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Asymptotic expansions for the best linear discriminant functions
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ABsTRACT. In the discriminant problem between two elliptical populations with
different covariance matrices, we derive the asymptotic expansions of the expected
misclassification probabilities of the sample best linear discriminant function. Using
this result, we construct an estimator of the expected misclassification probabilities
which are asymptotically less biased than the usual estimates. Asymptotic expansions
of the bias of the estimated discriminant coefficients and the cut-off point are also
derived.

1. Introduction

Consider the problem of classifying an observation X into one of two
populations Iy : Ep(uy,I1;h) and IT; : Ep(uy, I'a; h), where E,(u,I';h) is a p-
dimensional elliptical distribution with probability density function

(1.1) IT|™2h{(x — )T~} (x — )},

where h is a decreasing function, u is a p x 1 parameter vector and I is a positive
definite p x p matrix. We assume that E,(u,I;h) has the covariance matrix.
Then II; (j = 1,2) has the covariance matrix 2; = wl’j, where the constant w
is given by the characteristic function of E,(u, I'; h) (cf. Kelker [2]). Consider-
ing some modification of h, we can assume without loss of generality that the
constant @ = 1.

In the case of normal populations, Anderson and Bahadur [1] derived the
class of admissible linear discriminant procedures. The admissible linear dis-
criminant rule is that an observation is classified into IT; if X'b < ¢, where b is
a px 1 vector and c is a scalar given by

(1.2) b= (kiZ1 +kaZ2) Ny — ),  c=b'p +kib'Zib

and k; and k; are scalars chosen such that ki) + kX, is positive definite.
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Let
(1.3) y; = k;(b'Zb)"?,

and P; be the probability that an observation from II; is misclassified. Then
P; =1— &(y;) where @ is the standard normal distribution function (for details
see [1]).

It is easily shown that the above rule is admissible linear for our prob-
lem. Let ¥ be the univariate marginal distribution function of E,(0, I; ), the
spherical population. Then P;=1— ¥(y;). The expression of the probability
density function of ¥ with using h is given by Wakaki [5].

Anderson and Bahadur [1] described three ways to determine k; and
ky. These methods are (1) minimization of one misclassification probability for
a specified probability of the other, (2) the minimax procedure and (3) minimiza-
tion of the total misclassification probability for given a priori probabilities. In
this paper we deal with the minimax procedure since the minimax linear
procedure is determined by y; and y, and does not depend on ¥. On the
other hand, the other two procedures depend on ¥. Even for the normal case,
the Bayes linear procedure (3) above is generally not unique, and sometimes one
of the misclassification probabilities P; and P, becomes very large.

It is shown that the minimax linear discriminant rule is one of the above
admissible rules with k; and k, which solves the equation y; = y>. Since y;
and y, are homogeneous of degree 0 in k; and k, and both scalars are
positive, we can put ky =k and ky=1—-k (0<k<1).

When population parameters are unknown, these parameters should be
estimated based on two samples of sizes n;, one from each population /7;. In
this paper we use the usual sample mean vector X; and the sample covariance
matrix Sj. The sample minimax linear discriminant rule states that an obser-
vation is classified into I7; if X'B < C, where B is a p x 1 vector and C is a
scalar given by

(1.4) B=(KiS; + K28) (X, - X1), C=BX;+K;B'SB,

with K; = K and K; =1— K. Here, the scalar K is determined as follows.
Let Y7 and Y, be functions of K and the sample estimates given by

(1.5) Y, =Ki(B'S;B)?  (j=1,2)

Then K is a solution of the equation Y? = Y2, with (0 < K < 1).
When the training samples are given, each conditional misclassification
probability P; is given by 1 — ¥(Z;), where

(1.6) Z;=(C—Bu)B'Z:B)™"* and Z,=(B'p, — C)(B'Z,B)" /%
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A simple estimator of the expected misclassification probability is 1 — ¥(Yj),
where the expectation is taken for the distribution of X, X,,S; and S. In the
following section, we see that 1 — W(Y;) is a biased estimator.

For the Fisher’s linear discriminant function, McLachlan [4] modified the
usual estimator of the expected misclassification probability, using asymptotic
expansions. The resulted estimator has the bias of order O(n~2), where n =
n;+ ny. The purpose of this paper is to derive the asymptotic expansion of the
expected misclassification probability of the sample minimax linear discriminant
rule, and to construct it’s estimator which is unbiased up to the order n~l.

2. Expectation of ¥(Y;)

Before expanding the expected misclassification probability, we first
derive the asymptotic expansion of the expectation of ¥(Y;). Because of the
invariance of Y; under a group of affine transformations, we can without loss
of generality assume that the following conditions hold true.

