HirosHIMA MATH. J.
26 (1996), 493-514

Hypersingular integrals and Riesz potential spaces

Dedicated to Professor Fumi-Yuki Maeda
on the occasion of his sixtieth birthday

Takahide KUROKAWA
(Received December 19, 1994)

Asstract. We introduce Riesz potential spaces and give the characterization in terms
of hypersingular integrals.

1. Introduction and preliminaries

For a function u(x) on the n-dimensional Euclidean space R" (n > 3), the
difference A‘u(x) and the remainder R‘u(x) of order ¢ with increment
t=(t1,...,tn) € R" are defined by

l . e
atu(s) = Y17 (£ Jutx+ €= o),
j=0
y
Réu(x) = u(x +1t) — Z Mt”

]
h<t-1 7

where y is a multi-index (yy,...,7,), ' = £'---t}», D' = D}' ... D» (D; = 8/0x;),
PY=yp!--pland |yl=y +---+7, Since Rfu(x) is the remainder of Taylor’s
formula, we obviously see that

(1.1) Rlu(x) =0 for all te R" < u is a polynomial of degree £— 1
for C®-functions u. We also have ([6: p. 1102])
(1.2) Afu(x) =0 forall te R" < u is a polynomial of degree £— 1

for locally integrable functions u. Using the difference and the remainder, for
a >0 and a positive integer ¢, we define the singular difference integral D*‘u
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and the hypersingular integral H%‘u as follows:
D*u(x) = lin& D**u(x),
£

H%u(x) = lin{} H% u(x)
£—

where
" Alu(x
D¥u(x) = sz ngt, (6> 0),
&
Rfu(x
H%u(x) = Jltlz _I;I"%dt’ (¢>0)
€

whenever the integrals and the limits exist.

The Schwartz space & is the set of infinitely differentiable functions
rapidly decreasing at infinity, and the Lizorkin space @ is the subspace of &
consisting of functions which are orthogonal to any polynomial ([7: p. 475]).
For u € &’ (the dual of &), we denote the Fourier transform of u by Fu. Ifu
is an integrable function, then the Fourier transform Zu is defined by

Fu(é) = Ju(x)e‘i"'fdx
where x- & =370 x;¢;.

We denote by N the set of nonnegative integers and by N, the set of
nonnegative even numbers. For a > 0, the Riesz kernel of order « is given by

1 (|x*™", o—n¢N,
Ke(X) = — a—n
ya,n (5a,n - IOg le)lxl ) a—ne Nz
with
n"/22°T (2/2) —néN
M= 2)/2)’ e
Yan =
(__l)(a—n)/22a—lnn/2r'(a/2)(a ; ") , a—neN,
and
_T(a/2) 1 1
= r@ T\ T g ¢) T

where € is Euler’s constant. With the above normalizing constants y,, and
Oun, We have

(1.3) Fra(8) = PLIE[T
where Pf. stands for the pseudo function [8: section 7 in Chap. VII].
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In §2 we investigate properties of the truncated integrals H*%x,(x)
(=u%*(x)) of the Riesz kernels. We write u*‘(x) = y‘;"e(x).
For f € & we define the Riesz potential U/ of f by

UL (x) = ko % f(x) = j (= )£ (9)dy.
By (1.1) we have for fe &
(1.4) F(UL)(&) = PLIEIFS(9).

Throughout this paper we assume 1 < p < 0. We denote by L? the space of
all pth-power integrable functions with the norm

i1, = (| If(x)l”dx)l/p

and L! denotes the space consisting of all integrable functions. Further, for
1< po,p1,...,pe < 0 we set

w/epo,m,---,m — {u, D'yu € Lpf for h)' =],J = 0, 1’ e ,e}

In order to define the Riesz potentials of LP-functions, we introduce the modified
Riesz kernels x,(x,y): for an integer k < a

DVxcy(—
(o —y) — 3 2rely)
Kak(X,y) = <k ¥

Ke(x — ¥), k< —1.

x?, 0<k<a,

We use the symbol C for a generic positive constant whose value may be
different at each occurrence.

ProposrTioN 1.1 ([2]). Let f € LP and k = [ — (n/p)] be the integral part
of «— (n/p).

