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Exponential integrability for Riesz potentials of functions
in Orlicz classes
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AsstrACT. Our aim in this paper is to show the exponential integrability for Riesz
potentials of functions in an Orlicz class. As a corollary, we show the double
exponential integrability given by Edmunds-Gurka-Opic [3], [4].

1. Introduction

For 0 < « < n, we define the Riesz potential of order a for a nonnegative
measurable function f on R” by

Rf(x) = j x =y () dy.

In this paper, we give the following theorems, which deal with the limiting
cases of Sobolev’s imbeddings.

THEOREM A. Let f be a nonnegative measurable function on a bounded
open set G = R" satisfying the Orlicz condition

L S llogle + /()] [log(e + log(e + £ (7))} dy < oo (1.1)

for some numbers p, a and b. If op=n, a<p-1, f=p/(p—1—a) and
y=»b/(p—1-—a), then

JG exp[A(Ryf (%))’ (log(e + R.f (x)))"]dx < o0 forany 4 > 0. (1.2)

In case a = b = 0, inequality (1.2) is well known to hold (see [1], [9], [12],
[13]). The case a<p—1 and b =0 was proved by Edmunds-Krbec [5] and
Edmunds-Gurka-Opic [3], [4]; see also Brézis-Wainger [2].

In view of Theorem A, we see that (1.2) is true for every f > 0 (and y > 0)
when a=p—1. In case a>p— 1, we know that R,f is continuous on R”
(see [7] and [10]).
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In case a=p— 1, we are also concerned with double exponential inte-
grability given by Edmunds-Gurka-Opic [3], [4].

THEOREM B. Let f be a nonnegative measurable function on a bounded
open set G = R” satisfying the Orlicz condition

Lf@%%@ﬁ%MWW%QH%Q£KMW@<w

for some numbers p and b. If ap=n, b<p—1 and p=p/(p—1—0>b), then
J exp[4 exp(B(Ruf(x))ﬂ)] dx < oo  forany A >0and B> 0. (1.3)
G

In case b > p — 1, R, f is continuous on R” (see [7] and [10]), so that (1.3)
holds for every g > 0.

2. oa-potentials

For a nonnegative measurable function f on R”, we see (cf. [8, Theorem
1.1, Chapter 2]) that R,f # oo if and only if

[+ b= ay < o

Hence it is seen that R,f # oo when f is integrable on R”.
We deal with functions f satisfying the Orlicz condition:

[esrona@ <. @)

Here &,(r) is of the form rPp(r), where 1 <p< oo and ¢ is a positive
monotone function on the interval [0, 00) of log-type; that is, ¢ satisfies

M g(r) < o(r*) < My(r) for any r > 0. (2.2)
Here we note (see [8]) that if § > 0, then there exists M = M(d) for which
s°p(s) < M°p(t) whenever ¢ > 5 > 0. (2.3)

If ¢ is nondecreasing, then we have for n > 1,

n , 1/17' , 1 1
(J o(r) P Pr! dr) > g(n)~"?(log )", Sty=L (2.4)
1
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Throughout this note, let G be a bounded open set in R”. For a

measurable set £ < R", denote by |E| the Lebesgue measure of E, and by

B(x,r) the open ball centered at x with radius r. Further we use the symbol C
to denote a positive constant whose value may change line to line.

LemMa 1 (cf. [8, Remark 1.2, p.60]). There exists C > 0 such that
J |x—y|*™dy < CIE|"  for any measurable set E = R".
E

Proor. Take r = 0 such that |B(0,r)| = |E|, that is,
anr" = |E|

with o, denoting the volume of the unit ball. Note that

L =y dy j I — y*" dy

B(x,r)

= (now) (/o)

= 1o, (|E| /on)"/"
— na—la_'ll—a/nlEIa/n.

