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ABSTRACT. In this paper we propose a modification of Predictive AIC which is an

extension of AIC to an extrapolation case. This modification reduces bias for both the

cases when a candidate model contains the true model and even when it does not

contain the true model. Simmulation study shows that our criterion has also a good

property in the mean square error.

1. Introduction

We consider multivariate linear regression of response variables y\,. .,yp

on a subset of kF explanatory variables x\,...,XkF. Suppose that there are n
observations of y' — (y\,..., yp) for each fixed explanatory variables x'F =
( x \ , . . . , X k F } . Let Y be an n x p current observation matrix and XF an n x kF

current regression matrix. The multivariate linear regression model including
all explanatory variables is written as

Y = XFΘF + β, £ ~ Nnxp(0nxp,ΣF ® /„),

where ΘF is a kF x p matrix of unknown parameters, $ is an n x p error
matrix and the rows of $ are assumed to be independently distributed as a p~
variate normal distribution with mean zero and covariance matrix ΣF. We
call the model current full model or full model. The multivariate linear
regression has been disscussed in both theoritical and applied statistics, e.g., in
a theoritical statistics (Anderson (1958), Rao (1973), Silvey (1970)) and in an
applied statistics (Chatterjee and Price (1977), Draper and Smith (1966), Seber
(1977)). Mainly our disscussions are based on a multivariate normal disti-
bution. Since our regression model has an normal distributed error matrix, the
probability density function of the observation matrix under the full model is
given by

fJ(Y\ΘF,ΣF] = (2πΓnp/2\ΣF\-n
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We consider the problem of selecting a model, from a collection of
candidate models specified by linear regression model of y on subvectors of
XF, in order to get better prediction. In general statistical models it is called
model selection (see Linhart and Zucchini (1986)) and especially, in regression
model, it is well-known as a variable selection (see Miller (1990)). Here we are
concerned with selection methods based on the construction of approximately
unbiased estimator of a risk function or an underlying criterion function, in
particular the AIC (Akaike, 1973). The AIC can be motivated by considering
the expected log-predictive likelihood or equivalently the Kullback-Leibler
information, for a candidate model. It has been pointed by Hurvich and Tsai
(1989) that the AIC in multivariate normal regression model can drastically
underestimate the corresponding risk function when a candidate model is an
overspecified model and the sample size is small. Here a candidate model is
called an overspecified model or an underspecified model according to whether
it does or does not include the true model.

A correction of AIC in the multivariate normal linear regression model
was proposed by Sugiura (1978), Hurvich and Tsai (1989), providing an exact
unbiased estimator for overspecified models. This type of a correction was also
proposed in an extended growth curve model by Fujikoshi and Satoh (1996).
Further, Fujikoshi and Satoh (1997) pointed that the minimal full model does
not always minimize the risk function when the sample size is small. Then
they proposed a modification for a class of candidate models including both
overspecified and underspecified models. Similarly, Satoh, Kobayashi and
Fujikoshi (1997) proposed such a modification of AIC in the growth curve
model of which the within individual design matrices are balanced type.

The AIC has been proposed in order to select a good fitted model for
predicting a future observation matrix with the current regression matrix. On
the other hand, Satoh (1997) proposed a Predictive AIC in order to select a
good fitted model for predicting a future observation matrix with a regression
matrix different from the current one, in the other words, for an extrapolation
case. The criterion is an unbiased estimator of its risk when a candidate
model is an overspecified model. It is also an extension of the result of Sugiura
(1978) and Hurvich and Tsai (1989). In this paper we propose a modification
of the criterion which reduces its bias as much as possible, for both over-
specified and underspecified models. In § 2 we give some preliminaries for AIC
and some notes for our frame work of multivariate normal linear regression
model with a future experiment. In §3 we disscuss on a Predictive AIC,
focusing on its difference from AIC. In §4 we propose a modification of
the Predictive AIC, and study its properties. In §5 the proposed criterion is
numerically investigated. Proofs for the results in §3 and §4 are presented in
§6.
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2. Akaike information criterion

2.1. Models

2.1.1. A candidate model

A candidate model can be specified by linear regression model of y on a

given subvector of XF and it is expressed as

Y = XΘ + <f, g~ Nnxp(0nxp,Σ ® /„),

where X is an n x k (<kF) submatrix of XF, Θ is a k x p matrix of unknown
parameters, Σ is a p x p unknown covariance matrix. We call the model

current candidate model. The probability density function of an observation

matrix under the candidate model is given by

fγ(Y\Θ,Σ} = (2πΓnp/2\Σ\~n/2Qxp{-\tr(Y-XΘ)f(Y-XΘ)Σ-1}.

The model may be fitted by maximizing the log-density function with respect to

the unknown matrices (θ,Σ). Let (9 and Σ be the maximum likelihood

estimators of the regression coefficient matrix and the covariance matrix under

the candidate model, which are given by

respectively. Here Ϋ = XΘ is a common predicted matrix of Y under the

candidate model. We note that a candidate model is regarded as a set of

probability density functions with free (unknown) parameters whose elements

have some restrictions. Therefore, a fitted model fγ(Y\Θ,Σ) is regarded as

an element of the candidate model, which may be written as

fγ(Y\Θ,Σ] e { f γ ( Y \ Θ , Σ ) \ ( Θ , Σ ) ERkp+p(p+^/2}.

2.1.2. The true model

We assume that the true model for a current observation matrix is defined

by

Y = XFΘFif +g, $ ~ Nnxp(0nxp, ΣF> (x) /„),

where Θ^ is an n x kp true regression coefficient matrix, ΣFt is a p x p true

covariance matrix. This means that the true model is obtained by specifying a

pair of fixed parameter matrices as

in the current full model. Let // be the probability density function of Y
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under the current full model. Then the true model is an element of the current

full model, i.e.,

fϊ(Y\θFt,ΣF#) e {f*(Y\θF,ΣF)\(θF,ΣF) eRk'P+r(P+W}.