(i) If a— (n/p) is not a nonnegative integer, then

Uf,k(x) = j Kk (X, ¥)f (y)dy

exists and satisfies

1/p
(J1otcorieax) ™ < cisi,

(i) If o — (n/p) is a nonnegative integer, then both Uoftjk_l and Uaffk exist
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and satisfy
i _ _ 1/p
([1wis st + hogixl) 7ax) < clfl,,

1/p
([ 1w+ ogiayax) < cifal,

where fi = f|p, is the restriction of f to the unit ball By = {|x| < 1} and f, =
f-h

Taking Proposition 1.1 into account, we define the Riesz potential spaces
R? of LP-functions as follows:

o { {U feL?}, «~(n/p) ¢ N
UL+ UL felr, fi=flp, fo=f~fi}, a—(n/p)eN

with k = [« — (n/p)]. When a — (n/p) <0, S. G. Samko [6: Theorem 4] gave
the following characterization of the Riesz potential spaces in terms of the
singular difference integrals.

THEOREM A. Assume that o — (n/p) <0 and 0 < a < 2[(£+1)/2] (x=¢
foro=1,3,5,...). Then ue RENL" if and only if u satisfies the following two
conditions:

(i) uel,

(i) D**u = lim, o D%‘u exists in L?
for p <r <p, with (1/ps) = (1/p) — (a/n).

The purpose of this paper is to give the following characterization of the
Riesz potential spaces in terms of the hypersingular integrals.

THEOREM B (Theorem 3.14). Let k = [a— (n/p)], l—-1<a<
min(2[(£ + 1)/2],£ + (n/p)) and P, be the set of all polynomials of degree
k. Then ue (RE + P) N W,°" ™" if and only if u satisfies the two conditions:

Q) ue Wy,

(i) H*'w = lim,_,o H*u exists in L?
for p <ro <p, in case of o« — (n/p) <0 and p <ry in case of o — (n/p) = 0.

2. The estimate and total mass of x%‘

As was defined in §1, for ¢ > 0 we set

Rf’ca (x)
|tl n+o

et = |

|t =€
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and pu*(x) = u*(x). We note that u**(x) is finite for > £—1 and x # 0.
The following four lemmas are proved in [3].

LeMMA 2.1 ([3: Lemma 3.5]). Let a > ¢— 1, and moreover assume that
£>o—n in case o« —n is a nonnegative even number. Then

1 x
a,l _ ol
M, (x)——s,,ﬂ (s)
LemMma 2.2 ([3: Corollary 2.2]). If £ > a—n, then for |x| = 3|t|/2

IR{e(x)] < Clef‘|x|*~*"

LemMA 2.3 ([3: Lemma 2.13]). Let a > £ — 1, and moreover assume that
£>a—n in case o —n is a nonnegative even number. Then

1
W) = | Rl
X" Jjo) < x|

with x' = x/|x]|.
LEmMA 2.4 ([3: Corollary 2.9]). (i) If {—1<a< ¥, then Rfica(x) is
integrable as a function of x and for all t € R"

J Rxy(x)dx = 0.
R»

(i) If £ is an odd number, then Ri*1xy(x) is integrable on {|x| > e}(e > 0)
and for all te R*

lim J R k(x)dx = 0.
x| > &

&0
Now we give an estimate of u*‘.

ProposITION 2.5. If £ —1 < a < 2[(£+ 1)/2],then

lea—Z[(l—l)/Z]—n, |x| < 1,

|u*(x)| < C x
|x|-—1-m x| > 1

and hence u*‘e L.

Proor. Let |x|<3/2. Since a< 2[(£+1)/2] implies £>a—n, by
Lemma 2.3 we have

1
()] = —,,j R k() do
X" Jio) <)

1 | D754 (v)]

1
< = k(v + x")|dv + —5 j ———dv.
Ix* leISIXI ) It |y|sze:—1 o<k ¥
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We see that [, k(v +x")|dv < C|x[" on {|x| <3/2}, and

J |D?ky(v)|dv
o] <Ix|
|x[* ] a—n¢Ny ora—neN; and |y| > a—n,
X
(1+ [log|x|])|x*™,  «—neN; and Jy| <a—n.

Note that if ¢ is an even number, then for |y| =£— l’flvlslxl DYk, (v)dv = 0.
Hence, we see that for |x| < 3/2

Iua,l(x)l < CIqu—Z[(l—l)/z]—n.
Let |x| >3/2. First let £—1<oa <{. By Lemmas 2.3 and 2.4(i) we have

o 1
u*t(x) = ——,,J R’ x4 (v)dv
%" jo1<1x

1 J ‘
=—— R}k, (v)dv.
1%* Jjo 1> 11 «(v)

Since |v]| > |x| > 3/2 = 3|x'|/2, by Lemma 2.2 we obtain

o C —L=
4 (x)| < Jol*""dv
||

[o]>]x]