(2.1) M1+ py =0, kiZy + kX =1,
and X; and X, are diagonal.
Let
(22) Sj=):j+Vj (j=1,2) and )?2—)_(1=6+D,

where 6 = u, — py. Note that the coefficient vector of the minimax linear
discriminant function is 6. Then ¥ and D are Op(n~'/2) and the limiting joint
distribution of n'/2V; and n'/2D is independent normal. The basic expectation
formulas are as follows. Let & be any p x p symmetric matrix and a,{,# and &
be any p x 1 vector. Then

E[D'ED] = n{'tr(EZ) + n; 'tr(EX,),
E[(D'u)(D'0)] = ny'a'Zy{ + my o' 2oL,
(2.3) E['ViEVi{] = n; {26 + )/ Z;EZ0 + (x + Do 2 tr(EZ))},
E[(@'Vi0)(n'Vi€)] = n {x(«' Z;0) (' 25€) + (c + 1) (o' ) (£ Z€)
+ (e + D' Z;0) (' 0}

where k is the kurtosis parameter.
Let

where K; = Op(n~'/2) and K, = Op(n~!). Considering the Taylor expansion
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of %sz at K=k S;=21, S,=2, and X, — X; =6, we obtain
(2.5) % Y}z = %kfﬁj + {sjkip1,K; + F;}
+ {sjk;iKs + (3 B¢iyiz — ﬂ12)Kf2 + G;Ky + H;}
+0,(n¥%)  (j=1,2),
where s; = 1, sp = —1, the notation {j) means that {1) =2 and {2) =1,
(2.6) Bij.1=0Z:iZ;Zk--- 2106 (i, j,k,---,1=1 or 2),
and
Fy = K} {0'Z;D — k(jy8'Z; Ve 6,
Gy=sk; S 2 {8'(Eqy — 2kiE1Z2)Vid — kid' 21V, 26 + 8 51.2,D),
27 Hy = LD E;D + k' (I — 2K 3y E¢15) V26 — kakad'V, Z¢ 5y Vi
+ k¢ 38"V i ZV jy6 + 2k 16/ 23V 8} + (Remainder).

Here (Remainder) means the remainder term whose expectation is 0.
Since 1Y? —1Y? =0, from each terms of Oy(n~'/2) and the ones of
Op(n~!) we obtain

Ky = B, (F2 - Fy),

(2.8) i1 ,

Ks = B2 {3 (Bi12 — B122)Kf + (G2 — G1)Ky + Hy — Hp }.
Substituting these equations in (2.5) gives the expansion of 1Y as
(2.9) =AY =AY =4y Y+ Yo 4+ Op(n732),
where y = y1 = y»,

Y =kika (D=3 $kid'Vid),
_ 2
(2.10) Y, =1p [{5’(k11 —kaZ)DY + ) {S'GKH - k1k22<,~>)V,-5}2]
+4kik (D'D + 2 k}6'V26) + (Remainder).
A Taylor expansion of ¥(Y) gives
(2.11) P(Y)=Y0) +v0)y 'Y

+ WOy Y+ B0y -0y Y,
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where ¢ is the density function of ¥ and y’ is its derivative. Note that we
neglect the term of O,(n~3/2) at the right-hand side of (2.11). In the rest of this
paper we neglect the terms of Op(n~3/2) and O(n~%2) in equations of asymptotic
expansions. Using the formulas given by (2.3), the expectation of ¥(Y) can be
expanded as

(2.12)  E[®(Y)] = Z0) + )y 'E[Y] + 3¢’ (0)y2 — §¥(»)y*}E[Y],
where
(2.13)  E[Y] = Z 0 BBk (e + 1) + yikiky + BikTkZy (3K + 2)
+ kay(1 — 2k0)} + 1B {3 B7K3 (Bxc + 2) + Bik k2, (3 + 2)
- Biﬁi12k3k<i>('< +1) = Buskikay },
(2.14)  E[Y}] = k?k2, Z, GBI (3 +2) + B}
Here we used the notation

(2.15) y,-jk...;=tr(2,-2‘j2k---21).

3. Asymptotic expansion of the expected misclassification probabilities

In this section we derive the asymptotic expansion of E[¥(Z;)] (j =1,2),
where Z; is given by (1.6). If we replace py, u,, Z1 and X, with Xy, X, S; and
S> then both Z, and Z; become Y. Therefore the difference between Z; and Y
is Op(n~'2). Let

(31) )_(j=ﬂj+Dj (j=1,2).
Then we can expand Z; as

(3.2) Zij=y+Z5+ Zg,
where

i3 Zy=y" Y0 si(kid' D+ 1 K26'Vid),
(3.3) Zg =y, -1y Y2+ Wy,

with

(3.4) Wy =1y 3kH(T — dk; + 2k ;) (8'V;9)? + y~{k26'V?6 — k;D!D;
+kejyB7 1 (8'D))*} + y T B KIS E¢ 5 V168 Bl — ki jy) Vid
+0'Z¢j5D;6" (kiI — k¢ 5 Z¢ ) Dy}
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A Taylor expansion of ¥(Z;) gives that
(3.5) ¥(Z) = P(y) + )y 2,
T WOI Y=y TR 4 W) + 30/ 0)ZG).

