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ABSTRACT. A basis of the quotient ring S/J, is given, where S is the ring of polyno-
mials and J, is the ideal generated by symmetric polynomials of positive degree.
They are called higher Specht polynomials.

0. Introduction

The purpose of this paper is to give a detailed proof of the result an-
nounced in [4], and to give its generalization.

Let S =C[x,,...,X,_;] be the algebra of polynomials of n variables
Xg, ---» X,—y With complex coefficients, on which the symmetric group S, acts
by the permutation of the variables:

(af ) (x0s -+ +5 Xne1) = f(Xo(0ys -+ > Xon—1)) (0 € S,,)
Let ej(xg,..., X,—1) = Zogl<...<ijg,,_1 x; ...%; be the elementary symmetric

polynomial of degree j and set J, = (ey, ..., e,,),J the ideal generated by ey, ..., e,.
The quotient ring R = S/J, has a structure of an S,-module. Let n,, ...,
n,_, be natural numbers such that n =Y Z§n,. Then the product of symmet-
ric groups &, x -+ x &,  is naturally embedded in &,. By restricting to
this subgroup, R is an &, x-*x &, -module. We give a combinatorial
procedure to obtain a basis of each irreducible component of R. In view of
this construction, these polynomials such obtained might be called higher
Specht polynomials. The case ny, =n is treated in [4]. When ny=---=
n,-; = 1, this basis becomes the descent basis for R (see [3]).

As an application, we also give a similar basis for a complex reflection
group G,,=(Z/rZ) S,. Let S be the symmetric algebra of the natural
G, , representation over C. The ring of invariants S%~ is known to be
isomorphic to a polynomial ring C[e?, ..., e"”] generated by the elementary
symmetric polynomials e, ..., e” in x’s. We put R® = S/J,, where J, =
e, ...,e"). As a G,,module, it is equivalent to the regular representa-
tion. It is also known that the irreducible representations of G, , are indexed
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by r-tuples of Young diagrams A = (A?,..., A¢™Y) with Y12§|A?| =n. We
construct a basis for R” parametrized by the pairs of standard r-tuples of
tableaux (S, T) of the same shape.

After completing this paper, we noticed that E. Allen published a similar
construction of the basis for R ([1]). In the present paper, we give a different
proof for the linear independence of the higher Specht polynomials.

The authors thank the referee for quite a few comments.

1. The index r-tableaux

A partition A is a non-increasing finite sequence of positive integers
Ay =+ >4. We writt A—n when the sum Y !, 4 equals n. Conversely,
given a partition 4, Y |-, 4; is called the size of A. As is usual, a partition
is expressed by a Young diagram. Let r be a positive integer and 4 =
(A9, ..., A" D) be an r-tuple of Young diagrams. We call such a 4 an r-
diagram. The sequence of integers (n, ..., n,_;) = (|1A?),..., |A"™]) is called
the type of A and denoted by type(4). The sum n=)iin; is called the
size of A. The irreducible representations of S, x---x &, | are indexed
by the set of r-diagrams of type (ng,...,n,_;). By filling each “box” with a
non-negative integer, we obtain a tableau (resp. an r-tableau) from a diagram
(resp. an r-diagram). The original r-diagram is called the shape of the r-
tableau. An r-tableau T = (T'?,..., T"™Y) is said to be standard if the writ-
ten sequence on each column and each row of T® (0 <i<r—1) is strictly
increasing, and each number from 0 to n — 1 appears exactly once. The set
of all standard r-tableaux of shape A is denoted by ST(A). The prime (')
denotes the transposition of a diagram or a tableau. For an r-diagram
A=A, ..., A" D) and an r-tableau T =(T?,..., T" V), we define A' =
AV, A9 and T = (TCY, ..., T9), respectively.

0l3]s 2|7
T=( 116 , 4 )
2| 4 ol 1
5

Figure 1
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DErFINITION. A standard r-tableau is said to be natural if and only if
the set of numbers written in T® is {no+ - +n_y,...,no + - +n,—1}.
The set of natural standard r-tableaux of shape A is denoted by NST(A).

