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ABSTRACT. In this paper we show that all the global solutions for some semilinear

parabolic equations naturally contain a Palais-Smale sequence as a subsequence and

then we apply a global compactness result due to Struwe [16] to the Palais-Smale

sequence. Furthermore, the finite-time blowup problems are discussed.

1. Introduction

In this paper, we are concerned with the following mixed problem to
semilinear parabolic equation:

ut(t,x) - Au(t,x) = \u(t,x)\p-lu(t,x], (t,x) 6 (0, T) x Ω, (1)

n(0,x)=Hb(x), xeΩ, (2)

^ = 0, fe(0 ,Γ) . (3)

Here 1 < p < (N + 2)/(N - 2) and Ω c RN(N > 3) is a bounded domain with
smooth boundary dΩ. In the case when 1 < p < (N + 2)/(N — 2) we can treat
the lower dimensional case N = 1,2, but for simplicity we restrict our attention
to the above mentioned case. For large initial data UQ in some sense, it is well-
known that the solution u(t,x) to the problem (l)-(3) blows up in a finite time
(see Ikehata-Suzuki [9], Ishii [10], Levine [11], Otani [13], Tsutsumi [18], and
Payne-Sattinger [14]), meanwhile for small initial data, exponentially decaying
solutions are obtained (see [9] and the references therein). In this paper, we
are interested in the solutions to (l)-(3) which neither blowup nor decay. We
proceed our argument based on the following local well-posedness theorem due
to [9] (see also Hoshino-Yamada [7]). In the following, \\>\\q (1 <q < oo)
means the usual real L9(Ω)-norm.
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PROPOSITION 1.1. For each UQGPΪQ(Ω), there exists a maximal existence

time Tm > 0 (possibly Tm = + cc) such that the problem (l)-(3) has a unique

solution u E C([0, Tm}\HQ(Ω}} which becomes classical on (0, Tm). Furthermore,
if Tm < + 00, then

oo

and in particular, in the case when 1 < p < (TV + 2) /(TV - 2) one also has

lim||Ftt(ί,.)||2

Set

(u) = \\Vu\\2

2 -\\u\\

dp = inf J(υ) = inf I sup J(λv) I υ e JSΓ\{0}1.
VE^ U>o J

It is easy to show that the potential depth dp is positive (see Sattinger [15])
using the Sobolev continuous embedding X -̂> Lp+l(Ω). The stable and

unstable sets are defined as usual:

W = {ueX\J(u)<dpJ(u)>0}V{0},

V={uεX\J(u) <dpj(u) <0}.

Furthermore, for later use we define the following notation.

E = [u E X I -Δu = \u\p~lu in Ω, u\dΩ = 0},

£* = {u e 21>2(RN) I -Δu = \u p~λu in RN],

El = {ueE* u>0 in RN},

RN

Here ®1>2(RN) denotes the closure of C£(RN) with respect to the norm
||Fw||L2(^). In the case when p— (TV-h 2)/(TV - 2), because of the Sobolev
embedding SΊIwll^+i^Λr) < H^wll^^^) for ue@l'2(RN), one also has
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d* = dp = inf (sup J*(λυ) I v e Sl>2(RN)\{0}\ = ±-SN > 0.
U>o J ΛV

REMARK 1.1. In the case when p = (N + 2)/(N -2), it is well-known
(Struwe [16]) that the family {u*(x)} defined by

satisfies

-Au=\u\p-lu in RN (4)

so that El\{0} Φ 0.

We start with the following result which we showed quite recently in [9]

with regard to the singularity of a global solution to the problem (l)-(3) under
the assumptions below: let u(t,x) be a solution to (l)-(3) as in Proposition

1.1. Furthermore, one assumes that
(A.I) w 0 > 0 .

(A.2) p=(N + 2 ) / ( N - 2 ) .
(A.3) Ω = {xeRN\\x\< 1}.
(A.4) u(t,x) = u(t, \x\),ur(t,r) < 0 on 0 < r < 1 with r = \x\.
Finally, assume Tm = + 00. For 1 <p < (N + 2)/(N - 2) set

Note that C0 > 0 if Tm = +00 (see [11]). Then, our results in [9] read as
follows.

THEOREM 1.1 ([9]). Assume (A.1)-(A.4). Let u(t,x) be a solution to (1)-

(3) on [0, T^i) as in Proposition 1.1. Suppose Tm = +00 and Co > 0. Then,
there exists a sequence {tn} with £„— »+oo as n — » +00 such that

(i) \Vu(tn,x)\2->CQδQ (weakly*) in C0(O)*,

(ii) u(tn,x)p+l^CoδQ (weakly*) in C0(fl)*,
as n — > +00. Here, SQ stands for the usual Dirac measure having a unit mass at
the origin.