— Clxlu—[—n — Clx,a—[a}—l—n

on account of a < £. Secondly let £ be an odd number and £ < a < £+ 1.
Noting that f, Dk,(v)dv =0 for |y|=¢, by Lemmas 2.3 and 2.4(i) we
have

v|<|x|

1

=gy

1
w(x J R xy(v)dv = —,,J R4 iy (v)dv
lo|<Ix] 1XI" Jo) <

1
= —le N lRfj'lxa(v)dv.
v X

Hence by Lemma 2.2 we obtain
e I
le Jo]>|x|

— Clxla—l—l—n — Clxla—[a]—l—n

since o« < £+ 1. Lastly let £ be an odd number and o =¢. Noting that
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LSIvISIxI D7ky(v)dv =0 for |y| = ¢, by Lemmas 2.3 and 2.4(ii) we have

1
||

uti(x) =

1
,,J R’ xp(v)dv = lim — J R xp(v)dv
o] <|x| &0 |x|” e<lo|<|x|

1

—,,J R: iy (v)dv.
fol>1x|

= lim 1 J R ky(v)dv = —
e<lo|<|x] |x|

e—0 le

Therefore by Lemma 2.2 we obtain

1)) < %j o[~ D-"gy
|x| lo|>|x|

— C1x|—1—" — C|x|a—[a]—l—n.

Thus, if £ — 1 < a < 2[(£+ 1)/2], then [u*¢(x)| < C|x|*" ™" for |x| > 3/2, and
so the proposition is proved.

Since u*¢ is integrable for £ — 1 < a < 2[(¢ + 1)/2] by Proposition 2.5, we
denote the total mass of u** by a,,, namely

RS J i u*(x)dx, L—-1<a<2[(£+1)/2].

We show that a,, # 0 by calculating the value of a,.
LemMma 2.6 ([3: Corollary 2.2(i)]). If ¢ € C®, then
x)| < |* Z— max |[Do(y)l

i=e ¥

where Ly, = {sx+ (1 —5)y; 0 <s<1}.
Lemma 2.7. If 2[(£—1)/2] < a < 2[(£+ 1)/2], then

L et — Pi<e—1 (/7! )(lf)
l/l(f) = o Lshls& lt}nﬂ

£—0,0—00

exists and

Y(&) = caule|”
with
_l—ap(n/2)+1
al(a/2)T((n + «)/2) sin (nae/2) "

Coap =
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Proor. We have

. eit'¢ — Zl _ (&7 /y)(i)?
=1 yj<f-1 d
¥(§) =lim Lsmg T ¢
+ lim J A DIPRIGIDICIU
60— 00 1<l <6 |t|n+a .

If £ is odd, then

J e~ Vs /M@ J D DIPTIGI LI
e<lf<1 e<jt|<1

|tln+a |t| n+a ’

and, if £ is even, then

J e = St (/M [ € — Nycea @/’
1<)t <é I<|t|]<é

Itln+a |t|n+a

Hence, since e”'¢ — 3", | (7/!)(i€)” = Rfo(0) with ¢(t) = e ¢, by Lemma
2.6 we see that for 2[(£~1)/2] < a < 2[(£+1)/2]

Y
dt

lim
&£—0,0— 00

j "'t — 3 <e (/) (i)
e<|t|<é

|tl n+o

exists. Let 2[(£—1)/2) < a < 2[(¢£+1)/2]. By the change of variables |¢|t = u
we have

. e WIDE — 5o (/) W/ IE) (i) du
é - y|<f-1 A ——
V(&) i Js|¢|5|u|$5!6l |u/)E|)" el
. et = Spcrn W/ E)
- 1 a r
s—bOl,?LOOIéI Jes|u|55 Iu|"+a a
= [¢*¥(&).
Moreover, since
y =1
Y Ly =Y Sw-ey,
pi<e-1 " =01

we see that y(¢') is a constant ¢,y on |¢'| = 1. Thus Y(&) = cqelé|®. In order
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to compute the constant c,,, we take &' = (1,0,...,0). We have

et — Sina (i /i)
(n+a)/2

Cae= lim J
e=06-0 Jogi<s (2 + 63+ -+ 2)

. -1 ij .
= lim lim J e"‘ - Z Tt{
£—0,0—00 n—0 n<lt|<é J

j=0

1
|
(‘Zzﬁjiﬁxi%tl P+ (/1) 4+ (/) )

Xdty - - - dt,,) dt;.

