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ABSTRACT. We introduce Riesz potential spaces and give the characterization in terms

of hypersingular integrals.

1. Introduction and preliminaries

For a function u(x) on the n-dimensional Euclidean space Rn (n > 3), the

difference ^fw(x) and the remainder R^u(x) of order t with increment
t = (ίi,..., tn) e Rn are defined by

where γ is a multi-index (y 1 ? . . . ,y π ), ίy = t\l - -ff , Dy = D\l ---D^ (Dj = d/dxj),
y\ = y j i . . . yn\ and |y| = y t H h yn. Since Rl

tu(x) is the remainder of Taylor's

formula, we obviously see that

(1.1) R*u(x) = 0 for all teRn <& u is a polynomial of degree I — I

for C°°-functions u. We also have ([6: p. 1102])

(1.2) ^fu(x) = 0 for all teRn ^ u is a polynomial of degree ί-\

for locally integrable functions u. Using the difference and the remainder, for

α > 0 and a positive integer £, we define the singular difference integral D*>lu
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and the hypersingular integral as follows:

= lim

= lim

where

D«/u(x) = f
J\t\>ε \t\

n+α •dt, (ε > 0),

-dt, (ε > 0)

s. μr+α

whenever the integrals and the limits exist.
The Schwartz space Sf is the set of infinitely diiferentiable functions

rapidly decreasing at infinity, and the Lizorkin space Φ is the subspace of 9*
consisting of functions which are orthogonal to any polynomial ([7: p. 475]).
For M e y1 (the dual of £f\ we denote the Fourier transform of u by ϊFu. If u
is an integrable function, then the Fourier transform SFu is defined by

= l

where x ξ = Σ"=ι χjξj
We denote by N the set of nonnegative integers and by Λ/2 the set of

nonnegative even numbers. For α > 0, the Riesz kernel of order α is given by

with

M =J_/I*Γ".
Ka(X) y«,n I (ί.,, -

' π"/22αΓ(α/2)

log |x|)|x|

«-nφN2

« - n e N2

Γ((n-α)/2)'

'-^"/2r(a/2)

0.-HΦN2

α - n

and

where ^ is Euler's constant. With the above normalizing constants yα n and
δ^n, we have

(1.3)

where Pf. stands for the pseudo function [8: section 7 in Chap. VII].
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In §2 we investigate properties of the truncated integrals H^K^X)
(=μ«J(x)) of the Riesz kernels. We write μ^(x) = μ^(x).

For / e y we define the Riesz potential U{ of / by

= K « * f ( x ) = \ K « ( x - y ) f ( y ) d y .

By (1.1) we have for / 6 &

(1.4)

Throughout this paper we assume 1 < p < oo. We denote by Lp the space of
all pth-power integrable functions with the norm

G \ι/p
\f(x)\pdxj

and L1 denotes the space consisting of all integrable functions. Further, for

1 < Po, Pi, - ,Pi < °o we set

WP»,Pi,..,Pt = {u.Dyu e LPJ for |y| =jj = o, 1, ...,£}.

In order to define the Riesz potentials of Lp -functions, we introduce the modified
Riesz kernels κ^k(x,y): for an integer fe < α

- - Σ
κ*,k(χ,y) = { \y\<k r-

κα(x-y), fe< - 1.

We use the symbol C for a generic positive constant whose value may be
different at each occurrence.

PROPOSITION 1.1 ([2]). Let f e Lp and k = [α - (n/p)} be the integral part
of α — (n/p).

(i) // α — (n/p) is not a nonnegative integer, then

exists and satisfies

ι/pG \ <C\\f\\p.

(ii) // α — (n/p) is a nonnegative integer, then both V^k_γ and U^2

k exist
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and satisfy

(f
α +

where f\ = f\Bί is the restriction off to the unit ball B\ = {\x\ < 1} and fi =

/-/i.

Taking Proposition 1.1 into account, we define the Riesz potential spaces
RP of Lp-functions as follows:

RP=S{U«*'jELP}> *-{n/p)φN

" ~ I {ϋΐk-i + ϋ&/eIΛ/ι =/|Bl>/2 =/-/ι}, α- (n/p) eN

with k = [α - (n/p)]. When α - (n/p) < 0, S. G. Samko [6: Theorem 4] gave
the following characterization of the Riesz potential spaces in terms of the
singular difference integrals.

