 on G;
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w = 0 and w = 1 are j^-harmonic measures on G; when G is a region, an stf-
harmonic measure w on G is nonconstant if and only if 0 < w < 1 on G.

Our main concern in this paper is the p-Dirichlet integral

D (w) = Dp(w; Bn) - f \Vw(x)\p dx ^
JBn

00

of each j/-harmonic measure w on the unit ball Bn = {x E Rn : \x\ < 1} with
j/ e sip(Rn). We say that w is p-Dirichlet finite (infinite, resp.) if Dp(w) < oo
(Dp(w) = oo, resp.). In this regard we recall the following result (cf. [9] and
also Herron-Koskela [4]):

9. THEOREM. // 2 ̂  p ^ n, then every nonconstant stf-harmonic measure

on the unit ball Bn is p-Dirichlet infinite for every s$ in <stfp(Rn}\ if 1 < p < 2,

then there exist nonconstant p-Dirichlet finite jtf-harmonic measures on Bn for

every jtf in <s

In view of this result we are naturally led to ask the question in the case
1 < p < 2 whether there are p-Dirichlet infinite <s/-harmonic measures on the
unit ball Bn for every si in jtfp(Rn), which is the main theme of this paper and
exactly identical with the problem of Ohtsuka stated at the beginning of this
introduction for j/(x,Λ) = \h\p~2h. To discuss this question we will construct
a certain open set on the unit sphere S""1 = dBn as an image of an open set in
Rn~l x {0} by the stereographic projection. Recall that the stereographic
projection s of /T"1 x {0} to Sn~l\{N} from the north pole N = (0,... ,0,1) e
S""1 is given by

/ x 2x . x — 1 m,. , ΛM_ι

which is a C°° diffeomorphism of Rn~* x {0} onto S^^N}. Considering the
one point compactification Rn of Rn~l, s can be continued to a diffeomorpism
of Rn~l x {0} onto S"-1.

Take two sequences (α*) = (dk : 1 ̂  k < K + l) and (&*) = (bk ' 1 ̂  k <
K -f 1) of real numbers α& and bk such that

(10) 0 < αfe+ι < bk < ak < 1 (l£k<K)

so that (ad and (bk) are finite sequences of K terms if 1 ̂  K < oo and infinite
sequences if K = oo. In the latter case we moreover assume that

lim ak = 0.
fc-KX)

With these two sequences (ak) and (bk) we associate the sequence (Ak) =
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(Ak : 1 ̂  k < K + 1) of "intervals" Ak in Sn~l\{N} given by

(11) s-^Ak) = (bk,ak) x (-1/2,1/2) x ... x (-1/2,1/2) x {0}.

We then consider the open subset A in S""1 = dBn associated with sequences
(ak) and (bk) given by

(12) A = A((ak),(bk))=\jAk.
fc=l

We denote by ω(A,Bn]jtf) the 30 -harmonic measure of A with respect to
Bn in the sense of Martio ([5], [2, Chap. 11]). It may also be defined by

(13) ω(A, Bn; d} = sup ΊT(A, £"; j/)

where i^(A,Bn;jtf) denotes the class of all functions v in the class
C(Bn(JSn-1)ΓιHs/(Bn) such that Ό\Sn~l^l and v^S^A) ^ 0 (cf. [2, 11.1
and 11.5]). Clearly ω = ω(A,Bn;s/) is j/-harmonic and O ^ ω ^ l on 5".
Concerning the boundary behavior of ω at Sn~l = dBn we have (cf. [2, 11.6])

(14)
" ~ =0 (xeSn-l\A).

We will later see in Proposition 45 that ω(A,Bn\£/) is actually an j/-harmonic
measure in the sense of Heins for s/ in <$/p(Rn) with 1 < p ^ 2.

The purpose of this paper is, as already stated, to give an affirmative
answer to the problem of Ohtsuka on the existence of p-Dirichlet infinite p-
harmonic measures (in the sense of Heins) on the unit ball Bn for 1 < p < 2 by
proving the following result.