By the change of variables u; = t5/t1,..., u, = t,/t;, we obtain

i =127 Jot\od
Cee= lim lim J e — Zj:o(l]/]!)tf
, n<|t|<o

£—0,6—00 n—0 | t1 | nta

|t1|n—1
X duy - - - du, |dt;
<.[(e/t,)2—1Su;+--.+ugs(a/t,)2-1 Q+u+---+ u,%)("’“"‘)/2 "

e CLaine
— lim J ’Tig M,
1—=00—0 Jy<jy|<s 2]
X J ! d du
u2 PR .
R-1 (14 u% 4+ u%)("‘*‘“)/z "

An elementary computation shows

R (L+ud 4+ +2)R T T T (et a)/)

Moreover, since 2[(£ — 1)/2] < a < 2[(¢ + 1)/2], by integration by parts we have
ettt — iy
lim J =0/
n=00-0 Jy<iy|<s |t1]

r et + emitt — Y i i) (e + (—t1))) it

1+a
1

= lim
n—0,6—00 n

_5 ©C08 t1 — Y o<me(e-1)2((—1)"E™)/(2m)!

5]
0

_ -n
" T(x+ 1) sin (ma/2) "
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Thus

_ —-n =020 (a4 1)/2)
= T(a+ 1) sin (n/2)  T((n+ 2)/2)
_21—an(n/2)+1

~ oT(o/2)[((n + @)/2) sin (n2/2)’

This completes the proof of the lemma.

LeEmMA 2.8 ([3: Proposition 3.4]). Letf{—1<a < £+ (n/p), k =[e— (n/p)]
and f € LP.
(i) If a— (n/p) is not a nonnegative integer, then

HAUL() = [0 (x = )y,
(i) If a — (n/p) is a nonnegative integer, then
HEA (U + UR)() = [0 (x = )y

with fy =fls, and f=ff.

COROLLARY 2.9. Let £—1<a<2[((+1)/2] and fe . Then H*U,
converges to H“’ZU{; = agef in L! as ¢ tends to 0.

Proor. By the condition ¢ — 1 < a < 2[(¢ + 1)/2], there exists p > 1 such
that £ -1 < a < £+ (n/p) and a — (n/p) is not a nonnegative integer. Since
felL?, it follows from Lemma 2.8 that

HY'UL, = J 1 (y)f (x — y)dy

with k=[x — (n/p)]. Moreover, since £>a—(n/p), by (1.1) we have
H*'UJ, = H*UJ. Therefore it follows from Proposition 2.5 that H*UY
converges to a,.f in L! as ¢ tends to 0 since f e L!.

REMARK 2.10. N. S. Landkof ({5: §1 in Chap. I]) shows that in case of
2m < a < 2m+2, for any infinitely differentiable function ¢ with compact
support, the limit

J o(x +1) — T Hed o)™ |
[t|]=>e

2m+1 o
H*™(x) = lim P

e—0

exists, where Hy (k=0,---,m) are suitable constants.
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COROLLARY 2.11. For £—1<a<2[(£+1)/2], aye = cae. In particular,
aye # 0.

Proor. In §1 we defined the Lizorkin space @. We take a nonzero
element f € @. Then u = Uo{ belongs to @ (see [7: Theorem 25.1]). We have

ol _ u(x + t) —ix-& _ Dvu(x)ty —ix-&
f(He u)(f) —J(J[tlze It|n+a'dt)e dx MSZ[_1J<J|,¢|25 '))!ltln+a dt)e dx

= J It—li;r—aju(x + t)e *tdx dt
lt|=e

y :
- J t—dt JDVu(x)e_"‘{dx

Iyl <e—1 e ¥t
- LA, | fwrz,
|t]=e |t|”+a ol ze y!|t|n+a
et - Zlvlst’—1t—y,(ié)7
= Fuld) 4 dt.
= |t|"+“

By Corollary 2.9 % (H*u)(&) converges to a,,%f(£) as ¢ tends to 0 for all
¢, On the other hand, since £ — 1 < a < 2[(£ + 1)/2], by Lemma 2.7 we obtain

it - tr .
eitt — ste—xﬁ(lf)y
|t|n+u

?_u(f)J dt — el Fu(E) (e — 0).

|t|=e

Consequently, by (1.2) we have
a0 Ff (&) = capl|* Fu(E) = coplE|*PLIE|T"FS (&) = cupFS(E).

Since f # 0, we obtain a,¢ = c,y.