THEOREM A. Assume that α - (n/p) < 0 and 0 < α < 2[(ί + l)/2] (α = £
for α = 1,3,5,...). Then u e R^ Π Lr ϊ/ and on/ y i/* u satisfies the following two
conditions:

(i) ueί/,
(ii) Z)a'^M = limε_0 ΛJ^M exists in Lp

for p < r <> pa wiίΛ (l/pa) = (1/p) - (a/n).

The purpose of this paper is to give the following characterization of the
Riesz potential spaces in terms of the hypersingular integrals.

THEOREM B (Theorem 3.14). Let k = [α - (n/p)], I - 1 < α <
min(2[(^+ l)/2],^+ (n/p)) and ^κ be ίΛe set of all polynomials of degree
k. Then u e (R% + ^fe) Π jf^i' Λ-i j/* and on/j; I/M satisfies the two conditions:

(ii) ffa'^M = limβ_>o H*>£u exists in Lp

for p < ro < pa in case o/ a — (n/p) < 0 and p < ro in case of oc — (n/p) > 0.

2. The estimate and total mass of μa^

As was defined in §1, for ε > 0 we set

= f
Jlt
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and μα'^(x) = μ^(x). We note that μα'€(x) is finite for α > ί - 1 and x φ 0.
The following four lemmas are proved in [3].

LEMMA 2.1 ([3: Lemma 3.5]). Let α>ί- 1, ana moreover assume that
ί > α — n in case α — n is a nonnegative even number. Then

LEMMA 2.2 ([3: Corollary 2.2]). // ί > α - n, then for \x\ > 3|ί|/2

LEMMA 2.3 ([3: Lemma 2.13]). Let α > ί- 1, and moreover assume that
ί > a — n in case a — n is a nonnegative even number. Then

H<;|X|

with x' = x/|x|.

LEMMA 2.4 ([3: Corollary 2.9]). (i) If t-l«x<έ, then R£

tK*(x) is
integrable as a function of x and for all t e Rn

[ jRfκα(x)dx = 0.
JR»

(ii) If i is an odd number, then R^+lκe(x) is integrable on {\x\ > ε}(ε > 0)
and for all t e Rn

lim

Now we give an estimate of μα'^.

PROPOSITION 2.5. // ί - 1 < α < 2[(l + l)/2], then

Ix f--- 1 1 , |x| > 1

and Λencβ μa'^ 6 L1.

PROOF. Let |x| < 3/2. Since a < 2[(£ + l)/2] implies t > a - n, by
Lemma 2.3 we have

τ4 f l£ιc.(»)A;
lxl JiriiM
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We see that J^^ \KΛ(V + x')\dv < C\x\n on {|x| < 3/2}, and

f \D^(v)\dv
}\υ\<\x\

ί |x|α~'y', oc — nφ Λ/2, or α — n e N2 and \γ\ > α — n,
M

(l + |log|x||)|x|β- |y|, α - n e J V 2 and |y| < α - n.

Note that if i is an even number, then for |y| = ί — 1, f ^ j , Dyκ(X(v)dv = 0.
Hence, we see that for |x| < 3/2

\μ"*(x)\ < C|x|α-2'('-1)/2]-".

Let |x| > 3/2. First let ^ - 1 < α < ί. By Lemmas 2.3 and 2.4(i) we have

\v\<\x\

Since |υ| > |x| > 3/2 = 3|x'|/2, by Lemma 2.2 we obtain

\f* V Λ / I — I in I I " I **"
lxl JM>|*|

/°|vl
a~~^~w /"Ί vl

a~[a]~l~n

— \_/ Λ — \^/ A

on account of α < ί. Secondly let ί be an odd number and ί < α < £+ 1.
Noting that LI<|XI DyκaL(v)dv = 0 for |y| = I, by Lemmas 2.3 and 2.4(i) we
have

I f I f

>M

Hence by Lemma 2.2 we obtain

since α < ^ + l . Lastly let ^ be an odd number and a = £. Noting that
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L<\υ\<\x\Dyκι(υ)dv = 0 for | y |= ί, by Lemmas 2.3 and 2.4(ii) we have

/*(*) = Π» \ Rχ>*ι(v)dv = lim -̂  f R^κe(v)dv
\x\ J\v\<\x\ ε^° lxl Jε<H<|x|

= lim -L f Rl+lκt(υ)dv = -Λ f Rljlκt(υ)dv.
< °̂ \X\ Jε<H<|x| |*| J|t>|>|x|

Therefore by Lemma 2.2 we obtain

\v\>\x\

Thus, if t - 1< α < 2[(l + l)/2], then |μα'£(x)| < dxl"'1"1"1"11 for |x| > 3/2, and
so the proposition is proved.