15. MAIN THEOREM. IfK<ao or if K — oo and either the sequence

(|βfc — bk\ : 1 ̂  k < oo) or (|α/c+ι — bk\ : 1 ̂  k < oo) converges to zero so rapidly
as to satisfy the condition

s

(16) mini ^ \ak ~ ^k\ Pι / \ak+ι — bk\ ~p I < oo,

then the jtf-harmonic measure ω(A,Bn',<$#) is p-Dirichlet finite for every jtf in
jfp(Rn) with each 1 < p < 2 and n^2. If both of the sequences (\ak — bk\ :
1 ^ fe < oo) and (\ak+ι — bk\ : 1 ̂  k < oo) converge to zero so slowly as to
satisfy the condition

(17) Σ
k=\
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then the jtf -harmonic measure ω(A, Bn-, stf) is p-Dirichlet infinite for every stf in

with each 1 < p < 2 and n ̂  2.

This result was obtained in [10] for the special case of n = 2. The proof
of this theorem will be given later in 48 after a series of preparations starting
from 23. If we take K = oo and bk = (a^ + a^\)/2 (1 ̂  k < oo), then the
above result takes the following more applicable form also obtained by
Herron and Koskela [4] in the case n = 2.

18. COROLLARY. // the sequences (α^ : 1 ̂  k < oo) and (fefc : 1 ̂  k < oo)
moreover satisfy the condition

(19) bk = (ak + ak+ϊ)/2 ( lgfc«χ>),

then the jtf -harmonic measure ω(A,Bn\stf] is p-Dirichlet finite for every stf in
with each 1 < p < 2 and n ̂  2 if and only if

(20)
k=l

We are now in a position to give an affirmative answer to the problem of
Ohtsuka as an application of the above Corollary 18 and hence of Main
theorem 15 by giving the following example.

21. EXAMPLE. Choose decreasing zero sequences (α^ : 1 ̂  k < oo) and
(bk : 1 ̂  k < oo) so as to satisfy the conditions (19) and

(22) ak — bk = bk — flfc+i — k~ '^ ~p'

for all sufficiently large k. Then the stf-harmonic measure ω(A,Bn',s#} is p-
Dirichlet infinite for every s& in s/p(Rn) with each 1 < p < 2 and n^.2.

23. Trace

The Sobolev space W^(G) (1 < p ^ n) is a Banach space equipped with

the norm

\\f; W}(G)\\ = ||/;LP(G)|| + ||F/;LP(G)||,

where G is an open set in Rn (n^.2). The Sobolev null space W^(G) is the
closure of C^°(G) in W^(G) with respect to the above norm.

There exists a unique continuous linear operator y of Wp(Bn) into
Lp(Sn~l) such that yf=f\Sn~l for every / in C(BnΌSn-1) Π Wp

l(Bn), where
Lp(Sn~1) is considered with respect to the surface element dσ on Sn~l. The
function yf defined a.e. on 5n-1 and belonging to Lp(Sn~l) is referred to as the
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trace on S""1 of / in Wp(Bn). It is seen that the expression

(24) (y/)(C)=lim/K)

holds for a.e. ζ in Sn~l (cf. e.g. [7, p. 47] and [8, pp. 180-181]).
Concerning the kernel Kery^y" 1^) and the image Im y = y ( W p ( B n ) )

of y: Wp

l(Bn) -> Lp(Sn~l) we have the following fundamental results. First,
Kery characterizes the Sobolev null space (cf. e.g. [8, p. 187]):

(25) K&(B») = ker γ = {/ e W? (B») : y/ = 0}.

Second, we denote Im 7 = y(W^(BB)) by ^(S""1). It is seen that the space

P(ΛP(S"~1) forms a Banach space under the norm

(26)

where dσ is the area element on S""1. The theorem of Gagliardo [1] assures
the existence of a constant C\ = C\ (n, p) > 1 such that

(27) C^Hφ ΛpίS-1)!! ^ mf I!/; Wp\B*}\\ ^ C^Ap(Sn^)\\

for every φ in Λ^S"-1). The quantity \\φ-, Ap(Sn~1)\\ will be referred to as the
Gagliardo norm of φ in this paper.