We may usually discuss on the minimal full model which is the minimal

candidate model among the candidate models which contains the true model,

but we will not refer to the model here. From our assumption on the true

model, there exists at least an overspecified model, since the full model is an
overspecified model. This implies that the usual estimator of covariance

matrix under the full model, ΣF is an unbiased estimator for the true covariance

matrix ΣFt. Such a requirement will be reasonable for the case when the

number of the available explanatory variables kF is large but finite. An infinite

case is another problem and it is disscussed in Shibata (1981). Our assumption

will be too restrictive when kp is small. The case when the full model does not

include the true model should be considered, but it is not treated in this paper.

2.2. Risk

Our risk function for a candidate model is based on a predictive log-

density function, or Kullback-Leibler information introduced by Akaike (1973).

This type of risk in our frame work is defined by

R(X) = -2E^

= E?>γ*[nloS\Σ\ + nplog2π + tr{(Y@ - Ϋ)'(Y@ -

where Y@ may be regarded as an n x p future observation matrix that has the

same distribution as Y and is independent of Y, and E* denotes the expectation
under the true model. The loss function \ogfγ{Y@\Θ(Y),Σ(Y)} is a function

of Y and Y@. The log/F{ \θ(Y),Σ(Y)} is a function of Y, which gives us

a goodness of fit of the candidate model for a current observation. On the

other hand, log/r{7@| } is a function of F@ which gives an evaluation for

predicting a future observation by using the fitted candidate model. Thus the

risk function measures a degree of a fitness for both of the current and the

future observations. In principle, we should select the candidate model which

minimizes the risk function, i.e., the population best model.

It may be noted that the population best model is a function of sample
size. If the sample size is large, it will be the minimal full model. But, If the

sample size is not large, even the minimal full model will not always be the
population best model. In general, the population best model may be smaller

or more simple than the minimal full model.
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2.3. Criteria

The risk function R(X) depends on the parameters under the true model.

Therefore it must be estimated. An estimator of the risk function is called a

criterion. The Akaike information criterion AIC (Akaike, 1973) was proposed

as an approximately unbiased estimator for R(X) defined by

AIC = -2{maxmum log-likelihood} + 2{number of unknown parameters}

= nlog\Σ\ + np(\og2π + 1) + 2{kp + \p(p + 1)}.

The population best model may be estimated as the candidate model which

minimizes a criterion. We call the estimated model a sample best model. The
estimation method does not always select the population best model. However,

if the criterion is a good estimator of the risk function, we can expect to select

the population best model by the criterion with a high probability. Therefore,

it is important to develop a good estimator of the risk function. In this paper,
we focus on unbiasedness as one of the good properties.

A correction of AIC was obtained by Sugiura (1978), Hurvich and Tsai

(1989) and Bedrick and Tsai (1994). It is expressed as

n — k— p— 1'

which is an unbiased estimator for an overspecified model. Fujikoshi and

Satoh (1997) proposed a modification of AIC which is nearly an unbiased

estimator in both underspecified and overspecified models. The modofication
is given by

MAIC = CAIC + 2ktτ(Λ - Ip) - {tτ(Λ - Ip)}2 - tr{(Λ - Ip}
2},

where

n-k
Λ=

n —

They also studied its bias theoritically, and showed that the biases of MPAIC is
almost the same as the ones of CAIC for overspecified models, and MAIC

gives a considerable improvement on biases for underspecified models.

3. Predictive AIC

On basis of a current experiment, we often encounter to predict a future

observation for a given future regression matrix, which may be different from a

current regression matrix. The situation is called the extrapolation or inter-



34 Kenichi SATOH

polation case, according to whether a future regression matrix is the same as a
current regression matrix or not. Here we treat as an extrapolation case
without distingushing these two cases. One possible approach is to estimate
the parameters based on Bayesian methods (see Keyes and Levy (1996)). But,
in this section, we discuss on the prediction problem by using a model selection
method which was proposed by Satoh (1997).

3.1. Future models

3.1.1. A future candidate model

Suppose that we want to predict response variables for a future regression
matrix of kf explanatory variables x\, . . . ,;%,. Let WF be an m x kp future
regression matrix and Z be an m x p future observation matrix which can not
be observed, but required to be predicted. For a future experiment, we assume
the following multivariate normal linear regression model,

Z - WFΘJ + <ίz, <$z ~ Nmxp(Omxp, Σj ® /„), $z is independent of S,

where ΘJ is a kp x p matrix of unknown parameters, $z is an m x p error
matrix, the rows of $z is assumed to be independently distributed as a p-
variate normal distribution with mean zero and unknown covariance matrix
Σj , and $z is independent with the current error matrix <ί. The model is
called future full model. We note that each column of the future regression
matrix corresponds to that of the current regression matrix, respectively. A
future candidate model corresponding to a current candidate model is expressed
as

Z = WΘZ + £Z, £z ~Nmxp(Omxp,Σ
z®Im).

Here W is an m x k (<kF) future regression matrix, Θz is a k x p matrix of
unknown parameters, and Σz is a p x p unknown covariance matrix. The
probability density function of Z under the future candidate model is given by

fz(Z\Θz,Σz) = (2πΓmp/2\Σz\-m/2exp{-±tr(Z- WΘZ)'(Z - WΘz)(Σzγλ}.

Since we have not any future observation for the future regression matrix, we
need to estimate the unknown parameters Θz and Σz, based on a current
observation matrix. A natural way is to use estimators under the corre-
sponding current candidate model, i.e.,

Furthermore, we may predict the distribution of Z by

Nmxp(Z,ΣZ®Im),



Modification of PAIC 35

where

Z - WΘZ

= W(X'X)~1X'Y.