LemMaA 2 (cf. [7]). Let ap =n. If f is a nonnegative measurable function
on G and n =2, then

J{yeG:1<f(y)<r]} b= yITf0)dy < C( J:I o)t dr )‘/P' (JG Dp(f(»)) dy) 1/P,

where 1/p+1/p' =1 and C is a positive constant independent of f and 7.

Proor. For each positive integer j, set
E={yeG:f(y)>1,27n < f(y) <27*p}.

Then we have by Lemma 1

j = (0) dy < 294y j X — " dy < C2In| B,
E E
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Hence Holder’s inequality yields

J Ix —y*7"f(y) dy
{reGi<f(y)<n}

-y j = 7 () dy
7 YE
<CY " 27p|E'
J

1/p

IIA

1/p'
C (Z ¢(2"n)""/”) (2(2"77)”(0(2"'7)IEJI)
J

J
1/p

C(J:’ ¢(r)—1”/pr—1 dr>l/pl (J{yEG:l<fU)<”} D,(f(»)) dy) ,

where the sum is taken over all j such that 27+ > 1. Thus Lemma 2 is now
proved.

IIA

3. Exponential integrability

We prepare some lemmas which are used to establish exponential
inequalities for Riesz potentials.

LemMA 3 (cf. [5], [6]). Let B> 0 and u be a nonnegative measurable
function on G. Then

J expldu(x)f]dx < 0 for every 4> 0
G

if and only if

1 o\
ql_ugj m(JG u(x) dx) =0.

LemMMA 4 (cf. e.g. [13, p.89]). Let f be a nonnegative measurable function
on G. If >0, then

/¢

(JG [Ruf (x)]% dx)l/qz < Cg' V2 (L fo)* dy)
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o 1-

1
whenever 1 < q < g2 < © and — — —
q n 92

0 . ..
, where C is a positive constant

I\

independent of qi, q» and f.

In view of Lemmas 1, 2 and 4, we have the following result.

COROLLARY 1. Suppose ¢ is nondecreasing. If 5, >n; >2 and ¢ >p=
n/o, then

(JG (Rof (x))? dx>l/q < Cny

) Pl /4
+C(Jl poy r> J{yeG:r/1<f()’)<rlz} BN

1/p
D,(f () dy) .

1/p

+ Cq'7 [p(n)) 77 (J
{reG:f(y)zm}

In fact, it suffices to note from Lemma 4 that

q l/q
( j (j ) dy) dx)
G \J{yeG:f(y)2m}

1/p
< Cq'/? ( J foy dy)
{reG:f(y)zn,}

/p
< Cg P [p(m)) ™" <J{yeG~f(y)Zr]} Pp(f (y))dy) :

THEOREM 1. Let ¢ be a positive nondecreasing function on [0, ) of log-
type such that

L (") 7 PrVdr = 0. (3.1)

Let  be a positive monotone function on [0, ) of log-type which satisfies one of

the following conditions for f > 0:
(i) Y is nondecreasing and

e 1/p
lim sup q'l/ﬂY’((logq)_l)<j o(r)?/Pr1 dr) < 00, (3.2)
g—® 1
where

Y(©O)=sup roY(r) <o  ford>0. (3.3)
r>1
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(i) y is nonincreasing, lim, o Y(r) =0 and

et /4
lim sup ¢~ Ay(q) (J o(r)?/Pr1 dr) < . (3.4)
g—o0 1

If ap = n and f is a nonnegative measurable function on G satisfying (2.1), then

J exp[A(Raf(x)lll(R,,f(x)))ﬂ] dx < oo  forevery A>0.
G

Proor. First we consider the case when ¥ is nondecreasing. If
p<qg<o and 0 <d <1, then we have by (3.3)

1/q 1/q
(] [Raf(X)l//(Raf(x))]”dx) < ¥() ( || Resece dx) .
{xe G:R. f(x)>1} G

Hence we establish by Corollary 1

([ treseomirarearas)” s wwiare + v ([ o ae)