28. Dirichlet problem

Let G be a bounded region in /?". We will mainly consider the case
G = Bn but G is supposed to be a general bounded region for a while. For
any/in J^/(G) there exists a unique u in the space H^(G) Π W^(G) such that
M-/ belongs to W^(G) (cf. Maz'ya [6]; see also [2, 3.17]). This fact can be
reformulated as the Maz'ya decomposition of W p ( G ) :

(29) Wp

l(G) = (H^G) Π Wp

l(G)) φ W&(G),

i.e. any/in W p ( G ) can be expressed uniquely as the sum of the j^-harmonic
part u in HJ/(G)Γ\Wp

l(G) and the "potential part" g in Wp]Q(G) : f = u + g.
We denote by π^ the projection operator of W*(G) to H^(G)Γ\W*(G)
determined by π^/ = u. Although π^ is homogeneous but not linear in
general, we see that π^ is monotone (cf. e.g. [9]), i.e. if/i ^ /2 a.e. on G for any
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/i and /2 in W^(G), then π^/i ^ π^/2 on G. We say that G is d -regular if

(30)

for any /in C(G) Π P^/(G) and for every y in 5G. If G is bounded by a finite
number of mutually disjoint smooth closed hypersurfaces, then G is ^-regular
(cf. e.g. [2, 6.31]). The ball is the most typical example of j^-regular regions.

We now restrict ourselves to the case G = Bn. We use the abbreviation
π = π^ = π^ . In view of the relation (25) and the uniqueness of the Maz'ya
decomposition (29) we can define the operator

τ = π o γ-1 : Ap(8n~l) -> H^(Bn) Π Wp

l(F)

in the following sense: for any φ e Λp(Sn~l) choose any/in y~l(φ) and then set
τφ :=u = nf. Clearly the operator τ = τ^ = τ^ is bijective. Moreover we
have the following result.

31. PROPOSITION. The operator τ is monotone, i.e. if φl ^ φ2 a.e. on Sn~l

for any φ± and φ2 in Λp(Sn~l), then τφ^ ^ τφ2 everywhere on Bn.

PROOF. Choose an arbitrary gt in W*(Bn) with ygi = φi (i = l,2). In
general we denote by F U G the function given by (FUG)(x) = max(F(x),
G(x)) for any two functions F and G. Then (gι - g2) U O belongs to Wj(Bn)
by the lattice property of W*(Bn). By (24) we see that

y((βι ~ 02) U 0) = (y(gι - g2)) U 0 = (φγ - φ2) U 0 = φl - φ2.

If we set /2 = 02 and /i = 02 + (01 - 92) U 0, then y/2 = yg2 = φ2 and

- 02) U 0) = φ2 + (φt - φ2) = φ^

Then τφ{ = π/i, τφ2 = π/2 and f\ ^ /2 on Bn imply that τφ^ ^ τφ2 on Bn by
the monotoneity of π. Π

We say that a measurable function φ on S""1 has an essential limit α at η
in S"-1,

α = ess lim φ(ξ)

in notation, if

ε|0

where B(η, ε) is the ball of radius ε > 0 centered at η. Besides the defining
boundary behavior ^(τφ) = φ of τφ, we have the following more precise
boundary behavior of τφ if an additional condition is imposed upon φ:
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32. PROPOSITION. // φ eL00(5n~1) Γ\Λp(Sn~1) is continuous at a point
η 6 S""1 in the sense that ess lim^ φ(ξ) = φ(η), then τφ has a boundary value
φ(η) at η.

PROOF. We only have to show that limX€B
n,x^η (t<p)(x) = φ(n)- Since

τ(φ — φ(η)) = τφ — φ(η), we may suppose φ(η) = ess lim^ φ(ξ) = 0 to show
the above identity. Let \φ\ ^ M a.e. on Sn~l for a positive constant M and
p(x) = \x-η\ on Rn. Clearly p belongs to the class C(BnΌSn~l)Γ( Wj(Bn]
and τ(p\Sn~l) = πp, or roughly τp = πp. Hence by (30) we have

lim (τp)(x)=0.
xeB"-',x-κ/

For any ε > 0 there is a δ such that |<p(<f;) |<ε for a.e. ξ in B(>/,<5)n
S"-1. Since (M/δ)p(ξ) ^ M for every ξ in y-^Bfa.ί), we see that

a.e. on Sn~l. By Proposition 31, we have

-y M W - β ̂  (τφ)(x) ̂  y (τp)(x) + β (x 6 5").