On the set ST(A), we introduce the last letter order “<” as follows. For
two r-tableaux T, = (T{?,..., T ™) and T, = (T{?,..., TI™) in ST(A), we
write T; < T, if and only if there exists m (0 < m < n — 1) such that if m < p,
p is written in the same box and m is written either in

(1) T and T with i<j, or

(2) k-th row of T{® and I-th row of T with k> I

ReMARK. This definition of the last letter order is different from that in [2].

A sequence of non-negative integers w = (w,,..., w,_;) is called a word.
Set |w| =Y iZow,.. For a word w, we associate a new word w = (Wo, ..., W,—;)
arranging w into the non-decreasing order. A word is called a permutation
if {Wg, ..., Ws—1} =1{0,...,n—1}. Let § denote the permutation (0,...,n — 1).
We define the index i(w) of a permutation w as follows.

(1) If w,=0, then i, =0.

2 Ifwy=iand wy=i+1,then (@) =i ifk<l, (b)ij=i+1ifk>1L
We put w' =W,_y,..., W) if w=(wp,...,w,_;). The coindex j(w) of w is
defined by i(w'). For a standard r-tableau T, we associate a word w(T) in
the following way. First we read each column of the tableau T® from the
bottom to the top starting from the left. We continue this procedure for
the tableau T and so on. Assigning the index i(w) and the coindex j(w)
of w(T) to the corresponding box, we get new r-tableaux i(T) and j(T) which
are called the index r-tableau and the coindex r-tableau of T, respectively.

0315 2|7
T=( )
116 ’ 4
0|23 1| 4
iM=C | 1|4 , 2 )
. ol1]2 1 3
J(T) = ( )
01l 2 ’ 2

Figure 2
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The following lemma is fundamental for the index and the coindex r-tableaux.

LEMMA 1. Let T be a standard r-tableau of shape A.

(1) The index r-tableau i(T) (resp. coindex r-tableau j(T)) is column
strict (resp. row strict), i.e, if (py,...,p) (resp. (qy,---,qm)) is a row
(resp. column), then p;, < -+ < p,(resp. q; << q,,) and if (q1,---> Q)
is (resp. (p1,-..,P1))) a column (resp. row), then q, <-*<gq, (resp.
Py < <p)

2 j(M)=iTYy.

(3) i(T)+j(T)=T. Here ‘+’ denotes the elementwise summation.

Proor. (1) is obvious.

(2) It is obvious if the numbers i and i + 1 appear in different components
in T. If they appear in the same component TY, then i+ 1 is written in
the box either right or lower to that filled with i. In the first case, i + 1 is
written in the upper row or the same. Therefore i + 1 is read after i in w(T)
and before i in w(T’'). The latter case is similar. (3) If w, =i and w, =i+ 1,
then iy =i, + 1 and j,=j, if I<k and j,=j,+ 1 if k<Z. In any case, we
have i, + j; =i, +j, + 1 and the statement.

2. Higher Specht polynomials and their independence

Let A be a partition of n and T be a standard tableau of shape 1. We
define the Young symmetrizer e; of T by

_I

n! aeC(T),te R(T)

er sgn(o)ot € C[S,],
where f* is the number of standard tableaux of shape A and C(T) (resp.
R(T)) is the column (resp. row) stabilizer of T. It is an idempotent in C[S,]
([2], p- 106, Theorem 3.10). For a subset I of {0,...,n — 1} of cardinality
ny, and a tableau T, of shape Ay |- n, filled with the numbers in the set I,
denote the Young symmetrizer by ey € C[S(I)], where S(I) is the symmetric
group of the set I

Let S = C[x, ..., X,—;] be the polynomial ring in variables x,, ..., X,
with complex coefficients, J, be the ideal generated by elementary symmetric
functions e;(xg, ..., X4—1) ---» €n(Xg>.--» Xp—1) and R = S/J,. For words u and
v, we define x¥ = x4°...xs-!. For standard r-tableaux S, T, we define x> =
x4 and x{® = x4

DerFINITION.  For a standard r-tableau T = (T'?,..., T"™V) of shape 4,
erw is defined in the same way as above, though each T? is not necessarily
standard. (Note that e;w is an element in the group ring of permutations
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of numbers which appear in T®) We set er = epo...eqe-n. For T, Se
ST(A), we define the higher Specht polynomial for (T, S) by

F; = F‘?(x03 [RRE] xn—l) = eT(x'I}S))'

It is easy to see that xi§) = x{® by Lemma 1 (2). The first main result
in this paper is as follows.