2 ¥/ 4 1/p
<c+ cm){n, ([ ey eriar) (j{ oo ¢p(f(y))dy)
1/p 1-:6
+ 47 [p(n)] 7 (J ®,(f () dy) }

for 7, >n, > 2. If we take 57, =€ and J = (logq)_l, then we have by (2.4)
and assumption (3.2)

{reG:f(y)zm}

1/q
q"/ﬂ(JG[Ruf(X)'//(Raf(X))]qu) < Cri¥((logg)™)g ™

l+(logq)'l

1y
+ c{ ¥((logg) " )g~* (r o(r) 7 /7r! dr) | }
1

(1+(logg)™")/p
x (j 2,00 d
{reGfy)zm}

< Cni¥((logg) g # + C ( J D,(f(»)) dy

(14(logg)™") /p
{reG:f(»)zm} )
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for ¢ > logn;. Therefore it follows that
1/p

lim sup G)W ( JG[RO, F)W(R, f(x))]qu)l/q < C(J{yecm;m} D,(f(») dy) ;

g—®©

which implies that the left hand side is equal to zero, by the arbitrariness of #,.
Next we consider the case when Y is nonincreasing. We have by (2.3)
with ¢ =y

(J RS N (Raf )N dx>l/q

1/q
< Cmy(m) +y(m) (J [Rof ()] dx)

{xeG:R.f(x)2m}

for n; > 1. If ¢ >#n; > 2, then we have by Corollary 1 and (2.4)

(JG[Raf(X)]"dx)l/q

el 1/p 1/p
éCm+C(J «»(r)—"/”r-‘dr) (j fbp(f(y))dy) ,
1 {eG:fy)zm}

so that

(JG[Raf(X)ll/(Raf(x))]"dX)l/q

el , 1/p 1/p
éCmtl/(mHCl//(m)(Jl w(r)‘”"r—‘dr) (]{ o }asp(fcy))dy) .
yea: =M

Now we take 7, = ¢'/# to obtain by (2.2) on ¥ and (3.4)
im (2)” (] ks a) <o
79— \q G

Now we obtain the required assertion from Lemma 3.

COROLLARY 2. Let f be a nonnegative measurable function on a bounded
open set G < R" satisfying (1.1) when 0<a<p—1 or when a=0 and
b=0. If op=n, then

J exp[A(R.f (x))P(log(e + R,f (x)))"]dx < 0 forany A >0
G

with f=p/(p—1—a) and y=b/(p — 1 — a).
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PrOOF. Let ¢(r) = [log(e + r)]“[log(e + log(e + r))]’ for 0<a<p—1.
Then

! 1/
C—lq(p—l—a)/p(log q)—b/p < (J q)(r)_”'/”r‘l dr) < Cq("‘l_“)/”(log q)—b/p
1

for g > e, so that (3.1) holds. If b <0, then (3.4) holds for f=p/(p—1—a)
and y(r) = [log(e + r)]*?.
On the other hand, if y(r) = [log(e + r)]° for ¢ = 0, then we see that

o A 40) o
for 0 <d < 1, so that

Cy(q) < P((logg)™) < CyY(q) 3.5)

for all ¢ >e. Thus, if 5>0, then (3.2) holds for f=p/(p—1—a) and
¥(r) = [log(e +r)]*””. Corollary 2 now follows from Theorem 1.

REMARK 1. If ap = n and (3.1) does not hold, then it is known (cf. [7] and
[10]) that R, f is continuous on R”, so that the conclusion of Theorem 1 is true
in this case, too.

Next, let ¢ be a positive nonincreasing function on [0, c0) satisfying (2.2).
LemMmA 5. If ¢ > 0, then

p(e?) < Ct'lip(t)  forallt > 1. (3.6)
Proor. We first show that

(M%) < Mp(r)  forallz> 1, (3.7)

where M is a positive constant in (2.2). IIf 1 <t < M9, then (3.7) is trivially
true, since ¢ is nonincreasing. If [M9)> <1< [M?*" for a positive integer
m, then we have by (2.2)

Mig(t) = M¥ p(IMIT) 2 M¥ "p(M7) 2 p(MY),

from which (3.7) follows. Since (3.6) follows from (3.7) with the aid of (2.2),
the present lemma is proved.