Such a prediction procedure has been used by Murray (1977), etc. The
probability density function of the future fitted model is given by

fz(Z\ΘZ,ΣZ) = (2πΓmp/2\Σ\-m/2exp{-\tr(Z-Z)'(Z-Z)Σ~1}.

3.1.2. The future true model

Recall that the true model for a current experiment is given as an element
of the current full model obtained by letting (Θp,Σp) = (ΘF^ΣpJ). From a
close connection between a current experiments and a future experiment, we
assume that the true parameters of the future experiment are equal with those
of the current one. More precisely, it is assumed that the future true model is
obtained from the future full model by letting

Let ZF be the conditional mean of Z under the fitted future full model, i.e.,
Zp = WpΘF. Then, under the assumption, we have the following property.

PROPERTY 3.1. The mean of ZF is equal to that ofZ under the future true
model, i.e.,

Et

γ(ZP) = E?(Z).

3.2. Risk and criterion

As a natural risk function which measures a goodness of a future candidate
model we may use

R(W\X) = -2

\ + mplog2π + tr{(Z - Z)'(Z -

The risk function is an extension of the AlC-type risk function introduced in
Section 2.2. In fact, for the case when the future regression matrix is the
same as the current one, it is equal to the risk function in Section 2.2. As an
estimator of the risk function, Satoh (1997) proposed a Predictive AIC,

= m\oB\Σ\+mP\og2π
n-k-p-V
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which is an unbiased estimator in the overspecified case, where

Similarly we can show that the criterion is equal to CAIC when WF = XF
For its asymptotic properties, see Satoh (1997).

4. Modification of PAIC

The PAIC proposed by Satoh (1997) is an unbiased estimator of the
risk function in Section 3.2 in the overspecified case. In general, a class of
candidate models includes both overspecified and underspecified models.
Furthermore, it is unknown whether a candidate model is an overspecified
model or not. In this section we discuss on a modification for a general
candidate model. Our goal is to reduce the bias as much as possible. First
we expand a risk function introduced in Section 3.2 and next we consider its
estimator.

By considering the expectation with respect to the future true model, we
can write the risk function of a future candidate model as

R(W\X) = E*[mlog\Σ\+mp\og2π

+ tr{mZ>, + (WFΘF^ - WΘ}'(WFΘF^ - WΘ}}Σ~\

Since Θ and Σ are independent under normality, we have

&(W\X) = E?(mlos\Σ\ + m/7log2π) + r,

where

Γ = EΪ{mIp+Σ-(WFΘF> - WΘ}'(WFΘF> - WΘ)Σ}, (4.1)

The term WFΘF^ - WΘ in Γ can be expressed as

(WFθF. -

where PB\A denotes an m x n matrix defined by PB\A — B(A'A)~A' for any
n x / matrix A and m x / matrix B,

(4.2)

Note that elements of δ are independently distributed as a standard normal
distribution. This implies the following basic Lemma.



Modification of PAIC 37

LEMMA 4.1. Let S = (e\,...ep) be the random matrix in (4.2). Then

where A is any n x n matrix.

From (4.1) and Lemma 4.1, we can reduce Γ as follows;

= mlp

where

ΩW = r^rw, Φ = iτ(p'w\xpw\χ) = \ι{w'w(x'xγ1}.
Let

t/i - (In-PχF}δ, U2 = (PχF-Pχ}έ, T = (PXF ^ F (4.3)
Vι = u{Uι, v2 = u^u2, Ω = r'-r.

It is assumed that as in a usual set-up,

Ω = nΔ = O(n), Ωw = O(m) (4.4)

Note that V\ = /(!„ - PχF)<$ ~ W(n - kF,Ip) and hence the distribution of

is asymptotically normal. Using (4.5) we can expand H~λ in terms of 3f as in
Lemma 4.2.

LEMMA 4.2. Let H be the random matrix in (4.1). Then H~l can be
expanded for large n as

where A and C/ (/ = 1, . . . , 3) are given by

C3 = ~

with the notation in (4.3), (4.4) and (4.5).
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Next we consider an expansion for the expectation of H~l. We use the
following basic results; for a proof, see Muirhead (1982) or Siotani, Hayakawa
and Fujikoshi (1985, p. 74).

LEMMA 4.3. Let U\ and V\ be the random matrices in (4.3). Then

= tr(A3

= (n- kF){tτ(A4) tr(A5) + (n - kF

where A\, A2, Aτ>, A$ and AS are any constant matrices of p x n, p x n, n x n,
p x p and p x p, respectively.

Using Lemma 4.3 we can evaluate the expectation of each term in an
expansion of H~l given in Lemma 4.2.

LEMMA 4.4. Let C\, C2 and €3 be the random matrices in Lemma 4.2.
Then

= Opxp,

= 2(p + 1) tτ(Λ2Γ) ~ tr(Λ) tτ(Λ2Γ) - tτ(Λ3Γ).

From Lemmas 4.2 and 4.4, we can write r as

2 - - 2 - 3 ~2= tτ(AΓ) + - (2 + 2p + k) ir(A2Γ] - -tr(Λ) tr(A2Γ) - tr(A3Γ) + O(mn~2).

It is known (see, Satoh (1997)) that the r under an overspecified model is given
by

B.= "P^ + M (4.6)
n — k — p — 1

This result was obtained by evaluating E^(H~l) exactly. It is a natural
consequence that the r in the expanded form contains the terms of O(n~l)
in an expansion of B* in (4.6). Here we shall see it directly. Under an
overspecified model we have

V = Onxp, A = IP, tr(Γ) =p(m + φ).
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Thus the r in an expansion form can be reduced as

r = tr(Γ) + - (2 + 2p + k) tr(Γ) - ^tr(Γ) - tr(Γ) + O(mn~2)

= B* + O(mn~2).