THEOREM 1. Fix a sequence (ng, ..., n,_,) such that Y iZgn; =n.
(1) The collection

Utype(A)=(no ..... n,q){F'ls'lT € NST(A)a S € ST(A)}

forms a C-basis of R.

(2) For an r-diagram A of type (ng,...,n,_,) and SeST(A), {F;|Te
NST(A)} forms a C-basis of &, x -+ x &,  -submodule of R which
affords the irreducible representation corresponding to A.

(3 If r=nm=10<j<n—1), then {x;*|w is a permutation} is a
Z-basis of Z[xgs ... Xn_11/(€15 -5 €,)

REMARK. Case r =1 is treated in [4]. The basis given in (3) is called
the descent basis (see [3]).

To prove (1) and (3), we introduce a pairing <,» on R and show that
the matrix (CF7!, Ff2))s, 1., 1, 1S non-singular. Here T,, T, € NST(4) and
S,, S, e ST(A). For an element fe R, we choose a lifting fe S of f. Define
<f,9> by

1

<f,g>=< 5 2 sgn(a)a(fé))Ix.,=...=xn_,=o.

e S,
Here 4 is the difference product [];<;(x; — x;). The right hand side is inde-
pendent of the liftings f, § since

% 662(:5" sgn(a)a(e;f) = ei% deZG,, sgn(@)o(f),  eilxy=r=x,_,=0 = O.

The following lemma is easy to see.

LEMMA 2.
(1) <of,g)> = sgn(o)<{f,07'g) for c € &,.
(2 <Lexfig)> =<f.erg) for TeST(A).

For two words o = (ag, ..., %,—;) and B =(Bo, ..., Bs—1), We say that o is
greater than B with respect to the lexicographic order, denoted by o > f, if
there exists an m (0 <m <n— 1) such that o; =g, forallj=m+1,...,n -1
and a, > B,.
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LemMa 3. Let a=(dg,...,%_1), B=1(Bo,---> Buy) be words and w be a
permutation such that {x%,x8» #0. Then the following statements holds.
1) e +A|/3| =n(n—1)/2, and {09+ Bos---> %1 + Pu—y} ={0,...,n — 1}.
2 a+p=0.
(3) If 4+ p =20, then for any k (0 < k <n — 1), there exists a unique p
such that o, + ﬁ}, =k fmd o, =08, B, = B..
(4) For a word w, i(w) + j(w) = 4.

Proor. (1) If |a| + |B| < n(n — 1)/2, then Y ,. s, sgn(o)xZ55 is an alternat-
ing polynomial of degree less than n(n — 1)/2. It should be zero. If |a| +

|B] > n(n — 1)/2, then %Z,,e s, sgn(o)xZih is a homogeneous polynomial of pos-
itive degree. Therefore it is zero if we put x, =+ =x,_, =0. Since o; + f;
are distinct, we get the statement.

(2) Assume that there exists an m (0 <m <n — 1) such that &; + 3, =j
(m+1<j)and &, + B, <m. If&,(j)+B,U)=j forj=m+1, ..., n—1, then
8oy = &1 and [?,(j) = ﬁ, Therefore there exist no k, =0, ..., m such that
& + By = m, which contradicts (1).

(3) Since {ay + Bo,..-s 0y—y + Pu—y} ={0,...,n — 1}, we find a unique o €
&, such that o, + f,;) =i (i=0,...,n—1). The inequality sa <& =0 —
[}gé—aﬁ=aa implies oa = 8, of = p.

4) If w, i(w) and j(w) are written as w = (Wg, ..., W,y ), i(W) = (igs - -5 ipn-q)
and j(w) = (Jjg, ..., Jjs—1) respectively, then w, <w, implies i, <i, and j, <j,.
This implies i(w) + j(w) = 6.