Since C0 > 0 if and only if u(t, ) φ ( W \ J V ) for all t > 0, this theorem
states that a global orbit u(t, •) which neither decays nor blowups has a strong
singularity at the origin if this kind of solution can be constructed.

In connection with this result, we notice that such a sequence {tn}

constructed in Theorem 1.1, {u(tn, }} becomes a Palais-Smale sequence so
that the global compactness result due to Struwe [17] can be applied to this
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functional sequence. So, our first result reads as follows (see also Cerami,
Solimini and Struwe [4]):

THEOREM 1.2. Let {u(tn, •}} c H$(Ω) c &1>2(RN) be a sequence as in

Theorem 1.1. Then there exist a subsequence of {u(tn, )}, relabelled again as

{«(/„,-)}, an integer k e N, a sequence of radii {Rl

n} with lim 7^ =+00

(1 < i < k) such that W^+°°

lim
«—>+oo

= 0,

lim J(u(t, •)) = lim /(«(*„, •)) = kJt(ω) = ? C0 > 0,
t— >+oo «— >+oo -

together with ω(x) = Wj*(x) defined in Remark 1.1.

REMARK 1.2. // w easy to see that Λ(ω) = J* ffeflj/ energy level) follows.

Therefore, one has — - —Co = kd* so that if, in particular, k = 1, then

lim /(«(/,•)) = d*, /.&, /A^ energy J(u(t,-)) for a solution «(/,-) o/ (l)-(3)
?-^+oo

mαjμ attain its least energy level as in the subcrίtίcal case. Similarly, since

\\Vω\\2

L2(RN^ = SN in the present case, from Lemma 2.1 below it follows that

Co = kSN.

REMARK 1.3. Under the assumptions Ω = star-shaped and UQ(X) > 0, one
can get the similar results as in the radial case above with a slight modification.
In the case when UQ changes sign, however, even if Ω is star-shaped, one needs to
modify the results above in accordance with the results in [16] (for more general
case, see the proof of Proposition 2.1).

The next result is concerned with the case when 1 < p < (N + 2)/(N — 2).

It seems unknown that any global solutions to (l)-(3) naturally contain a

subsequence which is relatively compact in X in the subcritical case. Our

second result reads as follows:

THEOREM 1.3. Let 1 < p < (N + 2)/(N - 2) and u(t,x) be a solution on
[0, Tm) as in Proposition 1.1. If Tm = +00, then there exists a sequence {tn}

with tn — > +00 as n — » +00 such that {u( £«,-)} becomes relatively compact in X
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so that there exists an element u^ e E such that u(tn, •) —> u^ in X as n —» +00
along a subsequence.

REMARK 1.4. If C0 > 0, then one has u^ e E\{Q} in Theorem 1.3.
Moreover, such a sequence {tn} is constructed in the same way as in Theorem
1.2. On the other hand, unfortunately, the results in Theorem 1.3 are weaker

than that of [3] or [13] in the sense that their results state the relative com-
pactness in HQ(Ω) of the trajectory {w(ί, •)}.

2. Palais-Smale sequence

Reviewing some results concerning Theorem 1.1 due to [9] we shall
construct some Palais-Smale sequences of a global solution to the problem (1)-
(3), and then we will prove Theorems 1.2 and 1.3.

First, suppose 1 < p < (N + 2)/(TV - 2) and Tm = +00 in Proposition 1.1.
Since its solution satisfies the energy identity:

J(u(t, •)) + f \\ut(s, }\\lds = J(u») all t > 0, (6)
Jo

this implies that the function t h-> J(u(t, •)) is monotone decreasing so that

Co > 0 (see (5)) is meaningfull. Letting t —> +00 in (6), the improper integral

J0°° llz/^ v)!!^ is finitely determined. Therefore, there exists a sequence {tn}
with tn —> +00 as n —» +00 such that

In fact this sequence {tn} is given in [9] for the proof of Theorem 1.1.
Next, multiplying the both sides of (1) by u(t^x) and integrating it over

Ω, we have

(ut(t, ),u(t, )) = -I(u(t,.)), (7)

where (f,g) = lQf(x)g(x)dx. Due to [3], it is true that \\u(t, )||2 < C for all
t > 0 for some constant C > 0. Therefore, one has

|/(«(ί, ))l<C||M /(ίB,.)| |2 for all n e N.