Under a general candidate model, it holds that

r - B* = r - \ (m + φ)p + -mp(k + /;+!) + O(mn~2} I
I « J

= 5; + O(mn~2),

where

) + ̂ tr(/ί) - (m

4- - {(2 + 2^ + k) tr(A2Λ^) -tr(Λ) tr(vi2

with

Finally an expansion of the risk function is given in the following theorem.

THEOREM 4.1. The risk function R(W\X) can be expanded as

R(W\X) = Ej{mp\og(lπ) + mlog|Γ|} + £,+£;+ O(mn~2),

where

(m + ψ)np
ΰ* — - - T 'n — k — p — 1

#ϊ - mtr(ΛA^) + φ\x(Λ) -(m + φ)p

with

Φ = \x{w'w(x'xγ
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Ω = τr'τr,

Further, it holds that B* = 0 in the overspecίfied case, and that the error term can
be omitted in that case.

Theorem 4.1 includes the result obtained by Fujikoshi and Satoh (1997) as
a special case, which is given by the next corollary.

COROLLARY 4.1. If the future regression matrix is equal to a current one,
then the risk function R(X\X) can be expanded as

R(X\X) = Ej{np\og(2π) + nlog\Σ\} + B* + B, + O(n~l),

where

(n + k)np
&* — - - r >n - k-p - 1

B-, = ktτ(Λ} -kp + [(2 + 2p + k) ir(Λ) - {tr(Λ)}2 - tτ(Λ2} -(k + p

with

= 2ktr(A - Ip) - {tτ(A - Ip}}2 - tτ{(Λ -

Ω =

Further, it holds that B* = 0 in the overspecified case, and that the error term can
be omitted in that case.

Here we note that 5* contains the term of O(mn~1} in Theorem 4.1. The
term will be useful when m is not small in comparison with n. On the other
hand, the term can be omitted if m is quite smaller than n or m = 0(1) as n
is large. Even for the case, we still have a valid result with the order O(n~l).
In this case the following theorem suggests us to select the full model
asymptotically.

THEOREM 4.2. Under the overspecified case the risk function in Theorem 4.1
tends to the same value
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R(W\X) -> -2

as n — > oo, where f j : is the probability density function of the future full model
Further its limiting value is the minimum value of the risk function.

From Theorem 4.2 we can see that the risk function is a function of the

sample size. Therefore, the population best model depends on the sample
size. Furthermore, it is also a function of the future regression matrix.

EXAMPLE 4.1. Consider a unίvariate polynomial regression model given by

k-\

\y=o
In the model we assume that the current and the future design matrices are

expressed as

where
Λfc) -

Then, the risk function can be expanded with respect to t as

Constant on t, if k — 1,

where a > 0. So, if \t\ is large, the risk function with order O(t2^k~^) come to

select a polynomial model with less parameters.

This result can be seen as follows. The risk function is of WF and WF is

defined by t. The parameters which contain t are only φ = \x{W'W(X'X}~1}

and Λ^. Since X'X is a positive definite matrix, it holds that φ = at^k~^ +
0(ί2(*-2)) where a> 0. On the other hand, the fact that 1^w = O(tk~1} gives

Λ$ = 0(r2(k-^}. Π

Next, we consider an estimator of the risk function. The unknown
parameters which need to be estimated are only A and Λ~^. An estimator of

A^ is proposed in the following theorem.

THEOREM 4.3. Let Λ~^ be the parameter matrix in theorem 4.1, and A~^

the estimated matrix defined by
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where

c =

D=(ZF-Z)f(ZF-Z)ΣF\

\l/ = tτ(PwF\χF — PW\X) (PWF\XF — PW\X)

Then it holds that

E* (Λ w) = ΣF^ AWΣF^ .

We note that the estimator Λ~^ is an exact unbiased estimator for A~^
in a general candidate model. Similarly, we also use the estimator for A by
replacing WF and W with XF and X, respectively, i.e., it is given by

where

= (ΫF-Ϋ)'(ΫF-Ϋ)ΣF

l.

Therefore, for the case when WF — XF it holds that AW = A, or A λAw = IP

exactly. Thus we propose a new modification of PAIC defined by

MPAIC(W\X) = mplog(2π) + mlog\Σ\ + B, + B-*,

where B* is defined from B* by substituting A^ and A for A^ and yl,
respectively. It may be noted that the estimator λψ is not an extension of A
which was proposed in MAIC (see Fujikoshi and Satoh (1997)).

5. Simulation study

We attempt to give an impression of the relative performances of PAIC
and MPAIC. The accuracy of our estimator for the risk function is inves-
tigated through Monte Carlo experiments. Bedric and Tsai (1994) report a
simulation study indicating that CAIC has much smaller biases than those of
AIC in the overspecified case. As a result it provides better model choices
than AIC in small sample case. Fujikoshi and Satoh (1997) shows that in
terms of bias reduction MAIC outperforms AIC and CAIC in the under-
specified case, and performs similarly to CAIC in the overspecified case. Satoh
(1997) examines a performance of PAIC in some extrapolation case. It is
reported that PAIC has small biases for small sample case and the overspecified
cases.
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In our experiments p = 2 and n = 20 as a small sample size or 200 as a
large sample size. First, we consider the case when the full model with kF = 6
is the minimal full model, or all the candidate models except the full model
are underspecified models. The elements of the matrix XF and the matrix ΘF,
were defined by realization of independent normal random variables with mean
zero and variance 1 and 2, respectively. The case when kF = 4 is also con-
sidered and the true matrix ΘFif is defined by using the submatrix of that for the
case kp = 6, which were given by

/ 0.563

-0.687

-1.188

0.983

0.676

V-1.335

-1.693\

-2.698

-0.425

1.578

1.554

-0.307 /

if kF = 6,

/ 0.563

-0.687

0

\ 0

-1.693\

-2.698

0

0 /

if kF = 4.