On letting x in Bn tend to ^/, we see by (τp)(x) -*• 0 that

— ε ̂  lim inf (τφ)(x) ^ lim sup (τ(/))(x) ^ ε.
χ-^»/ x- ί̂j

Since ε > 0 is arbitrary, we finally conclude the required identity

^ (τφ)(x) =0. Π

33. Estimates of Gagliardo norms

We are interested in computing or estimating ||lyι;yip(5n~1)|| for the open
set A = A((ak),(bk)) given by (12) where \A stands for the characteristic
function of A on S""1. In this case (26) takes the form

/ ΓF \1/P

\\1A]AP(S"1)\\ = σ(Af" + (2 |{ - ηΓf-"+2 dσ(ξ)dσ(η] ,
\ JJAxAc /

where Ac is the complement of A in Sn~l. In view of this, for two measurable
subsets X and Y in Sn~l we consider the set function

\ξ-ηΓp-"+2dσ(ξ)dσ(η)
XxY
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by which we have

(34) UU ΛpίS-1)!! = σ(Aγ/p + (2S(A,Ac)γ'p.

To facilitate the estimation of the quantity S(X, Y) for various sets X and Y, we
introduce an auxiliary set function. We denote by X~ the counterimage in
Rn~l x {0} of a set X c Sn~l by the stereographic projection 5, i.e. s(X") =
X\{N} where N = (0, . . . ,0, 1) e S""1. Then XΛ is measurable dλ, where dλ
is the surface element on Rn~l x {0} so that dλ(x) = dx1 - - -dx""1 for x =
(x1, . . . , x""1, 0) in Rn~l x {0}, if and only if X is measurable dσ. In addition

to the standard norm |x| = feiU |x'|2Y/2 of a vector x = (x1, . . . ,xn) in Rn

we consider the norm

of x. Clearly |x| ^ ||x|| ^ v^M f°r every x in Rn. For measurable subsets X
and 7in Sn-1 we consider the following auxiliary set function

\\x-y\\-f-n+2dλ(X)dλ(y}.
'xY-

Fix two regions Ω and ω on S""1 given by

I Ω = s({x e R"'1 x {0} : 2^/n < |x| g oo}),

\ ω = s({x e Λ"'1 x {0} : |x|

Observe that dσ(s(x))/dλ(x) = (2/(|x|2 + I))""1 for every x in Λ"-1 x {0} and

|s(x) - s(y)\ = 2((|x|2 + l)(|y|2 + l))'1/2^ - y\

for every x and y in Rn~^ x {0}. Therefore, on setting

C2 = C2(n,p) = max(2n^n^+π-2)/2, ((4n

we obtain

(36) C

for every pair of measurable subsets X and Y i n S"~1\β.
Hereafter in this paper we always assume that 1 < p < 2 unless otherwise

is explicitly stated. We consider open intervals (α, fc; c) in R n~l x {0} given

by

(a, b; c) = (a, b) x (-c, c) x x (-c, c) x {0} c Λ"-1 x {0},
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where — oo ^ a < b ̂  oo and 0 < c ̂  oo. For the set X = s((α, fr; c))

, the number \X\ = b-a will be referred to as the width of X.

37. IDENTITY. If A = s((b,0; 1/2)) wiί/i -oo < Z? < a < oo and P is

either s((c, fe; oo)) wίίΛ — oo < c < b or s((a, c; oo)) wiίΛ a < c < oo,

fl/2 foo Γl/2 ΛOO

i = \ dxΊ dyl dx*-1 ay*-1

J-l/2 J-oo J-l/2 i-oo

rl/2 Γc

dχ2

J-l/2 J-

-(14 +

C3 = C3(n,p) = 2n-2(-ΠJ=ι(p + w-2-;))~1.

PROOF. We first compute the iterated integral

1/2

1/2 J-oo J-l/2

1/2

-1/2

for ι = 2,...,«-1 where x = (x1,... ,xn~1,0) and y = (yl,... ,yn~l,Q). For
each x = (x 1,..., xn~r, 0) we put

for ΐ = 2,. . . , n — 1 where we mean r = 0 for any real number r. The relations

with k(i) = 21"1 (Πl

j=2(P + H - 1 -J'))"1 (ί = 2,. . . , n - 1) can easily be seen to
hold by induction on i. We assume that P = s(a, c; oo)) in the following

computation. By a similar consideration we can arrive at the same conclusion
in the P = s((c, fc; oo)) case as well. Observe that