LemMa 6. lim, . [p(e?)]"/9 = 1.

Proor. If g =2" for a positive integer m, then (2.2) implies

p(M*") 2 M™™p(M),
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so that
oM 2 [p(M7)]" = M~ (M)
Hence it follows that
lim [p(M>")]/*" = 1,
which implies
lim [p(M))!/* = 1. (3:8)

Now it suffices to see that the required assertion is equivalent to (3.8) with
M>1.

THEOREM 2. Let ¢ be a positive nonincreasing function on [0, ) of log-
type. Let Y be a positive monotone function on [0, o) of log-type which satisfies
one of the following conditions for f > 0:

(i) W is nondecreasing and

lim sup g~"/#+/7 ¥ ((log ) ™")[p(e?)] " < w0 (3.9)

g—®©

with ¥ given by (3.3);
(ii) ¥ is nonincreasing, lim, .o, Y(r) =0 and

lim sup g~ '/#+1/7y(g) p(e)] 7 < oo. (3.10)

g—©

If ap = n and f is a nonnegative measurable function on G satisfying (2.1), then

I explA(Rof (X)¥(R.f (x)))? J]dx < o0 for every A > 0.
G

Proor. First we consider the case when y is nondecreasing. Let g be a
nonnegative measurable function on G satisfying (2.1). If p<g < oo and
0 <d <1, then we have by (3.3)

1/q /g
<J lRag(x)w(Rag(x))l"dx) 440 (J [Rag (x))70+0 dx)
{xeG:R.g(x)>1} G

If0<d<p’—1,q=p—1/q and g, = q(1 +6), then Lemma 4 implies that

(JG[Rag(x)]‘h dx)l/qz < gl ( J o) dy)l/q,
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for large q. Note by Lemma 1 that

Ruf(x) < Cr +j L

{reGf)zn

for n > 0. Hence

(i) sevocin|

1/q1
f»* dy) (3.11)
{reG:f(y)2n}

for large q. Note by Lemmas 5 and 6 that

11 < Clp(e?)] ' #o(t) = Clp(e?)] ' @,(t)  fort>1 (3.12)
and
[p(eN] ™ < Clp(en)) 7. (3.13)

Collecting these facts, we have

(JG[R“f (x)¥(Rof (x)))? dx)l/q

1/q
< my(m)|G|" + ¥ () (J [Rof (x)]41+) dx)

{(x€ GRS ()>m)
1/‘11 1+9
< Cmy(m) + CPO) m +q'7 (J f)" dy)
YeGrO)Zm}

1/q1 1+9
< Cmy(m)+C Y’(c?){m + 4" [p(en)]) /0 (J ®,(f()) dy) }

{reG:f(y)zm}
< Cny(my) + CE©Om™

(140) /¢
+ C(P(0)g 7 [p(e?)] /7)1 (J @,(f(»)) dy)

{reG:fy)zm}

for #, > 1 and sufficiently large g. Consequently, if we take 6 = (logg)~", then
it follows from (3.9) that

gq—0

_ 1\ .\ lip
fim sup(a) (JG[Raf(X)l//(Raf(x))] dx) < C(J{yewgm ¢p(f(y))dy> .
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Because of the arbitrariness of #;, we find
O\ 1/q
lim (-> (L[Raf(x)nlz(Ra f(x))]"dx) ~0.