3. The characterization of the Riesz potential spaces

In this section we study the equivalence of the following two conditions
(I) and (II):
@ ue (RE+ Z) N2y k= [a—(n/p),

(II) (1) ue I/[/[_°’1r1w-v"l-1’

and . .
2) 111% H}* exists in L?.
£—

We note that, if ue W, and « > £ — 1, then H*‘u(x) exists for almost
every x.
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LemMmaA 3.1 ([4: Corollary 2.3]). If |y| <o and m > a— |y| —n, then for
|x| = 2m|h|

| 41" D7ky(x)| < Clh|™)x|* =",
LEMMA 3.2 ([4: Lemma 4.2(i)]). Let ¢ > 0 be fixed and m > o —n. Then

m
J IAh Ka('.l}?alt dy < C(l + 'xl)max(—a,a—m)—n‘
=yl ze [x =¥

LemMMma 33. (i) IfueL(r>1) and m> a— (n/r), then

1=J|A;,"x,,(y)| J MO+l 4 ) 4y < oo
=1 |t

(i) IfvelL’(s>1) and m > a— (n/s), then
I() = [ 7= o)1y < o0

for all x in case of « — (n/s) > 0, and for almost every x in case of a — (n/s) < 0.

Proor. (i) By the change of variables z =t + y and Fubini’s Theorem,
we have
|u(z)]|
1= [iapeo( | |y
P\ it [z = oM

- fo(,., o5

By Lemma 3.2 and Holder’s inequality we obtain

I < CJIu(z)I(l + Izl)max(—a,a—m)_ndz

, 1/r
< C||u||,(J(1 + |z|)(ma"(_“’°“'”)_”)’dz> <

on account of the assumptions u e L' and m > o — (n/r) where (1/r) + (1/r")
=1
(i) We have
J(x) <

[ e — ey
[x—y|=2m]h|

+ Xm: (m) J|x—y|<zm|h| |Kx(x = y + (m — i)h)v(y)|dy

i=0 \ !
= Jl(x) + Jz(x).
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By Lemma 3.1 and Hoélder’s inequality, Ji(x) is finite by the assumption m >
o — (n/s). Since v is locally integrable, J>(x) is finite for almost every x, and
in particular, by Holder’s inequality Jy(x) is finite for all x in case of
a—(n/s) > 0.

LemMMA 34. (i) IfuelLl and £—1<a<2[(£+1)/2], then

J Rlxy(x — y) s
t|=1

|t|n+a dy <™

KG) = [ luty)

for all x in case of 2[(¢ —1)/2] < a — (n/r), and for almost every x in case of
2[(6—1)/2] = a— (n/r).
(i) ([3: Theorem 2.15]) IfuelL’ and £—1 < a < £+ (n/r), then

IReca(x — )
Jlu(y)l(szl s dt)dy<oo

for all x in case of £ —1 < o — (n/r), and for almost every x in case of £ — 1=
o— (n/r). '

Proor. (i) From Proposition 2.5 it follows that
K() = [tz - y)ldy
sc| olx- sy
|x—y|>1

+ cj ju(y)||x — y|*-2ED2=ngy
Jx—yl<1
=K; (x) + Kz(x).

Since o — [a] — 1 < 0, K;(x) is finite for all x by Hoélder’s inequality. Since
o —2[(£—1)/2] > 0,K;(x) is finite for almost every x, and in particular, in case
o—2[(£—1)/2] > n/r,K»(x) is finite for all x by Holder’s inequality.

LEmMMA 3.5. Let ueL’, D'ue L’ and o€ C®. If

(3.1) ID2o(y)| < CA+ )™ for <y

. (nn
and d < mm(;,;),then

j Do)y = (-1 [ur)D"9()y.

Proor. There exists a sequence {n;} = 2 (the space of infinitely differ-
entiable functions with compact support) such that 0<#; <1, n;(x) =1
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on |x| <j and |Dn;(x)| <M; (j=1,2,...) ([I: p. 54]). We put ¢;(y) =
@(y)n;(). Since ¢;€ P, we have

[oru)0 )y = ()" [utr)D70,)ay.
By the conditions (3.1), d < n/s and D?u e L*, we obtain
JDyu(y)tpj(y)dy - JD?u(y)co(Y)dy (j— o).

By the Leipniz formula we have

D7¢;(y) = (D'o)n; + > <§)D5¢DY“511,~

o<y

where (3;) = (2;1) (3;") By the conditions (3.1), d <n/r and uel’,
1 n

for 5 <y we have
[up* oo may—0 (1 w),
and moreover,
[uDr0Im iy = [unpremiy (G- ).
Hence
Ju(y)quo,-(y)dy - Ju(y)quo(y)dy (j — ).