Since the boxes in A are numbered by T € NST(A), the symmetric group
S, can be identified with the permutation group of boxes in diagram in A.
For S e ST(A), the group of permutations which stabilize i(S) (resp. j(S)) can
be identified with a subgroup Stabi(i(S)) (resp. Stab(j(S))) of S, via the
identification given above. Now we are ready to state the following properties
for the pairing of higher Specht polynomials.

PROPOSITION 1.

(1) Let S,, S, be elements of ST(A) such that i(w(S,)) = i(w(S;)) and
S, <S, with respect to the last letter order. Then (Ff',F:) =0
for T e NST(A).

(2) Let h.= #(C(T)N Staby(j(S))) and h, = # (R(T)N Staby(i(S))), where
C(T) = C(T®) x -+ x C(T*™V), R(T) = R(T®) x -+ x R(T*™D).
Then we have

20 fl(r -1)
(FS, FE> = sgn(T, S)n'gm———rh,hc

0....n,_1.
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Proor. For simplicity, i(w(S)) and j(w(S)) are denoted by i(S) and j(S)
respectively.  Since xi%) = xJ®, by the definition of higher Specht polynomials,
we have

20 f A1)

(2.2) (F3, F%y = (xS, gDy,

n()! . n,_1! aeC(T),te R(T)
Suppose that S; < S, and (x} 'SV x3 /8% « 0 for ¢ € C(T), 1€ R(T). As-
sume that all the numbers from m + 1 to n — 1 are written in the same boxes
of S, and S,, respectively, and the number m is written in the different places
in S; and S,. Let b,.{, ..., b,_; be the places where the numbers m + 1,
..., n—1 are written on S; and S,. For k>m, let i(S¥), j(S¥) and T®
be the r-tableaux obtained by removing boxes by, ..., b,_; from i(S,), j(S,)
and T, respectively. First we prove the following (4,) for m+ 1 <k<n-—1
by descending induction on k.

(Ax) the numbers written on b, in r-tableaux t7!(i(S,)) and
671(ji(S,)) equal the numbers i(S,), and f(S,), respectively.
(Here o € C(T) and 7 € R(T) act as permutations of boxes.)

For an r-tableau S, I > 0, let Supp(S, I) be the boxes where I is written. Since

R(T)(Supp(i(S,), i(81)n-1)) N C(T)(Supp(j(S5), /(S2)n-1)) = {ba-1},

(A,-,) holds by Lemma 3 (3). (i(S,)=i(S,) implies i(S;)+j(S,) =0 by
Lemma 1 (3) and Lemma 3 (4)) By the induction hypothesis, the numbers
f(Sl),,H, e f(Sl),,_1 (resp. f(Sz),‘H, cee f(Sz),,_l) are already used to fill the
places by,,, ..., by_; of T71(i(S;)) (resp. e *(ji(S,))). Therefore the r-tableaux
i(S®) and j(S¥) should be filled with the numbers i(S,),, ..., i(S;) and
7(S2)1s --.» J(Sy) respectively. Since

R(T®)(Supp(i(SP), i(S; ) N C(T®)(Supp(j(SY), /(S2))) = {be},

(4,) holds by Lemma 3 (3). This completes the proof of (4;) for m+ 1 <
k <n—1. By the inequality with respect to the last letter order, we have

R(T™)(Supp(i(S{™), i(S1)m)) N C(T™)(Supp(j(S5), j(S2)m)) = B.

This contradicts the assumption (xi 'SV, x2.'/62% £ 0 and completes the
statement (1).

In the case S; =S, =S, the summation (2.2) vanishes unless ¢ € C(T)N
Stabr(j(S;)) and T € R(T) N Staby(i(S,)). In this case, {(x§ "® x3 Y =
sgn(S, T). Thus we complete the proof the proposition.

The following two lemmas can be found in literature (e.g. [2]).
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LEMMA 4. For tableaux T,, T,, we define the last letter order in the same
way. Let Ty, T, be standard tableaux of the same shape A of size n. If
T, < T, with respect to the last letter order, then er er, = 0.