49— \gq

Next we consider the case when Y is nonincreasing. 'If # > 1, then we
have by (2.3) with ¢ =, (3.11), (3.12) and (3.13)

(J SR W (Raf ()] dx)l/q

1/q
< Cry(n) + ¥ (n) (]{ i [Raf(X)]"dx)

xeG:Rf(x)2

1/111
@,(f(») dy) }

1/q1
D,(f()) dy)

< Cny(n) + Cy () { 1+ g7 [p(e?)] 7 (J

{reG:f(y)2n}
< Cny(n) + Cy(m)q"? [p(e?)) /7 (J
{reG:f(y)zn}

for ¢g>p and q =p—1/q. Now we take 7 = ¢'/# and obtain by (2.2) on y
and (3.10)

lim (}I)W ([ Rermwirescon dx)lm: 0.

g—o
Thus Theorem 2 is obtained by Lemma 3.

COROLLARY 3. Let f be a nonnegative measurable function on a bounded
open set G = R" satisfying (1.1) when a<0 or when a=0 and b<0. If

op=n, f=p/(p—1—a) and y=>b/(p — 1 — a), then
j explA(Rof (%)) (log(e + Ruf(x)))']dx < o0 forany 4 > 0.
G

In fact, let
o(r) = [log(e + )] [log(e + log(e + )]’
for a £0 and
¥(r) = log(e +n)]""”.

If =0, then (3.5) gives (3.9), and if b < 0, then (3.10) clearly holds. Thus
Corollary 3 follows from Theorem 2.

ProOF OF THEOREM A. Theorem A follows from Corollaries 2 and 3.
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4. Double exponential integrability

In this section, we discuss the double exponential integrability as another
application of our arguments.

LeMMA 7. If a > e, then

i m Ca
Zﬁa”'(logm) <a*‘

m=0 """

Proor. Take a nonnegative integer mp such that
@ —-1<my=<d

Then we have

SB mo 1 m
Zo—!a”'(logm) §Zoﬁa’"(210ga)

For m = my, set
1
Am = — a"(logm)™.

If m4+12=mp+1>a®>e, then, since (logt)/t is decreasing on (e, 00), we
have

Amy1 _alog(m+1) (log(m + 1))’”

Am m+1 logm
< alog(a?) (log(m +1)\"
= a logm

_ 2loga (log(m+ 1)\"
T a logm '

Note here that

lim (lo_g(m_+_l_)) =1,

m—oo logm

so that
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when a is sufficiently large. In this case,

0
1 m
> — a"(logm)" < Ay, < a*.
m=my+1
Now the present lemma is obtained if we take C sufficiently large.

THEOREM 3. Let ¢ be a positive nondecreasing function on [0, o) satisfying
(2.2). Suppose ap =n and there exists f > 0 satisfying

e 1/p
lim sup (log g) "'/ (J o(r) 7 /7r ! dr) < o0. 4.1
1

g—o0
If f is a nonnegative measurable function on G satisfying (2.1), then

J exp[4 exp(B(Raf(x))ﬂ)] dx< oo  forany A > 0and B> 0. (4.2)
G

Proor. In view of Lemma 3, it suffices to show that

1/
lim 1( JG[exp(B(Ra f(x))ﬂ)]‘fdx> o (4.3)

g—w g

for any B> 0. By the power series expansion of ¢*, we have

| B @Prax= > B0 | ResPmax (44

m=0 """

It is seen from Corollary 1 that

(] worcopm dx)”ﬁm

, 1
< Cro+ c( [ oy 7ier dr) | &,(/ (7)) dy
1 {reGny = f(y)<n}

+ C(Bm) 7 [p(m)] 7 (j

1/p

{reG:f()2n}

1/p
D,(f(») dy)

whenever 2 < 5y <7 < oo and m = 1; Corollary 1 in fact gives the inequality
when fm > p, and we apply Hoélder’s inequality to obtain the inequality for
smaller m. If we take # = €/, then it follows from (2.4) and assumption (4.1)
that

1/pm
( [ (R dx) < Cry + CEyllog(e + m)]',
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where