For the case when kF = 4, the minimal full model is {1,2}. There exists
some overspecified models, which are {1,2}, {1,2,3}, {1,2,4} and {1,2,3,4}.
The elements of the true covariance matrix ΣF, were constructed by using a
decomposition ΣF, = Ξ'Ξ, where Ξ is a p x p matrix, and by defining elements
of Ξ as realizations of independent standard normal random variables. The
true covariance matrix was given by

1.120 0.731

0.731 1.256

Five thousand samples of size n = 20, 200 were generated from the true
structure. Note that these samples have been generated from the fixed same
true model and the same future regression matrix WF throughout the study. It
is also noted that sample sets which are used for evaluating the risk function
and for estimating the risk are different each other. In both of cases when
kF = 4 and kF — 6, candidate models are considered for all subsets of full
explanatory variables. For each candidate model, a risk function, biases and
standard deviations of the criteria are presented in Tables 1, 2, 3 and 4.
Overspecified models which contain the true model are marked by * and the
population best model by f.

Tables 1 and 3 present for a small sample case. Biases of MPAIC are
almost equal with those of PAIC for overspecified models. On the other hand,
for underspecified models, we can see that biases of MPAIC are unformly
smaller than those of PAIC. Since the standard deviations of MAPIC are not
so large relative to those of PAIC, the mean square errors which is defined by
(Bias)2 + (S.D.)2 are small. It is noted that the population best model for



44 Kenichi SATOH

TABLE 1. Risk, Bias, S.D. and M.S.E. in 5000 repetitions: n = 20, kF = 4, p = 2, w = 20,
the true model = {1,2}

Model

{1}
{2}
{3}
{4}
{1,2} * t
{1,3}
{2,3}
{1,4}
{2,4}
{3,4}
{1,2,3} *
{1,2,4} *
{1,3,4}
{2,3,4}
{1,2,3,4} *

Risk

155.11
150.18
172.41
172.60
121.76
156.36
152.01
157.14
152.31
173.41
126.20
126.31
158.87
154.45
131.72

PAIC

4.20
3.97
6.57
6.61
0.08
6.92
6.58
6.84
6.49

10.62
0.25
0.06
9.98
9.49
0.18

Bias
MPAIC

1.33
1.32
2.02
2.01
0.16
2.50
2.45
2.38
2.35
3.76
0.32
0.14
3.94
3.85
0.18

PAIC

7.60
7.71
6.88
6.86
9.66
7.81
7.92
7.80
7.94
7.04

10.00
9.91
8.03
8.19

10.32

S.D.
MPAIC

7.58
7.68
6.69
6.66
9.67
7.79
7.88
7.78
7.89
6.78

10.01
9.94
7.99
8.12

10.32

M,
PAIC

75.40
75.20
90.49
90.75
93.32

108.88
106.02
107.62
105.16
162.34
100.06
98.21

164.08
157.13
106.53

.S.E.
MPAIC

59.22
60.72
48.83
48.39
93.53
66.93
68.09
66.19
67.77
60.10

100.30
98.82
79.36
80.75

106.53

TABLE 2. Risk, Bias, S.D. and M.S.E. in 5000 repetitions: n = 200, kF = 4, p = 2, m — 20,
the true model = {1,2}

Model

{1}
{2}
{3}
{4}
{1,2} * t
{1,3}
{2,3}
{1,4}
{2,4}
{3,4}
{1,2,3} *
{1,2,4} *
{1,3,4}
{2,3,4}
{1,2,3,4} *

Risk

148.98
145.82
167.98
168.34
111.41
148.26
145.91
146.05
148.96
167.90
111.62
111.58
148.30
146.13
111.79

PAIC

1.78
6.61
5.79
5.43
0.09
2.61
6.82
6.53
2.05
6.09
0.09
0.09
2.83
6.75
0.09

Bias
MPAIC

0.10
0.14
0.10
0.07
0.09
0.12
0.15
0.14
0.10
0.10
0.09
0.09
0.13
0.16
0.09

PAIC

2.26
2.28
2.00
2.00
2.86
2.27
2.29
2.29
2.27
2.01
2.87
2.87
2.28
2.29
2.87

S.D.
MPAIC

2.29
2.27
1.95
1.96
2.86
2.28
2.28
2.28
2.28
1.93
2.87
2.87
2.27
2.28
2.87

M,
PAIC

8.27
48.89
37.52
33.48

8.18
11.96
51.75
47.88

9.35
41.12

8.24
8.24

13.20
50.80
8.24

.S.E.
MPAIC

5.25
5.17
3.81
3.84
8.18
5.21
5.22
5.21
5.20
3.73
8.24
8.24
5.16
5.22
8.24



Modification of PAIC 45

TABLE 3. Risk, Bias, S.D. and M.S.E. in 5000 repetitions: n = 20, kF = 6, p = 2, m = 20, the true
model = {1,2,3,4,5,6}

TABLE 3-1.