Since μ^e is integrable for t - 1 < α < 2[(ί + l)/2] by Proposition 2.5, we
denote the total mass of μα'^ by a^, namely

t - K αa^ = f μ^(x)dx9
JR«

We show that a^t φ 0 by calculating the value of αα^.

LEMMA 2.6 ([3: Corollary 2.2(i)]). // φ e C°°,

wfiβre LX)3; = {sx + (1 - s)y; 0 < s < 1}.

LEMMA 2.7. // 2[(* - l)/2] < α < 2[(l + l)/2],

exists and

with

_2l-απ(n/2)+l

αΓ(α/2)Γ((n + α)/2) sin (πα/2)'
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PROOF. We have

F e ^
lim ί- +Λ

0-*°° Jι<\t\£δ |r|

If ί is odd, then

f t V y i K ' Έ ) * . , _ , . , ,
+α

«* *-Σι,ι«(tr/yO(Φy

and, if I is even, then

Jl<|ί|^5

Hence, since e*'« - Σwsί-i^VyOί'f)' = *»V(0) with φ(t) = «"'«, by Lemma
2.6 we see that for 2[(£- l)/2] < α < 2[(ί+ l)/2]

,im ί,
exists. Let 2[(^ - l)/2] < α < 2[(^ H-1)/2]. By the change of variables \ξ\t = u
we have

'\t\*\u\<iδ\t\ί
ιa'l

= lίl V(O
Moreover, since

Σ w^Σ o'
|y|<^-i 7* ;=0 J'

we see that ψ(ξ') is a constant cα^ on \ξr\ = 1. Thus ψ(ξ) = cα^|ξ|α. In order
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to compute the constant cα^, we take ξ1 = (1,0,... ,0). We have

Cnp = lim
oo

= lim limim [
θJ,<| f l

x ' Ih ;- |ίιΓα(i + (ί2/ίι)2 + + (ίnΛι)

dtn lΛι-

By the change of variables 1*2 = ίiΛi, - , "n = tn/t\9 we obtain

CΛ i = lim lim
e-*o,a-»oo ^o JM<| ί lι<^ V |ίt |

n+α y

l f « ln~^
2 / 1 , 2 , ' , 2,(n^ndU2 dun]dtί,)2-ι (1+ «| H h M2)^"

dun.

An elementary computation shows

f _ 1
J ̂ , (i + M2 + . . . + u2)(' +«)/. . . ' ' n ~ Γ((n + α)/2) '

Moreover, since 2[(ί - l)/2] < α < 2[(-ί H- 1)/2], by integration by parts we have

1+αl ί i l 1

f e-i(> - Σto(ί;'//!)(tί + (-ίι)O

*
Γl

Γ(α+l)sin(πα/2) '
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Thus

-π π

Γ(α + 1) sin (πα/2) Γ((n + α)/2)

αΓ(α/2)Γ((ιι + α)/2) sin (πα/2)

This completes the proof of the lemma.

LEMMA 2.8 ([3: Proposition 3.4]). Let I - 1 < α < ί + (n/p), k = [α - (n/p)]
andfeLP.

(i) // α — (n/p) is not a nonnegative integer, then

(ii) If en— (n/p) is a nonnegative integer, then

/2 =/-/ι-

COROLLARY 2.9. Let ^ - 1 < a < 2[(ί -f l)/2] and / e ̂ . TΛen
converges to H^U^ = a^tf in L1 as ε tends to 0.

PROOF. By the condition £ - 1 < a < 2[(^ + l)/2], there exists p > 1 such
that ^ - l < α < ^ + (n/p) and α - (n/p) is not a nonnegative integer. Since
/ e Lp, it follows from Lemma 2.8 that

with k = [α — (n/p)]. Moreover, since ^ > α — (n/p), by (1.1) we have
H«/Uf^k = HfiUi. Therefore it follows from Proposition 2.5 that H*/ϋ{
converges to a^f in L1 as ε tends to 0 since /eL 1 .