Proor. For a standard tableau T, set Hy = ) ,.gmno and Vp =
Y secaySgn(o)e. We prove Hy Vr, = 0 by induction on the size n. Forn =1,
it is obvious since there is only one tableau. We assume the case where the
size is n — 1. By taking off the box filled with the number n from T; and
T,, we get tableaux T* and T}*. If the shape of T;* and T;* are the same,
then, by the induction hypothesis, we have Hr+Vpx =0. Note that

HT1 =0+ (P,n+ " +(ps n))HTf,
VTz = VT;(1 - (ql’ n) i (qs! n))’

where p,, ..., p. (tesp. q,,...,q,) are all the numbers which appear in the
same row (resp. column) as n in T, (resp. T,). If the shapes of Ti* and T;*
are different, by the definition of the last letter order, T* > T;* with respect
to the lexicographic order. Therefore there exists (p, g) which belongs to the
same row in T;* and the same column in T5* ([5] p. 94, combinatorial lemma).
Hence, we have

HT; VT; = HTT(P, 9 Vs = _HT'; Vrs
As a consequence, we have
HT’; VT; = 0.

LEmMMA 5. Let {T;},.;<;» be the set of standard tableaux such that
erer, =0 if i<j We write T,=0,T, (5;€S,). Then {ger } is a basis of
C[S,]er,.

PrOOF. Since the dimension of C[&,]er, and the number of standard
tableaux of shape 4 are both f# ([2]), it is sufficient to prove the independence.
Suppose Y /2, c;0.er, =0. We prove that ¢; = - = ¢, = 0 by induction on k.
Under the induction hypothesis, we have the equation 0 = eTk“(Z coier) =
Zcierk“eno’i = Ck+1€1, ., Ok+1-

Now we return to the properties of higher Specht polynomials.

PrROPOSITION 2. Let T,, T, be elements in NST(A). If T, >T, with
respect to the last letter order, then
CF, F5Y =0,

Proor. By the definition of natural standard tableaux and the last letter
order, there exists a number m such that T{™ > T/™ with respect to the last
letter order. Note that er,er, = epgere [ [;mervery = 0.
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ProOF OF THEOREM 1. (1) To compute the “Gramian” of the pairing
{,» with respect to {Ff} and {Fy.}, we introduce a total order “<” on the
set NST(A) x ST(A). For two elements (T, S,) and (T,,S,) of NST(A) x
ST(A), (T}, S,) < (T, S,) if and only if

(1) T, > T, with respect to the last letter order, or

2 T,=T, and f(Sl) < f(Sz) with respect to the lexicographic order, or

(3) T,=T,,iS,)=i(S,) and S, < S, with respect to the last letter order.
Then by Proposition 1 and 2, we have (F%;,Ff,::) =0 if (T;,S;) <(T,,S,)
and (F§, F¥) is a non-zero rational number. Thus the Gramian with respect
to {F{} and {F§} is a non-zero rational number.

Since if the shapes of T, and T, are different, (F%;,Fffp =0 and the
cardinality of [[,NST(4) x ST(A) equals n!, the collection

Utype(A)=(no ..... n,-n){Fng € NST(A)’ Se ST(A)}

forms a basis for R.
(2) We use Lemma 5 and

oFf = cerxi®

= gepa 1xiP

_ i(S
- ed’Txd(T)

= Ff’r

to conclude that Y r.ysrsCFf =C[S,, x =" x &, 1F}, where T, is the
minimum element in NST(A) with respect to the last letter order.

(3) In this case, the values {F3, Fy.) are +1 by Proposition 1 (2). Hence
we can see that {F{} forms a Z-basis of Z[x,..., X,—11/(€15---,€p)

3. An application to wreath products

Let T=(Z/rZ)" and ¢,€ Hom(Z/rZ,C*) be a character defined by
@,(x(mod r)) = exp(2mixa/r). Then an element ¢ € T = Hom(T,C*) can be
written as

O = Pag..ap_y = P @ H @, .