Model

{1}
{2}
{3}
{4}
{5}
{6}
0,2}
{1,3}
{2,3}
{1,4}
{2,4}
{3,4}
{1,5}
{2,5}
{3,5}
{4,5}
{1,6}
{2,6}
{3,6}
{4,6}
{5,6}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,5}
{1,3,5}
{2,3,5}
{1,4,5}
{2,4,5}
{3,4,5}

Risk

150.19
154.95
167.06
165.23
170.29
161.51
140.91
145.23
154.18
145.65
154.60
164.27
148.64
155.91
167.67
164.45
144.70
146.50
153.88
158.09
161.58
138.84
140.66
143.40
154.51
140.72
146.38
155.35
147.08
154.04
160.99

PAIC

5.97
5.97
7.46
7.35
7.71
6.13
6.43
8.38
9.63
8.45
9.48

11.64
9.31
9.89

11.94
11.78
7.70
7.85
7.24
9.42
9.65
7.66
8.91

10.57
13.71
8.03

12.31
14.04
12.73
12.74
16.16

Bias
MPAIC

2.28
2.10
2.46
2.42
2.50
2.11
2.92
3.72
3.89
3.71
3.81
4.40
4.01
3.95
4.45
4.49
3.43
3.38
2.79
3.67
3.71
3.94
4.55
5.25
6.22
4.01
6.02
6.33
6.23
5.79
7.07

PAIC

7.56
7.35
6.61
6.68
6.44
7.15
8.67
8.25
7.65
8.30
7.65
6.91
7.96
7.54
6.74
6.86
8.30
8.18
8.03
7.57
7.42
9.28
9.16
8.91
7.93
9.20
8.48
7.84
8.49
8.02
7.30

S.D.
MPAIC

7.35
7.14
6.42
6.48
6.24
6.99
8.43
7.98
7.37
8.02
7.38
6.67
7.69
7.26
6.49
6.61
8.06
7.94
7.94
7.35
7.22
9.03
8.86
8.58
7.60
8.96
8.16
7.50
8.14
7.74
6.99

M.
PAIC

92.79
89.66
99.34
98.64

100.91
88.69

116.51
138.28
151.25
140.29
148.39
183.23
150.03
154.66
187.99
185.82
128.18
128.53
116.89
146.04
148.17
144.79
163.29
191.11
250.84
149.12
223.44
258.58
234.13
226.62
314.43

.S.E.
MPAIC

59.22
55.38
47.26
47.84
45.18
53.31
79.59
77.51
69.44
78.08
68.98
63.84
75.21
68.31
61.92
63.85
76.72
74.46
70.82
67.49
65.89
97.06
99.20

101.17
96.44
96.36

102.82
96.31

105.07
93.43
98.84

kp = 4 is {1,2}, which is consistent with the minimal full model, but the
population best model for kp = 6 is {1,2,3,6}, which is not the minimal full
model {1,2,3,4,5,6}. It is an example that the minimal full model is not
always the population best model.

Tables 2 and 4 present for a large sample case. Biases of MPAIC are
almost the same as those of PAIC for overspecified models. For underspecified



46

Model

{1,2,6}
{1,3,6}
{2,3,6}
{1,4,6}
{2,4,6}
{3,4,6}
{1,5,6}
{2,5,6}
{3,5,6}
{4,5,6}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,6} f
{1,2,4,6}
{1,3,4,6}
{2,3,4,6}
{1,2,5,6}
{1,3,5,6}
{2,3,5,6}
{1,4,5,6}
{2,4,5,6}
{3,4,5,6}
{1,2,3,4,5}
{1,2,3,4,6}
{1,2,3,5,6}
{1,2,4,5,6}
{1,3,4,5,6}
{2,3,4,5,6}
{1,2,3,4,5,6} *

Kenichi SATOH

TABLE 3-2.

Risk

137.36
137.69
141.71
141.29
147.75
153.69
143.54
146.85
156.21
158.78
140.35
141.37
140.92
144.82
152.39
133.98
139.42
138.46
144.69
137.61
140.73
144.76
143.58
146.81
154.29
141.52
139.72
139.30
141.53
142.89
146.93
146.56

Bias
PAIC MPAIC

7.32
6.45
7.91
9.58
11.14
10.14
10.47
11.18
10.55
13.60
9.83
9.69
8.69
14.31
14.92
3.04
9.56
6.85
10.80
7.69
8.82
11.04
13.55
14.42
13.55
7.98
3.45
2.55
7.90
9.05
12.35
0.02

3.92
3.30
3.84
4.88
5.26
4.34
5.24
5.35
4.47
5.96
5.56
5.34
4.82
7.83
7.51
1.95
5.54
3.84
5.65
4.57
4.86
5.79
7.54
7.70
6.49
5.00
2.21
1.69
4.95
5.44
7.00
0.02

S.D.
PAIC MPAIC

9.30
9.46
9.10
9.05
8.49
8.36
8.84
8.55
8.23
7.77
9.76
9.66
9.60
9.21
8.53
10.46
9.77
10.06
9.39
10.07
9.80
9.35
9.32
9.03
8.67
10.34
10.88
10.96
10.47
10.38
9.77
11.41

9.07
9.30
8.91
8.74
8.20
8.25
8.54
8.25
8.13
7.52
9.46
9.41
9.47
8.83
8.30
10.35
9.48
9.90
9.16
9.81
9.60
9.12
8.96
8.68
8.54
10.19
10.75
10.86
10.28
10.19
9.62
11.41

M.S.E.
PAIC MPAIC

140.07
131.09
145.37
173.67
196.17
172.70
187.76
198.09
179.03
245.33
191.88
187.21
167.67
289.60
295.36
118.65
186.84
148.12
204.81
160.54
173.83
209.30
270.46
289.47
258.77
170.59
130.27
126.62
172.03
189.64
247.97
130.18

97.63
97.38
94.13
100.20
94.90
86.89
100.38
96.68
86.07
92.07
120.40
117.06
112.91
139.27
125.29
110.92
120.56
112.75
115.82
117.12
115.77
116.69
137.13
134.63
115.05
128.83
120.44
120.79
130.18
133.42
141.54
130.18

models, although PAIC still has large biases, MPAIC has only small biases.
For both overspecified and underspecified models the standard deviations are
not so different and smaller than those of the small sample models. As a
consequence, the mean square errors of MAPC are quite smaller than those of
PAIC. On the risk function we can see that those of overspecified models are
almost the same value and it agrees with the result of Theorem 4.2.