REMARK 2.10. N. S. Landkof ([5: §1 in Chap. I]) shows that in case of
2m < α < 2m + 2, for any infinitely differentiable function φ with compact
support, the limit

exists, where Hk (k = 0, , m) are suitable constants.
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COROLLARY 2.11. For i - 1 < α < 2[(ί + l)/2], αα>^ = cα,/. /n particular,

a*,t Φ 0.

PROOF. In §1 we defined the Lizorkin space Φ. We take a nonzero
element / e Φ. Then u=U{ belongs to Φ (see [7: Theorem 25.1]). We have

= ί ~y«
J|ί|>εkΓ "J|t|>ε

By Corollary 2.9 &(H%'eu)(ξ) converges to aa^f(ξ) as ε tends to 0 for all
ξ. On the other hand, since I - 1 < α < 2[(ί + l)/2], by Lemma 2.7 we obtain

- dt - cα,,|ξ|α^u({) (β -> 0).
|ί|>ε |ί|

Consequently, by (1.2) we have

Since / Φ 0, we obtain αα^ = c^.

3. The characterization of the Riesz potential spaces

In this section we study the equivalence of the following two conditions
(I) and (II):

(II) (1) ueW™""*",
and

(2) lim H*'* exists in Lp.

We note that, if u e w^1'"'*1-1 and α > ί - 1, then H^u(x) exists for almost
every x.
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LEMMA 3.1 ([4: Corollary 2.3]). // \γ\ < α and m > α - |y| - n} then for

|x| > 2m\h\

LEMMA 3.2 ([4: Lemma 4.2(i)]). Let ε > 0 be fixed and m > α - n. Then

ί ^™K*(£[dy < C(l + \x\)™*(-*>*-"0-\
J\x-y\>ε \X — y\

LEMMA 3.3. (i) / / w e U(r > 1) and m > α - (n/r), f/ien

/ - I Wκa(y}\ I I '7ιn+a

 ndt\dy < oo.

(ii) // v e Ls(s > 1) and m > a - (n/s),

J(x) - J M™κa(x - y)ι;(y)|dy < ex)

for all x in case of on — (n/s) > 0, and for almost every x in case of a— (n/s) < 0.

PROOF, (i) By the change of variables z = t + y and Fubini's Theorem,
we have

/ =

By Lemma 3.2 and Holder's inequality we obtain

/ < C ί |«(z)|(l + |z|)max(-α'α-m)-'I(fz

l/r'

G
\ i/r

(i + \z\)(™*(-«>«-^-»ydz\ < oo

on account of the assumptions u e U and m > α — (n/r) where (l/r) + (l/r')

= 1.
(ii) We have

J(x)<

m
Σ .
"fco V ' / |χ-y|<2m|Λ|
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By Lemma 3.1 and Holder's inequality, Jι(x) is finite by the assumption m >
α — (n/s). Since v is locally integrable, Λ(x) is finite for almost every x, and
in particular, by Holder's inequality J2(^) is finite for all x in case of
α - (n/s) > 0.

LEMMA 3.4. (i) // u e U and I - 1 < α < 2[(l + l)/2], then

jΓ^dt dy<co

/or α// x m case o/ 2[(^ — l)/2] < a — (n/r), and /or almost every x in case of
2[(*-l)/2] *«-(!•/!•).

(ii) ([3: Theorem 2.15]) // w e U and t - 1 < a < ί + (n/r), then

1 < oo

for all x in case of I — 1 < a — (n/r), and /or almost every x in case of ί — 1 >
a -(n/r).

PROOF, (i) From Proposition 2.5 it follows that

<c f
J|x-y|2tl

c f
Jx-y

Since α — [α] — 1 < 0, KI(X) is finite for all x by Holder's inequality. Since
α — 2[(t — l)/2] > 0, Xι(x) is finite for almost every x, and in particular, in case
O L - 2 [ ( £ - l)/2] > n/r,K2(x) is finite for all x by Holder's inequality.