7UP)= [ dx1

Jb Ja

Here by (38) we have Λ_ι = k(n - l)||xn-ι - yn-ι\\~p = k(n - I)!*1 - yl\~p.
Therefore we obtain that

, P) = k(n - 1) f ° dxl l\yl - x1

Jb Ja

and an easy computation leads to the desired conclusion. Π

39. IDENTITY. If A = s((ί?,α; 1/2)) with -oo < b < a < oo and P is
either s((— oo,i>; oo)) or s((α, oo; oo)),
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PROOF. We assume that P = s((α, oo; oo)). The P = s((-oo, ft; oo)) case
can be treated similarly. Using Jπ_ι in (38), we have

T(A,p) = Γdx1 Γjn-ιdyl = k(n-l) Γdx1 Γ (y1-x1)'^1

Jb Ja Jb Ja

= C3\A\2~p. Π

We denote by Qf the image by the stereographic projection s of the half-
hyperplane {x = (x1,... ,xπ~1,0) : x' > 1/2} of the hyperplane Rn~l x {0} and
similarly by Q^ the image by s of {x = (x1,... ,xn~l,Q) : x1' < -1/2} for i =
2, . . . ,n-l .

40. IDENTITY. If A = s((fc, α; 1/2)) with -oo < b < a < oo, then

PROOF. By the symmetry we have T(A, Qf) = T(A, Qj) (i = 2, . . . ,
n — 1) and therefore we only have to show that T(A,Q%) = C$\A\. Consider

ι»l/2 roo pl/2 roc

J = dxn~l dyn~l dxn~2

J-l/2 J-oo J-l/2 J-

•f
-',<

identities (38) we can also show that

-1/2 J-oo J-l/2

fl/2

-1/2 J-oo

where x = (x 1,..., x"'1,0) and y = (y1,..., yn~l, 0). As we deduced the

J = k(n- 2)(|xx - y1! + |x2 -

where k(n — 2) is identical with that in (38) for i = n — 2. Using k(n — 2}p~l =
2~1fe(n - 1), we see that

pa FCO f poo

T(A,Q+)= dx1 dyl\ dx2\ Jdy
Jb J-oo J-l/2 Jl/21/2 J l/2

1/2pa rao r l / 2 poo

= k(n - 2) dxl dyl dx2 (|xx - yl\ + (y2 - x2)ΓP~ldy2

Jb J-oo J-l/2 Jl/2

= k(n-2)p~1 Γ dx1 f°° dyl f (Jx 1 - yl\ + (1/2 -
Jb J-oo J-l/2

fl/2 ra roo

= 2- !Jk(n-l) dx2 \ dx1 \ (|x j - yl\ + (1/2-
J-l/2 Jb J-oo
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r ra

= (p- l)~lk(n - 1) dx2 (1/2 - x2γ-pdxl

J-l/2 Jb

f l / 2

= (p- \γlk(n - \)(b - a) (1/2 - x2γ~pdx2 = C3\A\.
J-l/2

For any set X in 5""1 we denoted by Xc the complement Sn~l\X of X in
S"-1 so that (^T= PΠC where (JT)C is the complement IT"1 x {0}\JΓ of
JT in R*-1 x {0}.

41. ESTIMATE. // A = s((fc,α; 1/2)) with -oo < b < a < oo,

C4 = C4(n,p)

PROOF. In addition to open sets βf (i = 2, . . . ,n - 1) in the identity
40, we consider two more open subsets Q± = s((α, oo; oo)) and Q{ =
s((-oo,fe; oo)). Since

the identities 39 and 40 imply that

"

- (T(A, β+) + n/1, flΓ)) + (T(X, β+) + T(A, fl
i=2

+ (n - 2) 2C3\A\ = C4(\A\2~P + (n - 2)|X|). D

If |4| ^ 1, then, since 1 < p < 2, we see that \A\ ̂  \A\2~P. Hence the
estimate 41 trivially yields the following result.

42. ESTIMATE. // A = s((b, α; 1/2)) with 0 < b< a < 1, then

where €5 = Cs(n,p) = (n- l)C4(n,p).