Table 5 gives frequencies of the sample best model selected by the PAIC
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TABLE 4. Risk, Bias, S.D. and M.S.E. in 5000 repetitions: n = 200, kF = 6, p = 2, m = 20,
the true model = {1,2,3,4,5,6}

TABLE 4-1.

Model Risk
Bias

PAIC MPAIC
S.D.

PAIC MPAIC
M.S.E.

PAIC MPAIC

{1}
{2}
{3}
{4}
{5}
{6}
{1,2}
0,3}
{2,3}
{1,4}
{2,4}
{3,4}
{1,5}
{2,5}
{3,5}
{4,5}
{1,6}
{2,6}
{3,6}
{4,6}
{5,6}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,5}
{1,3,5}
{2,3,5}
{1,4,5}
{2,4,5}
{3,4,5}

185.28
181.38
182.04
187.42
187.66
184.87
168.60
172.26
172.91
182.09
172.14
177.27
181.13
179.19
178.72
182.99
179.85
175.66
175.96
181.45
181.88
153.98
156.28
167.29
161.78
164.75
168.52
170.33
176.61
164.69
171.32

7.74
8.98

12.83
10.96
12.06
7.99
6.42

11.27
10.52
7.37

12.79
13.33
9.04
6.41

13.05
12.34

-0.69
5.56
9.36
7.18
8.98

10.14
10.86
12.04
15.36
0.08

11.64
7.22
8.73

12.36
14.36

0.05
0.07
0.10
0.08
0.07
0.06
0.07
0.11
0.11
0.08
0.11
0.14
0.07
0.08
0.11
0.10
0.04
0.08
0.12
0.09
0.08
0.16
0.14
0.16
0.19
0.08
0.13
0.13
0.10
0.14
0.16

1.47
1.48
1.51
1.42
1.37
1.54
1.76
1.69
1.63
1.54
.61
.62
.51
.56
.57
.47

1.80
1.68
1.76
1.64
1.57
2.00
1.95
1.78
1.79
2.00
1.74
1.74
1.60
1.78
1.73

1.54
1.56
1.51
1.45
1.42
1.59
1.88
1.72
1.66
1.59
1.64
1.59
1.57
1.66
1.58
1.50
1.85
.76
.75
.67
.62
.99
.95
.72

1.72
2.16
1.78
1.82
1.65
1.82
1.70

62.06
82.83

166.88
122.13
147.32
66.21
44.31

129.86
113.32
56.68

166.17
180.31
84.00
43.52

172.76
154.43

3.71
33.73
90.70
54.24
83.10

106.81
121.74
148.13
239.13

4.00
138.51
55.15
78.77

155.93
209.20

2.37
2.43
2.29
2.10
2.02
2.53
3.53
2.97
2.76
2.53
2.70
2.54
2.46
2.76
2.50
2.26
3.42
3.10
3.07
2.79
2.63
3.98
3.82
2.98
2.99
4.67
3.18
3.32
2.73
3.33
2.91

and MPAIC. The limiting distribution of selected order in an autoregression
model was obtained by Shibata (1976). Nishii (1984) gave some similar
asymptotic results in normal linear regression. They discuss on a probability
of selecting the true model, but that is not so important in small sample case.
In the study, PAIC has more bias under underspecified model than that of
MPAIC. However, frequencies which the population best model is selected
are not so different. Similar numerical result was reported by Satoh (1997).
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Model

{1,2,6}

{1,3,6}

{2,3,6}

{1,4,6}

{2,4,6}

{3,4,6}

{1,5,6}

{2,5,6}

{3,5,6}

{4,5,6}

{1,2,3,4}

{1,2,3,5}

{1,2,4,5}

{1,3,4,5}

{2,3,4,5}

{1,2,3,6}

{1,2,4,6}

{1,3,4,6}

{2,3,4,6}

{1,2,5,6}

{1,3,5,6}

{2,3,5,6}

{1,4,5,6}

{2,4,5,6}

{3,4,5,6}

{1,2,3,4,5}

{1,2,3,4,6}

{1,2,3,5,6}

{1,2,4,5,6}

{1,3,4,5,6}

{2,3,4,5,6}

{1,2,3,4,5,6} * f

Kenichi SATOH

TABLE 4-2.

Risk

162.26

164.13

166.80

175.84

165.40

170.64

175.41

173.97

172.92

177.16

141.22

150.86

139.10

161.25

150.44

143.14

149.53

156.08

153.57

157.73

160.56

165.31

170.32

158.68

164.93

123.94

129.18

139.43

132.09

150.25

142.44

112.17

PAIC

-0.88

0.49

6.86

-0.80

8.81

8.95

0.74

2.45

9.36

8.45

14.92

3.37

5.57

12.80

15.79

0.87

3.59

2.37

11.22

-7.29

0.84

2.16

0.62

6.86

9.33

9.39

5.85

-5.82

-1.79

2.83

8.40

0.11

Bias

MPAIC

0.05

0.07

0.13

0.06

0.13

0.16

0.06

0.09

0.13

0.11

0.24

0.15

0.15

0.19

0.23

0.10

0.12

0.15

0.22

0.02

0.08

0.13

0.09

0.15

0.18

0.27

0.21

0.03

0.06

0.15

0.23

0.11

PAIC

2.06

2.19

1.88

1.88

1.85

1.91

1.84

1.75

1.82

1.69

2.17

2.19

2.39

1.88

2.04

2.42

2.23

2.25

2.10

2.32

2.22

1.99

1.92

2.02

2.03

2.58

2.55

2.58

2.64

2.29

2.30

2.90

S.D.