LEMMA 3.5. Let u e Lr, D?u e Ls and φ 6 C°°. //

(3.1) ID'ΦGOI < C(l + |);|)
ίί-"|-n for δ < y

. /n n\ ,
αnα a < mini -, - , ίnen

\r s/

PROOF. There exists a sequence {η^} c: 2$ (the space of infinitely differ-
entiable functions with compact support) such that 0 < η^ , < 1, f/;(x) = 1
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on \x\<j and \Ds

nj(x)\ < Ms (j=ί,2,...) ([1: p. 54]). We put φj(y) =

ψ(y)r\j(y) Since ψj e 3s, we have

By the conditions (3.1), d<n/s and DyueLs, we obtain

I Dyu(y)φj(y}dy -» I Dyu(y)φ(y)dy (j -> oo).

By the Leipniz formula we have

D'φ/y) = (

δ<y

where fΛ = ( 7l\.. . ( y»\ By the conditions (3.1), d < n/r and w e L r ,
\d/ \Λ/ V^n/

for (5 < 7 we have

0 (7->oo),

and moreover,

Hence

f r
(;-> oo).

Thus we obtain the lemma.

Let τ be a nonnegative function belonging to 2 and having the
properties

(i) τ(x)=0 for | x |> l ,

(ii) ίτ(x)dx=l.

For ε > 0, let τβ(x) = 4τ(~) and kΓ'y>m>Λ = ̂ Γ^7^ * τε
S V c /

LEMMA 3.6. Lβί χΛ(x) = |x|α~n, and /or a > n, to f/a(x) = |log|x|||x|a~n.
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Then for 0 < ε < 1,

:(χα(x),l), α > n .

( ma* ((\ 4-
(ii) ηΛ * τε(x) <Cx

^ max(l + |log|x||, |x| *j, α = n.

/or αnj ^xβd jS > 0.

PROOF. We give a proof of (i) in the case α < n. It suffices to prove (i)

with ε = l . Indeed, if (i) is true for ε = 1, then

* Tε(χ) = I τε(>;)χα(x - y)dy

= \τ(y}χx(χ-εy)dy

For |x| > 2 we have

< (|x|/2)α-n Jτ(x - y)dy = 2«-α|xΓ".

Moreover, for |x| < 2 we obtain

[ \yΓnτ(x - y)dy < (max τ) f \y\-*dy = (max τ)
J J|y|<3

'jα^n-α-
^ / \ J ^ σn i ια— n<(maxτ) - |x|

where σn is the surface area of the unit sphere.

LEMMA 3.7. Let \γ\ < α and 0 < ε < 1.

(i) // |y| > a- n, ί/ien

i=0
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if \γ\ = α — n, then

Γ 1,

\ Σ"o max(l +

«-nφN2,

|log |x + (m - i)Ί||, |x + (m - i)*Γ'), «-neN2.

for any fixed β > 0, and if |y| < α — n, then

<Cx

(ii) For |x| > 2ro|Λ| + 2 and m > α - |y| - n,

In (i) and (ii) the constants C are independent of ε.

PROOF. Assertion (i) follows from Lemma 3.6. We show (ii). Let
|x| > 2m\h\ + 2 and 0 < ε < 1. Since |x| > 2m|ft| + 2 and |x - y\ < 1 imply
|y| > 2m|Λ|, by Lemma 3.1 we have

J|x-y|<l

<CJ |,|H

Moreover, since |x| > 2 and |x — y| < 1 imply \y\ ̂  5(1 + |x|), we see

|fe^'m'"(x)| < Ci(l + |x|)α-M-m-"|τε(x - y)dy

Thus we obtain (ii).

LEMMA 3.8. // v e Lq, \y\ < α and m > α - \γ\ - (n/q), then

|t;(x - j>)/> ;̂>« * *e)(y)dy -* |t;(x - y)^D^(y)dy (ε -, 0)

/or α// x m case of \y\ < a — n, and for almost every x in case of \y\ > a — n.