Recall that ω in (35) is the spherical cap in Sn~l with center 5 =
(0, . . . ,0, -1), the south pole of 5""1, such that ωΛ = {x ε Rn~* x {0} : |x| <
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</n}; Ω in (35) is the spherical cap in Sn~l with center at the north pole
N such that QΛ = {x e Rn~l x {0} : |x| > 2^/n}. Observe that, if A =
s((b, α; 1/2)) with 0 < b < a < 1, then A c ω.

43. ESΉMATE. If A = s((b, 0; 1/2)) wiίA 0 < b < α < 1,

where C6 = C6(n,p) = (p - l)"1n(1-^/2σn_2,σn_2 being ίne area of Sn~2.

PROOF. For any (x,y) in A*xΩ*, we have \x — y\^.^/n. Since
||x - y\\ ̂  |x - y|, we see that ||x - y\\-p~n+2 ^\χ- y\-p~n+2 . Using the sur-

face element dσn-2 on Sn~2 we deduce

, Ω) = f [
JJ

^ fJA

||x - y\\-p-n+2dλ(x)dλ(y)
/ΓxG-

= f dλ(x)([ dσn_2
JA~ \isn-2 i

Ώ

44. Dirichlet integrals of harmonic measures

In this section we study the p-Dirichlet finiteness of the j/-harmonic
measure ω(A,Bn',s#} of the boundary set A given in (12). Observe that the
(n-p)-Hausdorff measures of boundary components of s"1^) relative to
Rn~l x {0} and hence of boundary components of A relative to Sn-1 are finite
for 1 < p ^ 2 when n > 2. Hence the variational p-capacity of A\A is zero
(cf. e.g. [2, 2.27 and 2.8] for n > 2; [2, 2.12 and 2.8] for n = 2):

c&pp(A\A)=0 (Kp£2,n^2).

We also use the following form of comparison principle which is a special case
of Lemma 7.37 in [2]: suppose that G is a bounded subregion of Rn and
E c dG satisfies capp£ = 0; assume that u and υ are bounded ^-harmonic
functions on G, where si E jtfp(Rn) with 1 < p ^ n, such that

lim sup u(y) ^ lim inf υ(y)
y-*x y^χ

for all x e dG\E; if at least one of u and v is p-Dirichlet finite on G, then u ̂  v



618 Mitsuru NAKAI

everywhere on G. Using these two facts mentioned above we first prove the
following result announced in the introduction.

45. PROPOSITION. Suppose 1 < p ^ 2 and A e jtfp(Rn). The function
ω = ω(A,Bn;jtf) is an jtf-harmonic measure in the sense of Heins: ω Λ
(1 - ω) = 0 on Bn.

PROOF. In view of (14) we see that limy_>x (ωΛ (1 - ω))(y) = 0 for all x
in Sn~l = dBn except for the set A\A of p-capacity zero. By the above
comparison principle we deduce that ω Λ ( l —ω) =0 on βπ, as desired. Π

Recall that I A is the characteristic function of the open set A considered
on S"-1: U ^ l on A and U = 0 on Sn~l\A so that \AeLp(Sn'1)
(1 ^p^ oo).

46. PROPOSITION. Suppose 1 < p < 2 and jtf e sfp(Rn). The stf-harmonic
measure ω(A,Bn',.stf} is p-Dirichlet finite on Bn if and only if 1A £ Λp(Bn), and
in this case ω(A,Bn\s/} = τ^lA on Bn.

PROOF. First assume that ω = ω(A,Bn;jtf) is p-Dirichlet finite on
Bn. By (14) and (24) we see that 1A = γωε Ap(Sn~l). Hence, by the defini-
tion of τ = TJ/ = τJΓ, we conclude that ω = τlA. Conversely we suppose that
lAeΛp(Sn~l). Proposition 32 assures that

lim (τ
y >x

y-+x

This with (14) implies limy^xω(y) = ]imy^x(τίA)(y) for all x in Sn~l\
with capp(A\A) = 0. The above comparison principle yields ω = τ!A, which is
p-Dirichlet finite on Bn. Π

47. COROLLARY. Suppose 1 < p < 2 αnrf Λ/ e jtfp(Rn}. If K < oo, then
ω(A,Bn',sf} is p-Dirichlet finite.

PROOF. In view of (34), (36) and the estimate 42 we see that

K

oo

so that !AeΛp(Sn l ) and therefore ω(A,Bn ,s/) = τlA is p-Dirichlet finite.