MPAIC

2.15

2.37

1.92

1.91

1.88

1.85

1.88

1.83

1.83

1.71

2.07

2.22

2.43

1.81

1.94

2.47

2.23

2.21

2.01

2.45

2.41

2.05

1.95

2.06

1.97

2.53

2.52

2.65

2.67

2.28

2.29

2.90

M.

PAIC

5.01

5.03

50.59

4.17

81.03

83.75

3.93

9.06

90.92

74.25

227.31

16.15

36.73

167.37

253.48

6.61

17.86

10.67

130.29

58.52

5.63

8.62

4.07

51.14

91.16

94.82

40.72

40.52

10.17

13.25

75.85

8.42

.S.E.

MPAIC

4.62

5.62

3.70

3.65

3.55

3.44

3.53

3.35

3.36

2.93

4.34

4.95

5.92

3.31

3.81

6.11

4.98

4.90

4.08

6.00

5.81

4.21

3.81

4.26

3.91

6.47

6.39

7.02

7.13

5.22

5.29

8.42

6. Proofs

PROOF OF PROPERTY 3.1.

= WF(X'FXF)
lX'FE (Y)

= WF(X'FXFγ
lX'FXFΘF,

D
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TABLE 5. Frequencies selected by the criterion in

5000 repetitions: p = 2, m = 20

49

kF

4

6

n

20

200

20

200

Model

{1,2} * t

{1,2} * t

{1,2,3,6} f

{1,2,3,5}

{1,2,3,5,6}

{1,2,3,4,5,6} * t

PAIC

5000

5000

4999

1

5000

MPAIC.

5000

5000

4999

1

5000

PROOF OF LEMMA 4.1. Since $ ~ Nn><p(&n><p,Ip ® /„),

= tr{AEt

γ(eJ e'i)}

= δytτ(A),

Dwhere δy is the Kronecker's delta. This completes the proof.

PROOF OF LEMMA 4.2. Recall that nt = (Y - XΘ) '( Y - XΘ) and the term
Y — XΘ is decomposed to three parts, i.e.,

Y - XΘ = Y - X(X'X)~1XY

= (In -

Since

+ (PχF - Pχ)(* + XF&F.

t/2

Thus,

nH = (n-kF)
l/2& + (n-kF)Ip

= Λ l/2/l_^+ 0 ( n-:
\ 2n

n(Ip + Δ)-kF+V2
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By considering a perturbation expansion of H l when n is large, we obtain

H~l = A -

-

iC2^ + C2C^ - C3^ί) + Op(n~2),

which completes the proof. Π

PROOF OF LEMMA 4.4. Note that

Therefore

Since & and F2 are independent, £/(CιC2) = Opxp.
From Lemma (4.3), we have

= \x(Λ3fΛ& ΛΓ)

n n

+ -t

Considering the expectation of each term in the above expression, we obtain

2E?tr(C2ΛΓ) = E?tτ(Λ%Λ& ΛΓ)

-£/tr(^ί72'τ^C72Ίr . ΛΓ) + -£/tr(Λf 't/2Λ r'[/2 ΛΓ)

-£/tr(Λt/2'f01-r't/2 - ΛΓ)
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= {tr(A2Γ) tr(A) + (n-kF + l) tr(Λ3Γ)} + (n- kF) tr(A3Γ)

-2(n-kF)tΐ(A3Γ)

+ tr{AΓ(A - A2)} + tτ{A2Γ(Ip - A)}

+ 2tr(A2Γ)tr(Ip-A)

= 2(p + 1) tr(Λ2Γ) - tr(Λ A2Γ) - tr(Λ3Γ). Π

PROOF OF THEOREM 4.2. From the assumption that X'X = O(n) and
W'W = O(m), we have φ = O(mn~1} and B* = mp + O(mn~1}. Therefore,

B* = ratr(ΛΛ^) -mp + O(mn~l),

and hence,

B* + £; =mtr(AAw) + O(mn~1}.

On the other hand,

m log|ZΊ = m log|ίf| -f-

Recall that H = A~l{Ip + n~λ/2Cλ + ^(w-1)} and E?(C\} = Opxp. Those
imply

E(mlog\Σ\) =

Thus, the risk function can be written as

R(W\X) = mlog\ΣFt\ +mplog(2π) -hmlog^'1 +mtr(AA^) + O(mn

From the fact that ί2 and ί2^/ are non-negative definite matrix,
tτ(AAψ) attains the minimum value when Ω — Ωw — Opxp, i.e., a candidate
model is an overspecified model. Conversely, if a candidate model is an
overspecified model, then we have

R(W\X) = mlog\ΣF.\+mplog(2π)+mp + O(mn~1}. (6.1)

Thus we obtain the minimum value which the risk function attains asymp-
totically. We note that —2 times expected probability density function of the
future true model is given by

FJ +m jplog(2π)

WFθFy(Z- WFΘF^ΣF]}}. (6.2)

Since the fomula (6.2) is equal to (6.1) when n is large. This completes the

proof. Π
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PROOF OF THEOREM 4.3. Using the symbols in (4.2), ZF - Z can be
expressed as follows:

zF-z= WFΘF - we

= (PWp\XF -

= (WF- PW\XXF)ΘF^ + (PWp\xP ~

= rwΣ
l£ + (PWΛXF - Pw\x)g. (6.3)

From (6.3) and Lemma 4.1,

E?{Σ^/2(ZF - Z}'(ZF - Z)Γ-1/2} = Ωw + ψlp.

On the other hand, an expectation of the inversed Wishart distribution matrix
is obtained (see e.g. Siotani, Hayakawa and Fujikoshi (1985, p. 59)).

1

Since ZF - Z and Σ are independent,

Recall that Aw — (Ip + m~lΩw)~l. This completes the proof. Π
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