Thus we obtain the lemma.

Let t be a nonnegative function belonging to 2 and having the
properties

@A) 7(x)=0  for |x| > 1,
(i) Jr(x)dx =1.

1
For ¢> 0, let t.(x) = ;‘c(g) and k:”"”"‘ = APD"Ky * Tp.

LEMMA 3.6. Let x,(x) = |x|*™", and for a > n, let n,(x) = [log|x]|||x|*™".
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Then for 0 <e< 1,

%a(%), x<n,

(i) A * Te(X) < C x {max (1 (x), 1), o> n.

(ii) Ny * Te(x) < C x {max((l + [log [, 1), x>
o € -_

max (1 + |log|x||, lxl_’g), o=n.
for any fixed B> 0.

Proor. We give a proof of (i) in the case a < n. It suffices to prove (i)
with e =1. Indeed, if (i) is true for ¢ =1, then

et () = [0l - y)dy
= Jr(y)xa(x —ey)dy
=& [cn - v)ay
<)

= CXa (x)

For |x| > 2 we have

=[P

Ix—y|<1
< (|x|/2)*™" Jr(x —y)dy = 2"_“|x|’“_".

Moreover, for |x| < 2 we obtain

3%,

J|y|“""t(x —y)dy < (max 1) JI - ly|*"dy = (max 1)
yl<

a2n—a " an
< (max 1) g |x|

where o, is the surface area of the unit sphere.
LeEMMA 3.7. Let |y <a and 0 <e< 1.
(@) If |y| > a—n, then

m
KA )| < € 3 x4 (m — DR,
i=0
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if |[y| =« —n, then

[kgrmh (x)|
< C 1’ a—n ¢ N27
<Cx _
> r o max(1 + |log|x + (m — i)h||,|x + (m— )k ), a—neN,.
for any fixed p >0, and if |y| < o — n, then
e ()
:n=0 max(|x+(m— l‘)hl“—h""”’ 1), a—n ¢ N27
<Cx
o max((1+log [x+(m — DA{[) |x + (m—)A*P",1), aeN2.

(i) For |x| =2m|h|+2 and m > a— |y| — n,
[k&rm(x)| < C(1 + |x|)*m =",

In (i) and (ii) the constants C are independent of .

Proor. Assertion (i) follows from Lemma 3.6. We show (ii). Let
|x| >2m|h|+2 and 0<e< 1. Since |x| >2m|h|+2 and |x—y| <1 imply
[y| > 2m|h|, by Lemma 3.1 we have

[kzrmh(x)| < J 1 |47 D7, (y)|te(x — y)dy

Jx=yl<
<cC Jlx—y|<1 Y, (x - y)dy.
Moreover, since |x| > 2 and |x—y| <1 imply |y| > (1 +|x|), we see
RErmH0] < CH(1+ e [ = y)ay
= C(1 + |x|)*M-mm,

Thus we obtain (ii).
Lemma 38. Ifvelf |y|<a and m>a—|y| —(n/q), then

Jv(x =)D (4'xa % ) (y)dy — Jv(x — V4D ka(y)dy (e —0)

for all x in case of |y| < a—n, and for almost every x in case of |y| > a —n.
Proor. We define the function G*"™h(x) as follows: if |x| > 2m|h| + 2,
then

GormA(x) = (14|,
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and if |x| < 2m|h| + 2, then for |y| > a—n
m
G=mh(x) = 3" |x + (m — D)h* M,
i=0
for |yl=a—n
Ga,y,m,h(x) _ 1’ a—n ¢ N2
Srolx+m—ihF,  a-neN,
with B <n/q’, and for |y| <a—n
G*r™h(x) = 1.
Then by Lemma 3.7 we have
|o(x = y)D"(d'xeq * ) (y)| < Clo(x = y)|G*¥™(y)

and moreover, since ve L? and m > a — |y| — (n/q),

j [o(x — ) |G=™4(y)dy < 0

for all x in case of |y <a—n, and for almost every x in case of |y| >
a—n. Since D?(4y'ky *7:)(y) converges to A;'D'k,(y) as ¢ tends to O for
y#—(m—-i)h (i=0,1,...,m), the dominated convergence theorem gives the
lemma.