Letting n — » +00, it follows that

lim I(u(tn, .)) = 0. (8)
n-^+ao

On the other hand, the identity holds:

So, from (9) with u = u(tn, •) and (7)-(8) we find that
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LEMMA 2.1. Let w(ί, •) be as in Proposition 1.1. If Tm = +00, then there

exists a sequence {tn} with tn — » +00 as n — > +00 such that

lim ||nr(ίΛ, ) H 2 = 0 ,
w — >+oo

lim \\Vu(tn, )\\2

2 = C0,n— > +oo

From this lemma, one obtains the next one:

LEMMA 2.2. Let u(t,-) be a local solution constructed in Proposition 1.1.

If Tm = + 00, then there exists a Palais-Smale sequence to the problem (l)-(3).

PROOF. Let {tn} be as in Lemma 2.1. Then, it follows that

/(HO) > J(u(tm •)) -> Of ~ n Co > 0 as n -> +00. (10)

Furthermore, for such a sequence, since / e C1^,/?), by equation (1) we have

for each υ e X, where /'(w) e X* means the usual Frechet-derivative of / at

u e X. By this equality and the Schwarz inequality together with the Poincare

inequality one gets:

which implies

(11)

where C\ > 0 is a Poincare constant. We find that {«(/„, •)} is a Palais-Smale

sequence because of (10) and (11). Π

In particular, in the case when 1 < p < (7V + 2) /(TV - 2) one gets the

following compactness result.

LEMMA 2.3. Suppose 1 < p < (N + 2)/(N - 2). L^ κ(f, ) te α

(Le., Tm = -hooj solution to (l)-(3) έw i/i Proposition 1.1. Γλen, /Ae sequence

{u(tn, )} constructed in Lemma 2.1 becomes relatively compact in X.

PROOF. For simplicity, one sets un = u(tn, ). Multiplying the both sides

of (I) by v e X and integrating it over Ω, we have

\(VuH,Vv) - (f(un),v)\ = \(ut(tn, ),v)\ < C, ||«,(/», ) H 2 l l ^ l l 2 >
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where f ( υ ) ( x ) = \v(x)\p~lv(x). From Lemma 2.1 it follows that for an

arbitrary ε > 0, there exists a natural number NQ such that for all n > NQ,

Because of (12) and (13), we have

\(Vun, Vv) - ( f ( u n ) , v)\ < ε\\Vv\\2 <ε2 + - \\Vv\\2

2. (14)

On the other hand, it follows from the Holder inequality that

\(f(un),v)\<\\un\\p

p+l\\υ\\p+ί. (15)

By takin as v = un-um in (14) and (15), we can proceed the following

estimates:

\\Vun - Vum\\l = [VunV(un - um) - f(un}(un - um)]dx
JΩ

- [VumV(un - um) - f(um)(un - um)]dx
JΩ

J

< \ \\Vun - Vum\\l + 2S2 + (\\Un\\P

p+l + K|i;+l)lk - KmlUl

for all m,n > NQ. This implies

\\Vun - Vum\\2

2 < 4ε2 + 2(||ιιπ||;+1 + ||^|i;+1)||^ - um\\p+l (16)

for all m,n> NQ.
Now, since {un} is bounded in X, by the compact embedding of X <->

Lp+l(Ω) we can assume that un — > u^ in Lp+l(Ω} for some u^ as n — » +00.

Together with (16), we find that {un} becomes a Cauchy sequence in X. Π

Now, we are in a position to prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. Basically, this is a direct consequence of [16]

(Theorem 3.1, p. 184) and Lemma 2.2. Under the framework of Theorem 1.1,

however, one has E = {0}, xl

n = 0 ( ! < / < £ ) in use of [16] and note that the

solution u(x) for the equation (4) is uniquely determined (up to scaling and

translation) such as u(x) — u\(x) — ω(x).