Comparing (3.5) with (2.11), we obtain the asymptotic expansion of the expected
misclassification probability as

(3.6)  E[¥(Z))] = E[¥(Y)] +y(y) EWy] +3¢'(y) E[Z] — y*Y7],
where
E[Wy] = n; [y {—yjk; — 2B1ok7k( iy (26 + 1) + B3 Bjnoks}
+ y{yjki(rc + 1) — Sk j5(3x +2) + £ (29 + 14)
+ B3 Buaki(e + D)},

E[Z — y7 Y] = n; (ke — k{1 +§¥*(3x +2)}.

(3.7)

The equation (3.6) gives the bias of ¥(Y) as an estimator of the expected mis-
classification probability. Replacing the unknown parameters with those con-
sistent estimators, we can modify the bias of ¥(Y) as in the following theorem.

THEOREM 3.1. Let
(38)  B=1-¥)+n Y4 +3¥' (HB}  (1=1,2),
where Y; is given by (1.5),
Aj =Y H{=9K) = 2Kk @R + 1) + By BnaK;)
(39) +Y{HK (R + 1) = Sy (3% + 2) + 4 (29% + 14)+ B BiroK, (R + )},
Bj = (K¢jy — Kj){1+4 Y23k + 2)},
with a consistent estimator k of kurtosis parameter and
9y = tr{ (K1l + K28257Y) 7'},
9, = te{(KiI + K25287") 7'52871},
(3.10) B, = B'(KiI + K38,871) 728,871 (X, — X)),
Bi12 = B'(KiI + K28:871)7°8,871 (X, — X)),
a1z = B'(KiI + K857 (52871 (X2 — X1).
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Then P; has the bias of order O(n=>?) as an estimator of the expected mis-
classification probability E[1 — ¥ (Z;)].

Note that we made the assumption (2.1) for the population parameters in
the derivation of asymptotic expansions. But in the above theorem, we do
not make assumptions as in (2.1). Consistent estimators (3.10) of y’s and B's
are given as follows.

Let py, 4y, 21 and 2, be the original parameters. Then the transformed
parameters ., ., 21+ and X,. are

2= (il + kod)™,  Zpo= (kI +kod)™'4  and
(3.11) ”
e = —ige = (koI + ko) PHET (g — 1) /2,

where A is a diagonal matrix whose diagonal elements are the latent roots of
271X, and H is an orthogonal matrix such that H’El_l/zfz)?l_l/zH = A. There-
fore Bjj..; in (2.6) and y.., in (2.14) are written with the original parameters as

Pi1..122.2 = 8'(Z1:)"(Z2:)"0
= (ty — ) (k1 Z1 + kp Z2) 7 (ko] + by 2o 271707
(3.12) X (Z227)" (1 — m),
Pi122.2 = tr{(Z1+)"(Z2:)"}
= tr{(ku] + ka 2o Z71) " (2, 271",

Replacing the original parameters with those sample estimators, we obtain
(3.10).

4. Bias of the estimated discriminant function

In this section we derive asymptotic expansions of the bias of the
estimated discriminant coefficient vector B and cut-off point C. The coef-
ficient vector B can be expanded as

(4.1) B =4+ By + B,
where
By =D — {kiVi + kaVa + K((Z) — £3)}9,
(42) By = {kiVi + kaVa + K (Z1 — Z2)}26 — {Ks(Z1 — 23) + Kp (Vi = V2)}d
—{k1Vi + ko V2 + Ky (21 — 22)}D.
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Substituting (2.8) with (2.7) in (4.2) and taking the expectation by using (2.3), we
can obtain the asymptotic bias of B as in the following theorem.