LeMMA 39. Ifuel’, D'ue L?, |y| < « and m > max (o — (n/r),a — (n/s)),
then

JD’u(x — )4y Ka(y)dy = Ju(x — y)4; D'xea(y)dy
for all x in case of a— |y| > n, and for almost every x in case of a— |y| < n.
Proor. By Lemma 3.7(ii), for || < « we have
D (A, % T6) (x)| = |k22™R(x)| < Co(1 + |x])* ™11,
Hence Lemma 3.5 implies
[ Drute = e s )y = [t - y)p7 (e s 2 0)ay
by the assumptions ueL’, D'ueL® and «—m < min(n/r,n/s). Since

D'ueL* and m > a— (n/s), by Lemma 3.8 the left-hand side converges to
I D"u(x — y)4;'k,(y)dy as ¢ tends to O for all x in case of & > n, and for almost
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every xincase ofa < n. SinceueL’, |y <aandm > a — |y| — (n/r), by Lemma
3.8 the right-hand side converges to [u(x — y)4;'D'k4(y)dy as ¢ tends to O for
all x in case of |y| <« — n, and for almost every x in case of |y| > « — n. Hence

we obtain the lemma.

ProposiTioN 3.10. If ue W,/ "', £—1<a<max(2[(¢+1)/2),£+
(n/ro)) and m > max;—o;, ,—1(o — (n/r,)) then
Ak, % H* u(x) = AMu * p>*(x)
for all x in case of o« — n > £ — 1, and for almost every x in case of a —n < £ — 1.

Proor. Since ue W,/ £ —1<a and m > maxi, . ¢1(x — (n/1)),
by Lemma 3.3 we have

I(x) = 4’y * H”u(x

+t _1(Du et
Ah ea(x — y) u(y +1) — Z|y|snaa1( /v dt)dy
I |t
u(y+t DYu(y)t"
Ah Ka(X — y) (yn+u) dt — Z j 1 (7)1}-0)—a dt | dy
e |l bzt Jd=e Yt
+t
[ameae-n ([ “EDac)ay
|r|>a |t
- Z JAh Ko(X — )D?u(y)dyj — ez dt
bi<t-1 e |1
= Ii(x)
for all x in case of « — (n/r;) >0 (i=0,1,...,£—1), and for almost every x

otherwise. Since u € L™ and m > a — (n/ry), Lemma 3.3(i) and Fubini’s theorem

give
JA;,”xa(x—y) (J uly + )dt)d
R
= JA;’,"xa(x -) (le—ylze—|z i‘(;l)n+a dz) dy
N )
= [u )(L_M 2= P dy)dz

_ Ju(z) (szs %&h) dz.
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Further, since ue W,°{""™' £—1<a and m>max—, ¢ 1(x— (n/r;), by
Lemma 3.9 we have

jA;:‘xa(x — y)D"u(y)dy = jA;,"Dan(x Cyu)dy,  hl<t-1

for all x in case of a—(/—1)>n, and for almost every x in case of
a— (£—1) <n. Therefore

I(x) = ju(y) (LM—";'" "“f:n;y ) dt) dy

- > l|J“(Y)A;'1"D7Ka(x—y)dyJ

hi<t-17" e 1]
N (e AV
_J (JO(JMZB TR& dt)dy I(x)

holds for all x in case of @ — ({ — 1) > n and for almost every x in case of
a— (£ —1) <n. Moreover, since £— 1< a < max(2[({+1)/2],£+ (n/r)), by
Lemma 3.4 we obtain

= [ m R"’xa x — m—i)h
I>(x) =Ju(y) (Z(—n (i)szS ( Igllt ) )dt>dy

i=0

™ ifm Rlxy(x — y + (m —i)h)
=3 1)( )j )(jng e dt)d

m ) R .
:go(_l)n(':’) Ju(x—z-+—(m—i)h)( . |zr”+“ dt)dz

——dt

n+ot

<

I

- JA’”u(x ~ )t (2)dz

= Afux (%)

for all x in case of a— (n/rg) >£—1, and for almost every x in case of
o—(nfr)) <£—1. Thus

I(x) = Aux i (x)

for all x in case of «a — ({ —1) > n, and for almost every x in case of o —
(£ —1) <n. This completes the proof of the proposition.

LemMMA 3.11 ([4: Lemma 4.8]). Let f € L?, k= [« — (n/p)] and £ > k + 1.
(i) If « — (n/p) is not a nonnegative integer, then

ApUL = Ay * f.
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(i) If a— (n/p) is a nonnegative integer, then
AU+ UR) = Afwax f
with fi =f|p, and fo =f - f1.