Let n; be the cardinality of {pla,=j}. We call the sequence (n,,...,n,_;)
the type of the character ¢, ., ,€ T. Conversely, for a given sequence
(no ..., m,—y) such that Y 7Zin,=n, the character @®"o"-v jis defined as
®ag...a,_,» Where a;=j if YJiZon,<i<¥Ji_,n,—1. The wreath product
G,,=(Z/rZ) S, is defined as the semi-direct product &,x T. The group
(S,, x xS, )x T is regarded as a subgroup of G, , by identifying the
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group &, with the permutation group for the set of numbers {il} 7 -on, <
i<yl on,—1}. Let A9, ..., A*" be Young diagrams of size ny, ..., n,_;,
respectively. For representations V*%, ..., V" of &, , ..., S, _,, respec-
tively and a character ¢™o"-1, set

0) r-1)
V,= Indg:;x'"x en,_le(Vl = VA E(p("o »»»» "r—l))’

where 4 = (A, ..., A"Y). It is known that all the irreducible representations
of G,, are obtained in this way, and that two representations V, and V,,
are isomorphic if and only if 4, = 4,. A representation space W of G, , is
decomposed as W = @, +W,, where W, = {ve W|tv =£p(t)v for all teT}.
The symmetric group &, acts on the character group T. It is easy to see
that V, is decomposed into

VA = @ge [CHACHES SRR Gn,_,g(VAﬂP)’

with g(V, ,) =V, ,,- By the definition of the induced module, for an element
g€ S, V,,, becomes a g(S, x -+ x enr_l)g“-module and the following dia-
gram commutes:

-1

S, X xS — 9SG, x xS, )9

Ry

Aut(V4,,) —_ Aut(V 4 4,)-

DerFiniTION. Let T, S be elements in ST(A). We define the higher
Sprecht polynomial F§ for G,, by

r—1 j
Pt o) = Bt 5t T (I, %)
j=0 \me TV

Here F§ is the higher Specht polynomial defined in §2.
Let STP be the union U, ST(A) x ST(A).

THEOREM 2.

(1) The ring of invariants C[x,, ..., X,—; 1 of S = C[xo, ..., X,_1] under
the natural action of G, is the polynomial ring of e, ..., e¥, where
e\ is the j-th elementary symmetric function of x§, ..., X_y.

(2) The set {F§|(T,S)e STP} is a basis for R = S/(e?, ..., e?"), and for
a fixed S € ST(A), the set {F$|S € ST(A)} spans an irreducible represen-
tation of G, , over C.

(3) The set {F§|(T,S)e STP} forms a free basis of S over S, and for
a fixed S € ST(A), the set {F§|S € ST(A)} spans an irreducible represen-
tation of G,, over SCrn.
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Proof. (1) Since C[xo,...,X,_1]7 = C[x§, ..., x._,], it reduces to the
fundamental theorem of symmetric functions. The statement (3) is a direct
consequence of (2). Therefore we prove (2).

The space R” = S/(e?, ..., e") is known to be isomorphic to the regular
representation, and for a character @ay...a,_, Of T of type (no, ..., n,_y), Rg:O s
is the subspace C[xg, ..., X;- 1]/(e"’ ...,ef,")']_[;';é x% of R”. Let ge S, be
given by (a) a,, = j for YJon, < i < YJ_on, — 1 and (b) g()) < g(k) if

Ihm, <0 < k < Yhon, — L Since ggtermd — g, RO
becomes a g(S,, x +* % &, )9 '-module. In Theorem 1, we considered the
action of &, x--x &,  on C[xg,...,x;_11/(D,...,e). To apply this
theorem, we should consider the action of g(&,, x - x 6,,'_1)g“1. Let
NST(g, A) be the set of r-tableaux T = (T?, ..., T"™Y) such that the number
j is filled in the tableau T® if j = g(k) with ) ;0on, <k <Y'_,n,— 1. Then
by Theorem 1, we have the following.

(1) The collection
Usypettr=tron...m oA F2IT € NST(g, A), S € ST(A)}

forms a basis for R<" -

(2) For a fixed SeST(A) {F |T e NST(g, A)} spans the irreducible
representation V*“®---@ V" of ¢(S, x - S, )9 . There-
fore the collection

Unypety=tron...m, o LE3IT € ST(A), S € ST(A)}

spans the irreducible representation V.
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