THEOREM 4.1. The expectation of B can be expanded as
(43)  EBl=0+) by +byZ;+bySiZs + by Z; 51 55)6,
where
(44) by =§h; k<,>{3ﬁ2ﬂ;12k4(3’€+2) 12ﬂjﬂ}12k'3k<j>('€+ 1)
+ 128,815k} — 1287 kik iy} — & Brak A BTk} (3x + 2)
+ 4B, 110k (1 — 3k))kjy (i + 1) + 168,81 150k K2 jy (i + 1) + 4Bk
+ 4B;12(1 — 3kp)k¢ sy + 1651122"%,-)} -3 ﬁlk2f>{7jﬁjkfk<j>(" +1)
+ yikik¢ iy — ?12ﬂjk%j>(" +1) - 712"%,‘) + ﬂjka([4 = 3kjlr + 2k¢ jy )k sy
+ Bjra([4K7 — 20+ 3k} — 1)KZ ;5 + (1 = 2k;)k¢jp} + yjkF (ke + 1)
+ki([3 = kj]e + 2 — kj),
(4.5) by =— 1Bk A {3B7 Bjnak} (Bxc + 2) — 12B;%,Kk k¢ jy (e + 1)
+ lzﬁjﬁjukz 128 Rakiky} + 8B122k<1>{B]2 (2= kj)(3x+2)
+ 4ﬁjﬂj12kj2(3kj = Sk¢y(k+1) + 16ﬂjﬂ1122kj2k<j>(x +1)
+ 4B;k;i(—k; + 2) + 4B;12(3k; — S)k¢jy + 16ﬁ1122k212>}
2ﬂ12 1k<1>{71ﬁ1 Ty +1) + ijjzk<j> - szﬁjkjk%n(" +1)
— 712K; k<,> + Bik; Pk jy(— [3k,? — 2kj — 2] + 2(kj + 2)k¢ )
+ Binoki(2[k} — 1]ic + 3k7 — 1)k ;5 — (3k; — 2)k¢ >}
= kj([3k; — 1]x + kj),
(4.6) by = 4Bk A {-BIk ke jy (3K + 2) + 4B;Biuak?h? s (1 + 1) — 4B;kskc sy
+4Bj1ok? 5} + Kk 3 { Bk ([8K; — Slic + Skj — 3)kZ
+ (2k; — 1)Ky,
(4.7) by = =B {28k} (x + 1) + 1}.

Theorem 4.1 shows that the direction of E[B] is not equal to the unknown
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best coefficient vector 6. This suggests to modify the bias of B by replacing
the unknown parameters included in (4.4), (4.5), (4.6) and (4.7).
The cut-off point C can be expanded as

(4.8) C=c+Cr+Cs,
where
Cr =16'(Dy + D3) +36'{(k1 V1 — koV2) + Kp(Zy + 22)}6
+6' (ki Z1 — k2 22) By,
@9) Cs = —1(D1 — D) (D1 + D2) — 18" {(kiV1 + ko V2) + Kf(Z1 — 22)}
X (Dy + D;) + &'(k1 V1 — kaVa) By + &' (k1 21 — k222) Bs
+ 1B (k21 — ko23) By + Kp {18/ (ke Vi — kyV2)d + 8/ (21 + Z2) By}
+ 1K' (21 + 21)é.

A calculation of the expectation of C; gives the asymptotic bias of C as in the
following theorem.

THEOREM 4.2. The expectation of C can be expanded as

(4.10) E[C] =c+ Z s,
where
(4.11)  cj=— Bk (1 — 2kik¢ 15){3B; Bjrak? 3k + 2) — 1287 Bk k¢ jy (e + 1)
+ 1287 Buok] — 12B;B]10kskc >} + 16 Bra k(387 K] (1 — 2kske )
x (3K +2) — 4B} Bj1ok? 2k} — 4k2 — Sk; + 3)k¢jy(x + 1)
+ 1687 Brioak? (1 — 2kik¢ 3 )kZ j (4 1)
— 4B {k7 K ;5 (3% +2) — 3(1 — 2kjk¢ j5)}
— 4B, Bj1o {4k k¢ ;5 (1 + 1) + (2K — 4k — 5k; + 3)k¢jy}
+ 165;31122(1 - ijk<j>)k§j> + 16Bjk12k2j>
— 16Bj1akikj ] +§ B K [2;B7K7 (1 = 2hke sy (i + 1)
+ 29;B5ki(1 — 2Kk jy ke j5 — 201287 (1 2kik¢ jy )k 3y (e + 1)
— 2y12B(1 = 2kjk 3 K2 ;5 — BrkF (14K} — 25K7 +19Kk; — 6)k¢ j5(3K +2)






The best linear discriminant functions 603

[3] S. Marks and O. J. Dunn, Discriminant functions when covariance matrices are unequal, J.
Am. Statist. Assoc. 69 (1974), 555-559.

[4] G. J. McLachlan, An asymptotic unbiased technique for estimating the error rates in dis-
criminant analysis, Biometrics 30 (1974), 239-249.

[5] H. Wakaki, Discriminant analysis under elliptical populations, Hiroshima Math. J., 24
(1994), 257-298.

Faculty of General Education
Ehime University
Bunkyo-Chou 3, Matsuyama-shi
Ehime 790, Japan