LemMA 3.12. If m > a— (n/p), then 4}k, € U1<s<p1 L.

o

. N 1 . m—ao
PROOF. Smcem>ot—(n/p)lmphesmax(?,l—;)<m1n(1,1+ ” ),

. 1 1 . -
there exists a real number s such that max(?, 1-— %) < 3 < mln(l, 1+ e " oc)'

Using Lemma 3.1 we can easily check that for such s, 4}k, € L°. Hence we

obtain the lemma.
For a real number r and p > 1, we write

L = {u : J|u(x)|p(1 +|x)7dx < oo}
and
Lprloe — {u : Jlu(x)|p(1 + |x|)” (log (e + |x|)) Pdx < oo}.

LemMa 3.13. (i) L' < LP™™ for r > p in case of a — (n/p) =0, and for
p <r<p, in case of a — (n/p) <O0.
(ii) If a— (n/p) <O, then we have LP+ c LP—%I°8,

Proor. This lemma follows from Hoélder’s inequality.

Now we give our main theorem.

THEOREM 3.14. (i) If £—1 <o <min(2[(¢+1)/2],£+ (n/p)), then (I)
implies (II).

() If€—1<a<?2[(£+1)/2], then (II) implies (I) for ro = p in case of
a—(n/p) 20, and for p <ry < py in case of o — (n/p) <O.

Proor. (i) We assume that u e (RE + P) N W, "', Since (II)(1) is
trivial, we shall show (II)(2). By the condition u € RE + %, we have
) Uo{,k+z|y|skavx7, a—(n/p) ¢ N,
u(x) =
Uf‘,c_1 + Uﬁc-}-zlﬂskayﬂ, o—(n/p)eN

o,

where feL? fi=flp,f»=f—fi and a, (|y| <k) are constants. By the
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condition £ —1 < a < £+ (n/p),(1.1) and Lemma 2.8, we obtain

L (mul, «—(n/p) ¢ N
Hu= p
HYA (U, +UR),  a—(n/p)eN
= 1yt xf.

Hence it follows from £ — 1 < a < 2[(¢ + 1)/2], Lemma 2.1 and Proposition 2.5
that H%u = u® x f converges to a,,f in L? as ¢ tends to 0. Thus we obtain
(ID(2).

(i) We assume that (II)(1), (2) and £ — 1 < a < 2[({ + 1)/2]. We take an
integer m such that m > max(a— (n/r),...,a— (n/re-1),a — (n/p)). By
Proposition 3.10 we have

m al,, _ am ol
Ay x HY u = Af'u* p”.

Since £ — 1< a < 2[(£+1)/2] and u € L™, it follows from Proposition 2.5 that
Al'u* pt converges to aqedJ'u in L™ as ¢ tends to 0. By m >« — (n/p) and
Lemma 3.12, we obtain 4;'kx, € L* for some s such that 1 < s < p’. Hence by
the condition (II)(2) and Young’s inequality we see that Ak, *x H*‘u con-
verges to Ak, *f in L? as ¢ tends to 0 where (1/q) =(1/s)+ (1/p) — 1 and
f=H*ueL?. Hence

Agedpu = A7Ky * f.

Consequently, by Corollary 2.11, Lemma 3.11 and (1.2)

Uo{j‘a”’l + P, a—(n/p) ¢ N
u=
Ua{}c/f;" + Uo{i/a“" +P, a—(n/p)eN
where fi =f|p,f»=f—f1 and P is a polynomial of degree m —1. Since

uelL™ and ry > pin case of « — (n/p) =0, p < ry < p, in case of & — (n/p) < 0,
by Proposition 1.1 and Lemma 3.13 we have

PE{LP,—a, a._.(n/p)¢N and ro # Do
Lp,—a,log, o — (n/p) eN or Y0 = Pa

Therefore the degree of P is at most k, and hence u € R? + %. This completes
the proof of the theorem.

REMArRk 3.15. Let a— (n/p) <0. Then by the Hardy-Littlewood-
Sobolev theorem ([10: §1 in Chap. V]) we have

D PasPa—1)--sPa—(£-1)
R =« W, .
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Hence Theorem 3.14 shows that u € R? if and only if u satisfies the following
two conditions:

. DasPa—15-++Pa—(£-1)
(l) ue M—l ’
(ii) lin(ll H*'u exists in LP

£

for £—1 < a<min(2[(£+1)/2],(£+ (n/p))/2).

REemARK 3.16. E. M. Stein ([9]) characterized the Bessel potential spaces
ZPF as follows. Suppose 0 < a < 2. Then

ue ¥l <=uel? and lirré H*'u exists in LP.
£

Hence Theorem 3.14 implies that for 0 < « < min (2,1 + (n/p))
(RE+2) (L = 2f
with k = [@ — (n/p)].
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