D

k=ι
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48. Proof of Main theorem 15

If K < oo, then, by Corollary 47, ω = ω(A,Bn',s#] is p-Dirichlet finite
on Bn. Hence, hereafter in this proof, we assume that K = oo so that A =

We now start the essential part of this proof by showing that (16)
implies the p-Dirichlet finiteness of ω = ω(A, £"; s#\ Suppose first that

Σfe°°=ι \*k - bk\
2~p < oo so that Σ£ι \Ak\

2~p < oo since Ak = s((bk,ak] 1/2))
(k= 1,2,...)- By (34) we have

Using (36) we deduce

S(A, Ac) = S(A, Ac \Ω) + S(Λ, Ac Γ\ Ω) ^ S(A, Ac \Ω) + S(α>, Ω)

g C2 T(X, Λc \Ω) + S(ω, Ω) ̂  C2 T(A, Ac) + S(ω, Ω) ,

where S(ω,Ω) < oo. Since Ac <=. Ac

k, by using Estimate 42, we see that

T(A,AC) - £ T(Afc,>lc) ^ £ Γ(4k,Xβ

t) ^ £ C5\Ak\
2-f < oo.

fe=l k=l fc=l

We have thus shown that ||U;ylp(5π~1)|| < oo and a fortiori Proposition 46
yields that ω is p-Dirichlet finite on Bn.

We next consider the case Σ^Lj |α&+ι - bk\
2~p < oo. We wish to show

that \\lA]Λp(S«-l)\\«x> again. We set Bk = s((aM,bk; 1/2)) ( f c = l , 2 , . ),
B = (J^Bk and C = s((0,αι; 1/2)). Clearly lc = U + b a.e. on S"'1 and
(34) assures that

H l c ΛpίS1-1)!! = σ ( C ) p + (25(C,

As we estimated 5(^,ylc) above, we also see by Estimate 42 that

, Cc) ̂  C2T(C, Cc) + S(ω, Ω)

p + S(ω,fl) < oo.

Therefore pcMpίS""1)!! < oo. Hence we only have to show that
H l B ΛpίS11"1)!! < oo in order to conclude ||lyι;ΛP(Sn~1)|| < oo. Since

Σfcli l^fc|2~P < °°j by repeating the above argument on replacing Ak by Bk, we
deduce \\ίB]Ap(Sn-1)\\ < oo.

We close this proof by showing that (17) implies that ω = ω(A,Bn-,jtf)
is p-Dirichlet infinite. We prove this by contradiction. Suppose, contrary to
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the assertion, that ω is p-Dirichlet finite. By Proposition 46, we must have
\A GAp(Sn~l) so that, by (34), S(A, Ac] < oo. Using (36) and the estimate 43,
we deduce

S(A,AC) ^ S(A,AC\Ω) ^ C^
C] - T(A,
c) - T(A,Ω)) ^ C;l(T(A,Ae) - Cβ\A\)

since \A\ < 1. We set Pk = s((ak+ι,bk] oo)) (fc = 1, 2, •). Since Pk c Ac for
every k = 1, 2, . . ., we see that

T(A,A°) = £ T(Ak,A
c) £ £ T(Ak,Pk).

k=l k=\

Hence, by using Identity 37, we deduce

T(A,AC) ^ £ C3(\Ak\
2~p + \Pk\

2-p - (\Ak\ + iPfcl)2-').

Here recall the following well known elementary inequality valid for 1 < p < 2
and also for real numbers x, y, α, and b:

X2-P + yi-P _ (χ + yγ-P ^ a2-P + b2-P _ (α + bγ-P (Q^a^x.O^b^y).

On setting x=\Ak\, y = \Pk\, and α = b = min(|X*|, |Pfc|) in the above in-
equality, we obtain

Z 2(min(μk|, |Pfc|))2-p -

Therefore we have

T(A,AC) ^ (2 - 22^)C3 § min(|Ak|
2-', \Pk\

2~p),
k=l

which implies the following contradiction:

oo >S(A,AC) + C^Cβ

^ C2'
1(2 - 22-*)C3 J min(|αfe - fcfe|

2-p, \aM - bk\
2~p) = oo. D
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