1/p
Fy, = (J () dy> .
{reGn=f(»}

Consequently it follows from (4.4) that
j [exp(B(Rof (x))))? dx < |G| + Z )"(Cr1g + CFy,[log(e +m)] /7)™

Taking a positive integer my depending on 7, for which

nlo < Fy,[log(e + mo)] "%, (4.5)
we have by Lemma 7
o 1
|, exp(B(Raf ()1 S161+ 3 5 (B (CFY Togm)™

+ Z L (BCFﬂqlogm)

m—mo+1

< eP(CF£, logmo)™ + (BCFf, q)Pne

for g with BCF;‘Ig0 q > e. Now, taking 7, so large that BCF,’?O <1 and then
taking my for which (4.5) holds, we obtain (4.3), as required.

ProOF OF THEOREM B. Let ¢(r) = [log(e + r)}’ ' [log(e + log(e + r))]* (for
large r). If b<p—1, then

U , 1/p
(J p(r) 7 /Pr! dr) ~ [log(log )] “¥#/P+V/P = [log(log 7))~ ~2)/7
1

for sufficiently large #. Hence (4.1) holds for f=p/(p —1—b), so that
Theorem 3 gives Theorem B.

5. Sharpness of § in case p=n

(I) For 6 > 0, consider the function
u) = [ el o)y
B(0,1)

with

fO) = Iy 'flog(e/I¥))’"  forye B(0,1).



Exponential integrability 369
Then f satisfies
| r0rioge+ o) dx < 0 (5:1)
B(0,1)
if and only if n(d —1)+a < —1. We see that

ux) 2 C I dy 2 Cllog(e/ )
{reB(0,1):[y|>2Ix[}

for |x| < 1/4. Hence, if fo > 1, then
J exp[u(x)ﬂ] dx = 0. (5.2)
B(0,1)

If 8> n/(n—1—a), then we can choose J such that
1/p<dé<(n—1—a)/n.

In this case, both (5.1) and (5.2) hold. This implies that the exponent f in
Theorem A is sharp.
(II) For 6 > 0, consider the function

ww=j =y () dy
B(0,1)

with
f) =y log(e/|y])] " log(elog(e/I¥))I’!  fory e B(0,1).
Then f satisfies

L(o ) f)"llog(e +£(»)]" ' [log(e + log(e + f(W))Pdx < 0 (5.3)

if and only if n(6 —1)+b < —1. We see that

ux) 2 C | DI/ () dy 2 Clog(elog(e/IxI))F
{reB(0,1):|y|>2|x[}
for |x| < 1/4. Hence, if o > 1, then
J explexp(u(x)?)] dx = oo. (5.4)
B(0,1)
If B> n/(n—1->b), then we can choose J such that
1/p<d<(n—1->b)/n.
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In this case, both (5.3) and (5.4) hold. This implies that the exponent f in
Theorem B is sharp.

REMARK 2. For a<n—1 and é > 0, consider the function

u) = [ =)y
B(0,1)
with
) = vl flog(e/Iy))]" " [log(elog(e/|y])) " for y € B(0,1).

Then f satisfies

J B(0

if and only if n(6 —1)+b < —1. We see that

l)f(y)"[log(e +f )] log(e +logle +f(¥)))Pdx < 0 (5.5)

u(x) = C j Y () dy

{reB(0,1):|y|>2|x[}
> Cllog(e/|x|)]'"" /" [log(elog(e/|x]))]*"

for |x| < 1/4. Hence, if f=n/(n—1—a) and B(6—1)+y >0, then

J explu(x)? (log(e + u(x)))"]) dx = oo. (5.6)

)

If y>(b+1)/(n—1—-a), then we can choose J such that

(n=b-1)/n>6>B-y)/f=n—-(n-a-1)y)/n

In this case, both (5.5) and (5.6) hold.
Thus we do not know whether the exponent y in Theorem A is sharp or
not.
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