We shall state the outline of its proof. Indeed, set
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Then, for each v e (0, SN), we can find a real number Rn = Rn(v) > 1 such that

Qn(— } = v. Set un(x) = Rn(N~2]/2u(tn,x/Rn). Then, since the embedding

(17)

is compact for each R>1, it will follow that un ̂  ω e E+\{0} (weakly)
in @l£(RN) as n — » +00 along a subsequence (c.f., [9] or [12]). Here,

In fact, if ω = 0, then it follows from Lemma 2.1 and the compact
embedding (17) that

un(x)p+l -> Co<So (weakly*) in C0(J^)*

as n — > +00. On the other hand, if we choose φ e CQ)(RN), with ^ = 1 on
B\(0) and 0 < φ < 1 on RN, then one can estimate as follows:

0 < f φ(x)un(x}p+ldx < v + [ φ(x)un(x)p+ldx = v + o(l)
JΛ" Jw>ι

as n — » +00. This implies Q < v which contradicts the fact v e (0, S^) and

Co > S".
Next, set ϋπ(x) = u(tn,x) - R^~2^2ω(Rnx). By iterating this procedure

for the sequence {vn} c &^(RN), one can prove Theorem 1.2 similarly to the
usual global compactness argument (c.f. [16] or [17]). Π

PROOF OF THEOREM 1.3. The first half is a direct consequence of Lemma
2.3. In order to prove u^ e E, note the following estimates:

II/M -/ωili-Ki,) ^ XIMUi + ll»IUι) p"Ίl« - <Vι

for all w^

and

for each φeC^(Ω),

where {w(ί«, •)} is a sequence constructed in the first half. By combining these
estimates with Lemma 2.1 and the Sobolev embedding X -̂» Z/+1(ί2), one
obtains the desired result. Π

From the view point of the Palais-Smale condition, we have the following
result.
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COROLLARY 2.1. Let 1 < p < (N + 2)/(N - 2) and u(t,x) be a global
solution constructed in Proposition 1.1, i.e., Γw = +00. If CQ = 0, then the
sequence {u(tn,-)} given in Lemma 2.1 becomes relatively compact, and in fact,

u(t, •) — » 0 in X as t — » + oo.

PROOF. If Co — 0, then, from Lemma 2.1 it follows that

lim ||Fw(ίw, )||2 = 0. On the other hand, it is well- known that the stable set
n — »+oo

W is a bounded neighbourhood of 0 in X. Thus, w(ί«0, ) e W for some tno.

This implies that \\Vu(t, )\\2 = O(e~^) as ί-++oo (see [9]). Π

From Theorem 1.1 and corollary 2.1 with p = (N + 2)/(N-2), one can
say that it depends on the least energy level (p - \)C$/2(p + 1) whether the
Palai-Smale condition holds or not to the sequence {u(tn, )} in Lemma 2.1.

Now, we apply Theorem 1.3 and Lemma 2.2 for the finite time blowup
problem concerning (l)-(3). First, as a consequence of [16] one obtains the

following lemma.

LEMMA 2.4. Let Ω be a bounded smooth domain and p = (N + 2) /(TV — 2).

Then, for all veE, one has J(v) e {0} U (rf*,+oo), and also, for each we

E*\{0}, one has Λ(w) e {ί/*} U (2J*,+oo).

The following result gives a kind of alternative proof of [13] concerning

blowup problem.

PROPOSITION 2.1. Lei 1 < p < (N + 2)/(N - 2) and u(t,x) be a local
solution of (l)-(3) on [0,7^,) constructed in Proposition 1.1. If w(ίo, ) e V for
some to E [0, Γm), then Tm < + 00.

PROOF. First, we shall deal with the case when 1 < p < (N + 2) /(TV - 2).

Suppose Γm = +00. Then, it follows from Theorem 1.3 that there exists
a Palais-Smale sequence {u(tn,-)} to the problem (l)-(3) and u^ ε E such

that u(tn, •) — » Woo in .̂ On the other hand, it is well-known (see [8]) that
ι/(/, •) 6 V for all / e [/0, oo). If u^ = 0, then u(tm, -) e W with some fw since
W is a neighbourhood of 0 in A" and this contradicts the fact that WΓ\

V = 0. Thus, u<χ>eE\{Q}. Since the function t*-> J(u(t, )) is monotone,

one obtains J(u(tn, •)) > /(«») ^ ̂  which contradicts w(ίw, •) e V with large f Λ .
Next, we are concerned with the critical case p —

(N + 2)1 (N - 2). Suppose Tm = +00. Obviously, Q > 0. Then, from

Lemma 2.2 and Theorem 3.1 of [16], p. 184 there exist a Palais-Smale sequence

{«(*„,-)}, kεN, w°e£, and u* e E*\{Q} (1 < / < k) such that

lim /(n(fπ,.))= lim
«— >+oo ί-^+oo
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By Lemma 2.4 and the monotone decreasingness of a function 11-> J(u(t, •)),

one finds that

J(u(t, •)) > ^* for all t > 0.

This contradicts also u(t, •) e V for all ί > fo. Π
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