PROOF. We define the function Ga'y'm'Λ(x) as follows: if |x| > 2m|h| + 2,
then
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and if |x| < 2m\h\ + 2, then for |y| > α - n

i=0

for \γ\ .= α — n

f l , a-nφN2

with /? < n/#', and for |y| < α — n

Then by Lemma 3.7 we have

\v(x - yWfa *

and moreover, since v e Lq and m > α — |y| — (n/g),

ί|ι;(x-y)|Gα^m'Λ(yμ);<oo

for all x in case of |y| < α — n, and for almost every x in case of |y| >
α — n. Since Dy(A^κaL^τε)(y) converges to A™DyκΛ(y) as ε tends to 0 for
y Φ — (m — ί)h (i = 0, 1, . . . , m), the dominated convergence theorem gives the
lemma.

LEMMA 3.9. I f u e U, Dyu e Ls, \γ\ < α and m > max (α - (n/r), α - (n/s)),
then

JD'II(X - yMΓκ.(y)dy = J u(x - y)Jh

mD^α(y)d);

/or all x in case of α — \γ\ > n, and /or almost every x in case o/ a — |y| < n.

PROOF. By Lemma 3.7(ii), for \δ\ < α we have

\Dδ(ΔΐκΛ * τε)(x)| = \kfδ^h(x)\ < Cε(l + Ixl)^-1"-".

Hence Lemma 3.5 implies

κa * τe(y)dy = Jtφc -

by the assumptions u e Lr, Dyw 6 Ls and α — m < min (n/r, n/s). Since
Dyu e Ls and m > α — (n/s), by Lemma 3.8 the left-hand side converges to
jDyiί(x — y)A™κΛ(y)dy as ε tends to 0 for all x in case of α > n, and for almost
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every x in case of α < n. Since u e U, \y\ < α and m > α — \γ\ — (n/r), by Lemma
3.8 the right-hand side converges to \u(x — y)A™Dyκaί(y)dy as ε tends to 0 for
all x in case of |y| <α — n, and for almost every x in case of \γ\ > α — n. Hence
we obtain the lemma.

PROPOSITION 3.10. If ue W^ Λ-I , t - 1 < α < max (2[(£ + l)/2], £ +

(n/r0)) and m > maxj=o,ι,...,^-ι(α - (n/rΐ))9 then

for all x in case ofa — n>£—l, and for almost every x in case ofa — n<ί—l.

PROOF. Since u e w^'"ft-\ί- 1 < α and m > maxίs=0>...l/-ι(α - (n/r,-)),
by Lemma 3.3 we have

( A m ,
= ^"κ«(x -

J

for all x in case of α — (n/r, ) > 0 (ί = 0, 1, . . . ,£ — 1), and for almost every x
otherwise. Since u e Lr° and m > α — (W/ΓQ), Lemma 3.3(i) and Fubini's theorem
give

(x-z-t) Λ .v ^ — J-dt\dz.
/
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Further, since u e w^[l'"'fi~l, ί — 1 < α and m > maxj=o,...,^-ι(α — (n/ri))> by
Lemma 3.9 we have

x-y)u(y)dy, \y\<ί-l

for all x in case of α — (ί — 1) > n, and for almost every x in case of

α - (ί - 1) < n. Therefore

= fφ)ff
J \}\t

/.M
>\t\>ε

holds for all x in case of α — (i — 1) > n and for almost every x in case of

α - (ί - 1) < n. Moreover, since ί - 1 < α < max(2[(ί + l)/2],^ 4- (w/ro)), by

Lemma 3.4 we obtain

for all x in case of α — (n/ro) >£— 1, and for almost every x in case of

α- (n/r0) <ί- 1. Thus

for all x in case of α — (ί — 1) > n, and for almost every x in case of α —

(^ — 1) < n. This completes the proof of the proposition.

LEMMA 3.11 ([4: Lemma 4.8]). Let f e U, k = [α - (n/p)] and t > k + 1.

(i) // α — (π/p) is not α nonnegative integer, then

Λrnrjf — /fw ^ f
^Λ Uα,fc — ΔhK* *J
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(ii) // α — (n/p) is a nonnegative integer, then

wit* /i =/|Bl and /2 =/-/ι.

LEMMA 3.12. // m > a - (n/p), then A™KZ e (J1<s<p, L
s.

PROOF. Since m > a — (n/p) implies max ( — , 1 — } < min ( 1 , 1 H -- ) ,
\p nj \ n /

there exists a real number 5 such that max ( — - . 1 — ) < - < mini 1, 1 H -- ) .
\p' nj s \ n )

Using Lemma 3.1 we can easily check that for such 5, A™^ e Ls. Hence we
obtain the lemma.

For a real number r and p > 1, we write

L*r = ίu : ί |w(x)|p(l + \x\)prdx < ooj

and

LP/,iog = L . ί \u(χ)\P(i + \x\)*'(log(e+ \x\))~pdx < ooj.

LEMMA 3.13. (i) U c Lp'~α for r>p in case of a — (n/p) > 0, and for
p < r < pα in case of a- (n/p) < 0.

(ii) // α - (n/p) < 0, then we have U- c U -α'los.

PROOF. This lemma follows from Holder's inequality.

Now we give our main theorem.

THEOREM 3.14. (i) // ί - 1 < α < min(2[(^ + l)/2],£ + (n/p)), then (I)
implies (II).

(ii) // £ - 1 < α < 2[(^ + l)/2], ffcen (II) imp/ies (I) /or r0 > p in case of
a — (n/p) > 0, and for p < ΓQ < pa in case of a— (n/p) < 0.

PROOF, (i) We assume that u e (R? 4- ̂ ) Π H '̂ Λ-'. Since (II)(1) is
trivial, we shall show (II) (2). By the condition u e R J + ̂ fcj we have

α ~
_ t + j + Σ|y|stβyX», « - (n/p) e N

where feLp,f\ =/|βl,/2 =/— /i and αy (|y| < fe) are constants. By the
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condition ί — l < α < ^ 4 - (n/p), (1.1) and Lemma 2.8, we obtain

*-(n/p)φN_

U~ fά_lt + I/* ), α - (n/p) e AT

Hence it follows from i - 1 < α < 2[(ί+ l)/2], Lemma 2.1 and Proposition 2.5
that H^u = μf* */ converges to a^f in Lp as ε tends to 0. Thus we obtain

(Π) (2).
(ii) We assume that (II)(1), (2) and ί - 1 < α < 2[(ί + l)/2]. We take an

integer m such that m > max(α - (n/r0),. . . ,α - (n/r/_ι),α - (n/p)). By
Proposition 3.10 we have

= i *

Since ί - 1 < α < 2[(<£ + l)/2] and u e Lr°, it follows from Proposition 2.5 that
J™H * μ*'̂  converges to a^A™u in Z/° as ε tends to 0. By m > α - (n/p) and
Lemma 3.12, we obtain /d™κα e Ls for some s such that 1 < s < p' . Hence by
the condition (II) (2) and Young's inequality we see that Δ™KH * Hf^u con-
verges to A™KK */ in Lq as ε tends to 0 where (ί/q) = (1/s) + (1/p) — 1 and
/ = H^u e I/. Hence

Consequently, by Corollary 2.11, Lemma 3.11 and (1.2)

ί^Λ' + Λ x-(n/p)φN
»={ '

I ^fc-Γ + tf«jk+ Λ α - (n/P) e N

where /i = /|Bl,/2 =/ — /i and P is a polynomial of degree m — 1 . Since
M € ί/°, and r0 > p in case of α - (n/p) > 0, p < r0 < pα in case of α - (n/p) < 0,
by Proposition 1.1 and Lemma 3.13 we have

p , , α - (n/p) ̂  AT and r0 Φ p(

' /p) eN or r0 = pt

ΓL- «-(»,

Xl/ -̂ , α-(n

'α

'α

Therefore the degree of P is at most fc, and hence M e R% + ̂ . This completes
the proof of the theorem.

REMARK 3.15. Let α-(n/p)<0. Then by the Hardy-Littlewood-
Sobolev theorem ([10: §1 in Chap. V]) we have
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Hence Theorem 3.14 shows that u e R£ if and only if u satisfies the following
two conditions:

(i) ueW£ίP*-l-p*-(£-\

(ϋ) lim H^u exists in Lp

V ' ε^O ε

for t - 1 < α < min (2[(ί + l)/2], (I + (n/p))/2).

REMARK 3.16. E. M. Stein ([9]) characterized the Bessel potential spaces
JS?/ as follows. Suppose 0 < α < 2. Then

u e &* Φ=> ueLp and lim H^u exists in IΛ
ε — >U

Hence Theorem 3.14 implies that for 0 < α < min (2, 1 + (n/p))

(*£

with k= [α- (n/p)].
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